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Abstract

In this study, receding contact problem for two elastic layers resting on a Winkler
foundation and loaded by means of a rigid circular punch is considered. The elastic layers have
different heights and elastic constants. External load is applied to the upper elastic layer by
means of a rigid circular punch and the lower elastic layer rests on a Winkler foundation. The
problem is solved under the assumptions that the contact between elastic layers, and between the
rigid punch and the upper elastic layer are frictionless and the effect of gravity forces is
neglected. Since the contact between two bodies is assumed to be frictionless, then only
compressive normal tractions can be transmitted in the contact areas. General equations of
stresses and displacements which are required for the solution of the problem are obtained by
using the theory of elasticity and the integral transform techniques. Using integral transform
technique and boundary conditions of the problem, the problem is reduced to a system of
singular integral equations in which the contact stresses and areas are the unknown functions.
The system of singular integral equations is solved numerically by making use of appropriate
Gauss-Chebyshev integration formulas and an iterative scheme is employed to obtain the correct
contact half-areas that satisfies the equilibrium conditions. Numerical results for the contact
stresses and the contact areas are given for various dimensionless quantities.

Introduction

Contact problems have a long history in solid mechanics and have been subject of many
investigations due to their practical interest such as foundation grillages, pavements of highway
and airfield, railway ballast, rolling mills. A contact problem is named as receding contact if the
contact zone shrinks as the bodies are deformed [1]. Alternatively, it is possible to define a
problem for which the contact surface in the loaded configuration is contained within the initial
contact surface [2]. There is a large body of literature associated with receding contact problems
both numerically and analytically. Among the analytical studies on receding contact problems,
the following studies can be seen in the literature. The smooth receding contact between an
elastic layer and a half space when two bodies are pressed together by considering both plane
and axisymmetric cases was considered by [3]. The smooth receding contact problem between
an elastic layer and a half space when the layer is compressed by a frictionless semi-infinite
elastic cylinder was examined by [4]. A frictionless contact problem for two elastic layers
supported by a Winkler foundation was considered by [5]. A frictionless receding contact
problem between an anisotropic elastic layer and an anisotropic elastic half plane when the two
bodies are pressed together by a rigid circular stamp was examined by [6]. Rhimi at al. [7-8]
solved the ax symmetric problem of a frictionless receding contact between an elastic



2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 23-25 May 2013, Epoka University, Tirana, Albania

459

functionally graded layer and a homogeneous half-space when the two bodies are pressed
together and a double receding contact axisymmetric problem between a functionally graded
layer and a homogeneous substrate. Bagault at al. [9] investigated contact analyses for
anisotropic half-space coated with an anisotropic layer.

This paper presents a receding contact problem for two elastic layers resting on a Winkler
foundation and loaded by means of a rigid circular punch. It is assumed that friction and gravity
forces are neglected. General equations of stresses and displacements which are required for the
solution of the problem are obtained by using the theory of elasticity and the integral transform
techniques. Using integral transform technique and boundary conditions of the problem, the
problem is reduced to a system of singular integral equations in which the contact stresses and
areas under rigid circular punch and between elastic layers are the unknown functions. The
system of singular integral equations is solved numerically by making use of appropriate Gauss-
Chebyshev integration formulas. Contact stresses and the contact areas are obtained for various
dimensionless quantities and shown in graphics and tables.

Formulation of the problem and solving the system of integral equations

Consider two elastic layers with different elastic constant and height, resting on a Winkler
foundation and subjected to a concentrated load with magnitude P by means of a rigid circular
punch as shown in Figure 1. Thickness in z direction is taken to be unit. Since x=0 is the
symmetry plane, it is sufficient to consider the problem in the region (0≤x<∞) only.

Figure 1 Geometry and loading of the receding contact problem

The stress and the displacement expressions of the layers are obtained using theory of
elasticity and integral transform technique as [10].

The boundary conditions of the problem can be written as:

2

1
y

p (x) (0 x a)
(x,h)

0 ; (a x )

   
     

(1a)

2xy (x,h) 0  (0 x )  (1b)
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y 1

p (x) (0 x b)
(x,h )

0 ; b x

          
(1c)

2xy 1(x,h ) 0  (0 x )  (1d)

1 2y 1 y 1(x,h ) (x,h )  (0 )x  (1e)

1xy 1(x,h ) 0  (0 x )  (1f)

1xy (x,0) 0  (0 x )  (1g)

1y 0 1(x,0) k v (x,0)  (0 x )  (1h)

2 2v (x,h) F(x) or [v (x,h)] f (x);
x


 


(0 x a)  (2a)

 2 1 1 1v (x,h ) v (x,h ) 0
x


 


(0 x b)  (2b)

where a is the half-width of the contact area between rigid circular punch and the upper
layer, b is the half-width of the contact area between layers. 1p (x) is the unknown contact stress

under the rigid circular punch, 2p (x) is the unknown contact stress between two elastic layers.

0k is coefficient of Winkler foundation. f(x) is the derivative of the function F(x) which

characterizes surface profile of the rigid punch. In the case of circular punch profile, f(x) can be
obtained as follows:

 1/22 2F(x) h R x R       
(3a)

 
 1/22 2

d x
f (x) F(x)

dx R x
  


(3b)

where  is the maximum displacement which occurs on the  layer under the punch on the
axis of symmetry (x=0), R is the radius of rigid circular punch. Applying the boundary
conditions (1a-1h) to the stress and displacement expressions in [10], Ai, Bi, Ci and Di (i=1,2)
coefficients in [10] can be determined in terms of the unknown contact stresses 1p (x) and 2p (x) ,

and by substituting these coefficients into Eqs. (2a-2b), after some routine manipulations and
using the symmetry conditions 1 1p (x) p ( x)  and 2 2p (x) p ( x)  , replacing h  and

1r h / h , the system of integral equations for 1p (x) and 2p (x) is obtained as follows:

 
a b

2
1 1 2 2

2a b

41 1 1
k (x, t) p (t)dt k (x, t) p (t)dt f (x)

t x (1 ) 

            (4a)

 
b a

3 2 4 1

b a

1 1 1
k (x, t) p (t)dt k (x, t) p (t)dt 0

t x 

         (4b)

where

1 11 12

0

4
k (x, t) K K 1 sin (t x) d

h



             (5a)
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2 11 13

0

e e
k (x, t) 8 K K sin (t x) d

h


          (5b)

     4 r 2 r
3 12 11 14 11A

0

4 1
k (x, t) K K mK 4 K K 1 e 2e 1

1 m h

* sin (t x) d
h



                          

    

 (5c)

 
r

4 11 13

0

8 e e
k (x, t) K K sin (t x) d

1 m h


           (5d)

11 144K K  (5e)

11 11A 11BK K K 4 K
h

 
  (5f)

 4 r 4 2 2 r
12K e e e e 4 4 r            (5g)

   2 r 2
13K e 1 r e 1 r        (5h)

 4 r 4 2 2 r 2 2 2 2
14K e e 2e e 1 2 2 r 4 r                (5i)

2 r 4 r
11AK 1 4 re e     (5j)

 2 r 2 2 2 r
11BK 1 e 2 4 r e       (5k)

1 2

2 1

1
m

1

 

 

(5l)

   0
1 1

1

k
K k 1 1    


(5m)

0

1

k
k 


(5n)

Equilibrium conditions of the problem may be expressed as,

a

1 1 1

a

p (t )dt P


 and
b

2 2 2

b

p (t )dt P


 (6a-b)

In order to simplify solution of the system of integral equations, the following
dimensionless quantities are introduced:
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1 1 1 1 1 1

2 2 2 2 2 2

1 1 2 2
1 1 2 2

1 1 1 1 1 1

2 1 2 2 1 2

3 2 2 3 2 2

4 2 1 4 2 1

x ar , t as , dt ads

x br , t bs , dt bds

p (t ) p (t )
g (s ) , g (s )

P / h P / h
M (r ,s ) k (x , t )

M (r ,s ) k (x , t )

M (r ,s ) k (x , t )

M (r ,s ) k (x , t )

  
  

 







(7a)

By substituting (7a) into the system of integral equations and equilibrium conditions, the
system of integral equations and equilibrium conditions can be obtained as follows:

1 1
2

1 1 1 1 1 1 2 1 2 2 2 2 1
1 1 21 1

41 1 a 1 b
M (r ,s ) g (s )ds M (r ,s )g (s )ds f (r )

s r h h (1 ) 

  
         

  (8a)

1 1

3 2 2 2 2 2 4 2 1 1 1 1
2 21 1

1 1 b 1 a
M (r ,s ) g (s )ds M (r ,s )g (s )ds 0

s r h h 

 
      

  (8b)

1

1 1 1

1

a
g (s )ds 1

h 
 and

1

2 2 2

1

b
g (s )ds 1

h 
 (9a-b)

To insure smooth contact at the end points a and b, let the solutions as follows:

2 1/2
1 1 1 1 1g (s ) G (s )(1 s )  11 s 1   (10a)

2 1/2
2 2 2 2 2g (s ) G (s )(1 s )  21 s 1   (10b)

Using the appropriate Gauss-Chebyshev integration formula [11], Eqs. (8a-b) and (9a-b)
become

2N
k 2

1 k1 1 i1 k1 2 i1 k2 2 k2 i1
k 1 k1 i1 2

1 s 41 a b
G (s ) M (r ,s ) M (r ,s )G (s ) f (r )

N 1 s r h h (1 )

               


(11a)
2N

k
2 k2 3 i2 k2 4 i2 k1 1 k1

k 1 k2 i2

1 s 1 b a
G (s ) M (r ,s ) M (r ,s )G (s ) 0

N 1 s r h h

            


(11b)
2N

k
1 k1

k 1

1 sa 1
G (s )

h N 1




  and
2N

k
2 k2

k 1

1 sb 1
G (s )

h N 1




 
(12a-b)

where

k

k
s cos , (k 1,..., N)

N 1

    
(13a)
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i

2i 1
r cos , (i 1,..., N 1)

N 1 2

      
(13b)

The system of algebraic equations in (11) and (12) contain 2N + 4 equations for 2N + 2
unknowns. It has been shown that the extra equations in (11a) and (11b) correspond to the
consistency conditions of the original integral Eqs. (8a) and (8b). It may also be shown that the
(N/2+1) equations in (11a) and (11b) are automatically satisfied. Thus, the equations given by
(11) and (12) constitute a system of 2N+ 2 equations for 2N+ 2 unknowns which are 1 k1G (s ) ,

2 k 2G (s ) , (k = 1,…,N) and contact half-widths a and b. Note that the system is linear in 1 k1G (s )

and 2 k 2G (s ) but highly nonlinear in a and b. Therefore, an iterative procedure had to be used to

determine these two unknowns. Making an initial estimate of the variables a and b, the system of
equations given by (11) is solved for the 2N unknowns 1 k1G (s ) , 2 k 2G (s ) , (k= 1,…,N). Then, Eq.

(12) is used to verify if the equilibrium conditions are satisfied. Since the applied load is known,
right-hand terms of Eq. (12) is always constant and left-hand terms of these equation vary from
one iteration to another. Based on the physics of the problem, if the right-hand term of (12) is
larger in absolute value than left-hand term, the values of a and b are increased or vice versa
[12].

Results

Some of calculated results obtained from the solution of receding contact problem
described in the previous sections for various dimensionless quantities such as R/h, µ 2/(P/h), µ2/
µ1 and k ( 0 1k k /  ) are shown in Tables 1and 2 and Figures 2-5.

Table 1 shows variation of the half-widths of the contact areas (a/h and b/h) with µ2/(P/h)
and R/h. In the event of increase load ratio µ2/(P/h), it is indicated that half-widths of the contact
areas a/h and b/h decrease. On the contrary, in the event of increase R/h they increase. Variation
of the half-widths of the contact areas (a/h and b/h) with µ2/ µ1 and k is given in Table 2. It is
clearly seen from Table 2 that a/h and b/h increase with increasing of µ2/ µ1, But they decrease
with increasing of k.

Table 1 Variation of the half-widths of the contact areas (a/h and b/h) with µ2/(P/h) and R/h
(χ1= χ2= χ3=2, h1/h=0.5, µ2/ µ1=0.5, k=5)

R/h=10 R/h=250 R/h=750

µ2/(P/h) a/h b/h a/h b/h a/h b/h

10 0.7389 0.8799 2.0495 2.9998 3.3970 4.9812

50 0.3461 0.4887 1.2820 1.5690 1.7371 2.2283

250 0.1412 0.4701 0.7249 0.9960 1.0921 1.5873

750 0.0805 0.4599 0.4350 0.7241 0.7215 1.1092

Table 2 Variation of the half-widths of the contact areas (a/h and b/h) with k and µ2/ µ1

(χ1= χ2= χ3=2, h1/h=0.5, R/h=500, µ2/(P/h)=250)
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k=10 k=4 k=0.1

µ2/ µ1 a/h b/h a/h b/h a/h b/h

0.1 0.8821 1.4923 0.9365 1.5765 1.1196 1.6238

0.5 0.9451 1.9396 1.0263 2.5786 1.3895 2.8238

5 1.2831 2.2951 1.4356 2.7865 1.9643 3.4576

10 1.5092 2.4227 1.6845 2.9946 2.1276 3.5918

Figures 2 and 3 show variations of the contact stress distribution under rigid circular punch
and between two elastic layers with µ2/ µ1. They appear that maximum value of contact stress is
always at x=0 and it decreases with increasing µ2/ µ1. Figures 4 and 5 show variations of the
contact stress distribution under rigid circular punch and between two elastic layers with load
ratio µ2/(P/h). As seen in Figs. 4 and 5, p1(x)/(P/h) and p2(x)/(P/h) increase with increasing of
µ2/(P/h)

p 1(x
) /(

p /
h)

Figure 2 Variation of the contact stress
distribution under rigid circular punch
with µ2/µ1 (h1/h=0.5, R/h=100,
µ2/(P/h)=250, R/h= 500, k=10)

Figure 3 Variation of the contact stress
distribution between layers with µ2/µ1

(h1/h=0.5, R/h=100, µ2/(P/h)=250, R/h=
500, k=10)
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Conclusion

Receding contact problem for two elastic layers loaded by means of a rigid circular punch
resting on a Winkler foundation is considered. The results presented in this paper show that
elastic properties of the layers, intensity of the applied load, radius of the rigid punch and
coefficient of Winkler foundation have considerable effect on at the contact areas and thus, the
contact stress distribution under the rigid circular punch and between layers
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