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Abstract

In this paper the following problems are treated:
- Estimation of the mean value of a random function Z(x), defined in a stochastic finite

element v, (SFE),

zv=
1 ∫ ( )

where the distributions of  Z(x) at each node are known;
- Kriking solution with  SFE  under the non- stationary  hypothesis:

E(Z(x))=m(x) ,  C(x, h) = E{(Z(x+h)Z(x)}-m(x+h)m(x).

Finally are given the conclusions underlying the importance of above stochastic
instruments not only in the stochastic geotechnical discipline but also in other ones as in energy,
geology, geophysics, mechanics, dynamics, elastostatics, finance , engineering , environment,
climate etc., in which the distributions are used.

1. Estimation of the mean value of a random function Z(x), defined in a stochastic finite
element (SFE) v,

zv = 1/v 
v

Z(x)dx, where the distributions of  Z(x) at each node are known;

2. A discretization random field view of SFE in relation to other dicsetized methods.
3. Kriking in SFE view
4. SFE in reliability analysis.
5. Finally some considerations are presented, related to stochastic random field proprieties

estimation and stochastic differential equations.

Introduction

The random theory [1] seeks to model complex patterns of variation and interdependences
in cases where deterministic treatments are inefficient and conventional statistics are insufficient
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In this view stochastic calculus [2],[4],[13],[14],[15],[16]. on input, output, system models
etc are the key points in the random field theory and its applications in geotechnics.

It is known, a random field X(t) is defined as a collection of random variables indexed by
a continuous parameter t  Ω Rd,  (d = 2 or 3), i.e. t is a location vector. To completely define
a random field, the joint distribution of the random variables {X(t1), X(t2) …, X(tn)} for any {n,
t1, t2, …, tn} must be specified.

The continuous random field X(t) as soil , elastic etc medium may be approximated by a
discrete , defined in terms of a finite set of random variables {X1, X2,. Xn}. Like in the
deterministic FE method, the stochastic discretization method requires the splitting of the
domain into a discrete assembly of elements, which is usually referred to as the stochastic finite
element (SFE) mesh. All the methods found in the literature under this denomination have the
following common characteristics:

– a finite element model, i.e. the discretized version of the equations governing a physical
phenomenon etc.

– a probabilistic model of the input parameters : random variables and/or random fields. In
this context below it is presented a  SFE method.

Stochastic finite element. the mean value

Let’s consider: a zone V  R3 and a random function Z(x) , xV; the zone V is
partitioned into blocks vi by a parallelepiped grid :

V= vi (1)

where vi is a parallelepiped element with eight nodes. In each node Z(x) is known  i.e.  the
probability density on its point support as it is shown in Fig(1) .  It is required:

 the  distribution p.d.f 16,[9]  in whatever point xV
 the estimation of the mean value [16,[9]]

zvi = 1/vi 
v

Z(x)dx ( 2 )

Fig. 1. Parallelpiped element

over the domain vi .
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Fig 1a
We define a stochastic element as a block [12], with the random function Z(x),   xvi, so

Z(x) at a point xvi is a random variable with the respective (probability) distributions . In fig
1a are presented four distributions well logs.

Let us consider a reference element wi in the coordinate system s1 s2 s3. If we choose an
incomplete base 16:

P(s) =  1 s1 s2 s 3 s1s2 s2s3 s3s1 s1s2s3  ( 3 )

then the function Z(x) could be presented as a linear combination:

Z(x)= Z( s1 s2 s 3 )= < P(s) > [  P8 ] –1 { Zs
8 } = <  N (s) >{ Zs

8 } ( 4 )

[P8 ] –1 - the  matrix, whose elements are the polynomials base values at the nodes,

{Zs
8} is the vector of the distributions of the nodes, while  N (s)  is the vector of the shape

functions Ni, i= 1,8

N (s)= <   Ni (s) >= < N1(s) , N2(s)………..N8(s) >

where

Ni(s)=
8

1
(1+s1s1

i ) (1+s2s2
i ) (1+s3s3

i )  i=1,8 ( 5)

To calculate the mean value zvi = 1/vi 
v

Z(x)dx , we consider the deterministic

transformation

Xi (s)= <   Ni (s) > < xi
8 > i=1,3                                         ( 6 )

Therefore
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Zvi =
v

1
 Z (x1(s1 s2 s3 ), x2(s1 s2 s3 ), x3(s1 s2 s3 )) det J ds1 ds2 ds3  = 

8

1

HiZi(x)

After some algebra [16], we can calculate the weight coefficient Hi, i=1,8, for example

H2=8/3c21 a32 c13 +8/9 d21 a32 a13 +8/27c21 c32 d13+8/27d21 c32 b13 +  8/9 a21 b32 c13 +8/9 b21 b32

a13+8/27a21 d32 d13 +8/27b21 d32 b13 +  8/9 c11 a22 d33+8/9 d11 a22 a33 +8/9  a11 b22 c33 +8/9 b11 b22 a33 +
8/27c11 a22 d33+8/27d11c22 b33+8/27a11 d22 d33 +8/27b11 d22 b33 + 8/9 a12 a23 d31 +8/9 b21 a23 b31+8/27c12 b23

d31 +8/27d12 b23 b31 + 8/9 a12 c32 c31+8/9 b12 c23 a31 +8/27a21 d32 c31 +8/27d12 d23 (a31 +    8/9 a13 a22 d31+8/9
c13 a22 c31 +8/9  a13 b13 b31+8/9  c13 b22 a31 + 8/9 b13 d22 d31+8/27d13 c22c31+8/27b13 d13 b31+8/27d13 d22 a31 +
8/9 c21 a12 c33+8/9 d21 a12 a33 + 8/9 a12 b12 c33 +8/9 b21 b12 a33 +  8/27c21 c12 d33+8/27a13 a22 d31+8/27a12 d12

d33+8/27b21 d12 b33 + 8/9 c11 a32 c23+8/9  d11 a32 a23 +8/9 a32 b32 c23 +8/27b11 b32 a13 + 8/9 c11 c32

d23+8/27d11 c32 b23+8/27a32d32 d23 +8/27b11d32 b2 3

(7c)
The analogous calculations it could be done [18]  for the other  coefficient HI, i=1,8 .Also

it can easily  be prouved




8

1i

H i = 1

(8)

then E{ Zv(x)}= 


8

1i

Hi E (Zi(x) )  = 


8

1i

Him =m   , i=1,8 (9)

where the coefficients Hi are the distribution weights.
It is shown [16],[13] ,the stochastic finite element estimator is a linear interpolator, related

to the distributions  given at its nodes and it could be calculated using Monte Carlo simulations
[6] Generally SFE, there are many applications in geotechnic [5] as in random fields
disccretization, stochastic integrals, differential equations(SDE),  geostatistics, reliability theory,
rock elasticity- plasticity linear theory etc. Of course the mention approach differs to other ones,
for example to the midpoint method, the shape function method, the integration point method
which use other bases to approximate a given random field.

Kriking in sfe view

Kriging refers to a group of generalized least-squares regression algorithms. Kriging refers
to a group of generalized least-squares regression algorithms). All kriging methods are variants
of the linear regression estimator [3], given by:

(10)

where is the weight assigned to datum . m(u) and m(uα ) are the expected
values of the random variables defined for each location.

Taking account the the mean value
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ZV= 
v

dxxZ
v

)(
1

(11 )

over a given domain v and the Kriking definition [17],
Above SFE could be used for calculus of Kriking variants [3], [11].simple Kriking,

Ordinary krikng, Trend only kriking, Universal kriking, Lognormal kriking Indicator kriking ,
Cokriking etc

Kriking algorithm with SFE could also be worth for solving stochastic partial differential
[6] equations under some conditions

- to approximate” their stochastic coefficients” by mean values in conformity with SFE
presented.

- to consider  the  differential equations in mean square sense,. Remember , a
function f : RnR is called mean square differentiable in x0 in direction x when the differential
quotient

has a limit of the mean and the variance for h0. In this view the theorem couuld be
considered:

If:

-a random function is a mean square differentiable in x0, ,-

(12)
exists and has finite variation

- the trend function g1 (x) , g2(x) , ……gp (x) solve the homogeneous equation

(131)

2- THE TREND PART G0 (X)   SOLVES THE  HETEROGENEOUS DIFFERENTIAL
EQUATION

(132)

- THE COVARIOGRAM EXISTS AND IS ADMISSIBLE , I.E.

(133)

for the  linear partial differential equation

(14)
then

its solution is the universal kriking interpolation
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(15)

SFE is a appropriate tool not only to calculate the covariation matrrix of the Kriking or
generally in geostatistics , but also the global stiffness matrix K of the discretization of
randiom fields (soil, mechanic, geotechnic etc systems) , when materials properties are
described by means of random variables as Young modulus, Poison ratione etc

,

where
- = ξk (θ) .,k=1,…M) denotes the set of standard normal variables appearing in the

discretization of all input random variables and {ψ( )} are multidimensional Hermite
polynomials, B is the deterministic matrix that relates the component of the strain to the element
model displacement and D(θ) is the random elasticity matrix. In case of an isotropic elastic
material with random independent Young’s modulus E and Poisson’s ratio ν the elasticity matrix
may be written

.
where  λ(ν) ,μ (ν) are function of ν, which depend on the modeling D1, D2 are detrministic

matrices.
Taking into account the our SFE algorithm is independent of integrand form, the proposed

SFE could be applied in integrands that appear in geostatistic, SFE methods etc.

SFE in reliability analysis.

Structural reliability analysis of large scale mechanical, geotechnical, hydro technical [7],
[8] systems require the use of a finite element code coupled with a reliability method. The
efficiency of the method in terms of number of calls to the finite element code is crucial when
each single finite element run is computationally expensive. In this view we propose our
approach as quadrature method in order to compute different objects of reliability analysis
which include stochastic integrals. To simplify the idea let’s consider a mechanical (
geotechnical)  model in which we calculate the  i-th- moment [7]  .
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where is a joint distribution, ψ(.) is the PDF of a standard normal

variable and s(x1, ……xN ) is usually known through a finite element code,, wk are
integration weights. This moment can be estimated :

NP is the order of quadrature scheme.
are needed apriori. also there are an analogy between wk and Hk of our SFE proposed when the
space is R3 analog

Conclusion

The SFE proposed  could be applied for different type of stochastic integrals (i.e.
stochastic volume of fluids in porous media etc ), in geostatistic: covariances, moments,
different type of krikings, elasticity theory : elasticity, stiffness, damping etc  matrices ,  in
reliability theory: discretisation forms , error estimators, second moment approaches, spectral
stochastic methods ,stochastic differential equations, random spatial variability etc .In now days
, SFE  are indispensable in geotechnical plans, studies , designs , projects  etc for  reliability, risk
analysis, stochastic optimization [14],[17],optimal decision making etc

References

[137] Vanmarcke, E. H. Random field; analysis and synthesis. The M.I.T, third edition 1983.
USA.

[138] Ghanem, R. Santos,. P. D SFE, a spectral approach. Springer Verlag. USA, 1990

[139] Yang Yu. Geostatistical interpolation and simulation of RQD measurement. (Thesis) The
University of British Columbia, Canada, 2010.

[140] Zhang I, Zhang, L. Tang, W. Kriking numerical models for geotechnical reliability
analysis. Soils and foundations, 51(6). Japan, 2011.

[141] Getachew, L. F.  Reliability or likelyhood of  geological or geotechnical  models. Thesis
ITC Delft. Netherland, 2004.

[142] Gobet, E.  Introduction to stochastic calculus and to the resolution of PDE using Monte
Carlo simulations Centre de mathematique appliqués CNRS. Paris, France, 2012.

[143] Sudret B. Der Kiureghian. Stochastic finite element methods and reliability. University of
California, Bercley. USA, 2000.



2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 23-25 May 2013, Epoka University, Tirana, Albania

525

[144] Getachew L. F. Reliability or likelyhood of  geological or geotechnical  models. Thesis
ITC Delft. Netherland, 2004.

[145] Jimenez R. Sitar N.  The importance of distribution types on finite element analyses of
foundation settlement Computers and Geotechnics 36, Elsevier. UK, 2009.

[146] Kok. K. P Reliability based design  in geotechnical engineering, computations and
applicationa. Routledge, Singapor. New York, 2008.

[147] Gerald K. Kriking for processes solving partial differential equations. Freiberg University.
Germany, 2001.

[148] Richard V. Field J. Stochastic model: Theory and simulation.Sandia National,
Laboratories. USA, 2008.

[149] Hoxha. P, Osmani S. SFE geostatatistcs uncertainty and risk analysis on parameter
estimation of rock mechanics.European Conference on Rock Mechanics and environmentl
engineering. Zurich, Switzerland, 2010.

[150] Osmani S. Optimisation 3. Introduction to stochastics(inAlbanian).Filara H. Albania,
2012.

[151] Osmani S. Optimization 2. Finite elements ( in Albanian). PEGI House. Albania, 2008.

[152] Osmani S. Energy distribution estimation using stochastic finite element.
Elsevier.Renewable energy Nr.25. London, UK, 2002.

[153] Osmani. S.Korini Th. Geostatistics  ( in Albanian ) Sh.B.L.U. house . Albania 2000

[154] Osmani S. Optimization 1Linear programming with extension.( in Albanian). PEGI
House. Albania, 2007.


