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Abstract

In this paper the following problems are treated:
- Estimation of the mean value of a random tunction Z(x), defined in a stochastic finite
element v, (SFE),

Z,=; [, Z(x)dx

where the distributions of Z(x) at each node are known;
- Kriking solution with SFE under the non- stationary hypothesis.

EZ(X))=m(x) , C(x, h) = E{(Z(x+h)Z(x)} -m(x+h)m(x).

Finally are given the conclusons underlying the importance of above stochastic
instruments not only in the stochastic geotechnical discipline but also in other ones as in energy,
geology, geophysics, mechanics, dynamics, elastostatics, finance , engineering , environment,
climate etc., in which the distributions are used.

1. Estimation of the mean value of a random function Z(x), defined in a stochastic finite
element (SFE) v,

z,=1v j Z(x)dx, where the distributions of Z(x) at each node are known;

2. A discretization random field view of SFE in relation to other dicsetized methods.

3. Kriking in SFE view

4. SFE inreliability analysis.

5. Finally some considerations are presented, related to stochastic random field proprieties
estimation and stochastic differential equations.

I ntroduction

The random theory [1] seeksto model complex patterns of variation and interdependences
in cases where deterministic treatments are inefficient and conventional statistics are insufficient
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In this view stochastic calculus [2],[4],[13],[14],[15],[16]. on input, output, system models
etc are the key points in the random field theory and its applicationsin geotechnics.

It is known, a random field X(t) is defined as a collection of random variables indexed by
acontinuous parametert € Q cRd, (d=2 or 3), i.e. tisalocation vector. To completely define
arandom field, the joint distribution of the random variables {X(t1), X(t2) ..., X(tn)} for any {n,
t1, t2, ..., tn} must be specified.

The continuous random field X(t) as soil , elastic etc medium may be approximated by a
discrete , defined in terms of a finite set of random variables { X1, X2,. Xn}. Like in the
deterministic FE method, the stochastic discretization method requires the splitting of the
domain into a discrete assembly of elements, which is usualy referred to as the stochastic finite
element (SFE) mesh. All the methods found in the literature under this denomination have the
following common characteristics:

— afinite element model, i.e. the discretized version of the equations governing a physical
phenomenon etc.

— a probabilistic model of the input parameters : random variables and/or random fields. In
this context below it is presented a SFE method.

Stochastic finite element. the mean value

Let’s consider: a zone V < R3 and a random function Z(x) , xeV; the zone V is
partitioned into blocks v; by a parallelepiped grid :

V=U Vi 1)
wherev; isaparalleepiped element with eight nodes. In each node Z(x) isknown i.e. the
probability density on its point support asit isshownin Fig(1) . Itisrequired:
e the distribution p.d.f [16],[9] inwhatever point xeV
e the estimation of the mean value [16,[9]]
2= 1, J‘ Z(x)dx (2)

\

Fig. 1. Parallelpiped element

over thedomainyv; .
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Fig la
We define a stochastic element as a block [12], with the random function Z(x), Xevi, SO
Z(x) at apoint xev; is arandom variable with the respective (probability) distributions . In fig
laare presented four distributions well logs.
Let us consider a reference element w; in the coordinate system s; s, s3. If we choose an

incompl ete base [16]:

PO = ( 1s1 S S3 9% 8 S8 SIS ) (3)

then the function Z(x) could be presented as alinear combination:

Z0)=2Z(s1 s s3)=<P(9>[ Ps] " {Z"}=< N(®>{Z"} (4)

[Ps] - the matrix, whose elements are the polynomials base values at the nodes,
{Zs® isthe vector of the distributions of the nodes, while ( N (s) ) isthe vector of the shape

functions N;, i= 1,8

N ()= < Ni(s)>= < Ni(9), NoS)........... Ng(s) >
where
Ni9= T (Lrss') (Lrss) (Lrss) 118 (5)

To caculate the mean value z, = llv; J‘ Z(x)dx , we consider the deterministic

transformation
Xi (9= < Ni(9><x®> =13 (6)
Therefore
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8

Zi =%j Z (xa(s1 %2 53), Xe(S1 52 S6), Xa(S1 S2 S6)) det I dsy dsp sz = ), HiZi(x)

1

After some algebra[16], we can calculate the weight coefficient Hi, i=1,8, for example

H,=8/3C;1 85, Ciz +8/9 Uy 8s; &3 +8/27Cy C3p Gia+8/270y C3p b1z + 8/9 & b3y €13 +8/9 by b,
a3t8/27ay gy diz +8/2710,1 dgp b1z + 8/9 €y @ Usa+8/9 dig &y 8g3 +8/9 ay1 by C33 +8/9 by by g3 +
8/ 27C11 5% d33+8/ 27d11C22 b33+8/ 27a11 d22 d33 +8/ 27b11 d22 b33 + 8/9 Ao o3 d31 +8/9 bgl a3 b31+8/ 27C12 b23
d31 +8/27d12 b23 b31 + 8/9 a2 C3o Cg]_+8/9 b12 Co3 Ag1 +8/278Q1 d32 Cs1 +8/27d12 d23 (%1 + 8/9 dq3 A2 d31+8/9
C13 82 Ca1 +8/9 ay3 D13 031+8/9 €13 by 851 + 8/9 by iy A3y +8/27015 CroCa1+8/271013 O3 03+8/27015 dyy B +
8/9 Co1 Q2 C33+8/9 dgl Qo ag3 T 8/9 a0 b12 Cs3 +8/9 bgl blg Qg3 t+ 8/27C21 Cio d33+8/27a13 (2% d31+8/27a12 dlg
033+8/27D,1 dip b3z + 8/9 Ciy @g Cu+8/9 diy &g @3 +8/9 g by Cx +8/27b1; by, &3 + 8/9 ¢y G
d23+8/ 27d11 Cso b23+8/ 27%2d32 d23 +8/ 27b11d32 b2 3

(7c)

The analogous calculations it could be done [18] for the other coefficient HI, i=1,8 .Also

it can easily be prouved

8
H i = 1
i-1

(8)

then E{ Z(X)}= iHiE(Zi(x)) =S Hm=m , "i=18  (9)

8
i=1
where the coefficients Hi are the distribution weights.

It is shown [16],[13] ,the stochastic finite element estimator is alinear interpolator, related
to the distributions given at its nodes and it could be calculated using Monte Carlo simulations
[6] Generally SFE, there are many applications in geotechnic [5] as in random fields
disccretization, stochastic integrals, differential equations(SDE), geostatistics, reliability theory,
rock elasticity- plasticity linear theory etc. Of course the mention approach differs to other ones,
for example to the midpoint method, the shape function method, the integration point method
which use other bases to approximate a given random field.

Krikingin sfeview

Kriging refersto a group of generalized least-squares regression algorithms. Kriging refers
to a group of generalized least-squares regression algorithms). All kriging methods are variants
of the linear regression estimator [3], given by:

Z ()y=m@)+> A, () Z(u,)—m(u_)]

(10)

where “@ () is the weight assigned to datum ug) m(u) and m(u, ) are the expected

values of the random variables defined for each |ocation.

Taking account the the mean value
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1
Zy==[Z(x)dx (11)
V \

over agiven domain v and the Kriking definition [17],

Above SFE could be used for calculus of Kriking variants [3], [11].simple Kriking,
Ordinary krikng, Trend only kriking, Universal kriking, Lognormal kriking Indicator kriking ,
Cokriking etc

Kriking algorithm with SFE could also be worth for solving stochastic partial differential
[6] equations under some conditions

- to approximate” their stochastic coefficients” by mean values in conformity with SFE
presented.

- to consider the differential equations in mean sguare sense,. Remember , a
function f: R" >R iscalled mean square differentiablein X in direction x when the differential
guotient

o Flxo -+ To) flxn)
Hm
f Py—y &

has a limit of the mean and the variance for h—0. In this view the theorem couuld be
considered:

If:
: f:R'—= R, . . _
-a random function < - is a mean sguare differentiable in Xo -
Ve f(x) == ( 5= f(x)..- -, = f(x) )
' (12)
exists and hasfinite variation
- the trend function g; (X) , g2(X) , ...... gp (X) solve the homogeneous equation
Eoglx) =Ni=1,.., p
(131)
2- THE TREND PART Gy (X) SOLVES THE HETEROGENEOUS DIFFERENTIAL
EQUATION
L,.gn(x) = k(x).
KHEII: JII \ / (132)
- THE COVARIOGRAM EXISTSAND ISADMISSIBLE, I.E.
LyLye(x,¥)|x=y =0, (135)

for the linear partial differential equation

Ly f(x) = k(x)
(14)
then

its solution is the universal kriking interpolation
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||". fixy) — apixg) \
7 ) ||‘ Xm | — 00l Xm )
f(x) = golx) +
L
\ o
( clX1.Xy ' c{X1,Xm) qiiry) ¢ @pl Ty 1,| I( cix,.x1) ‘||I
Ol XmX1) L ClXm:.Xm @11 Tm v ".l'__!.|-'||_' CiX. X |
giiry ; gi{Tm) U U g1(x)
\ o g1 0 0 / \ gx /

(15)

SFE is a appropriate tool not only to calculate the covariation matrrix of the Kriking or

generally in geostatistics , but also the global stiffness matrix K of the discretization of
randiom fields (soil, mechanic, geotechnic etc systems) , when materials properties are
described by means of random variables as Y oung modulus, Poison ratione etc

K = Z KW, where K, E[K ] U / BT . E|D(#)W¥,] - BdS2,

Where

- &= & (0) .,k=1,...M) denotes the set of standard norma variables appearing in the
discretization of all input random variables and {Q(é)} are multidimensiona Hermite
polynomials, B isthe deterministic matrix that relates the component of the strain to the element
model displacement and D(0) is the random elasticity matrix. In case of an isotropic elastic
material with random independent Young’s modulus E and Poisson’s ratio v the elasticity matrix
may be written

[ = E(A1)DD, 2ri(r)l)s)

where A(v) ,u (v) are function of v, which depend on the modeling D;, D, are detrministic
matrices.

Taking into account the our SFE algorithm is independent of integrand form, the proposed
SFE could be applied in integrands that appear in geostatistic, SFE methods etc.

SFE in reiability analysis.

Structura reliability analysis of large scale mechanical, geotechnical, hydro technical [7],
[8] systems require the use of a finite element code coupled with a reliability method. The
efficiency of the method in terms of number of calls to the finite element code is crucial when
each single finite element run is computationally expensive. In this view we propose our
approach as quadrature method in order to compute different objects of reliability anaysis
which include stochastic integrals. To simplify the idea let’s consider a mechanical (
geotechnical) model in which we calculate the i-th- moment [7] .
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where X = {1\ .. .\v Tisajoint distribution, W(.) is the PDF of a standard normal

variable and s(x;, ... Xn ) is usualy known through a finite element code,, wy are
integration weights. This moment can be estimated :

| SN A ] E El r o

NP is the order of quadrature scheme, It is seen that NPY evalnations of S
are needed apriori. aso there are an analogy between wy and Hy of our SFE proposed when the
spaceis R® analog

Conclusion

The SFE proposed could be applied for different type of stochastic integras (i.e.
stochastic volume of fluids in porous media etc ), in geostatistic: covariances, moments,
different type of krikings, elasticity theory : elasticity, stiffness, damping etc matrices , in
reliability theory: discretisation forms , error estimators, second moment approaches, spectral
stochastic methods ,stochastic differential equations, random spatial variability etc .In now days
, SFE are indispensable in geotechnical plans, studies, designs, projects etc for reliability, risk
analysis, stochastic optimization [14],[17],optimal decision making etc
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