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ABSTRACT 

Structural Optimization, in general, can be interpreted as “the point” where the required 

structural performance meets the minimal usage of resources and other constraints. The limited 

material resources, which have concerned researchers and professionals over the last decades, 

should not affect the quality and the performance a structure must reach. 

Topology Optimization is a Finite Element based Method, which basically consists in 

distributing the material in a given volume or in a design domain, so this will lead to designing 

the structural element that is excepted to satisfying the boundary conditions, achieves the best 

performance under given solicitations in respect to some design criterion. 

This paper will briefly present the concept of one of the most successful Optimization Methods 

ESO/BESO (Evolutionary Structural Optimization/Bi-directional Evolutionary Structural 

Optimization), its provision of the optimum shape of the structures, reaching the target volume 

under certain conditions, by adding and taking off elements in the 3D Finite Element Model 

used as the design domain, illustrated with a short practical example. 

Keywords:  Topology Optimization, ESO/BESO Method, Structural Performance. 

INTRODUCTION 

The aim of the most researchers in the field of structural optimization is to produce a structural 

optimization method that can become a useful tool for engineers and designers. Topology 

optimization of continuum structures is the most general type of structural optimization, being 

performed in the initial phases of the design. So far it has proved that it is the most challenging 

technically and at the same time the most rewarding economically.  

The philosophy of topology optimization for the structure is to produce, or finding the most 

appropriate design, with the optimum geometry according to the objective function, considering 

one or more such criteria. Basically the entire feasible domain is considered, the aim being to 

find the most advantageous material distribution inside this domain, with respect to the design 

objectives, respectively the mean compliance (Strain Energy). 

The topology optimization, instead of limiting the changes to the sizes of structural components, 

provides much more freedom and allows the designer to create highly efficient conceptual 

designs for continuum structures and boosts the opportunity in arriving at a more realistic 

structure. After the results came out from the topology optimization procedure, structural 

engineers have to modify the structure to make it buildable or easily manufactured if it is a 

prepared structure, among other things. 
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One of the most efficient methods in structural optimization is Bi-directional Evolution 

Structure Optimization (BESO). This method was developed in 1993 by Xie and Steven (1993), 

and the implemented computer code known as EVOLVE (Querin el al. 1996)[8]. The definitive 

form of this method was developed by Huang and Xie (2007) [3]  which addresses many issues 

related to topology optimization of continuum structures such as a proper statement of the 

optimization problem, checkerboard pattern, mesh-dependency and convergence of solution.  

 

BESO is a numerical method that is integrated to finite element analysis (FEM) where the 

design domain is discretized into a fine mesh of elements. In such a setting, the optimization 

procedure is to find the topology of a structure by determining for every point in the design 

domain if there should be material (solid element) or not (void element), based on sensitive 

numbers. (Cazacu, and Grama, 2010) [6] It obtains the desired optimal design from an oversized 

structure by removing the elements of the domain design with low sensitive numbers and vice 

versa. Each time elements are added and removed, the structure is then re-analyzed to obtain 

the new load paths. (Huang X and Xie YM, 2007)[5] 

For BESO method it is obligatory that the initial physical structure has to contain the minimum 

number of elements necessary to support all the load cases and support cases. It obtains the 

desired optimal design from the structure by removing the elements of the domain design with 

low sensitive numbers and vice versa. Each time elements are added and removed, the structure 

is then re-analyzed to obtain the new load paths. This is repeated until the result is a fully 

stressed design - all the members support the same maximum stress. (T. Nguyen el al 2013) [7] 

BESO HARD-KILL procedures  

The maximum stiffness of a structure with volume of material constraint is pursued for our case 

of structural optimizations. One method to achieve that is by minimizing the mean compliance 

or Strain Energy of the structure that is defined with the area below the load deflection curve 

and is equal to the external work in quasi-static condition (Huang and Xie 2010) [3]. Thus, the 

optimization problem is stated as: 
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Where {F} and {U} are the applied load and displacement vectors and C is known as the 

mean Compliance. Vi is the volume of an individual element and V* the prescribed total 

structural volume. N is the total number of elements in the system. xi is the design variable 

of element i. xi =0 means the absence of an element or (0) or xi =0 presence of an element 

based on the sensitive number of the element (Querin el al. 1996)[8]. 

When the i-th element is removed from a structure, the overall stiffness of the structure 

reduces and, consequently, the total strain energy increases. Beside this, the change of the 

mean compliance or total Strain energy is equal to the elemental strain energy. This change is 

defined as the elemental sensitivity number: 
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Ui is the nodal displacement vector of the i-th element; Ki is the elemental stiffness matrix. 

When a non-uniform mesh is assigned the sensitivity number (or strain energy density) of the 

i-th finite element can be defined by its strain energy divided by its volume: 
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Approaches to overcome checkerboard, mesh independence and numerical instabilities  

To avoid the typical checkerboard during the optimization process, we implement a filter 

scheme proposed by Bendsøe and Sigmund (2000).[1]  

 

Figure 1 Typical Checkerboard (source Bendsøe and Sigmund, 2000) 
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M denotes the total number of elements connected to the j-th node. wi is the weight 

factor of the i-th element and
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Figure 2 Nodes located inside the circular sub-domain Ωi are used in the filter 

scheme for the i-th element (source Bendsøe and Sigmund, 2000). 

where rij is the distance between the center of the i-th element and the j-th node and the value 

of rmin should be big enough so that Ωi covers more than one element. Nodes located inside Ωi 

contribute to the computation of the improved sensitivity number of the i-th element as: 
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where “K” is the total number of nodes in the sub-domain Ωi , w(rij ) is the linear weight 

factor defined as 

   min ( 1,2,..., )ij ijr r r j K     (9) 

If a chaotic behavior of the mean compliance occurs due to discrete value of the variables xi, 0 

or 1, the optimization process will not be stable. However, averaging the sensitivity number 

with its historical information is an effective way to solve this problem and to make the 

objective function convergence easier. (Huang and Xie, 2010).[3]  
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where k is the current iteration number. 

 

Figure 3 (a) Unstable optimization process; (b) Stable optimization process using the average 

sensitive numbers (source Huang and Xie, 2010). 

 

 

Then, the sensitivity numbers of all elements, both solid and void, are calculated as described 

in the previous sections. The elements are sorted according to the values of their sensitivity 

numbers (from the highest to the lowest). ( J. Banchak el al, 2013)[9] For solid element (1), it 

will be removed or switched to 0 if 

 i th   (11) 

For void elements (0), it will be added a solid element or (switched to 1) if 

 i th   (12) 

where αth is the threshold of the sensitivity number determined by the target material volume 

in each iteration Vk+1. For example, there are 1000 elements in the design domain and 
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Figure 4 Flowchart for BESO Method 

 α1<α2<… α1000 and if Vk+1 corresponds to a design with 600 solid elements then αth=α600 (X. 

F. Sun el al, 2011). [4] 

The cycle of Finite Element Analysis and element removal and addition will be repeated until 

the objective material volume V* is reached  

 1 (1 ) ( 1,2,3,...)k kV V ER k     (13) 

where ER is the evolutionary volume ratio. Once the volume constraint is satisfied, the 

volume of the structure will be kept constant for the remaining iterations and the termination 

criterion defined in the later section is satisfied. (Huang and Xie, 2010) [3] 



3rd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 19-21 May 2016,  Epoka University, 

Tirana, Albania 

 

 

169 

 1 *kV V   (14) 

So the performance index of two successive designs is used to define the termination 

criterion: 
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where k is the current iteration number, τ is an allowable convergence tolerance assumed 

0.01% and N is an integer number normally, N is selected to be 5. (Huang X and Xie YM, 

2007)[5] 

 

Example  

We will implement this method on optimization of the bridge with L=100m W=15m. 

 

Figure 5 Secion of the bridge  

 

Figure 6 Load scheme of the bridge  

 

Material used is steel S355 E = 210 GPa; ν = 0.3; ρ = 7850 kg/m3. 
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Figure 7 Model  

 

Figure 8 Iterations of optimization  

After 25 iterations the structure will satisfy all the conditions required. 
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Figure 9 Final step of optimization proccess  

CONCLUSIONS 

This paper presents BESO method for stiffness optimization based on compliance minimization 

with a constraint on the volume of the optimal solution. The current ‘hard-kill’ BESO method 

removes an element (as opposed to changing it into a very soft material) if the certain variable 

is 0 and 1 for vice versa. The variables that are based on sensitive numbers 0 or 1 are discrete. 

The sensitivity numbers of elements base on the elemental strain energy density. The sensitivity 

numbers used for material removal and addition are modified by a mesh-independency filter 

scheme which smooths the sensitivity numbers throughout the design domain that avoids 

checkerboard problems. 

The procedure requires just one additional constraint to converge and convergence is usually 

reached with a small number of iterations (10–40 iterations depending on the optimization 

problem). 

The main advantage of the hard-kill approach is that the computational time can be significantly 

reduced, especially for large 3D structures, because the eliminated elements are not involved in 

the finite element analysis. 

The proposed method is effective in reducing the chance of structural failure due to high stress 

concentration by providing optimal design of the structures and producing shape design with 

uniform stress distribution. 

Moreover, one of the aims of BESO methods is to give a useful idea of the structure for the 

project idea and is a helpful tool for Architectures to design an organic building. 
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