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ABSTRACT 

In the research study, the effect of different fiber contents to flexural behavior of the 

Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) was investigated 

experimentally. Various prismatic beam specimens with a dimension of 100×100×400 mm 

including two types of end-hooked steel fibers (aspect ratios: 30/0.55 and 60/0.75) in macro 

forms and one short straight steel fiber (aspect ratio: 13/0.16) in micro form were produced. 

The beam specimens corresponding to a total of 18 mixtures having two different volume 

fractions (1% and 1.5%) were subjected to series of four-point bending tests in accordance with 

the ASTM standard C 1609. The experimental test results were discussed in terms of the 

cracking patterns, flexural strengths and toughness (energy absorption ability). 

In addition, a parametric research was conducted to ensure an appropriate homogenous 

UHPFRC mixture as well as good workability for the steel fiber volume fraction of 1.0%. Hence 

the prism and cubic samples were produced by modified of the composition of matrix mixtures 

(i.e. aggregate, water/binder, cement, superplasticizer). The performance of mixtures was 

evaluated in terms of the slump flow, T 500, compressive strength and workability. 

It is apparent from the test results, the use of micro steel fiber significantly improves the 

flexural performance of the UHPFRC comparing to that of the macro form. It was also noted 

that the fiber type is decisive in characteristic of the load- deflection curve while the volume 

content amplifies it with an increasing trend after the first cracking region. When evaluating all 

UHPFRC matrixes, some of the mixtures under consideration ensured good fiber distribution, 

workability as well as target compressive strength.  

 

Keywords: Ultra high performance fiber reinforced concrete, Steel fiber, Flexural 

behavior 

INTRODUCTION 

Over the last two decades, the production of Ultra-High Performance Concrete (UHPC) 

has become possible with the new developments in concrete technology. The development of 

concrete mixtures with compressive strengths exceeding 150 MPa without heat or pressure 

treatment has long been a challenge in terms of influencing parameters such as properties and 

particle size of materials component, mixture proportions and mixing procedure. This concrete 

is produced with high density matrix, very low water/binder ratio and special treatments such 

as curing under heat/pressure. Though these types of special concretes show fantastic 

compressive strength, they may show very brittle characterization [1-4]. If steel fibers are 

included to the concrete mixture to decrease brittleness and to increase energy absorption as 
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well as capacity, the term Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) is 

widely used [5]. The UHPFRC ensures various advantages to normal concrete and fiber 

reinforced concrete such as higher durability, ductility and strength since it has extremely low 

porosity, dense matrix, high tensile/compressive strength, ductile tensile behavior and bridging 

opening cracks [6]. Therefore, how to improve the strength and ductility of the UHPFRC 

remains a key factor in development of the UHPFRC preparations [7]. 

Today, use of the UHPFRC in various structural applications including bridges, viaducts, 

piers, harbour, impact-resistant structures as well as repairing and strengthening works has 

attracted high interest from the research community [4, 8-9]. Since the compressive strengths 

and elastic modulus of the UHPFRC are much greater than that of the normal concrete, the 

UHPFRC permits use of members having smaller cross-sectional dimensions.  Besides, higher 

flexural and shear capacity gained through the steel fibers used in the mixture makes it attractive 

to use in structural members.  

Depending on the steel fiber contents, mechanical properties of the UHPFRC exhibits 

wide diversities. Inclusion of the steel fibers to the concrete substantially enhances its flexural 

capacity, post-cracking behavior and ductility since the fibers bridge the crack surface and delay 

the onset of cracks, further they provide an appropriate resistance to the crack opening. On the 

other hand, inclusion of the fibers at high dosages has potential disadvantages due to poor 

flowability, workability and higher cost. For instance, the cost of steel fiber of 1.0% by volume 

applied into the UHPFRC is generally higher than that of matrix. Hence it is important to 

optimize the amount of fibers without sacrificing the superior performance of the UHPFRC [6]. 

Recent researches showed that the different fiber types used in the UHPFRC play a role at two 

different levels depending upon the fiber geometry, length and diameter. The macro fibers limit 

big cracks and provide toughness while the micro fibers enhance the response prior to or just 

after the cracking [6, 10-11]. Hence there is need to investigate the flexural behavior of the 

UHPFRC members having different fiber types and volume fractions.   

In the research study, the effect of different fiber contents to flexural behavior of the 

Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) is investigated experimentally. 

Various prismatic beam specimens with a dimension of 100×100×400 mm including two types 

of end-hooked steel fibers (aspect ratios: 30/0.55 and 60/0.75) in the macro forms and one short 

straight steel fiber (aspect ratio: 13/0.16) in the micro form were produced. The beam specimens 

corresponding to a total of 18 mixtures including two different volume fractions (1% and 1.5%) 

were subjected to series of four-point bending tests. The experimental test results were discussed 

in terms of the cracking patterns, flexural strengths and toughness. 

EXPERIMENTAL STUDY 

A Parametric Study for UHPFRC Mixtures 

In the study, a parametric research was conducted to ensure an appropriate homogenous 

UHPFRC mixture as well as good workability for the steel fibers of 1.0% by volume. 

Compressive strength exceeding 120 MPa was targeted under standard curing conditions. Thus 

total of 24 mixtures were prepared by modified of the composition of cement, ground 

granulated blast-furnace slag, silica fume, aggregate, water/binder ratio, superplasticizer. 

Finally the performances of UHPFRC mixtures were evaluated by some parameters such as the 

compressive strength, T 500, workability and fiber dispersion. As the supplementary materials 

in the matrix, the portland cement CEM I 42.5 R, ground granulated blast-furnace slag (GGBS) 

and silica fume (SF) were used. Two-fractional quartz sands of 0-0.8 mm and   0-3 mm as well 

as basalt of 3-7 mm were chosen as aggregate. In order to get the target compressive strength, 

a very low water/binder ratio (less than 0.20) was used and consequently polycarboxylate ether 
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based superplasticizer (density 1.08-1.14 kg/liter) was used for good workability. All UHPFRC 

matrix compositions in proportion to the cement weight are presented in Table 1. In the 

UHPFRC matrix, the end-hooked steel fibers (aspect ratio: 30/0.55) of 1.0% by volume were 

used. 

For each mixture, six cube samples of 100 mm to measure the compressive strength and 

three 100x100x400 mm prismatic beams to determine the fiber dispersions and orientations 

were casted. The specimens were stored in a water tank at approximately 20 ± 2°C until the test 

day (see Figure 1). All specimens were tested at 28 days. 

 

 

Figure 5 Prism and cube samples  

In the parametric study, the prism specimens corresponding to each UHPFRC mixture 

were tested up to the failure by the four-point bending procedure in the ASTM C 1609 [12]. 

Afterwards the fiber dispersions were observed. In addition, the compression tests of six cube 

samples corresponding to each mixture were conducted and average value of them was used to 

evaluate the test results. In consequence of the conducted slump-flow tests to determine the 

flowability and workability, the T 500 time to reach a diameter mark of 500 mm was measured. 

All test results and the observations related to the mixtures can be found at the last five columns 

of Table 1. 

Referring to Table 1, it is apparent that the minimum target strength of 120 MPa couldn’t 

be reached for many UHPFRC mixtures where the basalt aggregate of 3-7 mm was used. It is 

thought that the use of less fine quartz sands as aggregate may more suitable to ensure the 

homogenous mixtures. Decreasing the water / binder ratio less than 0.18, the workability of the 

concrete also tents to decrease though the compressive strength increases, as would be expected. 

Besides, the high dosage superplasticizer to increase the flowability and workability of the 

matrix effects in negative manner, like the retardation in hydration of cement and the poor fiber 

dispersion / orientation. 

 As a consequence of the several works, the best UHPFRC performance in terms of the 

considered parameters was obtained for the composition of Mixture 24 (at the last row of Table 

1) when all mixtures are evaluated together (Table 1 and Figure 2). Having said that this 

investigation was performed on only steel fibers of 30 mm length and volume fraction of 1.0%. 

The chosen UHPFRC mixture was also studied for other fiber types (short straight: 13 / 0.16 

mm and long end-hooked: 60 / 0.75 mm) considered in this study and good results were 

obtained for the related parameters. The material components of the UHPFRC obtained from 

the study is given in Figure 3.  
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Table 10 Properties of UHPFRC Mixtures in Parametric Study and Test Results 

Mix 

No 
C SF GGBS SP 

0-0.8 

Quartz 

1-3    

Quartz 

3-7     

Basalt 

Binder 

(kg) 
W/B 

Slump 

Flow 

(cm) 

T500 

(sn) 

fc' 

(MPa) 

Fiber 

Dispersion 
Workability 

1 1.0 0.15 0.20 0.040 0.86 0.71 0.29 945 0.18 90 3.3 100 √ √ 

2 1.0 0.15 0.25 0.040 0.91 0.76 0.30 951 0.18 >90 5.4 104 √ √ 

3 1.0 0.15 0.20 0.040 0.61 0.49 0.21 1103 0.18 >90 2.7 106 X √ 

4 1.0 0.15 0.20 0.030 0.61 0.49 0.22 1103 0.18 90 3.8 107 X √ 

5 1.0 0.15 0.20 0.020 0.61 0.49 0.24 1103 0.18 80 5.0 97 X √ 

6 1.0 0.15 0.10 0.020 0.57 0.45 0.20 1100 0.18 75 4.3 104 √ X 

7 1.0 0.15 0.10 0.025 0.57 0.45 0.22 1100 0.18 85 4.8 101 X √ 

8 1.0 0.20 0.10 0.025 0.59 0.47 0.21 1100 0.18 75 4.7 97 X X 

9 1.0 0.15 0.20 0.040 0.86 0.71 0.29 945 0.18 70 5.4 94 X √ 

10 1.0 0.15 0.30 0.040 0.88 0.74 0.29 952 0.18 90 4.0 116 X √ 

11 1.0 0.15 0.10 0.028 0.57 0.45 0.22 1100 0.18 50 7.1 96 X X 

12 1.0 0.15 0.20 0.025 0.61 0.49 0.23 1100 0.18 60 6.3 107 √ √ 

13 1.0 0.20 0.20 0.020 0.64 0.50 0.00 1200 0.17 50 3.8 122 X X 

14 1.0 0.20 0.20 0.025 0.64 0.47 0.00 1200 0.18 60 2.4 93 √ X 

15 1.0 0.10 0.30 0.024 0.92 0.92 0.00 1000 0.18 70 3.4 113 √ X 

16 1.0 0.10 0.30 0.026 0.89 0.84 0.00 1000 0.18 70 3.6 110 √ √ 

17 1.0 0.10 0.30 0.025 0.90 0.90 0.00 1000 0.16 50 7.5 111 √ X 

18 1.0 0.10 0.30 0.021 0.69 0.69 0.00 1100 0.18 60 6.2 114 √ X 

19 1.0 0.20 0.40 0.020 0.78 0.78 0.00 1104 0.18 75 3.4 114 X √ 

20 1.0 0.20 0.30 0.021 0.73 0.73 0.00 1100 0.18 70 3.9 129 √ X 

21 1.0 0.20 0.40 0.021 0.62 0.62 0.00 1200 0.18 75 3.5 116 √ X 

22 1.0 0.20 0.40 0.028 0.80 0.80 0.00 1104 0.17 75 3.3 129 X √ 

23 1.0 0.20 0.40 0.028 0.64 0.64 0.00 1200 0.17 70 3.3 123 X √ 

24 1.0 0.20 0.40 0.028 0.77 0.77 0.00 1100 0.18 75 3.1 128 √ √ 

 

 

Figure 6 Some fiber dispersions: a) mixture–13; b) mixture–9; c) mixture–24 

 

 

Figure 7 Material components of the UHPFRC 

Preparation of Test Specimens 

a) b) c) 



3rd International Balkans Conference on Challenges of Civil Engineering,  3-BCCCE, 19-21 May  2016,  Epoka University, Tirana, Albania 

 

 

266 

In order to study the influence of different fiber contents to the flexural behavior of 

UHPFRC beams, the prismatic test beams corresponding to a total of 18 mixtures were 

produced. In addition, the non-fiber reference specimens were prepared to see contribution of 

fiber content. Two types of end-hooked steel fibers in the macro fiber mixtures and one type 

short straight steel fiber in the micro fiber mixtures were used as shown in Figure 4. For the 

micro-sized fiber, brass coated high-strength steel that have a smooth surface was used. The 

geometrical and mechanical properties of the fibers are presented in Table 2. For the considered 

each fiber type, the volume fractions of 1.0% and 1.5% were chosen to obtain the deflection 

hardening behavior as well as ensure good workability. The specimen definitions used in the 

study were classified in terms of the used fiber types and volume fractions (see Table 3). 

 

 

Figure 8 Steel fibers used in the study 

Table 2 Properties of Steel Fibers 

Fiber 

Type 

Diameter       

(mm) 
Length (mm) 

Density 

(gr/cm3) 

Tensile Strength 

(MPa) 

Elastic Modulus 

(MPa) 

Micro 0.16 13 7.80 2500 210000 

Macro 

(Hooked) 
0.55 30 7.80 1345 210000 

Macro 

(Hooked) 
0.75 60 7.80 1225 210000 

  

A standard pan mixer with a 90 liter capacity was used to prepare the specimens. The 

cement, silica fume, ground granulated blast furnace slag and quartz sands were mixed for about 

3 minutes. Water and half of the superplasticizer were added into the mixture and mixed for 

another 5 minutes. Then the rest of superplasticizer was added and mixed for additional    5 

minutes. Later the fibers were added carefully and mixed until homogenously distributed. For 

each mixture corresponding to the different fiber contents, six cube samples of 100 mm and 

three 100x100x400 mm prismatic beams were casted. The mixture was placed into the prismatic 

moulds from one end to other by means of a plastic bucket. During the placement process, no 

vibration was performed to prevent fiber gravitation (see Figure 5). 

After the casting, the specimens were covered by plastic sheets and stored at room 

temperature. Twenty-four hours later, the specimens were taken out of their molds and stored 

in a water tank at approximately 20 ± 2°C until the test day. All specimens were tested at 28 

days. The compression tests of the cube samples were conducted by a testing machine with the 

maximum load capacity of 3000 kN. For all UHPFRC mixtures, the average compressive 

strength of 121 MPa was obtained. Noted that regardless of the fiber content, the compressive 

strengths are much greater than that of the reference specimen (non-fiber). 

   

   

 

13/0.16 30/0.55 60/0.75 
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Figure 9 Preparation of test specimens 

Table 3 Fiber Types and Volumetric Fractions of the Test Specimens 

Fiber 

Content 
Specimen 

Fiber volume content 

13/0.16 mm 30/0.55 mm 60/0.75 mm 

Non-fiber Reference - - - 

Specimens with 

steel fiber 

13(1.0) 1.0% - - 

13(1.5) 1.5% - - 

30(1.0) - 1.0% - 

30(1.5) - 1.5% - 

60(1.0) - - 1.0% 

60(1.5) - - 1.5% 

 

Test set-up and procedure 

Flexural tests of the beam specimens were conducted by the test set-up available in 

Structural Mechanics Laboratory at Balikesir University. The four-point bending tests were 

performed on the simply supported beam specimens with clear span of 300 mm as shown in 

Figure 6. Three test beams were used to determine the flexural behavior of each mixture. The 

test was conducted on a servo hydraulic testing machine having a capacity of 200 kN. The test 

machine is controlled by displacement in whole process to obtain the load versus deflection 

behavior. The speed of displacement applied throughout all test program was 0.1 mm/min. The 

mid-span deflections of beam specimens were measured by average values obtained from two 

LVDT attached to the specimen through a steel frame. The test set-up is shown in Figure 6. The 

detailed test procedure can be found in the ASTM C 1609 [12]. 

 

 

 

 

 

 

 

Figure 10 Four-point bending test set-up   

 



3rd International Balkans Conference on Challenges of Civil Engineering,  3-BCCCE, 19-21 May  2016,  Epoka University, Tirana, Albania 

 

 

268 

Test Results and Discussions 

In the study, three beam specimens corresponding to each fiber configuration were tested 

up to the failure load under the four-point bending procedure and the cracking patterns, load-

midspan deflection behaviors and toughness values were obtained. The intermediate one of 

three responses in terms of the flexural behavior was chosen for the purpose of comparisons 

and evaluations. 

Regardless of the fiber contents, the failures of all UHPFRC specimens exhibited a ductile 

behavior under the flexural strength testing (see Figure 7). Further, the test beams failed with 

the development of a single distinctive crack around the half of span so that the fracture 

mechanism occurred completely associated with the fiber debonding in the interface. At the 

beginning of the tests, several fine cracks appeared on the bottom of prism and only one crack 

continued to open up to weaken the fibre bridging effect. The cracking patterns after the fracture 

are presented in Figure 7. 

 

 

Figure 11 Cracking patterns of the UHPFRC specimens 

Influence of Fiber Type to Flexural Behavior 

It is known from the past studies that one of the effective parameters to affect the flexural 

behavior of the UHPFRC beams is the steel fiber type used in the mixture. Thus the load-

midspan deflection behaviors including the different fiber configurations were obtained for two 

volume fractions of 1.0% and 1.5% (see Figure 8). Comparing to the reference (non-fiber) 

specimen, all fiber types substantially improved the flexural strength and deflection capacity, 

as would be expected. Enhancements in the flexural strength capacities of the test specimens in 

comparison with the non-fiber specimen are given in Table 4.  

 As shown from Figures 8a-b and 9a, the use of micro steel fiber particularly gains 

significant strength and deflection hardening capacity. It is also apparent from the graphics that 

the load-midspan deflection behaviors for each fiber types are generally similar in shape and 

they show an increasing tendency as the volume fraction increases. Depending on the fiber 

types, the flexural capacity of test specimens including the fibers of 1.0% and 1.5% by volume 

may be larger 1.6 and 2.0 times than for the non-fiber specimen, respectively (see Table 4). 

Hereby the test specimens with the micro fiber, which are of particular significance to the 

flexural behavior of the UHPFRC beams, shows the largest difference among the fiber types. 

13(1.0) 

30(1.0) 

60(1.0) 

13(1.5) 

30(1.5) 

60(1.5) 
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It should be noted that even though the use of 30 mm steel fiber increases slightly the flexural 

capacity, it provides significant deflection capacity for the test beam. 

 

Figure 12 Contributions of different fiber types to flexural behavior of UHPFRC specimens 

Table 4 Contribution of Steel Fibers to Flexural Strength compared to the Reference Beam 

Specimen 
Fiber 

form 

Fiber volume content 

%1.0 %1.5 

13(1.0) / (1.5) Micro 1.6 2.0 

30(1.0) / (1.5) Macro 1.1 1.4 

60(1.0) / (1.5) Macro 1.3 1.7 

 

The toughness values, which represents the energy absorption ability under bending 

loads, were calculated using the total area under the corresponding load-deflection curve. Figure 

9b compares the toughness performances of the UHPFRC specimens. When the test specimens 

containing the steel fibers of 13, 30 and 60 mm lengths were compared to each other for any 

volume fraction, the best toughness performance was obtained in case of the micro fiber of 13 

mm were used. Note that the lowermost performance was obtained for the macro steel fiber of 

30 mm. 

 

 

Figure 13 Comparisons of the flexural strengths and toughness values of specimens 

Influence of Fiber Volume Content to Flexural Behavior 

When the test results are investigated for two volume fractions (1.0% and 1.5%), the 

considered test parameters show an increasing tendency. The main reason is that the steel fibers 

increase on both the tensile strength and strain capacity. As shown from the Table 4 and Figure 

10, regardless of the fiber type, the flexural capacity of the test specimens increases roughly 

25% as the volume content of fibers increases from 1.0% to 1.5%. Hereby it can be concluded 

that the fiber type is decisive in the characteristic of the load - deflection behavior while the 

volume content amplifies it with an increasing trend after the first cracking region. It should be 
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also noted that there is no sign whether the volume content is more effective in which the micro 

or macro steel fiber are used in the mixture.  

The results obtained for the flexural strengths may find out for the toughness values, as 

well. Referring to Figure 9b, as the volume content of fibers increases the toughness values also 

shows increase in a range of 30% to 39%. Hereby the best toughness performance was obtained 

for the micro steel fiber of 13 mm. 

 

 

Figure 14 Contributions of volume content to flexural behavior of UHPFRC specimens 

CONCLUSION 

In the research study, the effect of different fiber contents to flexural behavior of the 

UHPFRC is investigated experimentally. The beam specimens corresponding to a total of 18 

mixtures having two different volume fractions of 1.0% and 1.5% were subjected to series of 

four-point bending tests. In the study, a parametric research was also conducted to ensure an 

appropriate homogenous UHPFRC mixture as well as good workability for the steel fibers of 

1.0% by volume. A total of 24 mixtures was prepared by modified of the composition of 

UHPFRC mixtures and the performances of mixtures were evaluated by some parameters. 

The test results with respect to the UHPFRC specimens presented in this study are 

summarized below. 

 The parametric study showed that the best performance for the considered parameters, 

which are the slump flow, T 500, compressive strength and workability, was obtained for 

the composition of mixture 24. The chosen UHPFRC mixture was also showed good results 

for other short and long fiber types. 

 The failures of all UHPFRC specimens, regardless of the fiber contents, exhibited a ductile 

behavior. However, all test beams failed with the development of a single distinctive crack 

around the half of span so that the fracture mechanism occurred completely associated with 

the fiber debonding in the interface.  

 The use of micro steel fiber particularly gains significant strength and deflection hardening 

capacity as well as toughness. Noted that even though the use of macro steel fiber of 30 

mm slightly increases the flexural capacity, it provides significant deflection capacity to 
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the test specimens. Depending on the steel fiber type and volume fraction, the flexural 

capacity of test specimens may be larger 2.0 times than the non-fiber specimen.  

 It can be concluded that the fiber type is decisive in characteristic of the load- deflection 

curve while the volume content amplifies it with an increasing trend after the first cracking 

region. It should be also noted that there is no sign whether the volume content is more 

effective in which the micro or macro steel fiber are used in the mixture.  

The data presented in the study will help to develop constitutive models for the flexural 

behavior of structural members where the UHPFRC is used. Experimental studies on the use 

of mono and hybrid steel fiber in the UHPFRC members have started and they still continue. 
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