
A NOVEL METAHEURISTIC ALGORITHM: DYNAMIC VIRTUAL BATS ALGORITHM
FOR GLOBAL OPTIMIZATION

A THESIS SUBMITTED TO THE FACULTY OF ACHITECTURE AND ENGINEERING
OF EPOKA UNIVERSITY

BY

ALI OSMAN TOPAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN COMPUTER ENGINEERING

· MARCH, 2017 ·

Approval of the thesis:

A NOVEL METAHEURISTIC ALGORITHM:DYNAMIC VIRTUAL BATS
ALGORITHM FOR GLOBAL OPTIMIZATION

submitted by ALI OSMAN TOPAL in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Department of Computer Engineering, Epoka
University by,

Assoc. Prof. Dr.
Dean, Faculty of Architecture and Engineering

Assist. Prof. Dr.
Head of Department, Computer Engineering, EPOKA University

Assoc. Prof. Dr.
Supervisor, Dept., EPOKA University

Prof. Dr.
Co- supervisor, Dept., University

Examining Committee Members:

Prof. Dr.
............ Dept. University

Prof. Dr.
............ Dept. University

Assoc. Prof. Dr.
............ Dept. University

Assoc. Prof. Dr.
............ Dept. University

Date : 17.03.2017

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last name:

Signature:

iv

ABSTRACT

A NOVEL METAHEURISTIC ALGORITHM: DYNAMIC
VIRTUAL BATS ALGORITHM FOR GLOBAL

OPTIMIZATION

Topal, Ali Osman
Ph.D., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Oguz Altun

March 2017,

A novel nature-inspired algorithm called the Dynamic Virtual Bats Algorithm (DVBA)

is presented in this thesis. DVBA is inspired by a bat’s ability to manipulate frequency

and wavelength of the emitted sound waves when hunting. A role based search has been

developed to improve the diversification and intensification capability of standard Bat

Algorithm (BA). Although DVBA is inspired from bats, like BA, it is conceptually very

different from BA. BA needs a huge number of population size; however, DVBA employs

just two bats to handle the ”exploration and exploitation” conflict which is known as a

real challenge for all optimization algorithms.

Firstly, we study bat’s echolocation ability and next, the most known bat-inspired

algorithm and its modified versions are analyzed. The contributions of this thesis start

reading and imitating bat’s hunting strategies with different perspectives. In the DVBA,

v

there are only two bats: explorer and exploiter bat. While the explorer bat explores the

search space, the exploiter bat makes an intensive search of the local with the highest

probability of locating the desired target. Depending on their location, bats exchange the

roles dynamically.

The performance of the DVBA is extensively evaluated on a suite of 30 bound-constrained

optimization problems from Congress of Evolutionary Computation (CEC) 2014 and

compared with 4 classical optimization algorithm, 4 state-of-the-art modified bat

algorithms, and 5 algorithms from a special session at CEC2014. In addition, DVBA

is tested on supply chain cost problem to see its performance on a complicated real world

problem. The experimental results demonstrated that the proposed DVBA outperform, or

is comparable to, its competitors in terms of the quality of final solution and its convergence

rates.

vi

ABSTRAKT

NJË ALGORITËM I RI METAHEURISTIK:
ALGORITMI DINAMIK VIRTUAL I LAKURIQËVE TË

NATËS PËR OPTIMIZIMET GLOBALE

Topal, Ali Osman
Doktoraturë, Departamenti i Inxhinierise Kompjuterike

Udhëheqësi: Assist. Prof. Dr. Oguz Altun

Mars 2017

Në këtë tezë është paraqitur një algoritëm e re e quajtur Algoritma Dinamike Virtuale e

Lakuriqëve të natës (DVBA). DVBA është frymëzuar nga aftësia e lakuriqit të natës për

të përdorur frekuencën dhe gjatësinë e valëve të zërit të lëshuara gjatë gjuetisë. Për të

shtuar larmishmërinë dhe aftësinë e përmirësimit të standardit të Algoritmës së Lakuriqit

(BA), është zhvilluar një kërkim i bazuar në role. Megjithëse DVBA është frymëzuar

nga lakuriqët ashtu si dhe BA, ajo është konceptualisht shumë ndryshe nga BA. Në BA

nevojitet një numër i madh popullimi; por në DVBA nevojiten vetëm dy lakuriqë për të

menaxhuar konfliktin “eksploro dhe shfrytëzo”, që njihet si një sfidë e vërtetë për të gjitha

algoritmat e optimizimit.

Së pari studiohet aftësia e lakuriqëve për të percaktuar vendin me anë të jehonës së zërave

dhe më pas analizohen algoritmat më të njohura të frymëzuara nga lakuriqët, si modelet

vii

e modifikuara të tyre. Kontributi i kësaj teze është në studimin dhe imitimin e strategjive

gjuajtëse të lakuriqëve, nga një tjetër prespektivë. Në DVBA ka vetëm dy lakuriqë: lakuriqi

eksplorues dhe lakuriqi shfrytëzues. Ndërkohë që lakuriqi eksplorues kontrollon hapësirën

ku do kërkojnë gjahun, shfrytëzuesi kryen një kërkim intensiv lokal me mundësinë më të

lartë për të përcaktuar vendndodhjen e objektivit të kërkuar. Lakuriqët i shkëmbejnë rolet

në mënyrë dinamike në bazë të vendndodhjes së tyre.

Rendimenti i DVBA është vlerësuar gjerësisht me anë të problemeve të optimizimit me

kufizim 30 funksionësh të CEC 2014 dhe ështe krahasuar me 4 alogaritmat klasike optimale,

me 4 alogaritmat më të fundit të modifikuara dhe 5 alogartima nga një seancë speciale e

CEC 2014. Në vazhdimësi DVBA është testuar me anë të problemeve të kostos së zinxhirit

të furnizimit për të parë rendimentin e saj në një problem të komplikuar real. Përfundimet

eksperimentale treguan se DVBA e sugjeruar funksionon më mirë ose është e krahasueshme

me rivalët e saj për sa i përket cilësisë së përfundimeve finale dhe shkallës së konvergjencës.

viii

To My Family

ix

ACKNOWLEDGEMENTS

My first words of appreciation go to my advisor, Oguz Altun, for giving me the opportunity of

embarking on this doctorate and for guiding me with his teachings and knowledge all this time.

I would like to thank to my thesis progress committee members, Elton Domnori, Arban Uka,

Ilir Capuni, Albana Halili, and Endri Stoja for their comments and suggestions throughout the

entire thesis.

I would also like to give thanks to Yunus Emre Yildiz and Sokol Dervishi for their supports

during my Ph.D. studies.

From a personal point of view, there are also many people that I would like to show appreciation

for the support and help received. I could not forget Mukremin, Elton, Bledar, Arjel, Endrit

and more friends since similes, coffees, journeys, ... also help me in doing this thesis.

I am thankful to my PhD thesis defense commission members for suggestions and guidance for

future works. I would like to express my gratitude to Mr. Betim Cico for giving the right advice

at the right time and being a source of motivation during the finalization period of the thesis.

Finally, I would like to especially thank my parents, my wife, and children for all the sacrifice

they have done and for the unconditional support they have offered me in every moment. I

should thank them many things so I would like to dedicate this thesis to them.

x

TABLE OF CONTENTS

ABSTRACT v

ABSTRAKT vii

ACKNOWLEDGEMENTS x

1 INTRODUCTION 1

2 Metaheuristics 5

2.1 Simulating Annealing . 7

2.2 Genetic Algorithm . 8

2.3 Particle Swarm Optimization . 9

2.4 Tabu Search . 11

2.5 Differential Evolution (DE) . 12

2.6 Artificial Bee Colony (ABC) . 13

3 Bat’s Echolocation and Bat Algorithms 16

3.1 Bats and Echolocation . 16

3.2 Bat Algorithm . 18

3.3 Bat Related Algorithms . 21

3.3.1 Novel Adaptive Bat Algorithm (NABA) 21

3.3.2 Local Memory Search Bat Algorithm (LMSBA) 22

3.3.3 Adaptive Bat Algorithm (ABA) . 23

xi

3.3.4 Chaotic Local Search-based Bat Algorithm (CLSBA) 24

4 Dynamic Virtual Bats Algorithm 25

4.1 Mathematical representation of search scope of the virtual bat 25

4.2 The behavior of the virtual bats . 30

4.3 The effects of the major parameters on DVBA 32

4.3.1 Analyzing the number of search points and step size divisor effects on the

performance of DVBA . 33

5 Numerical Experiments and Results 40

5.1 Optimization test functions . 40

5.2 Experimental Setting . 43

5.3 Analyzing the performance of DVBA on optimization test functions 43

5.3.1 Comparison Algorithms . 43

5.3.2 Comparison Experiments . 48

5.3.3 Comparison the algorithms in Group 1 . 48

5.3.4 Comparison the algorithms in Group 2 and 3 62

5.4 Supply Chain Cost Problem . 68

5.4.1 Experiments . 71

5.4.2 Algorithms for comparison . 71

5.4.3 Experimental results and discussions . 71

6 Improvements on Dynamic Virtual Bats Algorithm 74

6.1 Micro Bat Algorithm . 74

6.1.1 The explorer bat . 75

6.1.2 The exploiter bat . 76

6.1.3 The scout bat . 77

6.2 Numerical Experiments and Results . 81

6.2.1 Parameter settings for the algorithms . 81

xii

6.2.2 Benchmark Functions . 82

6.2.3 Experimental results and discussion . 82

7 Conclusions and Future Work 90

7.1 Conclusions . 90

7.2 Future Work . 93

A Verification of our framework results 94

REFERENCES 102

VITA 103

xiii

LIST OF FIGURES

2.1 Simulated Annealing with Random Restarts flowchart [60]. 8

2.2 Genetic Algorithm flowchart [35]. 9

2.3 Particle Swarm Optimization flowchart. [47] . 10

2.4 Tabu Search flowchart [60]. 12

2.5 Differential Evolution flowchart derived from [71]. 13

2.6 Artificial Bee Colony flowchart derived from [43]. 14

3.1 Emitted sound waves width decreases as frequency increases that is decrease in

wavelength. [38] . 17

3.2 Two conspicuous properties of bat hunting strategy [83] 18

4.1 (a) Exploration: Explorer bat searching a prey, (b) Exploitation: Exploiter bat

chasing a prey, (c) Search positions in the search scope of a bat.((a) zoomed in

by x6) . 27

4.2 The effects of the increment rate divisor (β) on the convergence characteristics

of the algorithm tested on 2-D Schaffer Function. 30

4.3 The effect of step size divisor on the width of bat’s search scope sizes in DVBA . 34

4.4 The different search scope sizes of a virtual bat in DVBA 35

4.5 Convergence Characteristics of DVBA for different parameters. Sphere and

Quartic are in 30 dimensions. Rastrigin and Griewangs are in 2 dimensions. . . . 37

5.1 Classic optimization test functions [26] . 41

xiv

5.2 Convergence characteristics of SA, GA, PSO, DVBA, and BA on classic test

functions. 52

5.3 Convergence characteristics of SA, GA, PSO, DVBA, and BA on unimodal

functions in CEC 2014. 54

5.4 Convergence characteristics of SA, GA, PSO, DVBA, and BA on multi-modal

functions in CEC 2014. 58

5.5 Convergence characteristics of SA, GA, PSO, DVBA, and BA on hybrid functions

in CEC 2014. 59

5.6 Supply Chain . 69

5.7 Convergence characteristics of PSO, BA, GA, TS, and DVBA on different

scenarios of supply chain cost problem. 73

6.1 The effect of σ on P as the unsuccessful attempts increases. 77

6.2 Exploration: Explorer bat is searching for prey with a wide search scope. 79

6.3 Exploitation: Exploiter bat is chasing prey with a narrow search space. 79

6.4 Convergence characteristics of µBA, BA, and DVBA for the 30-dimensional

Ackley, Griewangs, Rastrigin, and Powell functions. 86

6.5 Convergence characteristics of µBA, BA, and DVBA for the 30-dimensional

Rosenbrock, Sphere, Shifted Rastrigin, and Shifted-Rotated Ackley functions.

. 88

xv

LIST OF TABLES

4.1 Description of the benchmark functions used. Here D: Dimensionality of the

functions, C: function characteristics with values – U: unimodal, M: Multimodal,

and N: Noisy. 36

4.2 Influence of step size divisor β. D denotes the dimensions. 39

4.3 Influence of number of search points . 39

5.1 Descriptions of the test functions . 42

5.2 Optimization results for the classic test functions. 50

5.3 Optimization results for unimodal functions in CEC 2014 test suit. 53

5.4 Optimization results for simple multimodal functions-1. 56

5.5 Optimization results for simple multimodal functions-2. 57

5.6 Optimization results for hybrid functions. 57

5.7 Optimization results for composition functions. 61

5.8 Comparison of Accuracy of Algorithms according to the test function groups in

CEC 2014 test suit (OSM). 62

5.9 Comparison of accuracy of the tested optimization algorithms. 62

5.10 Comparison of LMSBA, NABA, ABA, CLSBA, and DVBA over 30 test functions

of 30 dimensions using 300,000 function evaluations.”MeanErr” and ”StdDev”

indicate the mean error and standard deviation of the results found over the 30

independent runs by each algorithm. 66

xvi

5.11 Comparison of DVBA with FWA-DM, L-SHADE, NRGA, OPTBees, and b6e6rl

over 30 test functions of 100 dimensions using 1,000,000 function evaluations.

”MeanErr” and ”StdDev” indicate the mean error and standard deviation of the

results found over the 51 independent runs by each algorithm. 67

5.12 Comparison of DVBA with FWA-DM, L-SHADE, NRGA, OPTBees, and b6e6rl

on the CEC 2014 benchmarks for 100-D on 4 groups. ”+”, ”−”, and ”≈” denote

that a given algorithm performed significantly better (+), significantly worse

(−), or not significantly different (≈) compared to DVBA using the Wilcoxon

rank-sum test. All results based on 51 independent runs. 68

5.13 Suplly chain cost problem scenarios. 70

5.14 Comparison of PSO, BA, GA, TS, and DVBA on 5 different supply chain cost

problem scenarios . 72

6.1 Description of the benchmark functions. Here D: dimensionality of the functions,

C: function characteristics with values - U: unimodal, M: Multimodal, S:

Separable, N: Non-Separable. 80

6.2 Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA

over 10 test functions of 10, 30, and 50 dimensions. 83

6.3 Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA

on Rastrigin, Powell, and Rosenbrock with 10, 30, and 50 dimensions. 84

6.4 Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA

over Sphere, Shifted Rastrigin, and Shifted Rotated Ackley function with 10, 30,

and 50 dimensions. 85

6.5 Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA

Shifted Rotated Griewangs with 10, 30, and 50 dimensions. 87

A.1 Comparison of PSO and BA in our framework with the results in [100] 94

xvii

LIST OF ABBREVIATIONS

ABA Adaptive Bat Algorithm

ABC Artificial Bee Colony

BA Bat Algorithm

BFV Best Fitness Value

CDE Competitive-adaptation variant of Differential Evolution

CEC Congress of Evolutionary Computation

CLSBA Chaotic Local Search-based Bat Algorithm

CR Crossover rate

DABA Directed Artificial Bat Algorithm

DE Differential Evolution

DVBA Dynamic Virtual Bats Algorithm

FEs Function evaluations

FWA-DM Fireworks Algorithm with Differential Mutation

GA Genetic Algorithm

IEEE Institute of Electrical and Electronics Engineers

xviii

JADE Joint Approximate Diagonalization of Eigen

LMSBA Local Memory Search Bat Algorithm

LPSR Linear Population Size Reduction

L-SHADE Success-History based Adaptive Differential Evolution with LPSR

MC Market Cost

µBA Micro-bat algorithm

NABA Novel Adaptive Bat Algorithm

NP Number of Population

NRGA Non-Uniform Real-coded Genetic Algorithm

OSM Overall Success ratios of Mean

PC Production Cost

PSO Particle Swarm Optimization

SA Simulated Annealing

SCND Supply Chain Network Design

SCRM Supply Cost of Raw Material

SHADE Success-History based Adaptive Differential Evolution

tf The number of Total Functions

TS Tabu Search

WFV Worst Fitness Value

xix

CHAPTER 1

INTRODUCTION

Day by day real-life problems in such an important areas as Industry, Economy,

Telecommunications, Logistics, Bio-informatics, and Commerce are becoming more

complicated, competitive, and imprecise. Dimensions of problems are becoming very high,

evaluating the cost of the solutions is very expensive and knowledge of the problems is vague.

Getting the solution is becoming very difficult, time consuming, and expensive. In these cases,

metaheuristics algorithms have become very successful to get satisfying solutions instead of the

solution.

Metaheuristics algorithms provide an intelligent computational method that optimizes

complex multi-variable optimization problems by iteratively trying to improve a candidate

solution with regard to a given optimal solution.

Nature-inspired algorithms are a very important part of the metaheuristics. Many of

them have been invented and improved over the past few decades and applied with success

to many numerical and combinatorial optimization problems. Ant Colony Optimization

[17, 19, 20, 99, 103], Particle Swarm Optimization [22, 27, 47, 102], Artificial Bees Algorithm

[43, 45, 54], Evolutionary Computation [12, 35, 51], Bat Algorithm [3, 24, 106], and Artificial

Immune System [41,48,66] are examples of such nature inspired algorithms. Since the real-world

optimization problems are getting more complicated, higher dimensioned, and more dynamic,

it seems that meta-heuristics algorithms’ popularity will keep increasing.

Bat Algorithm (BA) [106] is one of the nature-inspired algorithms which was introduced

1

recently and has been successfully applied to solve numerous optimization problems in diverse

fields. It is a population-based search algorithm that is inspired from the echolocation behavior

of bats. BA, like Yang’s previous algorithms, Cuckoo Search [108] and Firefly [104], combines

the advantages of existing algorithms, especially Particle Swarm Optimization and Harmony

search [28]. Although BA does not imitate the real bats successfully, due to its simplicity and

effectiveness a large number of BA variations have been developed and applied to a wide range

of real problems [2, 46, 49, 59, 78, 109]. However, as in most of the stochastic algorithms, the

standard BA suffers from the premature convergence problem and it needs improvements in

exploration. The random walk size and the pulse rate parameters play very important role on

exploration ability of BA. So most of the researchers focused on these parameters. Recently,

Local Memory Search Bat Algorithm (LMSBA) [113], Novel Adaptive Bat Algorithm (NABA)

[42], Adaptive Bat Algorithm (ABA) [100], and Chaotic Local Search-based Bat Algorithm

(CLSBA) are developed towards improving BA’s exploration ability.

Directed Artificial Bat Algorithm (DABA) [80] is another bat-inspired algorithm proposed

by Amr Rekaby in 2013. DABA differs from other versions of the Bat Algorithms in terms

of how the bat’s behavior is simulated. Bat is looking for a prey in its directed scope (echo

waves), which has shape of a right triangle. This directed scope consists of a set of vectors and

search points on these vectors. The number of vectors and visited solutions are changed during

the search for prey but the distance between the visited solutions remain the same at all times.

The direction of the bat does not change unless there is no better solution in its directed scope.

These vectors represent the frequency and the visited locations represent the wavelength of the

waves.

The main difference between DABA and BA is the interaction between bats. In BA, bats

behave like the particles in PSO; however, in DABA they fly individually without any interaction

with other bats. Although DABA simulated bats behavior better than BA in nature, because

of the unconnected behavior of the bats in DABA, BA is more applicable and useful.

Although BA and DABA are inspired from echolocation behavior of bat’s hunting strategies,

the virtual bats, in the algorithms, do not imitate the real bats successfully.

2

In this thesis, another bat inspired algorithm is proposed: Dynamic Virtual Bats Algorithm

(DVBA) [92] [93]. DVBA is not a BA variation, it is a new simulation of the bat’s hunting

strategies, in which bat’s echolocation behavior is imitated completely. In DVBA, a role-based

search is developed to improve the diversification and intensification capability of the Bat

Algorithm. There are only two bats: explorer and exploiter bat. While the explorer bat

explores the search space, the exploiter bat makes an intensive search of the local with the

highest probability of locating the desired target. During the search bats exchange the roles

according to their positions. Experimental results show that DVBA reaches accurately and

reliably the global optimum better than compared algorithms. It represents a particular way

of coping with the “exploration and exploitation” conflict.

In this dissertation we focus on the next objectives:

1. Make an in-depth study of echolocation and bat algorithm.

2. Develop a new algorithm by imitating the bat’s hunting strategies that can manage the

exploration and exploitation conflict in an effective and efficient way.

3. Validate the performance of the proposed algorithm DVBA by comparing with classic

and state-of-the-art optimization algorithms.

4. Analyze the performance of dynamic virtual bats algorithm on a real world problem.

5. Study on possible improvements for dynamic virtual bats algorithm by using the

advantages of the bat algorithm and analyze it.

This thesis has been structured according to these objectives in 6 chapters that are described

below. Chapter 2 provides the background needed to understand the research area. It gives

the basic concepts of metaheuristics. Then, some of the well-known metaheuristics algorithms

are briefly described.

Since, the proposed algorithm is inspired from bats, bat’s behavior, especially the way bats

use echolocation are introduced in Chapter 3. Then, other bat inspired algorithms are examined

with details to show differences with DVBA.

3

Chapter 4 describes the proposed algorithm DVBA. The motivation of DVBA and how

bats are simulated in the algorithm are presented. Then, the effects of the parameters on the

performance of DVBA are analyzed.

In Chapter 5, the performance of the DVBA is extensively evaluated on 6 classical test

functions and 30 CEC 2014 benchmark functions and compared within three groups of

algorithms. In group 1, standard Bat Algorithm, original Particle Swarm Optimization, Genetic

Algorithm, and Simulated Annealing are used. In group 2, four state-of-the-art modified BA

algorithms are compared and group 3, five algorithms from a special session at CEC 2014 are

used in comparison, as well. In addition, DVBA is applied to minimize the supply chain cost

with other well-known algorithms. The analysis done to address the questions:

Given a set of optimization test function, is DVBA better to solve them comparing to other

algorithms in terms of accuracy.

Can DVBA keep up the same achievement for different type of optimization problems?

How does the performance of DVBA change when the dimension of the problem increases?

In Chapter 6, a hybrid of DVBA and Bat Algorithm is presented Micro Bat Algorithm

(µBA). The advantages of DVBA and BA is combined in this hybrid and it is compared with

the original BA and DVBA.

Chapter 7 is devoted to discuss the global conclusion of this dissertation as well as the future

lines of research. The bibliography is presented at the end of the dissertation.

4

CHAPTER 2

METAHEURISTICS

Optimization algorithms can be divided in two categories: deterministic and stochastic

algorithms. Deterministic algorithms are able to find the optimal solution, whereas stochastic

algorithms cannot. Deterministic algorithms typically constitutes a brute-force style approach

which is suitable for very small problem instances. In the case of large-scale nonlinear global

optimization problems, brute-force approach will be extremely time-consuming process. On

the other hand, while stochastic algorithms do not always produce optimal solutions, they do

operate in polynomial time and might be able to produce solutions that are ’good enough’ for

practical purposes [52,69].

Metaheuristics is a major or the primary subfield of stochastic algorithms. In general,

there are two types for stochastic algorithms: heuristic and metaheuristics. Both employ some

degree of randomness to find optimal (or near-optimal) solutions to hard problems. Specially,

metaheurisitcs are the most general method which are applied a very wide range of problems [61,

105]. As for the term metaheuristic, it was firstly used by Glover in 1986 [29]. In metaheuristic,

meta means ’beyond’ or ’higher level’, and they generally perform better than simple heuristics.

Heuristic means ’to find’ or ’to discover by trial and error’. There is no guarantee that these

algorithms will find the optimal solutions, but they can be an efficient way to produce acceptable

solutions in a reasonably practical time.

There is no commonly accepted definition for the term metaheuristic. According to Voss,

Martello, Osman and Roucairol [98], ”A metaheuristic is an iterative master process that

5

guides and modifies the operations of subordinate heuristics to efficiently produce high-quality

solutions. It may manipulate a complete (or incomplete) single solution or a collection of

solutions at each iteration. The subordinate heuristics may be high (or low) level procedures,

or a simple local search, or just a construction method.”

Osman and Laporte’s definition [68] for metaheuristic is ”A metaheuristic is formally defined

as an iterative generation process which guides a subordinate heuristic by combining intelligently

different concepts for exploring and exploiting the search space, learning strategies are used to

structure information in order to find efficiently near-optimal solutions.”

Metaheuristics algorithms have two major components: exploration (diversification) and

exploitation (intensification). Exploration can be described as the ability to test various regions

in the search space. Exploitation is the ability to focus the search around a determined solution

in order to locate the optimum solution precisely [53]. Both components are working together to

discover the best solution in the search area. There is, however, a trade-off between exploration

and exploitation, so that decreasing either will only serve to increase the other. If an algorithm is

more exploratory and less exploitative, it’s convergence speed will slow down and thus decrease

the accuracy. Conversely, if the algorithm is more exploitative and less exploratory, it is more

likely to be trapped at local optima, which makes it very difficult to find the global optimum. In

order to achieve effective performance on problem optimization, these two components should

be well balanced [12]. At the end, how accurately and how quickly a metaheuristic algorithm is

able to produce solutions will usually be the criteria to judge how effective it actually is.

Metaheuristic algorithms can be divided into two categories namely, nature inspired and

evolutionary. Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Bat

Algorithm (BA), Bacterial Foraging Optimization, Simulated Annealing, and Artificial Bee

Colony (ABC) are examples of such nature inspired algorithms. Evolutionary algorithms are

Genetic Algorithm (GA), Differential Evolution (DE), and Evolutionary Strategies (ES).

In the rest of this chapter, some of the most known metaheuristic algorithms are summarized,

including Simulated Annealing (SA), Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Tabu Search (TS), Differential Evolution (DE), and Artificial Bee Colony (ABC). And

6

also some of the improved versions of these algorithms are mentioned, including FWA-DM,

L-SHADE, b6e6rl, NRGA, and OPTBees.

2.1 Simulating Annealing

Simulated Annealing [1] [60] algorithm simulates the annealing process. The algorithm decreases

getting stuck in local optima by occasionally accepting solutions that are worse than the current

solution. This version with random restarts, re-starts search from a random position after local

search fails to improve a given time (limit l). As seen in Figure 6, the algorithm starts with

initializing (Node 2) constants limit l, initial temperature t0, and cooling scheduler c. If there

is time to another annealing (Node 3), algorithm resets (Node 4) current temperature with

t ← t0, number of bad trials with n ← 0, and current solution with s ← random solution. If

number of bad trials n is less than limit l, we continue (Node 5) with improving current solution

by producing a tweak of it (Node 6). If the tweak r is better than s (Node 7-8), we directly

update current solution: s ← r. The interesting thing about Simulated Annealing is that we

still update when r is worse than s if r is lucky, e.g. if (2.1) holds, where rand(0, 1) is a random

value between 0 and 1, and |.| denotes absolute value.

rand(0, 1) ≤ exp(−|f(s)− f(r)|
t

) (2.1)

This way the algorithm has a chance of escaping local optima. When there is an update,

the number of bad trials is reset: n ← 0. When an update was not done, the number of bat

trials is incremented: n← n+ 1 (Node 9). In each iteration the temperature t is cooled down

(Node 10) using a schedule constant c that has a value less than 1 : t← ct.

7

1: Start

2: Initialize

 3: Have

time?

5: Continue?

10: Cool

11: End

4: Reset

No

Yes

Yes

6: Tweak

 7: Better

or Lucky?

9: Increment 8: Update

No

Yes

No

Figure 2.1: Simulated Annealing with Random Restarts flowchart [60].

2.2 Genetic Algorithm

Genetic algorithm (GA) was proposed by John Holland in the 1970s [35]. Genetic Algorithm

is very important part of the evolutionary algorithms which is inspired from natural evolution.

It iterates through fitness assessment, selection, reproduction, mutation, and recombination

[31,65].

As seen in Fig. 2.2, GA starts with initialization of population X (Node 2) randomly. If

there is time to generate another generation of solutions (Node 3), the algorithm proceeds to

8

produce a new generation. E.g. if still a new child is needed to complete the new generation

(Node 4), two new children are generated in Node 5. In this step (Node 5), first two new

parents are selected. From the two parents, two children are produced by crossover. Each

child is mutated, and then added to the list of new generation solutions. In Node 6, the old

generation is completely overwritten with the new generation. If no new generation is needed,

the algorithm ends (Node 7).

1: Start

2: Initialize

 3: New

generation?

 4: New child

needed?

5: Add
child

7: End

6: Replace
generation

No

Yes

Yes

No

Figure 2.2: Genetic Algorithm flowchart [35].

2.3 Particle Swarm Optimization

Particle Swarm Optimization is a population based stochastic optimization method developed

by Eberhart and Kennedy [47] in 1995. The algorithm, which is based on a metaphor of social

interaction, searches a space by adjusting the trajectories of individual vectors, called particles

as they are conceptualized as moving points in multidimensional space. The individual particles

9

are drawn scholastically toward the positions of their own previous best performance and the

best previous performance of their neighbors [11].

1: Start

2: Initialize

3: Continue?

4: Have Particle?

7: Update
Personal

Best

 6: Beats
Personal

Best

8: End

5: New solution

No

No

Yes

Yes

Yes

No

Figure 2.3: Particle Swarm Optimization flowchart. [47]

PSO algorithm is depicted in Fig. 2.3. The algorithm starts with Node 1. In Node 2, we

initialize particle positions xi and particle velocities vi, randomly. In addition particle personal

best positions are initialized as equal to starting positions: pi = xi, and the global best position

x∗ = xargmax(f(pi)). In Node 3 if we decide to continue, because e.g. we have more time, we

start processing each particle i in the next generation t one by one. While we have unprocessed

10

particles (Node 4), we get a new solution (Node 5) using (2.2) and (2.3)

vi(t+ 1) = wvi(t) + c1r1(pi − xi(t)) + c2r2(x∗ − xi(t))) (2.2)

xi(t+ 1) = xi(t) + vi(t+ 1) (2.3)

where w, c1, and c2 are constants and r1 and r2 are random values between [0, 1] drawn from

the uniform distribution. If the new solution is better than personal best (f(xi(t+1)) > f(pi))

as in Node 6, we update personal best in Node 7: pi = xi(t + 1). When we have no more

particles to process (Node 4), we get out of particle loop. When the termination criteria is met

(e.g. ”No” edge in Node 3) the algorithm ends.

2.4 Tabu Search

Tabu Search [60] algorithm keeps a list of solutions that are already evaluated (tabu), and

avoids reevaluating those solutions. As depicted in Fig. 2.4 the algorithm starts by initializing

(Node 2) an empty tabu list L, getting a random current solution s, and adding s to L. While

there is enough time (Node 3), we proceed to building a new solution r by tweaking the existing

solution s (Node 4). If r is not in the tabu list (Node 5), current solution is updated (Node 5):

s← r, and r is added to the tabu list L.

11

1: Start

2: Initialize

 3: Have

time?

5: Tabu?

7: Tabu

8: End

4: New solution

No

Yes

No

6: Update

Yes

Figure 2.4: Tabu Search flowchart [60].

2.5 Differential Evolution (DE)

Differential Evolution [71] [85] is another algorithm that simulates the evolutionary behavior.

As seen in Fig. 2.5, the algorithm starts with initializing the population of individuals X

randomly. While we have time to work on another generation (Node 3), the algorithm takes

a copy of the current population into parents Q (Node 4), and iterates through each parent q

(Node 5). In each iteration a new child e is made through (2.4) and (2.5), where a, b, and c are

random parents that are different from q and each other, m is the constant mutationrate, and

⊗ represents the genetic crossover operator.

12

d = a+m(b− c) (2.4)

e = q ⊗ d (2.5)

If the child e is better than the parent q, e replaces corresponding element in X.

1: Start

2: Initialize

 3: Have

time?

5: Tabu?

7: Tabu

8: End

4: New solution

No

Yes

No

6: Update

Yes

Figure 2.5: Differential Evolution flowchart derived from [71].

2.6 Artificial Bee Colony (ABC)

Articial Bee Colony (ABC) [43] [45] algorithm simulates behavior of bees in a bee hive in search

of food sources. As depicted in Fig. 2.6, the algorithm starts with initializing random initial

13

solutions X (in ABC metaphor each solution is a food source).

If there is enough time (Node 3), the algorithm process to updating food sources. In each

iteration, each food source is ”visited” once (Node 4). Visiting a solution xi entails making a

recombination of it with a random other solution xj as in (2.6), where d is a random dimension,

and r is a uniform random number in the range [-1, 1].

xi[d]← xi[d] + r(xi[d]− xi[d]) (2.6)

1: Start

2: Initialize

3: Continue?

8: End

No

Yes

4: Visit all sources

5: Assign luck

6: Re-visit lucky sources

7: Leave empty sources

Figure 2.6: Artificial Bee Colony flowchart derived from [43].

In Node 5 each food source is assigned a probability of being re-visited, e.g. ”luck”, in the

same iteration, based on the value of f . The food source with better f value has a higher

14

probability P of being re-visited (2.7):

Pi =

f(xi) + 1, if f(xi) ≥ 0.

1
1−f(xi)

, otherwise.
(2.7)

In Node 6 if the food source is lucky, e.g. if Pi > rand(0, 1), where rand(0, 1) is a random

number in the range [0, 1] from the uniform distribution, the food source is re-visited using

(2.6). This ensures that the neighborhood of better solutions are visited more, hence makes the

algorithm more elitist/exploitist. In Node 7 the algorithm checks whether any of the current

solution neighborhoods failed to produce any improvement for the last limit iterations. Such

neighborhoods are abandoned for a random new neighborhood.

15

CHAPTER 3

BAT’S ECHOLOCATION AND BAT ALGORITHMS

In this section, bat’s hunting strategies, bat algorithm, and modified bat algorithms are

examined.

3.1 Bats and Echolocation

Bats have the unique ability to detect insects and avoid obstacles around themselves by using

echolocation calls [23, 83] that are usually ultrasonic (ranging in frequency from 20 to 200

kilohertz (kHz)). Bats emit sound waves and listen to the returning echoes. From these, bats

can generate a 3D blueprint of their environment. Bats can distinguish the shape, size, and

texture of a tiny prey, in which direction the prey is heading, and even the speed of the prey

by using the delayed time and loudness of the response [33,67]. If prey moves towards the bat,

the returning echo will have a higher pitch than the original sound, while the echo from prey

moving away the bat will have a lower pitch. This difference is due to the Doppler Effect [37].

Bats have also the ability to change the way they emit the sound pulses. By varying

frequency of the pulse, bats can change the traveling range of the pulses. Frequency f is

inversely proportional with the wavelength λ (Fig.3.1) and multiplication of these gives us the

speed of sound as in (3.1) where V = 343 m/s in air.

V = fλ (3.1)

16

Figure 3.1: Emitted sound waves width decreases as frequency increases that is decrease in
wavelength. [38]

Figure 3.1 illustrates that for constant energy, an increase in frequency (left to right), that

is decrease in wavelength. [38] When bats hunt, they burst sound pulses with lower frequency

and longer wavelength, hence the sound pulses can travel farther distance. In this long range

mode it becomes hard to detect the exact position of the prey (Fig.3.2a), but it becomes easy

to search large area [37].

When bats detect prey, the pulses will be emitted with higher frequency and shorter

wavelength, so that bats are able to update the prey location more often (Fig.3.2b). Depending

on the species, the range of the sound pulses could be from 2.4m to 62m [4,84].

Besides frequency and wavelength, bats also change the loudness (intensity) of the sound.

Bats emit sound as low as 50dB and as high as 120 dB [87] [88], that is enough to damage

human hearing. Since this sound waves has ultrasonic frequency, we are unable to hear it.

Emitted sound is louder than which varies from loudest when searching for prey to a quieter

base when approaching to prey; therefore, we can say that loudness and frequency of sound

pulses (rate of pulse) are inversely proportional.

To summarize, there are two conspicuous properties of bat hunting strategy:

1. When a bat searches for prey, its sound frequency is lower and wavelength is longer and

with high-intensity (very loud) (Exploration)(Fig.3.2a).

17

Wavelength

(a) Decreases frequency that is increase in
wavelength

Wavelength

Wavelength

(b) Increases frequency that is decrease in
wavelength

Figure 3.2: Two conspicuous properties of bat hunting strategy [83]

2. When a bat detects prey, its sound frequency is higher and wavelength is shorter and with

lower intensity (quieter) (Exploitation)(Fig.3.2b).

It is clear that the problem of exploration and exploitation balance has naturally been

resolved in the case of bats.

3.2 Bat Algorithm

Bat Algorithm was introduced by Yang [106] as a new meta-heuristic method that was based on

the echolocation behavior of bats. It is more like a combination of Particle Swarm Optimization

18

and Harmony Search [106]. Although BA does not imitate the real bats successfully, due to its

simplicity and effectiveness a large number of BA variations have been developed and applied

to a wide range of real problems [59,78,109,113].

Bat algorithm [106] is governed by three idealized rules: 1) Bats can detect the distance

between prey, food, and the obstacles by using echolocation. 2) During the search for prey,

bats fly randomly with velocity Vi, with fixed sound pulse frequency fi, varying wavelength

λ, and loudness A0. 3) Loudness can change from large value A0 to minimum constant value

Amin. Besides these rules, bat algorithm also assumes that the frequency f varies in a range

[fmin, fmax].

Initially, ith bats’ position xi, rate of pulse ri, loudness Ai, pulse frequency fi, and velocity

Vi are determined randomly. In the main loop the position xt
i and the velocity V t

i of the bats

each time step t are updated as in (3.2), (3.3), and (3.4) [106],

fi = fmin + (fmax − fmin)β, (3.2)

V t
i = V t−1 + (xt

i − x∗)fi, (3.3)

xt
i = xt−1

i + V t
i , (3.4)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution and x∗ is the current

global best position at time step t.

For the local search phase, once a solution is selected among the current best solutions, a

new solution for each bat is generated locally using random walk

xnew = xold + ϵAt, (3.5)

where ϵ ∈ [−1, 1] is a random number, At =< At
i >= 1

N

∑N
i=1 A

t
i is the average loudness of all

the bats at this time step, and N is the number of bats.

19

Loudness Ai and the rate of pulse ri change during the iteration process. When a bat gets

closer to prey its loudness decreases and the rate of pulses increases. In algorithm these changes

are shown as follows:

At+1
i = αAt

i, rt+1
i = r0i [1− exp(−γt)], (3.6)

where α and γ are constants. In the simplicity case, α and γ are set to 0.9. According to all

these approximations and idealizations bat algorithm can be given as in Algorithm 1.

Algorithm 1 BAT algorithm pseudo code
1: Objective function f(x), x = (x1, ..., xd)

T

2: Initialize the bat population xi, vi(i = 1, 2, ..., n)
3: Define pulse frequency (fi) at xi

4: Initialize pulse rates ri and the loudness Ai

5: while (t < Max number of iterations) do
6: Generate new solutions by adjusting frequency,
7: and updating velocities and locations/solutions
8: [equations (3.2) to (3.4)]
9: if (rand > ri) then

10: Select a solution among the best solutions
11: Generated a local solution around the selected best solution
12: end if
13: Generate a new solution by flying randomly
14: if (rand < Ai & f(xi) < f(x∗)) then
15: Accept the new solutions
16: Increase ri and reduce Ai

17: end if
18: Rank the bats and find the current best x∗

19: end while
20: Post process results and visualization

In the main loop, bats will move from their current positions towards global best bat’s

position. While they fly towards to the global best, if any bat finds a better position, the bat’s

rate of pulse and loudness will change and the global best bat will be updated. This process

will be repeated until the termination criteria met.

20

3.3 Bat Related Algorithms

As in most of the stochastic algorithms, the standard BA suffers from the premature convergence

problem and it needs improvements in exploration. The random walk size and the pulse

rate parameters play very important role on exploration ability of BA. As a result most of

the researchers focused on these parameters. Recently, Local Memory Search Bat Algorithm

(LMSBA) [113], Novel Adaptive Bat Algorithm (NABA) [42], Adaptive Bat Algorithm (ABA)

[100], and Chaotic Local Search-based Bat Algorithm (CLSBA) [9] are developed towards

improving BA’s exploration ability. In this section, these algorithms will be examined.

3.3.1 Novel Adaptive Bat Algorithm (NABA)

NABA is proposed by Kabir [42] to improve the explorative characteristics of BA. The NABA

incorporates two techniques within BA, which include the Rechenberg’s 1/5 mutation rule and

the Gaussian/Normal probability distribution to produce mutation step size.

NABA, like LMSBA, offers new equation to generate new solution rather than doing just

random walk. It modifies the random walk equation (Eq.3.5) in line 11 of original Bat algorithm.

NABA controls the random walk step size by the variance of Gaussian/Normal distribution.

The modified equation is as follows:

xnew = xold + ϵAtN(0, σ) (3.7)

where σ is the standard deviation.

Kabir used the Rechenberg’s 1/5 mutation rule [79] to adaptively change the random

walk step size and pulse rate to control the exploration and exploitation. According to the

Rechenberg’s mutation rule, the ratio of successful mutations to all mutations should be 1/5.

Changing the pulse rate and standard deviation according to 1/5 rule in every m number of

21

cycles is performed as in following equations: Pulse rate r,

r(t+ 1) =

r(t) ∗ 0.85, if successrate(m < 1/5).

r(t)/0.85, if successrate(m > 1/5).

r(t), otherwise

(3.8)

Standard deviation σ

σ(t+ 1) =

σ(t)− 0.0001, if successrate(m < 1/5).

σ(t) + 0.0001, if successrate(m > 1/5).

σ(t), otherwise

(3.9)

From the equation (3.8) and (3.9), we can see that if the success-rate is less than 1/5, NABA is

exploring too much and it intends to move the bats near to the best solution and decreases the

step size. If the success-rate is more than 1/5, NABA is exploiting local optima too much and

it increases the step size. That will help bats to reach the local optima faster, but the accuracy

will decrease because of the long step size.

3.3.2 Local Memory Search Bat Algorithm (LMSBA)

LMSBA was introduced by Yuanbin [113]. He said that if the information that has been found

out in the process of the implementation was fully combined and applied in BA, it would

improve BA. So LMSBA, same as PSO, keeps the bat’s best solutions during the search process

and uses them to generate an alternative local solution to the random walk (Eq.3.5) in BA.

The alternative solution is calculated as follows:

xnew2 = xold + c.rand.(x∗d − xold) (3.10)

where x∗d is the current best that i-bat has found.

In LMSBA, xnew1 (Eq.3.5) and xnew2 (Eq.3.10) is compared and the better one is used as

22

xnew. By using this method, LMSBA intends to create local extreme search in BA local search.

However, this method alone might lead the bats to a local optima and they can be trapped

there easily. Because, once they fly to the vicinity of the best solution, their personal best will

be same as the best solution and the alternative solution will not help them to escape from

local optima trap.

3.3.3 Adaptive Bat Algorithm (ABA)

Wang presented an improved bat algorithm [100] to solve BA’s premature convergence problem.

Same as NABA and LMSBA, he improved the random walk equation, but he also modified the

frequency and the velocity equations in BA. In BA, each bat uses the same frequency increment

for the velocity which makes bat’s flight behavior lack of flexibility. In ABA, Wang proposed

a new method to let each bat dynamic and adaptively adjust its flight speed and its flight

direction. Instead of the equations (3.2), (3.3), and (3.4) in BA, he designed the new equations

as follows:

fij = fmin + (fmax − fmin)βij , (3.11)

wt
ij = w0(1− exp(−µ|xt−1

ij − xt−1
∗ j|)) (3.12)

viij = wt
ij .v

t − 1ij + (xt−1
ij − xt−1

∗j)fij (3.13)

xt
ij = xt−1

ij + vtij , j = 1, ..., n (3.14)

where µ is a positive constant, w0 is a positive constant and 1 ⩽ w0. ABA is targeting to

increase the speed of the bat which is farther from the prey. The farther the distance between

the bat and its prey (global best solution), the faster the speed flying to its prey.

Secondly, Wang improved the random walk by combining it with shrinking search. Bats

23

which are far away from the current best, make random fly near to the current best. The

step size of random fly within the range [−1, 1] in BA while it shrinks in ABA as the iteration

proceeds. ABA targets to increase the intensification of the search by shrinking search method.

3.3.4 Chaotic Local Search-based Bat Algorithm (CLSBA)

CLSBA [9] is another modified version of Bat Algorithm. It is a combination of the standard

BA with chaotic sequences generated by the logistic map. The use of chaos makes the

frequency adaptive and more random in nature to balance the trade-off between exploration

and exploitation. The frequency of pulse emission is modified as follows in CLSBA:

fi(t+ 1) = µ× fi(t)× (1− fi(t)) (3.15)

While the step size of random walk parameters ϵ (Eq.3.5) varies within the range [−1, 1] in BA,

it varies within the range [−SF (t), SF (t)] in CLSBA. SF is the scaling factor which changes

dynamically according to the Rechenberg’s mutation rule. Having a lower value of SF(t) increase

the exploitation, a larger value of SF(t) accelerates the exploration. Changing the scale factor

according to 1/5 rule in every m number of cycles is performed as in following equation:

SF (t+ 1) =

SF (t) ∗ 0.85, if successrate < 1/5 .

SF (t)/0.85, if successrate > 1/5 .

SF (t), otherwise

(3.16)

24

CHAPTER 4

DYNAMIC VIRTUAL BATS ALGORITHM

The proposed Dynamic Virtual Bats Algorithm (DVBA), like Bat Algorithm (BA), is

fundamentally inspired by bat’s hunting strategies, but it is conceptually very different from

BA. It is a new simulation of the bat’s hunting strategies. In DVBA, a role based search is

developed to avoid deficiencies of BA. Although DVBA is a population based meta-heuristic, it

needs just two bats to find the optimal solution. These bats are called explorer bat and exploiter

bat. While the explorer bat explores the search space the exploiter bat makes a concentrated

search around the best found solutions by using echolocation. Experimental results demonstrate

that DVBA is more accurate and reliable at attaining the global optimum when compared with

existing algorithms. DVBA represents a particular way of coping with the “exploration and

exploitation” conflict.

In this chapter, all the details about dynamic virtual bats algorithm (DVBA) will be

explained under three subsections.

4.1 Mathematical representation of search scope of the

virtual bat

In this work we focus on how bats alter the sound frequency and the wavelength during the

search. While a bat is looking for prey, there are two prominent behaviours:

1. Exploration: the bat emits sound waves with low frequency and long wavelength. Waves

25

are like a light bulb, illuminating a wide circle (Fig.3.1)a. This behavior is simulated as

in Fig.4.1a

2. Exploitation: when the bat gets closer to the prey, it increases the frequency and decreases

the wavelength of the waves to get the exact location of the prey. Waves are like a

flashlight, spreading narrow beams [39] (Fig.3.1c). This behovior is simulated as in

Fig.4.1b

This hunting strategy inspired us to develop DVBA. DVBA does not need to have a huge

number of population size to provide the optimal solution. It is able to manage the classic

exploration and exploitation trade off problem successfully by using just two bats. Each bat

has its own role in the algorithm and during the search they exchange these roles according to

their positions. We called these bats the explorer bat and the exploiter bat. The bat which

is in a better position becomes the exploiter; meanwhile the other one becomes the explorer.

While the exploiter bat increases the intensification of the search around preferable position,

the explorer bat will keep looking for a better position. Until the explorer bat finds a better

position, the exploiter bat will increase intensification of the search after each iteration to attain

the optimal solution.

In Fig.4.1a and Fig.4.1b the triangle (▲) represents the bat and the plus (+) represents the

prey. The black dots are the positions (H) on the waves which are going to be checked for a

better solution.

As shown in Fig.4.1a during exploration the search points which are created by the explorer

bat are distributed widely in the search space. However in Fig.4.1b the exploiter bat created a

very small search scope where search points have become closer to each other.

Similar to real bats, virtual bats are looking for superior solutions (prey) in their search

scope. They start flying from random positions Xi with random velocities Vi using default

search scope range. During the search, the range of the search scope changes dynamically:

it expands during the search (Fig.4.1a) or it shrinks if prey gets closer (Fig.4.1b). The

length and the width of the search scope is controlled by wavelength λi and the frequency

26

(c)

h12

 +

 (a)

+

Flying direction

Wavelength (λ)

h11

h12
h13

h14 h44

h43

h42

h41

(b)

Flying direction

Wavelength (λ)

+

Figure 4.1: (a) Exploration: Explorer bat searching a prey, (b) Exploitation: Exploiter bat
chasing a prey, (c) Search positions in the search scope of a bat.((a) zoomed in by x6)

27

fi, respectively. The frequency fi and the wavelength λi are used as scalar dimensionless

quantity in equations(e.g. 50Hz is accepted as 50 dimensionless quantity).

The search scope is simulated by using wave direction vectors V i
j and search points hjk on the

vectors as shown in Fig.4.1a and Fig.4.1c. To distribute the wave direction vectors in the search

scope we have generated the unit vectors ûj which give direction to the scope width vectors

Aj (Fig.4.1c).The unit vectors ûj are generated randomly; consequently, the wave vectors are

distributed randomly in the search scope as well. The magnitude of Aj changes the width of

the search scope, and is inversely proportional with the frequency of the waves fi (7). When the

frequency f increases reflect what is shown in Fig.4.1b. The search points hjk are distributed

by scaling the unit vector v̂ij (9) with the same length as wavelength λi. The scope width

vector Aj , the wave vector Vij , and the positions of the search points hij in the bat’s search

scope at time step t are given by (4.1 - 4.5),

Aj =
ûjb

fi
, (j = 1, ..., w), (i = 1, ..., n) (4.1)

Vij = Vt
i + Aj (4.2)

v̂ij =
Vij

∥Vij∥
(4.3)

hj,k = Xt
i + v̂ijkλi, (k = 1, ...,m) (4.4)

Hj,k =

h1,1 h1,2 · · · h1,k

h2,1 h2,2 · · · h2,k

...
...

hj,1 hj,2 · · · hj,k

(4.5)

where w is the number of wave vectors, i is the index of bat (maximum 2), b ∈ (20, 40) is the

28

scope width variable, and m is the number of search positions on the wave vectors. Increasing

the number of m and w will offer a more detailed search, but it will require longer computation

time. For the problems in Table 1, we set m = 5 and w = 6.

If the frequency increases, vectors will get closer and the wavelength (distance between

search points) will get shorter (4.1). This is inspired from a bat’s dynamic search ability for

hunting. The changes of frequencyfi, and wavelength λi at time step t+ 1 are given by (4.6 -

4.8),

f t+1
i = f t

i ± ρ (4.6)

λt+1
i = λt

i ± ρ (4.7)

ρ = mean(
U− L

β
), {β ∈ ℜ : β > 0} (4.8)

where ρ and β are positive real constants, U is the upper bounds and L is the lower bounds of

the search space, and ρ is used as increment rate for frequency and wavelength. β is used as

increment rate divisor (4.6), (4.7). In our simulation, we set β = 100.

Increasing β might cause bats become trapped in a local minimum for multimodal problems,

but it will increase accuracy in unimodal problems. Choosing the range of the wavelength is

very important. If the wavelength is too short, in large search spaces, convergence could be

very slow. Conversely, if the wavelength is too long, it might bypass the global best and fail

to locate the optimum position. To overcome this problem the length of the wavelength is

linked to the range of the problem. For simplicity the following approximations were used. The

wavelength range λ, in a range [λmin, λmax] = [ρ, 5ρ] corresponds to a range of the frequency

[fmin, fmax] = [ρ, 5ρ].

In Fig.4.2 we tested DVBA with the various values of β to show its effect on the convergence

characteristics of the algorithm. When β is increased, DVBA performance gets worse. This is

because it decreases the increment rate ρ (4.8); therefore, the search scopes of both bats get

29

Figure 4.2: The effects of the increment rate divisor (β) on the convergence characteristics of
the algorithm tested on 2-D Schaffer Function.

smaller. This is better for the exploiter bat; however the explorer bat will need more time to

find the optimal solution.

4.2 The behavior of the virtual bats

Both bats start searching from a random position with random direction, default wavelength,

and frequency. At the beginning, they both start the search like an explorer bat. According

to the best positions found in their first attempts, one of them will become explorer bat and

the other exploiter bat. To assign their roles, we find the best solutions h∗ of the bats from

their search scopes H and compare them. After determining their roles, there are three possible

actions that a bat may take by comparing xt
i with h∗ for its next step (t+ 1):

1. If the best position of search scope h∗ is better than the bat’s current position xt
i, the

bat will fly to this position (4.9). And also its direction will be changed towards the next

30

position (4.10) (see line 10-12 in Algorithm 2). The bat will become the exploiter bat,

its wavelength will be shortened (4.7), and its frequency will be increased (4.6). As long

as it has a better position in its sound waves scope it will increase intensification of the

search. To avoid very small or big Vt+1
i we normalized it by using Eg.4.11. Thus, when

Vt+1
i approaches zero, it will be always between [0, 1].

xt+1
i = h∗ (4.9)

Vt+1
i = |xt+1

i − xt
i| (4.10)

v̂i =
Vt+1

i

∥Vt+1
i ∥

(4.11)

If h∗ is worse than the bat’s current position, the algorithm checks whether the current

position xt
i is the best one ever found xgbest or not.

2. If the current solution is not the best solution ever found then the bat becomes the explorer

bat, changes its direction randomly, increases the wavelength (4.7), and decreases the

frequency (4.6) expanding the search scope (see line 13-15 in Algorithm 2). These actions

help the bat keep exploring the search space without getting trapped in a local optima

and provides a random walk.

3. If the bat is already on the best found position (xgbest), the bat will become the

exploiter bat. The wavelength will be minimized (λt+1
i) = (λmin) , the frequency will

be maximized(f t+1
i) = (fmax), and the search direction will be changed randomly (see

line 16-18 in Algorithm 2). As a result, the bat can increase the intensification of the

search around the best position.

Based on the virtual bat’s behavior, the basic steps of the algorithm for minimizing f(x)

are shown in Algorithm 2,

31

Algorithm 2 DVBA pseudo code
1: Objective function f(x), x = (x1, ..., xd)

T

2: Initialize the bat population xi(i = 1, 2) and vi
3: Initialize wavelength λi and frequency fi
4: Initialize the number of the waves
5: while (t < Max number of iterations) do
6: for each bat do
7: Create a sound waves scope
8: Evaluate the solutions on the waves
9: Choose the best solution on the waves, h∗

10: if (f(h∗) < f(xi)) then
11: Move to new solution
12: Decrease λi and increase fi
13: else if (f(xi) > fgbest) then
14: Change the direction randomly
15: Increase λi and decrease fi
16: else if (f(xi) = fgbest) then
17: Minimize λi and maximize fi
18: Change the direction randomly
19: end if
20: Rank the bats and find the current best xgbest

21: end while

where fgbest is the global best solution and d is the number of dimensions.

4.3 The effects of the major parameters on DVBA

For optimizing a problem, system designer faces two important difficulties. First one is finding

the best algorithm for the problem and the other one is setting the parameters of the algorithm.

Generally algorithms are expected to perform the same success for any type of optimization

problem and that shows the success of the algorithm. However, that is a difficult task for the

algorithms, since there are too many types of optimization problems. Because of that, most

of the algorithms have parameters to be tuned for efficiency. According to the type of the

optimization problems these parameters can be set differently.

There are very few algorithms which are not depending on the parameters. Most of the

algorithms depend on one or more parameters which have to be set to some values [70].

32

The choice of parameters can have significant impact on the effectiveness of the optimization

algorithm. Specially, if the optimization problem is discontinuous, high-dimensional, noisy, or

multimodal, setting the parameters is one crucial factor for efficiency [16].

In DVBA, there are two main parameters which affect its performance [96]. They are step

size divisor and search scope size parameters (number of search points). While step size divisor

changes the bats speed, search scope size parameters makes the search scope of the bats wider

or narrower.

In this section, we empirically study the effects of the major parameters on DVBA and give

a list of good choices of parameters for various optimization scenarios. Five different well-known

benchmark functions are selected as testing functions.

4.3.1 Analyzing the number of search points and step size divisor

effects on the performance of DVBA

In DVBA, the virtual bat’s search scope size is proportional with its emitted sound wavelength

(λ) and frequency (f). In DVBA, increasing the wavelength will increase the distance

between the search points and reducing the frequency which is inversely proportional with

the wavelength, will increase the angle between the search vectors (Aj) (4.1) (See Fig.4.1c).

That will help the explorer bat to widen its search scope as shown in Fig.4.3a. Controversially,

reducing the wavelength will increase the frequency and that will create narrow search scope

which is used for the exploiter bat as in Fig.4.3c. The changes of the frequencyfi and the

wavelength i at the time step t+ 1 are given by

f t+1
i = f t

i ± ρ (4.12)

λt+1
i = λt

i ± ρ (4.13)

33

(a) β = 25

(b) β = 100

(c) β = 300

Figure 4.3: The effect of step size divisor on the width of bat’s search scope sizes in DVBA

ρ = mean(
U− L

β
), {β ∈ ℜ : β > 0} (4.14)

where ρ and β are positive real constants, U is the upper bounds and L is the lower bounds

of the search space, and ρ is used as increment rate for frequency and wavelength. β is used

as increment rate divisor. It is clear that, wavelength and frequency changes related directly

with β. Very high β will cause very small distance between the search points and narrow search

scope. That is good for the exploiter bat to make intensive exploitation. However, the explorer

bat may trap in local minima because of narrow search scope. On the other hand, very small β

will increase the distance between the search points and the bats will have large search scope.

This will help explorer bat to explore better the search space, but the exploiter bat will not able

to have an intensive exploitation search. So, choosing the right value of β is very important for

efficiency.

In addition, the number of search points in the search scope has a major effect on the

performance of the algorithm as well. The changes of the number of search points will affect

34

(a) Virtual bat with 20 search points

(b) Virtual bat with 9 search points

(c) Virtual bat with 2 search points

Figure 4.4: The different search scope sizes of a virtual bat in DVBA

the bat’s search scope size directly as shown in Fig.4.4. In most tests, it has been decided as

30 after some experiments. However this might not be the best choice for different scenarios.

In this section, the effect of the number of search points is investigated for different types of

optimization problems.

To study the effects of the number of the search points and the step size divisor some

experiments are designed in this section. A set of bound constrained benchmark functions is

used to investigate the effect of the two parameters. Rastrigin and Griewangs are multimodal

functions. Quartic is a noisy function. Sphere and Rosenbrock are unimodal functions.

Functions were tested with 2 and 30 dimensions to get more accurate results. Functions details

are given in Table.4.1.

In order to investigate whether the DVBA scales well or not, different step size divisors

and search points are used for each function with different dimensions. They are step size

divisors (β) of 20, 50, 100, 200, and 500 Table.4.2. The number of search points varied from

35

Table 4.1: Description of the benchmark functions used. Here D: Dimensionality of the
functions, C: function characteristics with values – U: unimodal, M: Multimodal, and N: Noisy.

No Name Formula C fmin Search Space

f1 Sphere f1(x) =
∑D

i=1 x
2
i U 0 (−100, 100)D

f2 Rosenbrock f2(x) =
∑D−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2] U 0 (−100, 100)D

f3 Quartic f3(x) =
∑d

i=1 ixi + rand[0, 1) N 0 (−1.28, 1.28)D

f4 Rastrigin f4(x) = 10D +
∑D

i=1[x
2
i − 10cos(2πxi)] M 0 (−5.12, 5.12)D

f5 Griewangk f5(x) =
∑D

i=1
x2
i

4000
−

∏D
i=1 cos(

xi√
i
) + 1 M 0 (−600, 600)D

4 to 150 points Table.4.3. In Table.4.2 and Table.4.3, the results are shown in terms of mean

and standard deviation (SD). The results are found over 30 independent runs. The final best

function values are used to calculate the mean and the SD of different scenarios of DVBA.

Maximum number of function evaluations (FES) is set to 10.000 when solving 2-D functions,

100.000 for 30-D problems. For the tests in Table.4.2, the number of search points is set to 30

and for the tests in Table.4.3, the step size divisor (β) is set to 100.

Fig.4.5 illustrates that the average fitness varied with β from 20 to 500 and search points

from 4 to 150 for 4 functions. As shown in Fig.4.5, too small or too large β will generally

lead to bad results. This is due to the fact that, a smaller β means that the distance between

search points becomes larger (Fig.4.3a), bats might easily pass over but without catching good

solutions. On the contrary, a larger β will reduce the distance between the search points that

facilitates local exploitation and bats may not have sufficient opportunity to explore more space

local regions. Therefore, the bats could be easily trapped in local optima.

It is clear from Fig.4.5 that increasing the number of search points will lead to bad results

as well. That is because the algorithm expends too many FEs and may not have sufficient time

to find the optimal solution, unable to move far enough to reach better positions globally.

By examining Sphere and Rosenbrock function of high dimension in Table.4.2, it can be said

that DVBA performs poorly when β is chosen very small. For the 2-D unimodal functions, using

different β does not make significant difference on the DVBA’s performance. For the Quartic

36

Figure 4.5: Convergence Characteristics of DVBA for different parameters. Sphere and Quartic
are in 30 dimensions. Rastrigin and Griewangs are in 2 dimensions.

function, the fitness values are very close and no rules can be extracted. For Griewangs and

Rastrigin function of high dimension, scaling β after 100 doesn’t affect the DVBA’s performance

significantly. However, when these functions are in 2-D form, we can say that the best choice

of β is around 100.

As reported in Table.4.3, the DVBA lacks of global search ability when the number of search

points are increased. From Table.4.3, it can be concluded that for both high and low-dimensions

of Sphere, Rastrigin, and Rosenbrock functions, the best value of search points is 30. For

Rosenbrock of low dimension and Quartic of high dimension, it can be said that the best value

37

of search points is 4.

In summary, we can say that taking larger value of β and search points smaller than 30 will

generally give good results for the most problems. As a future work, before the algorithm runs,

the parameters can be optimized according to the problem.

38

Ta
bl

e
4.

2:
In

flu
en

ce
of

st
ep

siz
e

di
vi

so
r
β

.
D

de
no

te
s

th
e

di
m

en
sio

ns
.

D
V

BA
w

ith
Sp

he
re

R
os

en
br

oc
k

Q
ua

rt
ic

R
as

tr
ig

in
G

rie
wa

ng
s

D
2

30
2

30
2

30
2

30
2

30

β
=

20
M

ea
n

8.
1E

-0
3

63
.4

9.
5E

-0
4

68
.4

3
1.

3E
-0

2
0.

25
8.

3E
-0

2
28

2.
4

2.
79

83
4.

9
SD

5.
6E

-0
3

5.
0

1.
5E

-0
3

11
.3

1
9.

7E
-0

3
7.

3E
-0

2
6.

8E
-0

2
24

.1
1.

54
95

.1

β
=

50
M

ea
n

1.
1E

-0
3

4.
6

1.
2E

-0
4

57
.3

8
1.

0E
-0

2
0.

22
0.

13
26

2.
9

0.
29

20
5.

9
SD

1.
0E

-0
3

1.
0

1.
6E

-0
4

28
.6

1
7.

9E
-0

3
7.

3E
-0

2
0.

30
26

.7
0.

18
23

.6

β
=

10
0

M
ea

n
1.

7E
-0

6
1.

4E
-0

2
4.

4E
-0

4
31

.1
9

1.
4E

-0
2

0.
73

1.
4E

-0
4

18
6.

7
9.

7E
-0

3
1.

15
SD

2.
2E

-0
6

2.
3E

-0
3

9.
7E

-0
4

10
.8

4
1.

1E
-0

2
0.

19
1.

8E
-0

4
40

.9
6.

9E
-0

3
1.

9E
-0

2

β
=

20
0

M
ea

n
1.

2E
-0

4
3.

3
7.

1E
-0

4
28

.0
8

1.
5E

-0
2

0.
19

4.
1E

-0
3

19
9.

0
2.

7E
-0

2
1.

89
SD

1.
6E

-0
4

5.
6E

-0
2

1.
2E

-0
3

1.
55

1.
2E

-0
2

6.
4E

-0
2

5.
1E

-0
3

43
.2

1.
4E

-0
2

8.
6E

-0
2

β
=

50
0

M
ea

n
4.

8E
-0

5
5.

9E
-0

2
1.

9E
-0

2
26

.7
0

3.
6E

-0
2

0.
29

0.
78

25
4.

0
6.

8E
-0

3
1.

03
SD

5.
5E

-0
5

9.
1E

-0
3

2.
1E

-0
2

2.
22

3.
3E

-0
2

4.
7E

-0
2

1.
18

47
.4

4.
4E

-0
3

3.
4E

-0
3

Ta
bl

e
4.

3:
In

flu
en

ce
of

nu
m

be
r

of
se

ar
ch

po
in

ts

D
V

BA
w

ith
Sp

he
re

R
os

en
br

oc
k

Q
ua

rt
ic

R
as

tr
ig

in
G

rie
wa

ng
s

D
2

30
2

30
2

30
2

30
2

30

4
po

in
ts

M
ea

n
8.

2E
-0

5
0.

90
8.

9E
-0

6
27

.7
8

2.
4E

-0
3

3.
8E

-0
2

1.
6E

-0
3

21
1.

8
9.

1E
-0

2
14

.1
1

SD
6.

7E
-0

5
0.

11
1.

4E
-0

5
2.

25
1.

9E
-0

3
6.

6E
-0

3
1.

7E
-0

3
30

.4
4.

2E
-0

2
0.

87

16
po

in
ts

M
ea

n
1.

9E
-0

4
1.

02
8.

5E
-0

5
35

.3
8

7.
2E

-0
3

0.
14

3.
7E

-0
3

14
4.

9
7.

4E
-0

2
15

.3
5

SD
1.

6E
-0

4
0.

15
1.

5E
-0

4
18

.1
0

4.
4E

-0
3

3.
2E

-0
2

7.
8E

-0
3

19
.6

4.
9E

-0
2

1.
32

30
po

in
ts

M
ea

n
2.

2E
-0

6
1.

2E
-0

2
4.

6E
-0

4
28

.1
1

1.
1E

-0
2

0.
69

7.
4E

-0
5

11
7.

5
1.

1E
-0

2
1.

14
SD

2.
1E

-0
6

1.
4E

-0
3

8.
4E

-0
4

0.
91

6.
6E

-0
3

0.
16

8.
6E

-0
5

10
.7

4.
3E

-0
3

1.
9E

-0
2

50
po

in
ts

M
ea

n
2.

8E
-0

4
1.

28
1.

2E
-0

3
42

.0
1

1.
7E

-0
2

0.
32

6.
4E

-0
2

13
2.

5
9.

1E
-0

2
15

.2
0

SD
2.

6E
-0

4
0.

27
3.

6E
-0

3
22

.6
8

1.
4E

-0
2

0.
11

0.
23

21
.1

5.
6E

-0
2

2.
03

10
0

po
in

ts
M

ea
n

4.
1E

-0
4

1.
56

3.
6E

-0
3

38
.6

5
3.

4E
-0

2
0.

51
0.

11
13

4.
9

0.
10

16
.3

2
SD

5.
6E

-0
4

0.
33

8.
1E

-0
3

12
.9

2
2.

2E
-0

2
0.

19
0.

22
21

.9
4.

9E
-0

2
2.

88

15
0

po
in

ts
M

ea
n

6.
6E

-0
4

2.
31

5.
2E

-0
3

94
.1

9
2.

3E
-0

2
0.

93
0.

51
13

2.
8

0.
16

16
.9

5
SD

1.
0E

-0
3

0.
62

1.
4E

-0
2

21
.0

2
1.

8E
-0

2
0.

23
0.

65
21

.6
8.

0E
-0

2
1.

86

39

CHAPTER 5

NUMERICAL EXPERIMENTS AND RESULTS

This part of the chapter is devoted to show different aspect of the experimentation carried

out to present detailed information about the performances of the algorithms. Firstly, we will

define the test functions,then, comparison algorithms and experiments will be presented. Then,

we will analyze the experiments results. Finally, the performance of DVBA will be tested on

supply chain cost with other well-known algorithms.

5.1 Optimization test functions

To evaluate the performance of the proposed algorithm DVBA, algorithms are run to minimize

a set of 6 scalable classic benchmark functions and 30 CEC 2014 test functions as shown in

Table 5.1.

Benchmark problems in CEC 2014 test suit are developed by Liang to the approaches,

algorithms and techniques for solving real parameter single objective optimization without

making use of the exact equations of the test functions. In CEC 2014, benchmark problems

have several novel features such as novel basic problems, composing test problems by extracting

features dimension-wise from several problems, graded level of linkages, rotated trap problems,

and so on [56].

As it is explained in [58], most of the optimization test functions have global optima

at the center of the search space and local optima lie along the coordinate axes. These

40

(a) Ackley

(c) Griewank

(e) Rosenbrock (f) Schaffer

(d) Rastrigin

(b) Sphere

Figure 5.1: Classic optimization test functions [26]

41

Table 5.1: Descriptions of the test functions

Groups No. Functions Search
range

Global
optimum

D

Classic
Test
Functions

F1 Rastrigin [-5.12, 5.12] 0 2
F2 Rosenbrock [-30,30] 0 2
F3 Levy N.13 [-10,10] 0 2
F4 Griewank [-600, 600] 0 2
F5 Schaffer Function 2 [-100,100] 0 2
F6 Zakharov [-5, 10] 0 2

CEC 2014 Test Functions

Unimodal
Functions

f1 Rotated high conditioned elliptic [-100, 100] 100 30
f2 Rotated bent cigar [-100, 100] 200 30
f3 Rotated discus [-100, 100] 300 30

Simple
Multimodal
Functions

f4 Shifted and rotated rosenbrock’s [-100, 100] 400 30
f5 Shifted and rotated ackley’s [-100, 100] 500 30
f6 Shifted and rotated weierstrass [-100, 100] 600 30
f7 Shifted and rotated griewank’s [-100, 100] 700 30
f8 Shifted rastrigin’s [-100, 100] 800 30
f9 Shifted and rotated rastrigin’s [-100, 100] 900 30
f10 Shifted schwefel’s [-100, 100] 1000 30
f11 Shifted and rotated schwefel’s [-100, 100] 1100 30
f12 Shifted and rotated katsuura [-100, 100] 1200 30
f13 Shifted and rotated happyCat [-100, 100] 1300 30
f14 Shifted and rotated HGBat [-100, 100] 1400 30
f15 Shifted and rotated expanded griewank’s

plus Rosenbrock’s
[-100, 100] 1500 30

f16 Shifted and rotated expanded scaffer’s F6 [-100, 100] 1600 30

Hybrid
Function 1

f17 Hybrid function 1 (N=3) [-100, 100] 1700 30
f18 Hybrid function 2 (N=3) [-100, 100] 1800 30
f19 Hybrid function 3 (N=4) [-100, 100] 1900 30
f20 Hybrid function 4 (N=4) [-100, 100] 2000 30
f21 Hybrid function 5 (N=5) [-100, 100] 2100 30
f22 Hybrid function 6 (N=5) [-100, 100] 2200 30

Composition
Functions

f23 Composition function 1 (N=5) [-100, 100] 2300 30
f24 Composition function 2 (N=3) [-100, 100] 2400 30
f25 Composition function 3 (N=3) [-100, 100] 2500 30
f26 Composition function 4 (N=5) [-100, 100] 2600 30
f27 Composition function 5 (N=5) [-100, 100] 2700 30
f28 Composition function 6 (N=5) [-100, 100] 2800 30
f29 Composition function 7 (N=3) [-100, 100] 2900 30
f30 Composition function 8 (N=3) [-100, 100] 3000 30

42

problems have been solved in the CEC test suite by shifting global optima and rotating the test

functions. Benchmark functions reflected real world problems and became more challenging for

optimization problems in CEC test suite. CEC 2014 test functions include 3 rotated unimodal,

13 shifted and rotated multi-modal, 6 hybrid, and 8 composition test functions All the functions

are minimization problems. The details about the functions are shown in Table 5.1. In Figure

5.1, some of the functions are shown.

5.2 Experimental Setting

All experiments were executed on a standard PC with Windows 8, Intel(R) Core(TM) i5-3470

CPU, 3.20GHz, 8 GB RAM. All the algorithms which were used for comparisons were developed

in the Python environment according to the descriptions in their original papers. The results

for PSO and BA are compared with the results in [100] and some of the comparison results

are given in Appendix A.1. The codes are available in Oguz Altun’s Bitbucket repository

(https://bitbucket.org/oaltun/opn

5.3 Analyzing the performance of DVBA on optimization

test functions

This section presents an extensive comparison among the performances of 14 algorithms on

two groups of test functions. In the first group, there are 6 classic optimization test functions

with the dimensions of 2. In the second group, there are 30 numerical functions from the 2014

Congress on Evolutionary Computation (CEC 2014) Special Session.

5.3.1 Comparison Algorithms

In order to demonstrate the effectiveness of DVBA, it is compared with 13 algorithms in three

groups. In the first group, four well known standard optimization algorithms are used. Since the

43

https://bitbucket.org/oaltun/opn

proposed algorithm DVBA is inspired from bats, DVBA is compared with four state-of-the-art

modified BA algorithms in the second group. In the third group, five algorithms are used from

the special session at CEC 2014 for comparison. The algorithms in comparison are listed as

follows:

Group 1:

- Particle Swarm Optimization (PSO) [47]

- Genetic Algorithms (GA) [31]

- Simulated Annealing (SA) [1]

- Bat Algorithm (BA) [106]

Group 2:

- Local Memory Search Bat Algorithm (LMSBA) [113]

- Novel Adaptive Bat Algorithm (NABA) [42]

- Adaptive Bat Algorithm (ABA) [100]

- Chaotic Local Search-based Bat Algorithm (CLSBA) [59]

Group 3:

- FWA-DM [112]

- L-SHADE [91]

- NRGA [110]

- OPTBees [21]

- b6e6rl [74]

Here, GA and PSO are chosen because they are used widely in many optimization problems

with great success. Since the proposed algorithm DVBA is inspired from bats, BA is chosen

as well, and explained in section 3 with details to show differences with DVBA. SA is not

a population based algorithm like other compared algorithms. Most of the population based

algorithms suffer from the problem of premature convergence. We wanted to see how the

performance of DVBA compares to single-point algorithms like SA.

There are many versions of the PSO, GA, and SA; however, we prefer to use the standard

version of the algorithms for comparisons. For PSO we set the inertia weight w = 1 and the

44

acceleration coefficients c1 = c2 = 2 [47]. For genetic algorithms, no elitism has been used with

the mutation probability of pm = 0.05 and crossover probability of 0.95 [31]. As for the BA,

parameters are set as follows: α = γ = 0.5, frequency is in the range [0, 2], and A0 = 0.5 [106].

For SA, we set the initial temperature at 100 and cooling factor to 0.2 [1]. SA re-starts the

search from a random position after a local search fails in this version.

As in most of the stochastic algorithms, the standard BA suffers from the premature

convergence problem, and it needs improvements in exploration. The random walk size and

the pulse rate parameters play very important roles in the exploration ability of BA. As a

result, most of the researchers have focused on these parameters. Recently, Local Memory

Search Bat Algorithm (LMSBA) [113], Novel Adaptive Bat Algorithm (NABA) [42], Adaptive

Bat Algorithm (ABA) [100], and Chaotic Local Search-based Bat Algorithm (CLSBA) [59]

look toward improving BA’s exploration ability. These algorithms have been tested on classic

optimization test functions in their original paper, they have not been compared yet on a

difficult test suit, like CEC 2014. Hence, four BA variants and DVBA are compared on CEC

2014 test suit in the second group.

In group 3, FWA-DM, L-SHADE, and b6e6rl are the-state-of-the-art Differential Evolution

(DE) variants which are lately tested on CEC 2014 test suits successfully. NRGA is an improved

versions of Genetic Algorithm and OPTBees is an algorithm which is inspired by the collective

decision-making of bee colonies.

- FWA-DM (Fireworks Algorithm with Differential Mutation): FWA was

introduced by Tan and Zhu in 2010 [89] as a new metaheuristic method that was based on the

fireworks explosion in the sky at night. When a firework explodes, a shower of sparks appears

around the firework. In this way, adjacent area of the firework is searched. By controlling the

amplitude of the explosion and the number of explosion sparks, the ability of local search for

FWA is guaranteed.

In 2014, Chao Yu introduced Differential Evolution (DE) mutation operator to fireworks

algorithm (FWA) and a new algorithm was formed, namely Fireworks Algorithm with

Differential Mutation (FWA-DM) [112]. In FWA-DM, firstly the individuals are initialized

45

randomly and marked as POP1. Secondly, a spark is produced around each individual within

a certain amplitude. These sparks form a population POP2. Thirdly, the individuals are

compared in POP1 and POP2 correspondingly and the ones with better fitness values are kept

and used to form a new population marked as POP3. In this step, Chao applied the mutation

and crossover operators in DE algorithm to POP3 and a new population is generated as POP4.

Finally, POP1 is regenerated by applying the selection operator to POP4.

- L-SHADE: Success-History based Adaptive Differential Evolution (SHADE) is an

improved versions of JADE [114] which is an adaptive Differential Evolution algorithm. In

2014, Ryoji and Alex intruduced L-SHADE [91] which further extends SHADE with Linear

Population Size Reduction (LPSR). LPSR is a simple deterministic population resizing method

which continually reduces the number of population according to a linear function.

It is well-known that the search performance of the algorithms depends on control

parameters. DE has three main control parameters, which are the number of population NP ,

scaling factor F , and crossover rate CR. To apply DE to a real-world problem, it is needed

to tune the parameters in order to have maximum performance. However, it is a significant

problem in practice. To overcome this problem, success-history based adaptation mechanism

have been studied by researchers [90]. This mechanism uses a historical memory which stores

parameters values that have performed well in the past. Then it generates new values of the

parameters by directly sampling the parameter space close to one of these stored parameters.

In SHADE, the CR and F are automatically adjusted by success-history adaptation, but

the number of population NP remains constant throughout the search. To further enhance

the performance of SHADE, Ryoji and Alex proposed L-SHADE which includes an adaptive

population resizing method to SHADE. So, the number of population size reduces continually

by using LPSR method. By reducing the population size throughout the search they assumed

that the rate of convergence will be faster.

- NRGA (Non-Uniform Real-coded Genetic Algorithm): Different techniques have

been proposed in literature for performing selection step in GA. Non-Uniform Real-codded

Genetic Algorithm (NRGA) [110] is one of the latest proposed improved GA that uses

46

tournament selection operator for doing selection. The tournament is performed between certain

number of randomly selected individual and the better one is chosen for crossover. For the

crossover step, SBX crossover operator is used which is proposed in [15].

NRGA, not only modified the classic selection and crossover steps but also added a

non-uniform mapping operator for making further modification in the population obtained

after mutation. This operator pushes the population towards the better solution obtained so

far.

- OPTBees: OPTBees [21] is a swarm based algorithm which was proposed in 2014 for

optimization continuous spaces. It is inspired by the collective decision-making of bee colonies.

The difference of OPTBees from other swarm based algorithms is the use of different types

of agents with different roles. According to the problem these roles might change for each

agent. In OPTBees, three different types of agents are used: 1- recruiters, that recruit bees for

exploiting a promising region; 2- scouts, that randomly search the search space; 3- recruited,

that are recruited by recruiters to exploit the chosen region. These types of bees are represents

the active bees. There are other bees in the hive with no specific task assigned to them which

are called inactive bees.

The active bees search for high quality food source. According to the quality of the food

source they discovered, bees are classified as recruiters or non-recruiters. The recruiter bees

recruit some of the non-recruiter bees to increase the exploitation around the high quality food

source found so far and non-recruiter bees keep flying around the find food sources. The scout

bees randomly fly around for a better food sources. If the active bees find a large high quality

food sources, some of the inactive bees become active and help other bees to explore faster this

region.

- b6e6rl: Radka [74] was proposed a new variant of competitive differential evolution

(CDE) with the controlled restart in 2014. By using controlled restart, he wanted to avoid

from the stagnation of the search. In DE, it was observed that a minimum fitness remained

the same for thousands of generations until the search stops. The stagnation can be caused by

small diversity of population or trapping in a local minimum. In this situation, Radka proposed

47

to give population a new impulse.

To detect the stagnation, the difference of maximum and minimum values of the objective

function and the estimated maximum distance among the points in the current population are

used. A very small difference can indicate a trapping at a local minimum.

Radka applied the controlled restart technique in one of the competitive-adaptation variant

of DE(CDE) denoted b6e6rl which was found as one of the most efficient among the other

variants. The b6e6rl uses two DE strategies1 which are DE/randrl/1/bin and DE/randrl/1/exp.

For the algorithms in the second and third groups, parameter settings of the algorithms are

the same as in their original papers.

5.3.2 Comparison Experiments

This work aims to test the quality of the final solution and the convergence speed at the end

of a fixed number of function evaluations (FEs). The comparisons are done under two section.

In the first section, PSO, BA, GA, and SA are compared with DVBA on 6 classic optimization

test functions and CEC 2014 test functions. In the second section, DVBA is compared with

four state-of-the-art modified BA versions and five algorithms from special session at CEC 2014

on all 30 CEC 2014 test functions.

5.3.3 Comparison the algorithms in Group 1

The algorithms from the first group are tested on classic optimization test functions and CEC

2014 test functions; the results are shown in Table 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. Each test

function was considered 2−D in classic optimization test functions. The dimensions are set to

30 for CEC 2014 test functions. Maximum number of function evaluation (FEs) is set to 1×104

for 2−D problems and 3×105 for 30−D problems. Algorithms were tested with 30 independent

runs for each test functions in order to compile comprehensive data. After these runs the best

fitness values (BFV), the worst fitness values (WFV), the mean of the results (Mean) and
1http://www.icsi.berkeley.edu/~storn/code.html

48

http://www.icsi.berkeley.edu/~storn/code.html

the standard deviation (STDEV) are recorded for each algorithms and test functions. Then

the success rate (SR) is calculated as the number of successful trials (st) divided by the total

number of trials (tt) (5.1). In this work, a trial is called successful when its closeness to the

predefined optimal position is less then 1.0E-05. The best results are typed in bold.

SR =
st

tt
x100% (5.1)

SR has been calculated only for the first group of the test functions in Table 5.2. For the

other groups, functions were tested in 30-100 dimensions and the SRs were not close enough to

the optimal positions hence they are not shown in other tables.

The comparison of accuracy of algorithms for each test function group and the overall success

rates have been shown in Table 5.8 and Table 5.9. The overall success (OSM) ratios for Mean

are calculated for each algorithm as the number of functions which algorithm got the best Mean

(nfbm-number of functions with best Mean) divided by the number of total functions (tf) (5.2).

Same formula applied to get overall success ratios for BFV, WFV, and STDEV in Table 5.9.

OSM =
nfbm

tf
x100% (5.2)

Fig. 5.2, 5.3, 5.4, and 5.5 illustrate the convergence characteristics in terms of the best

fitness value of the median run of each algorithm, which is plotted using a logarithmic scale in

order to reduce the biggest and smallest values in the whole optimization process.

Empirical results of the algorithms on classic optimization test functions

As Table 5.2 shows, the test functions in group 1 are mixture of multimodal, unimodal,

separable, and non-separable functions. It can be seen from Table 5.2 that, most algorithms

can locate the global optima with high success rate for 2-D functions. Since the SA has been

using single particle with many starts, its performance was very poor in terms of SR among

compared algorithms in group 1. It can be observed from Table 5.2 that DVBA found the

global optima with higher success ratio than other algorithms for these functions, followed by

BA then GA.

49

Table 5.2: Optimization results for the classic test functions.

Function Algo. BFV WFV Mean STDEV SR

F1 Rastrigin

PSO 4.26E-5 1.226 0.18 0.311 73.3%
SA 9.4E-3 1.243 0.4415 0.36322 0.0%
GA 5.912E-5 1.989 0.7022 0.5675 63.3%
BA 4.75E-4 1.0055 0.5325 0.4963 63.3%
DVBA 3.141E-6 0.9956 0.1331 0.3381 90.0%

F2 Rosenbrock

PSO 1.625E-6 3.015E-4 1.141E-4 9.18E-5 63.33%
SA 5.880E-5 1.072E-2 2.435E-3 2.972E-3 6.66%
GA 2.648E-6 2.713E-2 5.369E-3 7.528E-3 23.3%
BA 5.644E-7 4.781E-5 1.679E-5 1.246E-5 100.0%
DVBA 1.451E-8 9.608E-6 1.264E-5 2.344E-5 100.0%

F3 Levy
N.13

PSO 5.287E-5 4.645E-2 6.91E-3 1.178E-2 6.66 %
SA 2.637E-3 1.77E-1 5.985E-2 5.113E-2 0.0 %
GA 1.391E-6 6.168E-5 2.078E-5 1.953E-5 100.0 %
BA 1.085E-5 3.830E-4 1.258E-4 1.001E-4 63.3 %
DVBA 7.111E-7 8.726E-5 3.158E-5 4.913E-5 100.0 %

F4 Griewank

PSO 1.232E-3 1.290E-1 5.561E-2 3.390E-2 0.0%
SA 4.254E-2 4.543E-1 1.583E-1 9.251E-2 0.0%
GA 9.262E-5 1.175E-2 5.798E-3 3.509E-3 3.3 %
BA 2.471E-4 2.057E-2 8.791E-3 5.559E-3 0.0%
DVBA 4.505E-4 6.418E-2 2.362E-2 1.429E-2 0.0 %

F5
Schaffer
Function
2

PSO 2.206E-8 1.691E-2 2.526E-3 3.686E-3 56.6 %
SA 1.416E-4 3.662E-2 1.674E-2 1.187E-2 6.6 %
GA 2.623E-6 3.057E-1 8.923E-2 9.241E-2 20.0 %
BA 3.520E-7 6.230E-5 1.235E-5 1.231E-5 100.0 %
DVBA 6.818E-9 1.330E-6 2.552E-7 3.026E-7 100.0 %

F6 Zakharov

PSO 1.079E-4 1.313E-2 2.163E-3 2.721E-3 0.0 %
SA 6.419E-4 9.751E-2 3.004E-2 2.499E-2 0.0 %
GA 8.470E-9 1.457E-2 4.859E-4 2.615E-3 86.6 %
BA 9.464E-7 1.828E-4 4.431E-5 4.292E-5 96.6 %
DVBA 5.495E-7 4.480E-4 7.049E-5 9.559E-5 86.6 %

50

The functions F1 and F4 are separable, highly multi-modal problems, where the number

of local minima exponentially increases as the dimension increases however locations of the

minima are regularly distributed. For the function F1 which is a hard test problem, DVBA

has the best value in terms of all properties except STDEV. However for the function F4, none

of the algorithms performed successfully and there were not any significant difference between

their performance. F4 has many widespread local minima and algorithms can be trapped easily

in one of these local minima. The functions F2 and F6 are unimodal plate and valley-shaped

functions. F2 is a popular test function for gradient-based optimization algorithms. Although

F2 is unimodal, convergence to the minimum is difficult [73]. Both BA and DVBA found the

global optima with 100% successful ratio for F2 and F5, but DVBA has the best BFV, WFV and

the Mean. For the function F6, BA performed better than other algorithms, but the difference

between BA and DVBA is negligible in terms of the Mean.

Fig.5.2 shows the convergence map of the five algorithms for the functions from group

1. It is observed that PSO, GA, and BA converge faster than SA and DVBA, but after

a learning period, the convergence speed of DVBA abruptly accelerates. If the number of

function evaluations (FEs) is increased slightly, it may be argued that DVBA can outperform

other population based algorithms. Since DVBA starts the search by only two bats, it is normal

for DVBA to stay behind from PSO, BA, and GA in terms of convergence speed, because they

start the same search by using 30 particles.

Empirical results on unimodal functions from CEC 2014

The functions f1, f2, and f3 are unimodal and non-separable plate shape problems. From Table

5.3, it can be seen clearly that these functions are very hard to optimize. Although they have

just one minimum, same as F2 (rosenbrock), convergence to the minimum is difficult. The

algorithms did not show a significant success for these functions. DVBA has demonstrated a

better ability of global searching for functions f1, f2, and f3, followed by GA. For the function

f2, the performance of DVBA outperforms significantly (almost 50% better) PSO, SA, GA, and

BA as the test results show. It shows that the explorer bat in DVBA flied through the global

51

Figure 5.2: Convergence characteristics of SA, GA, PSO, DVBA, and BA on classic test
functions.

52

Table 5.3: Optimization results for unimodal functions in CEC 2014 test suit.

Function Algorithms BFV WFV Mean STDEV

f1

Rotated
High
Conditioned
Elliptic
Function

PSO 1.819E+7 1.496E+8 5.999E+7 3.682E+7
SA 5.881E+8 1.193E+9 8.807E+8 1.664E+8
GA 6.091E+5 1.744E+6 1.144E+6 3.794E+5
BA 3.357E+6 1.104E+7 6.944E+6 2.218E+6
DVBA 3.457E+5 1.644E+6 1.047E+5 4.284E+5

f2
Rotated
Bent Cigar
Function

PSO 1.139E+9 3.153E+9 1.630E+9 5.527E+8
SA 6.488E+10 7.892E+10 7.221E+10 3.955E+9
GA 9.873E+6 1.481E+7 1.207E+7 1.398E+6
BA 1.058E+8 1.546E+8 1.256E+8 1.448E+7
DVBA 1.647E+4 5.454E+4 2.934E+4 1.327E+4

f3
Rotated
Discus
Function

PSO 3.262E+4 7.567E+4 6.252E+4 1.187E+4
SA 1.128E+5 1.459E+5 1.250E+5 1.006E+4
GA 7.073E+3 4.916E+4 2.979E+4 1.364E+4
BA 1.335E+4 2.724E+4 2.212E+4 4.447E+3
DVBA 6.307E+3 2.639E+4 1.620E+4 6.259E+3

best faster than other algorithms do, but the exploiter bat could not finish the exploitation

within the maximum FEs. For the 30-D problems f1 − f30, SA has great difficulty in finding

the global optima on all problems.

It can be observed from Fig.5.3 that DVBA shows same convergence characteristics again:

after a learning period, the convergence speed of DVBA accelerates and provides the best

performance. For the function f1 and f2, this characteristic of convergence can be seen clearly.

For the function f3 all the algorithms behave same, but DVBA got slightly better results (see

Table 5.3).

Empirical results on simple multi-modal functions from CEC 2014

In Table 5.4 and Table 5.5, test results of the algorithms on 13 simple multi-modal functions

are presented. For the functions f4, f5, f7, f8, f9, f10, and f11, DVBA performs much better

with the smallest BFV and the Mean. Only for the function f10, PSO shows the best values

in terms of BFV, but DVBA performs better in terms of the Mean. GA obtains smaller mean

values than PSO, BA, SA, and DVBA for functions f4, f6, f12, f13, f14, and f15, followed by

DVBA. For the functions f5, f8, f12, f13, f14, and f16, PSO, BA, GA, and DVBA do not show

significant difference, they are able to find the global optima, but SA performed poorly.

For F1(Rastrigin), before rotation and shifting, DVBA offers better results than other

53

Figure 5.3: Convergence characteristics of SA, GA, PSO, DVBA, and BA on unimodal functions
in CEC 2014.

54

algorithms followed by GA and BA. After rotation and shifting (f9), DVBA is again able

to locate better solution with smaller Mean.

Fig.5.4 shows the convergence process of SA, GA, PSO, DVBA, and BA, conducted on

some of the simple multi-modal functions. The simulation results show that, convergence

characteristics of algorithms are almost same for functions f7, f13, f14, and f15. All the

algorithms successfully converged before the maximum FEs reached. It is clear that the

convergence speed of PSO, BA, and GA better than SA and DVBA. However DVBA converges

at an early stage and outperformed the rest four algorithms for function f5 and f11. BA

converges faster than others on f4 but at the end GA has the smallest average.

The algorithms totally or partially fail in optimizing some functions, but in 53.85% of these

multi-modal functions, DVBA performs the best in average, followed by GA with 38.5% (see

Table 5.8). This is because that, the dynamic search ability of the bats of DVBA enables its

capability of searching global optimum in multi-modal optimization problems. Therefore, we

can say that DVBA is a highly competitive algorithm for solving multi-modal optimization

problems.

Empirical results on hybrid functions from CEC 2014

In this group of functions, there are six hybrid functions. Hybrid functions are almost same

as real-world optimization problems. These functions are more challenging than the functions

from previous groups. The concrete expressions and other details of functions are in [55]. Table

5.6 shows optimization results of six hybrid functions with five algorithms.

For hybrid functions, DVBA outperformed the rest four algorithms. Specially, for

f17, f18, f20, and f21, DVBA got the smallest values of BFV, WFV, Mean, and STDEV. The

algorithms got the best results on f19 and f22 but they do not outperform significantly each

other in terms of the Mean, except SA. In general SA has the worst solutions but got better

convergence graph for hybrid functions than it got from unimodal and multi-modal functions.

Fig.5.5 shows the convergence process of SA, GA, PSO, DVBA, and BA, conducted on the

functions f17, f18, and f20. Since there was not significant difference on convergence graphics for

55

Table 5.4: Optimization results for simple multimodal functions-1.

Function Algorithms BFV WFV Mean STDEV

f4

Shifted and
Rotated
Rosenbrock’s
Function

PSO 554.0471 911.4058 711.0807 112.6770
SA 9011.610 17135.149 12290.43 2621.18
GA 402.4415 405.5765 403.7340 0.7633
BA 480.1962 587.4173 523.1665 36.2369
DVBA 474.5994 578.8511 507.8066 33.1917

f5

Shifted and
Rotated
Ackley’s
Function

PSO 520.5934 520.9324 520.7670 0.0943
SA 520.8633 521.0279 520.9648 0.0508
GA 520.8638 521.0195 520.9538 0.0459
BA 520.9281 521.0124 520.9659 0.0287
DVBA 520.00 520.1765 520.0774 0.0611

f6

Shifted and
Rotated
Weierstrass
Function

PSO 618.2712 630.1718 624.1326 5.1673
SA 638.511 640.2438 639.2904 0.5939
GA 620.9471 622.8304 622.2639 0.6728
BA 628.3503 635.8235 632.2023 3.0088
DVBA 620.1429 627.6139 623.4401 3.1689

f7

Shifted and
Rotated
Griewank’s
Function

PSO 704.6016 721.623 712.0757 4.4171
SA 1242.3151 1374.9653 1312.3624 44.3206
GA 701.1195 701.1415 701.1298 0.0071
BA 701.5299 701.6826 701.6131 0.0543
DVBA 701.0548 701.0956 701.0752 0.0118

f8
Shifted
Rastrigin’s
Function

PSO 800.0004 800.3548 800.0765 0.0861
SA 800.0074 800.8517 800.2027 0.1927
GA 800.0002 805.1329 801.6664 1.6650
BA 800.0001 801.9901 800.4695 0.5553
DVBA 800.0 800.9949 800.0331 0.1785

f9

Shifted and
Rotated
Rastrigin’s
Function

PSO 922.8755 942.1456 932.1903 5.7790
SA 940.7263 973.5267 959.8805 10.3234
GA 914.3183 947.0765 930.1015 8.9776
BA 950.5951 996.7199 969.1791 15.1363
DVBA 907.1656 937.5058 921.3884 9.5254

f10
Shifted
Schwefel’s
Function

PSO 1348.394 2608.6882 1807.4446 437.264
SA 2168.5492 2534.9047 2355.6111 112.8694
GA 1440.1039 2388.3572 1998.4405 336.7253
BA 1354.3348 2626.6369 2025.5035 323.0562
DVBA 1594.6093 2093.0453 1789.9543 163.7572

f11

Shifted and
Rotated
Schwefel’s
Function

PSO 6872.0808 8722.5079 7062.2627 901.4843
SA 8381.9828 8569.6215 8326.8159 266.9547
GA 4801.0908 6823.6747 5979.5179 671.5954
BA 7298.6448 7841.5608 7172.0521 494.7482
DVBA 4605.8075 6693.6749 5032.7305 523.6241

f12

Shifted and
Rotated
Katsuura
Function

PSO 1202.112 1202.714 1202.523 0.2451
SA 1202.599 1203.313 1203.023 0.2930
GA 1200.799 1200.872 1200.836 0.0311
BA 1201.860 1202.468 1202.119 0.2199
DVBA 1200.565 1201.400 1200.981 0.3085

f13

Shifted and
Rotated
HappyCat
Function

PSO 1300.510 1300.929 1300.668 0.1177
SA 1305.468 1307.751 1306.823 0.7954
GA 1300.153 1300.195 1300.173 0.0117
BA 1300.363 1300.565 1300.469 0.0548
DVBA 1300.374 1300.710 1300.511 0.1037

f14

Shifted and
Rotated
HGBat
Function

PSO 1400.315 1400.622 1400.445 0.0964
SA 1549.742 1674.734 1627.912 33.204
GA 1400.182 1400.330 1400.265 0.0387
BA 1400.203 1400.370 1400.267 0.0441
DVBA 1400.178 1400.230 1400.204 0.0205

56

Table 5.5: Optimization results for simple multimodal functions-2.

Function Algorithms BFV WFV Mean STDEV

f15

Shifted-Rotated
Expanded
Griewank’sPlus
Rosenbrock’s
Function

PSO 1503.102 1508.183 1505.913 1.3824
SA 1539.519 2447.317 2024.951 351.127
GA 1500.892 1501.900 1501.522 0.3267
BA 1501.614 1503.074 1502.644 0.4226
DVBA 1501.668 1503.441 1502.491 0.6382

f16

Shifted-Rotated
Expanded
Scaffer’sF6
Function

PSO 1611.374 1612.965 1612.349 0.4810
SA 1612.856 1613.382 1613.115 0.1548
GA 1612.317 1613.482 1613.093 0.3964
BA 1612.056 1613.493 1612.498 0.4041
DVBA 1611.679 1611.679 1612.698 0.4228

Table 5.6: Optimization results for hybrid functions.

Function Algorithms BFV WFV Mean STDEV

f17
Hybrid
Function
1 (N=3)

PSO 7.183E+4 7.742E+5 3.767E+5 2.393E+5
SA 1.559E+5 3.572E+6 2.664E+6 6.014E+5
GA 3.739E+4 1.819E+5 1.110E+5 4.467E+4
BA 6.156E+4 2.626E+5 1.488E+5 6.171E+4
DVBA 1.544E+4 1.269E+5 8.266E+4 3.421E+4

f18
Hybrid
Function
2 (N=3)

PSO 1.415E+6 6.898E+6 3.844E+6 1.506E+6
SA 5.044E+8 2.243E+9 1.277E+9 4.990E+8
GA 4.863E+4 1.031E+5 6.698E+4 1.775E+4
BA 4.265E+5 1.098E+6 7.710E+5 2.089E+5
DVBA 2.227E+3 2.790E+4 9.709E+3 9.355E+3

f19
Hybrid
Function
3 (N=4)

PSO 1914.5406 1984.3339 1936.6258 28.042
SA 2116.2252 2288.9634 2202.7893 55.8765
GA 1912.7812 1972.3023 1925.9049 22.8797
BA 1916.6011 1922.9181 1919.2396 1.6812
DVBA 1914.3625 1922.8812 1918.1415 2.3353

f20
Hybrid
Function
4 (N=4)

PSO 5.538E+3 4.4178E+3 2.0795E+4 1.2942E+4
SA 3.5028E+4 1.3272E+5 7.1581E+4 2.7434E+4
GA 1.5025E+4 5.5645E+4 3.2168E+4 1.2801E+4
BA 2.803E+3 4.393E+3 3.972E+3 4.41E+2
DVBA 2.378E+3 3.299E+3 2.829E+3 3.22E+2

f21
Hybrid
Function
5 (N=5)

PSO 1.5115E+5 2.9571E+6 9.6150E+5 7.3422E+5
SA 2.0810E+6 1.0926E+7 6.2324E+6 2.8236E+6
GA 3.8486E+4 4.4802E+5 1.4765E+5 1.1838E+5
BA 4.9654E+5 1.5662E+6 7.4299E+5 3.0326E+5
DVBA 2.9838E+4 1.7447E+5 8.6698E+4 4.2869E+4

f22
Hybrid
Function
6 (N=5)

PSO 2332.0701 3682.0521 2988.2845 357.6164
SA 2960.3060 3908.1976 3562.9155 263.1245
GA 2819.2713 3353.1558 3095.5344 196.6240
BA 2792.5289 3506.6294 3225.1467 215.0238
DVBA 2405.9625 2983.6424 2670.1793 176.2715

57

Figure 5.4: Convergence characteristics of SA, GA, PSO, DVBA, and BA on multi-modal
functions in CEC 2014.

58

Figure 5.5: Convergence characteristics of SA, GA, PSO, DVBA, and BA on hybrid functions
in CEC 2014.

the functions, f21 and f22 are not shown. For the functions f17 and f18, BA starts converging

faster but it could not avoid from local optimum traps, but GA and DVBA start slowly the

converging and later on successfully find the global optimum without trapping in a local optima

(see Fig.5.5). For f19, DVBA, as in general, converges slowly at the beginning, after a learning

period its convergence accelerates instantly. BA, GA, and, PSO shows same converging map

for f19. All the algorithms demonstrate the same characteristics of convergence for the function

f20, especially PSO, BA, and GA.

59

Empirical results on composition functions from CEC 2014

In this group, there are 8 composition functions. The composition function merges the

properties of the sub-functions better and maintains continuity around the global/local optima.

The details of the functions can be found in [55]. For the functions f25, f26, f27, and f28,

DVBA has all the best Mean values compared with other algorithms. For f23, f29, and f30, GA

performed better than all other algorithms followed by DVBA with small difference. Specially,

for function f29, GA and DVBA outperformed significantly other algorithms in terms of Mean.

Similarly, for function f24, DVBA has the second best solution, which is significantly better than

SA, GA, and BA. PSO has the best solution. %50 of the test functions in this group, DVBA

has the best solution in terms of Mean. We can say that, DVBA is also highly competitive

optimization algorithm for solving these Composition functions.

Summary

Table 5.8 and Table 5.9 summarize the aggregate accuracy of each algorithm. In Table 5.8,

for each function groups, the overall success rate of algorithms in terms of Mean is shown. If

an algorithm has the best Mean value for a function, it is called success for the algorithm.

The overall success rate is calculated as the number of the successes divided by total number

of functions in the group. Same method is applied for BFV, WFV, Mean, and STDEV to

calculate overall success rate for each algorithm on 36 functions without group distribution in

Table 5.9.

In Table 5.8, it can be seen that, DVBA had the best Mean values for 63.9% of 36 functions.

Specially, DVBA outperformed the rest four algorithms for all Hybrid functions and Unimodal

(shifted and Rotated) functions. GA has the second best performance, followed by PSO, BA,

then SA.

According to Table 5.8 and Table 5.9, GA remained the toughest competitors of DVBA in

most of the cases. For Multimodal (Shifted and Rotated) functions, while DVBA was able to

get the best results for more than half of the functions (53.9%), GA got the best results for

60

Table 5.7: Optimization results for composition functions.

Function Algorithms BFV WFV Mean STDEV

f23
Composition
function
1 (N=5)

PSO 2627.1944 2647.4335 2637.5313 5.9261
SA 2838.6484 3143.5463 3036.2873 82.2439
GA 2615.4249 2615.5528 2615.4938 0.0366
BA 2616.0486 2617.6914 2616.6271 0.5205
DVBA 2615.9433 2617.0687 2616.3877 0.3609

f24
Composition
function
2 (N=5)

PSO 2600.1725 2601.0021 2600.6348 0.2414
SA 2782.8495 2831.0690 2808.2579 17.8240
GA 2647.0285 2688.3520 2659.6338 11.5622
BA 2673.9840 2681.6120 2677.6541 2.3091
DVBA 2626.3381 2665.6850 2649.4845 10.4219

f25
Composition
function
3 (N=5)

PSO 2713.7340 2726.4403 2720.8272 3.6117
SA 2754.2442 2786.3128 2770.0326 10.4771
GA 2705.0392 2737.3801 2721.4788 9.5331
BA 2705.8571 2796.2565 2728.3825 27.3140
DVBA 2706.8784 2737.1816 2718.7843 9.1166

f26
Composition
function
4 (N=5)

PSO 2700.2118 2700.7442 2700.3105 0.1463
SA 2701.0920 2702.0005 2701.6031 0.32
GA 2700.0557 2731.1702 2704.0389 9.202
BA 2700.1165 2700.5512 2700.2920 0.1307
DVBA 2700.159 2700.3926 2700.2553 0.0753

f27
Composition
function
5 (N=5)

PSO 3128.1967 4401.6944 3918.4691 430.7498
SA 3393.0577 3883.0382 3623.3018 138.1861
GA 3101.1794 3682.7039 3502.0625 208.775
BA 3153.4002 3831.2028 3571.5564 270.9837
DVBA 3103.7064 3719.8534 3274.7901 261.5365

f28
Composition
function
6 (N=5)

PSO 4052.9321 5517.2783 4784.3893 512.2478
SA 7053.41 8350.2419 7885.7531 387.8475
GA 5252.6716 7884.4142 6481.6061 776.8109
BA 4455.4575 6447.3395 5233.2734 552.4140
DVBA 3870.2498 4997.7464 4366.7638 308.6143

f29
Composition
function
7 (N=5)

PSO 3.843E+4 1.613E+8 8.132E+7 1.131E+7
SA 1.163E+8 2.472E+8 1.872E+8 1.731E+4
GA 9.898E+3 2.1158E+4 1.654E+4 2.361E+5
BA 3.544E+5 4.1924E+6 2.001E+6 1.323E+6
DVBA 1.484E+4 2.7884E+4 2.134E+4 2.207E+4

f30
Composition
function
8 (N=5)

PSO 2.193E+4 1.415E+6 4.626E+5 4.934E+4
SA 2.815E+5 2.082E+6 1.017E+6 5.003E+5
GA 5.578E+3 9.795E+3 7.119E+3 1.317E+3
BA 2.091E+4 1.382E+5 6.522E+4 3.854E+4
DVBA 9.571E+3 2.657E+4 1.494E+4 5.091E+3

61

Table 5.8: Comparison of Accuracy of Algorithms according to the test function groups in CEC
2014 test suit (OSM).

Functions # of Functions PSO SA GA BA DVBA
Classic Test Functions 6 0.0% 0.0% 33.3% 16.6% 50.0%
Unimodal(Shifted-Rotated) Functions 3 0.0% 0.0% 0.0% 0.0% 100.0%
Multimodal (Shifted-Rotated) Functions 13 7.69% 0.0% 38.5% 0.0% 53.9%
Hybrid Functions 6 0.0% 0.0% 0.0% 0.0% 100.0%
Composition Functions 8 12.5% 0.0% 37.5% 0.0% 50.0%
Overall Results 36 5.5% 0.0% 27.8% 2.8% 63.9%

Table 5.9: Comparison of accuracy of the tested optimization algorithms.

% of PSO SA GA BA DVBA
BFV 16.8% 0.0% 30.6% 0.0% 52.8%
WFV 8.3% 0.0% 30.6% 2.8% 58.3%
Mean 5.5% 0.0% 27.8% 2.8% 63.9%
STDEV 13.9% 16.7% 27.8% 13.9% 27.8%

38.5% of functions.

In Table 8, it is seen that, DVBA outperformed significantly for most of the functions in

terms of BFV, WFV, and Mean. Only GA had the same overall success (OS) ratio with DVBA

in terms of STDEV (see Table 5.9).

A close inspection of Table 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 reveals that, out of 36 functions,

DVBA outperformed all other contestant algorithms on 23 functions in terms of Mean. It can

be clearly seen that DVBA can provide a better optimization solution for most of the functions

encompassing different type of functions with low and high dimensions. Therefore, it can be

said that DVBA has the best universality on different type of problems.

5.3.4 Comparison the algorithms in Group 2 and 3

The performances of the algorithms in the second and the third group are extensively evaluated

on a suite of 30 bound-constrained optimization problems from CEC 2014. According to the

instructions in CEC 2014 special session we set the maximum number of FEs 3× 105 for 30-D

problems and 1× 106 for 100-D problems. For the algorithms in group 2, the dimensions of the

functions are set to 30 and the results are shown in Table 5.10. To compare the performance of

DVBA for high dimensional optimization problems, the results of the algorithms are shown for

62

100-D test functions in Table 5.11. In this group, the numerical benchmark results were taken

from the aforementioned papers. In the table 5.10 and 5.11, the test results are shown in terms

of the mean error (MeanErr) and the standard deviation (STDEV) of the results. The mean

error values are found according to (F (x) − F (x∗)) for evaluating the success of algorithms,

where x is the best found value in a run and x∗ is the global best of the test function. The best

mean error values are typed in bold.

Furthermore, we used two-tailed t-tests [14] to compare the mean error values of the results

produced by the DVBA and the other algorithms at the 0.05 level of significance. The statistical

significance level of the aggregate results are shown at the last three rows of the Table 5.10 and

Table 5.11. There ’+’ indicates that a given algorithm performed significantly more successful

than DVBA, ’−’ means DVBA was better than given algorithm, and ’≈’ indicates that DVBA

and compared algorithm are not significantly different better or worse. In addition, Table 5.12

shows the aggregate results of comparing each algorithm from group 3 vs. DVBA using the

Wilcoxon rank-sum test [101].

Comparison of DVBA with four state-of-the-art BA variants

It can be seen from Table 5.10 that BA variants do not show significant difference for unimodal

functions (f1 and f2). Except for function f3, the solutions with DVBA are significantly better

than with other algorithms. For multi-modal functions (f4-f16), DVBA has all the best mean

error values compared with other algorithms. For function f13, NABA and CLSBA have the

smallest mean error values which are not significantly inferior to DVBA. Similarly, for function

f4, LMSBA finds a competitive solution when compared with DVBA, as its t-test value reflects.

However, LMSBA and ABA shows better performance than DVBA for function f13.

For functions f17, f18, and f22, DVBA is significantly superior to the other four algorithms.

However, DVBA has the worst mean error value for function f20. This is partly because the

search scope size of the explorer bat is not vast enough to escape from a large local optima

trap. For the hybrid functions, DVBA has the best mean error values, followed by LMSBA and

NABA. Similarly, for composition functions, DVBA shows better performance than the rest

63

four BA variants. For function f20, although LMSBA has the smallest mean error, followed by

ABA, the algorithms did not show significant difference in terms of the mean error values.

According to t-test results, algorithms are significantly better than DVBA for functions

f3 and f20. For functions f13 and f24, the performance of DVBA was not better than other

algorithms. However, DVBA outperformed the modified BA algorithms for the rest of the

functions. Overall, we can say that, DVBA is a highly competitive algorithm for solving

high-dimensional test functions compared with BA variants.

Comparison of DVBA with five state-of-the-art algorithms competed in special

session at CEC 2014

In this section, we intend to show how well the proposed DVBA algorithm performs when

compared to FWA-DM, L-SHADE, b636rl, NRGA, and OPTBees which are lately competed

in CEC 2014 on Single Objective Real Parameter Numerical Optimization Competition. Table

5.11 reports the mean error and standard deviation of function values by applying seven

algorithms to optimize the 100-D CEC 2014 numerical functions. The aggregate results of

statistical testing (+, −, ≈) on 30 functions are shown at the last three rows of Table 5.11.

As Table 5.11 shows, for function f1, all six algorithms did not find its global optimum.

By analyzing their t-test values, we can see that the solutions with DVBA are significantly

better than that of other algorithms. Similarly, for functions f11, f16, and f22, DVBA is

significantly better than other algorithms. However, no significant difference was observed on

comparison with the remaining five algorithms. The performance of the algorithms on rotated

and un-rotated functions can be clearly seen on functions f8 − f9 and f10 − f11. While the

function f8 is shifted Rastrigin, f9 is shifted and rotated Rastrigin’s function. Similarly, f10 is

shifted Schwefel’s function and f11 is shifted and rotated Schwefel’s function. As can be seen

from the results for f8 and f9, DVBA gives better results for un-rotated ones. Same results

observed for functions f10 and f11.

In addition to an overall comparison, DVBA compared with these algorithms on specific

sub-classes of problems in CEC 2014 benchmark set. The results on these sub-classes are

64

shown in Table 5.12. The table shows the aggregate results of comparing each algorithm vs.

DVBA using the Wilcoxon rank-sum test (significantly, p < 0.05)

On 3 unimodal functions f1, f2, and f3, DVBA performs better than FWA-DM and NRGA

and similarly to b636rl, but DVBA is outperformed by both L-SHADE and OPTBees. For

13 simple, multimodal functions, DVBA clearly outperforms other algorithms, but L-SHADE

performs better than DVBA. For 6 hybrid functions, while DVBA outperforms FWA-DM,

NRGA, OPTBees, and b636rl, it is outperformed by L-SHADE. For 8 composition functions,

except NRGA, DVBA is outperformed by rest of the algorithms. Specially, for functions f29

and f30, DVBA got stuck in local solutions.

We can say that, DVBA has good solutions for multimodal functions (f4 − f16) and hybrid

functions (f17 − f22), but performs sub-optimal for composition functions compared with

state-of-the-art algorithms.

In short, it can be seen from Tables 5.10, 5.11, and 5.12 that the algorithms in this group

are more competitive than other algorithms. DVBA performs better than FWA-DM, NRGA,

and b636rl while it exhibits similar performance with OptBees. For functions f1, f5, f11, f16,

f19, f22, and f24, DVBA finds better solutions than L-SHADE. However, for the rest of the

functions, L-SHADE finds better or competitive solutions compared with DVBA, as their t-test

values and the Wilcoxon rank-sum test reflect.

65

Ta
bl

e
5.

10
:

C
om

pa
ris

on
of

LM
SB

A
,N

A
BA

,A
BA

,C
LS

BA
,a

nd
D

V
BA

ov
er

30
te

st
fu

nc
tio

ns
of

30
di

m
en

sio
ns

us
in

g
30

0,
00

0
fu

nc
tio

n
ev

al
ua

tio
ns

.”M
ea

nE
rr

”
an

d
”S

td
D

ev
”

in
di

ca
te

th
e

m
ea

n
er

ro
ra

nd
st

an
da

rd
de

vi
at

io
n

of
th

e
re

su
lts

fo
un

d
ov

er
th

e
30

in
de

pe
nd

en
t

ru
ns

by
ea

ch
al

go
rit

hm
.

Fu
nc

.
LM

SB
A

N
A

B
A

A
B

A
C

LS
B

A
D

V
B

A
M

ea
nE

rr
(S

td
D

ev
)

t-
te

st
M

ea
nE

rr
(S

td
D

ev
)

t-
te

st
M

ea
nE

rr
(S

td
D

ev
)

t-
te

st
M

ea
nE

rr
(S

td
D

ev
)

t-
te

st
M

ea
nE

rr
(S

td
D

ev
)

f
1

6.
26

E
+

06
(2

.2
5E

+
06

)
−

6.
17

E
+

06
(1

.2
0E

+
06

)
−

7.
30

E
+

06
(2

.2
1E

+
06

)
−

6.
40

E
+

06
(1

.2
2E

+
06

)
−

1.
05

E
+

05
(4

.2
8E

+
05

)
f
2

7.
50

E
+

07
(2

.6
1E

+
06

)
−

5.
74

E
+

07
(2

.9
2E

+
06

)
−

7.
08

E
+

07
(4

.9
3E

+
06

)
−

6.
53

E
+

07
(6

.5
6E

+
06

)
−

2.
91

E
+

04
(1

.3
2E

+
04

)
f
3

1.
36

E
+

03
(5

.3
9E

+
02

)
+

2.
48

E
+

02
(2

.7
3E

+
01

)
+

1.
54

E
+

03
(8

.9
7E

+
02

)
+

5.
20

E
+

02
(1

.0
2E

+
02

)
+

1.
59

E
+

04
(6

.2
5E

+
03

)
f
4

1.
03

E
+

02
(4

.6
9E

+
01

)
≈

1.
25

E
+

02
(4

.0
3E

+
01

)
−

1.
30

E
+

02
(3

.3
9E

+
01

)
−

1.
61

E
+

02
(7

.9
9E

+
01

)
−

1.
08

E
+

02
(3

.3
1E

+
01

)
f
5

2.
07

E
+

01
(4

.0
2E

-0
2)

−
2.

08
E

+
01

(2
.9

9E
-0

2)
−

2.
10

E
+

01
(3

.0
2E

-0
2)

−
2.

10
E

+
01

(3
.0

2E
-0

2)
−

2.
01

E
+

01
(6

.1
1E

-0
2)

f
6

2.
80

E
+

01
(4

.5
2E

+
00

)
−

2.
94

E
+

01
(3

.1
4E

+
00

)
−

2.
85

E
+

01
(1

.1
5E

+
00

)
−

2.
94

E
+

01
(3

.2
7E

+
00

)
−

2.
34

E
+

01
(3

.1
6E

+
00

)
f
7

1.
60

E
+

00
(9

.0
0E

-0
2)

−
1.

48
E

+
00

(4
.4

3E
-0

2)
−

1.
58

E
+

00
(6

.6
0E

-0
2)

−
1.

54
E

+
00

(9
.9

5E
-0

2)
−

1.
07

E
+

00
(1

.1
2E

-0
2)

f
8

2.
10

E
-0

1(
2.

78
E

-0
1)

−
2.

40
E

-0
1(

2.
51

E
-0

1)
−

3.
20

E
-0

1(
5.

51
E

+
01

)
−

2.
60

E
-0

1(
5.

43
E

-0
1)

−
3.

00
E

-0
2(

1.
76

E
-0

1)
f
9

5.
70

E
+

01
(5

.1
3E

+
01

)
−

5.
80

E
+

01
(6

.0
1E

+
01

)
−

6.
00

E
+

01
(5

.3
2E

+
01

)
−

4.
60

E
+

01
(3

.0
3E

+
01

)
−

2.
14

E
+

01
(9

.5
2E

+
00

)
f
1
0

1.
49

E
+

03
(6

.6
8E

+
02

)
−

1.
04

E
+

03
(5

.9
9E

+
02

)
−

1.
73

E
+

03
(5

.7
2E

+
02

)
−

1.
69

E
+

03
(6

.3
4E

+
02

)
−

7.
90

E
+

02
(1

.6
3E

+
02

)
f
1
1

4.
97

E
+

03
(3

.8
0E

+
02

)
−

5.
26

E
+

03
(3

.5
7E

+
02

)
−

5.
20

E
+

03
(6

.3
7E

+
02

)
−

5.
14

E
+

03
(6

.1
0E

+
02

)
−

3.
93

E
+

03
(5

.2
3E

+
02

)
f
1
2

2.
08

E
+

00
(2

.1
2E

-0
1)

−
1.

93
E

+
00

(1
.5

4E
-0

1)
−

1.
87

E
+

00
(3

.1
6E

-0
1)

−
2.

03
E

+
00

(1
.9

4E
-0

1)
−

9.
80

E
-0

1(
3.

07
E

-0
1)

f
1
3

3.
90

E
-0

1(
2.

69
E

-0
2)

+
4.

90
E

-0
1(

1.
27

E
-0

1)
≈

4.
30

E
-0

1(
6.

11
E

-0
2)

+
4.

90
E

-0
1(

7.
33

E
-0

2)
≈

5.
10

E
-0

1(
1.

03
E

-0
1)

f
1
4

2.
70

E
-0

1(
3.

62
E

-0
2)

−
2.

60
E

-0
1(

3.
74

E
-0

2)
−

2.
90

E
-0

1(
4.

71
E

-0
2)

−
2.

70
E

-0
1(

5.
46

E
-0

2)
−

2.
00

E
-0

1(
2.

05
E

-0
2)

f
1
5

1.
75

E
+

01
(1

.4
5E

+
00

)
−

5.
87

E
+

00
(1

.2
6E

+
00

)
−

2.
11

E
+

01
(6

.1
1E

-0
1)

−
1.

86
E

+
01

(1
.1

6E
+

00
)

−
2.

49
E

+
00

(6
.3

3E
-0

1)
f
1
6

1.
36

E
+

01
(1

.8
5E

-0
1)

−
1.

33
E

+
01

(4
.8

6E
-0

1)
−

1.
30

E
+

01
(7

.3
5E

-0
1)

−
1.

34
E

+
01

(3
.5

8E
-0

1)
−

1.
27

E
+

01
(4

.2
7E

-0
1)

f
1
7

1.
23

E
+

05
(2

.3
9E

+
05

)
−

1.
26

E
+

05
(6

.6
7E

+
04

)
−

1.
70

E
+

05
(3

.0
9E

+
05

)
−

1.
29

E
+

05
(1

.8
4E

+
05

)
−

8.
09

E
+

04
(3

.4
2E

+
04

)
f
1
8

1.
01

E
+

05
(3

.4
3E

+
05

)
−

4.
15

E
+

05
(2

.0
9E

+
05

)
−

2.
17

E
+

05
(1

.3
6E

+
05

)
−

1.
04

E
+

05
(1

.1
7E

+
04

)
−

7.
90

E
+

03
(9

.3
5E

+
03

)
f
1
9

1.
49

E
+

01
(1

.8
6E

+
00

)
≈

1.
41

E
+

01
(1

.9
7E

+
00

)
+

2.
80

E
+

01
(2

.7
1E

+
01

)
−

1.
49

E
+

01
(7

.0
2E

-0
1)

≈
1.

81
E

+
01

(2
.3

3E
+

00
)

f
2
0

3.
50

E
+

02
(5

.0
9E

+
01

)
+

3.
87

E
+

02
(1

.1
6E

+
02

)
+

4.
06

E
+

02
(1

.0
7E

+
02

)
+

5.
30

E
+

02
(5

.3
4E

+
01

)
+

8.
29

E
+

02
(3

.2
2E

+
02

)
f
2
1

8.
34

E
+

04
(6

.6
3E

+
04

)
≈

7.
57

E
+

04
(3

.5
1E

+
04

)
≈

1.
36

E
+

05
(8

.2
9E

+
04

)
−

1.
13

E
+

05
(6

.8
7E

+
04

)
−

8.
45

E
+

04
(4

.2
8E

+
04

)
f
2
2

9.
00

E
+

02
(1

.6
0E

+
02

)
−

1.
00

E
+

03
(2

.5
9E

+
02

)
−

1.
01

E
+

03
(2

.0
6E

+
02

)
−

1.
03

E
+

03
(8

.2
2E

+
01

)
−

4.
70

E
+

02
(1

.7
6E

+
02

)
f
2
3

3.
17

E
+

02
(5

.0
8E

-0
1)

−
3.

17
E

+
02

(3
.6

3E
-0

1)
−

3.
19

E
+

02
(2

.4
9E

+
00

)
−

3.
17

E
+

02
(3

.7
4E

-0
1)

−
3.

16
E

+
02

(3
.6

1E
-0

1)
f
2
4

2.
35

E
+

02
(6

.6
4E

+
00

)
+

2.
43

E
+

02
(1

.3
1E

+
01

)
≈

2.
39

E
+

02
(7

.9
3E

+
00

)
+

2.
55

E
+

02
(3

.2
8E

+
01

)
≈

2.
49

E
+

02
(1

.0
4E

+
01

)
f
2
5

2.
28

E
+

02
(1

.0
9E

+
01

)
−

2.
17

E
+

02
(1

.9
6E

+
01

)
≈

2.
29

E
+

02
(3

.7
3E

+
01

)
≈

2.
19

E
+

02
(1

.1
3E

+
01

)
≈

2.
19

E
+

02
(9

.1
1E

+
00

)
f
2
6

1.
01

E
+

02
(5

.7
0E

-0
2)

−
1.

20
E

+
02

(4
.0

1E
+

01
)

−
1.

00
E

+
02

(9
.3

4E
-0

2)
−

1.
41

E
+

02
(4

.9
0E

+
01

)
−

1.
00

E
+

02
(7

.5
3E

-0
2)

f
2
7

5.
40

E
+

02
(2

.8
3E

+
02

)
≈

1.
35

E
+

03
(9

.8
3E

+
01

)
−

1.
06

E
+

03
(3

.4
0E

+
02

)
−

1.
25

E
+

03
(9

.8
3E

+
01

)
−

5.
70

E
+

02
(2

.6
1E

+
02

)
f
2
8

2.
10

E
+

03
(7

.5
8E

+
02

)
−

2.
52

E
+

03
(6

.4
1E

+
02

)
−

2.
50

E
+

03
(1

.1
2E

+
02

)
−

3.
78

E
+

03
(3

.8
1E

+
02

)
−

1.
56

E
+

03
(3

.0
8E

+
02

)
f
2
9

2.
54

E
+

06
(4

.9
9E

+
06

)
−

6.
71

E
+

06
(9

.2
7E

+
06

)
−

4.
06

E
+

06
(5

.0
6E

+
06

)
−

1.
87

E
+

06
(3

.6
3E

+
06

)
−

1.
84

E
+

04
(2

.2
0E

+
04

)
f
3
0

4.
50

E
+

03
(5

.7
4E

+
02

)
−

1.
11

E
+

04
(4

.6
7E

+
03

)
≈

1.
48

E
+

04
(1

.7
3E

+
03

)
−

1.
19

E
+

04
(8

.1
7E

+
03

)
≈

1.
19

E
+

04
(5

.0
9E

+
03

)
+

4
3

4
2

−
22

22
25

23
≈

4
5

1
5

”+
”,

”−
”,

an
d

”≈
”

de
no

te
th

at
th

e
pe

rf
or

m
an

ce
of

th
e

co
rr

es
po

nd
in

g
al

go
ri

th
m

is
si

gn
ifi

ca
nt

ly
be

tt
er

th
an

,w
or

se
th

an
,a

nd
si

gn
ifi

ca
nt

ly
no

t
di

ffe
re

nt
to

th
at

of
D

V
B

A
,r

es
pe

ct
iv

el
y.

66

Ta
bl

e
5.

11
:

C
om

pa
ris

on
of

D
V

BA
w

ith
FW

A
-D

M
,

L-
SH

A
D

E,
N

R
G

A
,

O
PT

Be
es

,
an

d
b6

e6
rl

ov
er

30
te

st
fu

nc
tio

ns
of

10
0

di
m

en
sio

ns
us

in
g

1,
00

0,
00

0
fu

nc
tio

n
ev

al
ua

tio
ns

.
”M

ea
nE

rr
”

an
d

”S
td

D
ev

”
in

di
ca

te
th

e
m

ea
n

er
ro

r
an

d
st

an
da

rd
de

vi
at

io
n

of
th

e
re

su
lts

fo
un

d
ov

er
th

e
51

in
de

pe
nd

en
t

ru
ns

by
ea

ch
al

go
rit

hm
.

Fu
nc

.
FW

A
-D

M
L-

SH
A

D
E

N
R

G
A

O
P

T
B

ee
s

b6
e6

rl
D

V
B

A
M

ea
nE

rr
(S

td
D

ev
)

M
ea

nE
rr

(S
td

D
ev

)
M

ea
nE

rr
(S

td
D

ev
)

M
ea

nE
rr

(S
td

D
ev

)
M

ea
nE

rr
(S

td
D

ev
)

M
ea

nE
rr

(S
td

D
ev

)
f
1

2.
28

E
+

08
(4

.0
8E

+
07

)
1.

70
E

+
05

(5
.7

0E
+

04
)

3.
24

E
+

07
(4

.5
6E

+
06

)
3.

00
E

+
05

(1
.0

0E
+

05
)

1.
31

E
+

06
(4

.0
7E

+
05

)
1.

25
E

+
05

(1
.3

5E
+

04
)

f
2

1.
62

E
+

04
(1

.8
1E

+
04

)
0.

00
E

+
00

(0
.0

0E
+

00
)

1.
46

E
+

04
(6

.6
8E

+
03

)
1.

09
E

+
01

(2
.9

2E
+

01
)

2.
22

E
+

04
(2

.6
9E

+
04

)
3.

87
E

+
04

(1
.9

7E
+

06
)

f
3

2.
95

E
+

04
(3

.6
4E

+
03

)
0.

00
E

+
00

(0
.0

0E
+

00
)

2.
70

E
+

04
(4

.0
6E

+
03

)
7.

50
E

+
02

(7
.8

6E
+

02
)

6.
94

E
+

02
(7

.9
3E

+
02

)
1.

59
E

+
04

(2
.3

6E
+

02
)

f
4

1.
83

E
+

02
(1

.0
0E

+
02

)
1.

70
E

+
02

(3
.1

0E
+

01
)

3.
96

E
+

02
(3

.5
1E

+
01

)
1.

42
E

+
02

(5
.4

8E
+

01
)

1.
74

E
+

02
(3

.3
4E

+
01

)
1.

51
E

+
02

(3
.4

3E
+

01
)

f
5

2.
10

E
+

01
(2

.4
4E

-0
2)

2.
10

E
+

01
(3

.1
0E

-0
2)

2.
00

E
+

01
(8

.0
9E

-0
5)

2.
00

E
+

01
(2

.4
9E

-0
5)

2.
06

E
+

01
(2

.3
0E

-0
2)

2.
03

E
+

01
(2

.2
0E

-0
2)

f
6

1.
14

E
+

02
(2

.5
4E

+
00

)
8.

70
E

+
00

(2
.3

0E
+

00
)

9.
76

E
+

01
(4

.9
3E

+
00

)
7.

15
E

+
01

(7
.7

3E
+

00
)

7.
40

E
+

01
(2

.9
8E

+
00

)
2.

86
E

+
01

(6
.8

1E
+

00
)

f
7

1.
29

E
-0

1
(3

.1
4E

-0
2)

0.
00

E
+

00
(0

.0
0E

+
00

)
2.

22
E

-0
2

(7
.3

4E
-0

3)
5.

89
E

-0
3

(8
.0

5E
-0

3)
5.

68
E

-0
8

(1
.0

9E
-0

8)
1.

18
E

+
00

(1
.7

3E
-0

1)
f
8

1.
08

E
+

02
(5

.4
0E

+
00

)
1.

10
E

-0
2

(7
.4

0E
-0

3)
2.

00
E

+
02

(2
.3

9E
+

01
)

1.
42

E
-1

2
(3

.0
5E

-1
3)

1.
08

E
-0

8
(5

.0
6E

-0
9)

1.
20

E
-0

1(
2.

82
E

+
02

)
f
9

5.
52

E
+

02
(4

.4
4E

+
01

)
3.

40
E

+
01

(5
.0

0E
+

00
)

2.
45

E
+

02
(2

.2
2E

+
01

)
6.

66
E

+
02

(9
.7

9E
+

01
)

3.
21

E
+

02
(3

.4
4E

+
01

)
9.

84
E

+
01

(2
.5

4E
+

02
)

f
1
0

5.
67

E
+

03
(3

.0
4E

+
02

)
2.

60
E

+
01

(5
.8

0E
+

00
)

6.
33

E
+

03
(1

.2
8E

+
03

)
4.

26
E

+
03

(4
.3

0E
+

02
)

5.
30

E
-0

2
(4

.5
0E

-0
2)

8.
42

E
+

02
(1

.3
8E

+
03

)
f
1
1

1.
46

E
+

04
(6

.3
0E

+
02

)
1.

10
E

+
04

(5
.6

0E
+

02
)

1.
37

E
+

04
(1

.5
6E

+
03

)
1.

24
E

+
04

(1
.1

1E
+

03
)

1.
18

E
+

04
(4

.8
0E

+
02

)
8.

67
E

+
03

(1
.0

6E
+

03
)

f
1
2

1.
21

E
+

00
(7

.7
8E

-0
2)

4.
40

E
-0

1
(4

.7
0E

-0
2)

3.
80

E
-0

1
(8

.9
1E

-0
2)

2.
32

E
-0

1
(5

.0
8E

-0
2)

5.
04

E
-0

1
(3

.2
0E

-0
2)

1.
57

E
+

00
(2

.8
1E

-0
1)

f
1
3

5.
61

E
-0

1
(3

.6
1E

-0
2)

2.
40

E
-0

1
(2

.1
0E

-0
2)

5.
01

E
-0

1
(3

.0
0E

-0
2)

5.
90

E
-0

1
(8

.1
6E

-0
2)

5.
23

E
-0

1
(5

.2
0E

-0
2)

5.
84

E
-0

1(
7.

78
E

-0
2)

f
1
4

1.
89

E
-0

1
(2

.0
6E

-0
2)

1.
20

E
-0

1
(7

.3
0E

-0
3)

1.
63

E
-0

1
(7

.2
1E

-0
3)

2.
27

E
-0

1
(2

.2
7E

-0
2)

2.
18

E
-0

1
(1

.6
0E

-0
2)

2.
21

E
-0

1(
2.

61
E

-0
2)

f
1
5

8.
74

E
+

01
(5

.8
7E

+
00

)
1.

60
E

+
01

(1
.2

0E
+

00
)

4.
53

E
+

02
(5

.2
3E

+
01

)
6.

59
E

+
01

(1
.8

3E
+

01
)

4.
09

E
+

01
(4

.4
7E

+
00

)
2.

81
E

+
01

(8
.0

1E
+

00
)

f
1
6

4.
35

E
+

01
(3

.7
5E

-0
1)

3.
90

E
+

01
(4

.8
0E

-0
1)

4.
36

E
+

01
(1

.0
4E

+
00

)
4.

09
E

+
01

(1
.1

7E
+

00
)

3.
97

E
+

01
(6

.5
4E

-0
1)

3.
15

E
+

01
(3

.0
3E

-0
1)

f
1
7

2.
31

E
+

07
(5

.6
3E

+
06

)
4.

40
E

+
03

(7
.1

0E
+

02
)

2.
17

E
+

06
(4

.8
3E

+
05

)
1.

09
E

+
05

(6
.7

4E
+

04
)

1.
86

E
+

05
(5

.3
1E

+
04

)
9.

19
E

+
04

(1
.5

7E
+

05
)

f
1
8

5.
68

E
+

03
(8

.7
0E

+
03

)
2.

20
E

+
02

(1
.7

0E
+

01
)

6.
32

E
+

02
(3

.1
1E

+
02

)
1.

59
E

+
03

(2
.1

1E
+

03
)

9.
41

E
+

02
(8

.6
5E

+
02

)
1.

64
E

+
04

(1
.1

8E
+

06
)

f
1
9

6.
34

E
+

01
(2

.4
3E

+
00

)
9.

60
E

+
01

(2
.3

0E
+

00
)

9.
93

E
+

01
(1

.9
7E

+
01

)
5.

28
E

+
01

(1
.5

6E
+

01
)

9.
47

E
+

01
(1

.2
0E

+
01

)
8.

26
E

+
01

(2
.1

8E
+

01
)

f
2
0

6.
93

E
+

04
(1

.1
0E

+
04

)
1.

50
E

+
02

(5
.2

0E
+

01
)

7.
17

E
+

04
(1

.4
2E

+
04

)
1.

06
E

+
04

(4
.2

4E
+

03
)

7.
73

E
+

03
(3

.3
8E

+
03

)
1.

18
E

+
03

(1
.4

5E
+

02
)

f
2
1

9.
57

E
+

06
(2

.3
1E

+
06

)
2.

30
E

+
03

(5
.3

0E
+

02
)

1.
92

E
+

06
(4

.7
7E

+
05

)
3.

11
E

+
05

(1
.6

0E
+

05
)

8.
92

E
+

04
(3

.9
2E

+
04

)
2.

23
E

+
05

(1
.0

3E
+

06
)

f
2
2

1.
51

E
+

03
(1

.3
4E

+
02

)
1.

10
E

+
03

(1
.9

0E
+

02
)

2.
29

E
+

03
(4

.5
3E

+
02

)
2.

03
E

+
03

(3
.3

1E
+

02
)

1.
88

E
+

03
(2

.3
1E

+
02

)
8.

94
E

+
02

(4
.6

7E
+

02
)

f
2
3

3.
46

E
+

02
(2

.1
8E

-0
1)

3.
50

E
+

02
(2

.8
0E

-1
3)

3.
70

E
+

02
(3

.3
0E

+
00

)
3.

46
E

+
02

(9
.2

8E
-0

1)
3.

48
E

+
02

(2
.2

4E
-0

8)
3.

64
E

+
02

(7
.6

6E
-0

1)
f
2
4

3.
63

E
+

02
(2

.8
5E

+
00

)
3.

90
E

+
02

(2
.9

0E
+

00
)

3.
76

E
+

02
(4

.3
2E

+
00

)
3.

49
E

+
02

(1
.0

5E
+

01
)

3.
63

E
+

02
(2

.3
8E

+
00

)
3.

85
E

+
02

(1
.0

2E
+

01
)

f
2
5

3.
03

E
+

02
(1

.7
4E

+
01

)
2.

00
E

+
02

(4
.0

0E
-1

3)
2.

27
E

+
02

(2
.0

7E
+

01
)

2.
08

E
+

02
(1

.1
2E

+
00

)
2.

48
E

+
02

(9
.0

5E
+

00
)

2.
46

E
+

02
(4

.3
5E

+
01

)
f
2
6

1.
61

E
+

02
(5

.8
8E

+
01

)
2.

00
E

+
02

(6
.2

0E
-1

3)
2.

00
E

+
02

(4
.1

8E
-0

2)
1.

01
E

+
02

(6
.8

4E
-0

2)
2.

00
E

+
02

(4
.4

0E
-0

2)
2.

00
E

+
02

(4
.1

9E
-0

1)
f
2
7

3.
14

E
+

03
(4

.1
3E

+
02

)
3.

80
E

+
02

(3
.3

0E
+

01
)

2.
35

E
+

03
(1

.3
4E

+
02

)
2.

16
E

+
03

(1
.6

7E
+

02
)

2.
02

E
+

03
(1

.9
0E

+
02

)
1.

57
E

+
03

(1
.9

0E
+

02
)

f
2
8

1.
60

E
+

03
(3

.4
2E

+
02

)
2.

30
E

+
03

(4
.6

0E
+

01
)

1.
21

E
+

04
(8

.9
5E

+
02

)
6.

14
E

+
02

(4
.0

4E
+

01
)

3.
05

E
+

03
(7

.6
8E

+
02

)
2.

15
E

+
03

(1
.8

9E
+

03
)

f
2
9

2.
70

E
+

02
(5

.2
3E

+
00

)
8.

00
E

+
02

(7
.6

0E
+

01
)

3.
81

E
+

03
(4

.6
7E

+
02

)
2.

75
E

+
02

(3
.2

7E
+

00
)

1.
61

E
+

03
(1

.8
0E

+
02

)
3.

52
E

+
04

(2
.7

7E
+

05
)

f
3
0

2.
23

E
+

03
(1

.1
6E

+
03

)
8.

30
E

+
03

(9
.6

0E
+

02
)

8.
73

E
+

04
(1

.9
2E

+
04

)
2.

86
E

+
03

(2
.4

2E
+

00
)

8.
54

E
+

03
(1

.1
7E

+
03

)
2.

87
E

+
05

(1
.3

1E
+

05
)

+
10

17
6

12
11

−
16

7
18

12
14

≈
4

6
6

6
5

”+
”,

”−
”,

an
d

”≈
”

de
no

te
th

at
th

e
pe

rf
or

m
an

ce
of

th
e

co
rr

es
po

nd
in

g
al

go
ri

th
m

is
si

gn
ifi

ca
nt

ly
be

tt
er

th
an

,w
or

se
th

an
,a

nd
si

gn
ifi

ca
nt

ly
no

t
di

ffe
re

nt
to

th
at

of
D

V
B

A
,r

es
pe

ct
iv

el
y.

67

Table 5.12: Comparison of DVBA with FWA-DM, L-SHADE, NRGA, OPTBees, and b6e6rl
on the CEC 2014 benchmarks for 100-D on 4 groups. ”+”, ”−”, and ”≈” denote that a
given algorithm performed significantly better (+), significantly worse (−), or not significantly
different (≈) compared to DVBA using the Wilcoxon rank-sum test. All results based on 51
independent runs.

Groups vs. DVBA
(Wilcoxon rank-sum, p <0.05) FWA-DM L-SHADE NRGA OPTBees b6e6rl

3 Unimodal
Functions

+ (better) 0 2 0 2 1
− (worse) 2 1 2 1 1
≈ (not signi.) 1 0 1 0 1

13 Simple
Multimodal
Functions

+ (better) 4 7 4 3 5
− (worse) 8 3 8 6 7
≈ (not signi.) 1 3 1 4 1

6 Hybrid
Functions

+ (better) 2 4 1 2 2
− (worse) 4 2 5 4 4
≈ (not signi.) 0 0 0 0 0

8 Composition
Functions

+ (better) 4 4 2 5 3
− (worse) 2 1 3 1 2
≈ (not signi.) 2 3 3 2 3

5.4 Supply Chain Cost Problem

In this section, DVBA has been applied to minimize the supply chain cost with other well-known

algorithms; Particle Swarm Optimization (PSO), Bat Algorithm (BA), Genetic Algorithm

(GA), and Tabu Search (TS). Optimization of supply chain is considered as a real challenge

by researchers because of its complexity. Big number of parameters to be controlled and their

distributions, interconnections between parameters and dynamism are the main factors that

increase the complexity of a supply chain. The result of the case study showed that the DVBA

is much superior to other algorithms in terms of accuracy and efficiency.

A supply chain is an interconnected system of globally distributed business entities that

produces and delivers product/services to the customer (buyer). Business entities that compose

a supply chain are: suppliers, manufacturers, warehouses, retailers and customers. Suppliers

are the provider of raw material. Manufacturers transform the raw materials into final

products. Warehouses distribute the products to retailers which in turn sell the products to the

ultimate customer [63]. Minimization of cost and maximization of profits for each business

entities have emerged a new optimization problem known as Supply Chain Cost Problem

68

which minimizes the cost of a globally distributed supply chain and maximizes the profits

of chain stakeholders as a result [77]. Finding the minimal cost of a supply chain can be solved

using traditional deterministic approaches for small instances; however the problem has an

exponential complexity growth as the instances become larger and larger. Researchers [5] [7]

have proved that supply chain cost problem lies in NP-hard category.

The main entities of a supply chain as shown in Fig.5.6 are: suppliers, manufacturers,

warehouses, retailers, and customers. Suppliers provide the raw materials to the manufactures

which in turn convert the raw materials to final products. The chain continues then with

warehouses, warehouses deliver the products from manufacturers to retailers, and retailers sell

these products to the final customers [63].

S1

S2

SS

P1 W1

M1

P2 W2

M2

Pp Ww Mm

Suppliers Plants Warehouses Markets

Figure 5.6: Supply Chain

Nowadays, researchers [34] have been focused on the design, analysis and management of

supply chain in order to maximize the profits of every stakeholder, minimize the total cost and

fulfill customers’ need and satisfaction. The total cost equation (5.3) of a globally distributed

69

supply chain [50] is made up of supply cost of raw material (SCRM), cost of production (PC),

cost associated with warehouses (WAC) and cost of markets (MC).

TotalCost = SCRM + PC +WAC +MC (5.3)

Although equation 5.3 looks simple, researchers are facing a real challenge, because finding

the minimal cost of a supply chain is a NP-hard problem [7]. Lately metaheuristic algorithms are

used widely for optimizing NP-hard problems [63], since they are simple, easy to be implemented

and generally produce acceptable solutions for a wide range of optimization problem.

Table 5.13: Suplly chain cost problem scenarios.

Scenarios Suppliers Plants Warehouses Markets

1 1000
1000

600
400
400

400
300
500
200

100
100
200
70
30

2
500
500
1000

600
400
400

400
300
250
250
200

100
50
50
200
70
30

3
500
500
1000

600
200
200
400

200
200
300
250
250
200

100
50
50
200
70
30

4

500
500
750
250

300
300
200
200
100
300

200
200
300
250
250
200

100
50
50
200
70
30

5

500
500
250
250
250
250

300
300
200
200
100
150
150

200
200
300
250
250
200

100
50
50
200
70
30

70

5.4.1 Experiments

Algorithms tested with five different supply chain scenarios. In every scenario, demand of

each market, capacity of warehouses, production capacity of plants and production capacity

of suppliers are created randomly but increased their complexity. Scenarios are schematically

represented in Table 5.13. In scenario 1: there are 2 suppliers, s1 and s2, whose production

capacities are 1000 and 1000 units; 3 plants (p1, p2, p3) whose production capacities are 600,

400, and 400 units; 4 warehouses (w1, w2, w3, w4) whose storage capacities are 400, 300, 500

and 200 units; and 5 markets(m1, m2, m3, m4, m5) whose demands are 100, 100, 200, 70, and

30 units respectively.

5.4.2 Algorithms for comparison

In order to demonstrate the effectiveness of DVBA we have compared it with PSO, GA, TS, and

BA. Each scenario was optimized by each algorithms 30 times. Maximum number of function

evaluations (FES) is set to 1000. Furthermore, we set the population size at 30 for BA, GA, and

PSO but we limited DVBA’s population size at 2. For PSO, we have used the standard PSO

and set the inertia weight w = 1 and the acceleration coefficients c1 = c2 = 2 [47]. As for the

BA, parameters are set as follows: α = γ = 0.5, frequency is in the range [0 ,2], andA0 = 0.5.

For genetic algorithms GA, we have used the mutation probability of pm = 0.05 and crossover

probability of 0.95.

5.4.3 Experimental results and discussions

Table 5.14 reports the best cost value (BCV), the worst cost value (WCV), the mean, the

standard deviation (STDEV) of the scenarios, and the mean time spent per trial in seconds.

For each scenario the dimensions of the problem is shown in Table 5.14 as well. From Table

5.14, it can be seen that when the dimensions get higher, optimizing the cost is getting more

complicated and time consuming. When we check the Mean of the algorithms, DVBA got the

smallest mean except the Scenario 3. Although BA, PSO, and GA start the optimization with

71

30 particles, they could not get better cost then DVBA in general.

From Fig. 5.7, the convergence graphics of PSO, BA, GA, TS, and DVBA shows that

DVBA finds better cost then other algorithms in all scenarios. Only in scenario 3, Tabu Search

performed slightly better than DVBA; however, in other scenarios Tabu Search did not show the

same performance. Because of its complexity, after a few assessments time, algorithms reach

their global optimum and then they trap there. However, DVBA manages the exploration

better than other algorithms and converges in a better global optimum. In Fig.5.7d shows that,

even the dimensions get very high which is 120 D in this scenario, DVBA is much superior to

other algorithms in terms of accuracy and efficiency.

Table 5.14: Comparison of PSO, BA, GA, TS, and DVBA on 5 different supply chain cost
problem scenarios

Sce. Dim. Alg. BCV WCV Mean STDEV Time(sec)

1 38D

PSO
BA
GA
TS

DVBA

173621.46
206365.14
175777.01
146591.19
147437.82

313406.01
315540.73
318692.55
375931.78
291735.15

246699.61
248597.91
245159.36
245933.05
240870.98

47118.07
36993.35
48239.59
70696.88
43251.77

2.75
10.16
3.30
3.26
2.06

2 54D

PSO
BA
GA
TS

DVBA

166811.41
202757.68
182540.68
210657.29
203342.20

484921.82
489685.77
486771.12
454798.29
412634.10

313849.03
329012.12
306981.52
319737.95
299536.05

65005.95
71927.23
85964.83
61750.83
61679.63

5.55
7.44
5.22
4.01
5.74

3 72D

PSO
BA
GA
TS

DVBA

355932.28
285515.59
294449.33
278259.26
272455.06

728729.55
652412.35
775318.44
702875.83
749063.12

527034.60
475560.82
516123.15
468966.32
470188.66

85947.92
87421.48
113287.31
100058.71
110948.31

10.80
12.22
12.41
12.88
11.17

4 96D

PSO
BA
GA
TS

DVBA

485451.46
519731.62
511018.33
563112.71
437008.44

931690.59
1175658.75
1079571.97
973503.78
985441.12

727803.87
779329.67
722368.44
737951.79
703656.08

105982.11
129138.17
127095.75
112591.61
131965.85

15.78
15.22
16.41
15.88
15.17

5 120D

PSO
BA
GA
TS

DVBA

679465.79
638456.13
626694.36
635904.20
506594.61

1105596.08
1241163.81
1187243.80
1163537.74
1117955.20

883460.38
885037.02
863766.70
866045.89
848871.39

130587.06
146848.01
157404.16
128691.68
157256.42

25.54
27.32
28.67
26.18
26.17

72

(a) Scenario 1

(c) Scenario 3

(b) Scenario 2

(d) Scenario 5

Figure 5.7: Convergence characteristics of PSO, BA, GA, TS, and DVBA on different scenarios
of supply chain cost problem.

From the experimental results we can say that DVBA coped with this balance problem

successfully. Although dimensions get very high in some scenarios of supply chain, the results

of the DVBA were better than other algorithms. This comparison showed that DVBA is not

only good at finding global optimum of some benchmark functions, it is also good at complicated

real world problem.

73

CHAPTER 6

IMPROVEMENTS ON DYNAMIC VIRTUAL BATS

ALGORITHM

Bat Algorithm is very good at exploitation; however, it is generally poor at exploration. On the

other hand, Dynamic Virtual Bats Algorithm is very efficient in exploration and exploitation,

but it still needs improvements, when it comes to high dimensional problems. In this section,

a novel micro-bat algorithm (µBA) [97] is presented which possess the advantages of both

algorithms. µBA employs a very small population compared to its classical version. It combines

the swarming technique of bats in Bat Algorithm with the role based search in Dynamic Virtual

Bats Algorithm. Our empirical results demonstrate that the proposed µBA achieves a good

balance between exploration and exploitation. And it exhibits a better overall performance

than the standard BA with larger and smaller populations on high dimensional problems.

6.1 Micro Bat Algorithm

µBA is developed using the ideas from the Bat Algorithm and Dynamic Virtual Bats Algorithm.

In this combination, the weaknesses of the algorithms are avoided and the advantages are used.

The weaknesses and the advantages of the BA and the DVBA can be summarized as follows.

In Bat Algorithm, the bats repeat three main steps as the iterations proceed.

1. Bats move towards the best found position.

74

2. Bats, with a probability of rand() < r, fly near to the best position.

3. Bats fly randomly either near to the best bat or any position in the search space.

Here, r is the sound impulse rate and it increases exponentially as the iterations proceeds

(Eq 3.6). It is clear that, the possibility of flying near to the best position will increase rapidly

for each bat after some iterations [42]. In another word, Bat Algorithm loses its exploration

capability rapidly and increases its exploitation capability at the following iterations. That can

cause Bat Algorithm to converge prematurely [111].

In DVBA, there are two roles which are exchanged between the bats according to their

positions during the search. This dynamic role exchange gives DVBA higher diversity capability

but slower convergence [92] [94]. The size of the bats’ search scope has a major affect on DVBA’s

performance. The search scope size is limited by the wavelength which might not be long enough

to detect better solutions near its surrounding space. Thus, it is very likely that the explorer

bat will be trapped in local optima. Additionally, the exploiter bat’s search scope can become

very small during the exploitation process and it will move very slowly. Therefore it might not

reach the global optima within the bounded computation time.

In the µBA, the position of the prey represents a possible solution to the optimization

problems. To discover the prey, three bats are employed which are referred as explorer bat,

exploiter bat, and scout bat. The explorer and the exploiter bats show the same characteristics

as in DVBA. However, they do not exchange the roles during the search and the explorer bat

helps the exploiter bat to speed up the exploitation. The scout bat was added to increase

search diversity. The µBA combined the BA’s fast convergence characteristic with DVBA’s

exploration and dynamic search capabilities. The behavior of the virtual bats and the outline

of the µBA are given below.

6.1.1 The explorer bat

The explorer bat emits the sound pulses with low frequency and long wavelength so it can scan

a large area (Fig. 3.2a). The explorer bat checks the solutions on its search scope and flies

75

to the best solution. Unless there is no better solution than its current position, the explorer

bat will turn around randomly and keep scanning its nearby surrounding space until it finds

a better solution. So it is clear that it can be trapped easily in local optima like in DVBA.

To avoid this local optima trap, we give the explorer bat a chance to make a random fly in

the vicinity of the exploiter bat (Eq 6.2). That will not only help the explorer bat to escape

from the trap but also increase the speed of the exploiter bat through the global optima. The

similar probabilistic approach (rand() > ri) from the Bat Algorithm is used to give this chance

to the explorer bat. In µBA, ri is switched by P and called the random flight probability. The

probability of random flight P and the new position of the bat are calculated as follows:

P t+1 = P t[1− exp(−trialσ)], (6.1)

xt+1
i = xgbest + ρ, (6.2)

where σ constant. trial denotes the number of unsuccessful attempts to escape from the local

optima trap. ρ is calculated as in Eq. 4.14. As the explorer bat spins around the local optima

trap, the P will decrease exponentially and the probability of flying near to the exploiter bat

(rand() > P) will increase. In Eq.6.1, if σ is chosen very small, the explorer bat will fly near

to the exploiter bat too soon and will not able to explore its nearby surrounding space. Thus,

σ should be chosen carefully. As the unsuccessful attempts (trial) increases, the effect of σ on

P is shown in Fig.6.1.

6.1.2 The exploiter bat

The exploiter bat is used to increase the intensification of the search on the best found solution.

It has very narrow search scope (Fig. 6.3) so it can make intense exploitation. If the explorer

bat or the scout bat finds a better solution than the exploiter bat’s current position, it flies to

this solution and starts exploiting there.

76

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

R
an

d
o
m

 F
li

g
h
t

P
ro

b
ab

li
ty

P

Number of Unsuccessful Trials

P, σ=4

P, σ=3

P, σ=2

Figure 6.1: The effect of σ on P as the unsuccessful attempts increases.

6.1.3 The scout bat

The scout bat has a large search scope like the explorer bat (Fig. 6.2). However, unlike the

explorer bat, the scout bat does not consider its current position to make the next move. It

simply chooses the best position from its search scope and flies there. Same as in Simulated

Annealing (SA) [14], it will even fly to worse solution than its current solution. The scout bat

keeps flying all around the search space without having any local optima trap problem. That

increases the diversification capability of the µBA.

In a robust search process, exploration and exploitation processes must be carried out

together. In the µBA, while explorer and exploiter bat carry out the exploitation process

in the search space, the scout bat control the exploration process with the explorer bat.

According to all these approximations and improvements µBA can be given as in Algorithm3.

77

Algorithm 3 µBA pseudo code where xgbest is the global best position and d is the number
of dimensions.

Objective function f(x), x = (x1, ..., xd)
T

Initialize the bat population xi(i = 1, 2, 3) and velocity vi
Initialize wavelength λi and frequency fi
Initialize the number of the wave vectors and search points (r, k)
while (t < Max number of iterations) do

for each bat do
Create a sound waves scope [92]
Evaluate the solutions on the waves
Choose the best solution on the waves, h∗

if (i = 1) then //Scout Bat
Move to h∗
Maximize λi and minimize fi

end if
if (i = 2) then //Explorer Bat

if f(h∗) < f(xi) then
Fly to h∗
Maximize λi and minimize fi
trial=0

else
trial=trial+1
Change the direction randomly
Update P by using Eq. 6.1

end if
if (rand() > P) then

Produce a new solution around the exploiter bat
by Eq. 6.2
trial = 0
P = 1

end if
end if
if (i = 3) then //Exploiter Bat

Fly to xgbest

Minimize λi and maximize fi
Change the direction randomly

end if
Rank the bats and find the current best xgbest

end while

78

+

Vi : Flying direction

h11

h12
h13

h14 h44

h43

h42
h41

Wavelength (λ)

Figure 6.2: Exploration: Explorer bat is searching for prey with a wide search scope.

Vi : Flying direction

Wavelength (λ)

+

Figure 6.3: Exploitation: Exploiter bat is chasing prey with a narrow search space.

79

Ta
bl

e
6.

1:
D

es
cr

ip
tio

n
of

th
e

be
nc

hm
ar

k
fu

nc
tio

ns
.

H
er

e
D

:d
im

en
sio

na
lit

y
of

th
e

fu
nc

tio
ns

,C
:f

un
ct

io
n

ch
ar

ac
te

ris
tic

s
w

ith
va

lu
es

-U
:u

ni
m

od
al

,M
:M

ul
tim

od
al

,S
:S

ep
ar

ab
le

,N
:N

on
-S

ep
ar

ab
le

.

N
o

N
am

e
Fo

rm
ul

a
D

C
f m

in
Se

ar
ch

Sp
ac

e

f 1
A

ck
le

y
f 1
(x
)
=

20
+

e
−

2
0
ex

p
(−

0.
2
√ 1 d

∑ d i=
1
x
2 i
)
−

ex
p
(
1 d

∑ d i=
1
co
s(
2π

x
i)
)

10
,3

0,
50

M
N

0
(−

3
2
,3
2
)d

f 2
Bo

ha
ch

ev
sk

y
f 2
(x
)
=

∑ d−
1

i=
1
[x

2 i
+

2
x
2 t+

1
−

0.
3c
os
(3
π
x
i)
−

0.
4c
os
(4
π
x
i+

1
)
+
0
.7
]

10
,3

0,
50

M
N

0
(−

1
5
,1
5
)d

f 3
G

rie
wa

ng
k

f 3
(x
)
=

∑ d i=
1

x
2 i

4
0
0
0
−
∏ d i=

1
co
s(

x
i

√
i
)
+
1

10
,3

0,
50

M
N

0
(−

6
0
0
,6
0
0
)d

f 4
R

as
tr

ig
in

f 4
(x
)
=

10
d
+

∑ d i=
1
[x

2 i
−

1
0
co
s(
2
π
x
i)
]

10
,3

0,
50

M
S

0
(−

5.
1
2
,5
.1
2
)d

f 5
Po

we
ll

f 1
6
(x
)

=
∑ d−

2
i=

1
(x

i−
1
+

1
0
x
i)

2
+

5
(x

i+
1
−

x
i+

2
)2

+
(x

i
−

2x
i+

1
)4

+
1
0
(x

i−
1
−

x
i+

2
)4

10
,3

0,
50

U
N

0
(−

4,
5
)d

f 6
R

os
en

br
oc

k
f 5
(x
)
=

∑ d−
1

i=
1
[1
0
0
(x

i+
1
−

x
2 i
)2

+
(x

i
−

1
)2
]

10
,3

0,
50

M
N

0
(−

1
5
,1
5
)d

f 7
Sp

he
re

f 1
3
(x
)
=

∑ d i=
1
x
2 i

10
,3

0,
50

U
S

0
(−

5.
1
2
,5
.1
2
)d

f 8
Sh

ift
ed

R
as

tr
ig

in
f 8
(x
)
=

f 4
(z
),

z
=

x
−

o,
o
=

[o
1
,o

2
,.
..
,o

d
]:

sh
ift

ed
gl

ob
al

op
tim

um
.

10
,3

0,
50

U
S

0
(−

5.
1
2
,5
.1
2
)d

f 9
Sh

ift
ed

R
ot

at
ed

A
ck

le
y

f 9
(x
)

=
f 1
(z
),

z
=

M
(x
−

o)
,

o
=

[o
1
,o

2
,.
..
,o

d
]:

sh
ift

ed
gl

ob
al

op
tim

um
10

,3
0,

50
U

N
0

(−
3
2
,3
2
)d

f 1
0

Sh
ift

ed
R

ot
at

ed
G

rie
wa

ng
s

f 1
0
(x
)

=
f 3
(z
),

z
=

M
(x
−

o)
,

o
=

[o
1
,o

2
,.
..
,o

d
]:

sh
ift

ed
gl

ob
al

op
tim

um
10

,3
0,

50
U

S
0

(−
6
0
0
,6
0
0
)d

80

In the next section, experimental results on high-dimensional instances of widely used

optimization problems are reported.

6.2 Numerical Experiments and Results

6.2.1 Parameter settings for the algorithms

In order to demonstrate the effectiveness of the µBA, a suite of 10 well-known numerical

functions were tested with DVBA, BA with 30 bats, and BA with 3 bats. Each test function

was considered three different dimensions, namely, d = 10, 30, and 50. Maximum number of

function evaluation (FEs) is set to 100.000 for 10−D problems, 300.000 for 30−D problems,

and 500.000 for 50 − D problems. Algorithms were tested with 30 independent runs for each

test functions in order to compile comprehensive data. All the algorithms are developed in the

Python environment and run on a PC with a 3.20 GHz CPU and 6.00 GB of RAM.

The other specific parameters of algorithms are given below:

BA Settings

Parameters are set as follows: α = γ = 0.5, frequency is in the range [0, 2], the rate of pulse

emission r ∈ [0, 1] and, the loudness A0 = 0.5 [106].

DVBA Settings

Maximum step size divisor is set to β = 250 since the search space exponentially increased in our

tests. The number of search points and the wave vectors are set to r = 6 and k = 5, respectively.

The range of the wavelength and the frequency are set as follows: [λmin, λmax] = [ρ, 10ρ] and

[fmin, fmax] = [ρ, 10ρ], where ρ is calculated in Eq. 4.14. Population size is 2.

81

micro-BA Settings

Same parameters are used from DVBA to create the search scope of the bats. P is started from

1 and σ = 3.

6.2.2 Benchmark Functions

To evaluate the performance of the algorithms, a set of 10 standard benchmark functions is

used. The benchmark set include unimodal, multimodal, separable, non-separable, shifted,

and rotated optimization functions. In shifted and rotated test functions, the global optimum

is shifted to a random position and the functions are rotated. By using shifted and rotated

functions, we would be able to test the algorithms on more challenging, real world like problems

[57]. Specifically, functions f1 − f4 are multimodal functions, f4 − f7 are unimodal functions,

and f8 − f10 are shifted and rotated functions. We rotated the functions f(z) = f(Mx), where

f(z) is the new function and M is an orthogonal rotation matrix. The global optimum is shifted

to a random position by f(z) = f(x − onew − oold), where oold is the old global optimum and

onew is the new global optimum which is not lying at the center of the search range [75]. The

description of the benchmark functions are shown in Table 6.1.

6.2.3 Experimental results and discussion

In order to test the efficiency of the proposed algorithm, our experiment’s results were compared

with the standard BA with 3 bats, the standard BA with 30 bats, and the standard DVBA.

The test results are shown in Table 2 and 3 in terms of the best fitness values (BFV), the worst

fitness values (WFV), the mean and the standard deviation (STDEV) of the results found over

the 30 independent runs by each algorithm. The best results are marked in bold. Furthermore,

we used t-tests [14] to compare the means of the results produced by the µBA and the other

algorithms at the 0.05 level of significance. In the last column of Table 2 and 3 we report the

statistical significance level of the results. There ′−′ indicates that µBA is significantly more

successful than selected one at a 0.05 level of significance by two-tailed test, ′ ≈′ means the

82

Table 6.2: Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA over
10 test functions of 10, 30, and 50 dimensions.

Function Dim Algorithms BFV WFV Mean STDEV t-test

f1 Ackley

10

DVBA 0.0216 4.5465 2.6865 0.9056 −
BA-3bats 2.3247 4.6683 3.5937 0.6870 −

BA-30bats 2.0193 4.0331 2.8221 0.4931 −
µBA 0.0146 3.0281 1.7313 1.0036

30

DVBA 3.0604 20.0798 16.6419 6.7907 −
BA-3bats 19.9420 19.9667 19.9568 0.0113 −

BA-30bats 19.9434 19.9566 19.9497 0.0042 −
µBA 3.2660 5.0264 3.8358 0.5119

50

DVBA 20.0848 20.2278 20.1788 0.0514 −
BA-3bats 19.9160 19.9660 19.9483 0.0171 −

BA-30bats 3.5297 19.9636 18.3037 4.9246 −
µBA 2.8373 5.4899 4.4476 0.7227

f2 Bohachevsky

10

DVBA 1.5428 4.4134 2.9063 0.7375 −
BA-3bats 1.9253 2.9166 2.2136 0.2793 ≈

BA-30bats 1.7723 2.8279 2.3783 0.3067 ≈
µBA 0.2317 4.4773 2.3240 1.1738

30

DVBA 14.7338 26.1569 19.7721 3.9088 −
BA-3bats 17.4313 20.3219 18.4629 1.0059 ≈

BA-30bats 17.5538 22.1077 19.3455 1.6834 −
µBA 13.3856 20.0175 17.9844 2.4474

50

DVBA 37.6436 44.4501 42.1866 2.5494 −
BA-3bats 38.0999 44.1018 41.5410 2.1463 −

BA-30bats 39.2839 44.8488 42.8278 1.9773 −
µBA 24.4439 38.2343 31.9908 4.8434

f3 Griewangk

10

DVBA 1.3576 2.4926 2.1272 0.3303 −
BA-3bats 0.5478 0.9346 0.7585 0.0941 ≈

BA-30bats 0.5217 0.8826 0.7510 0.1073 ≈
µBA 0.7075 0.8509 0.7980 0.0434

30

DVBA 10.4302 13.7109 12.9437 1.2662 −
BA-3bats 1.3904 1.4195 1.4067 0.0095 −

BA-30bats 1.3501 1.4370 1.4050 0.0296 −
µBA 1.0804 1.1049 1.0928 0.0104

50

DVBA 33.3351 38.2587 35.6369 1.7511 −
BA-3bats 2.1307 2.2624 2.2165 0.0471 −

BA-30bats 1.7346 2.1055 1.9677 0.1245 −
µBA 1.2277 1.2935 1.2605 0.0215

83

Table 6.3: Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA on
Rastrigin, Powell, and Rosenbrock with 10, 30, and 50 dimensions.

Function Dim Algorithms BFV WFV Mean STDEV t-test

f4 Rastrigin

10

DVBA 17.2326 41.9676 30.0917 8.6982 ≈
BA-3bats 56.1000 110.5451 85.3065 19.8476 −

BA-30bats 18.3934 69.8718 50.2790 18.2945 −
µBA 15.2605 58.9553 27.1348 16.3371

30

DVBA 141.0519 243.0097 195.9515 33.3322 −
BA-3bats 176.5749 293.3492 235.6283 37.8489 −

BA-30bats 183.9583 245.1114 221.4598 20.2705 −
µBA 183.6387 210.9989 198.0123 9.9362

50

DVBA 394.2856 484.7279 444.4586 29.2374 −
BA-3bats 370.7712 497.3180 440.2515 57.1338 −

BA-30bats 349.3720 483.0212 407.0945 53.4919 −
µBA 376.2547 431.6168 406.1995 21.9270

f5 Powell

10

DVBA 0.0953 0.1916 0.1400 0.0253 −
BA-3bats 0.0660 0.1715 0.1153 0.0283 −

BA-30bats 0.0682 0.1743 0.1001 0.0301 −
µBA 0.0075 0.0162 0.0114 0.0027

30

DVBA 0.9749 1.1569 1.0879 0.0629 −
BA-3bats 1.4853 2.1225 1.8663 0.2397 −

BA-30bats 1.6184 2.0971 1.9913 0.1867 −
µBA 0.0908 0.1183 0.1032 0.0107

50

DVBA 2.6277 3.6723 3.1850 0.4118 −
BA-3bats 4.9632 6.3985 5.6586 0.4875 −

BA-30bats 4.8066 6.3320 5.5817 0.4941 −
µBA 0.2807 0.3442 0.3176 0.0239

f6 Rosenbrock

10

DVBA 11.3205 166.3953 29.0556 45.8787 −
BA-3bats 10.6727 196.4292 46.6597 68.0033 −

BA-30bats 10.5964 17.4026 13.4332 2.3198 −
µBA 4.1786 10.2598 8.9103 1.6942

30

DVBA 85.7328 1072.1944 299.3281 386.9613 −
BA-3bats 96.5783 143.2552 126.3990 16.9769 −

BA-30bats 97.8295 427.0891 238.8529 139.9443 −
µBA 31.3629 87.8815 43.5059 22.2007

50

DVBA 240.6517 1269.5626 579.9789 327.6391 −
BA-3bats 298.4399 861.5234 572.4530 176.6554 −

BA-30bats 323.3869 972.9987 450.1929 186.3294 −
µBA 61.4320 314.5447 165.5107 79.8678

84

Table 6.4: Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA over
Sphere, Shifted Rastrigin, and Shifted Rotated Ackley function with 10, 30, and 50 dimensions.

Function Dim Algorithms BFV WFV Mean STDEV t-test

f7 Sphere

10

DVBA 0.2612 0.5413 0.3739 0.0911 −
BA-3bats 1.3693 3.6073 2.8133 0.6197 −

BA-30bats 1.3021 3.0094 2.3567 0.5229 −
µBA 5.65e-07 0.6860 0.1326 0.2366

30

DVBA 0.0553 0.0759 0.0643 0.0077 −
BA-3bats 0.1010 0.1320 0.1133 0.0102 −

BA-30bats 0.1025 0.1232 0.1116 0.0085 −
µBA 0.0111 0.0135 0.0121 0.0009

50

DVBA 0.1497 0.2200 0.1832 0.0230 −
BA-3bats 0.2781 0.3822 0.3373 0.0281 −

BA-30bats 0.3020 0.3799 0.3408 0.0216 −
µBA 0.0132 0.0206 0.0175 0.0019

f8
Shifted
Rastrigin

10

DVBA 28.9949 127.0091 72.8769 22.4583 −
BA-3bats 46.2250 188.3732 103.7364 40.2252 −

BA-30bats 25.0820 92.8895 57.0023 18.4316 −
µBA 11.0428 76.7472 39.8817 17.9924

30

DVBA 211.0952 498.3511 368.8925 83.9036 −
BA-3bats 297.7370 653.7204 460.0270 90.4837 −

BA-30bats 250.8744 469.1721 337.1287 65.2766 −
µBA 148.7219 314.5511 232.5197 55.4156

50

DVBA 606.4386 821.6168 708.6816 62.4324 −
BA-3bats 692.8852 1009.7283 847.5367 110.5501 −

BA-30bats 644.1346 837.0152 720.2708 68.0795 −
µBA 321.5644 610.9722 462.8984 106.1891

f9

Shifted
Rotated
Ackley

10

DVBA 1.7521 20.3361 7.4764 8.2766 +
BA-3bats 2.2921 20.4352 19.3113 3.2061 −

BA-30bats 1.9483 20.4179 14.8852 8.3534 −
µBA 0.4599 20.2919 5.3013 7.5357

30

DVBA 20.8117 21.0153 20.9279 0.0548 ≈
BA-3bats 20.8161 21.0337 20.9658 0.0595 ≈

BA-30bats 20.8892 21.0349 20.9639 0.0421 ≈
µBA 2.8299 20.7155 17.0460 7.1056

50

DVBA 21.0451 21.1607 21.1241 0.0308 −
BA-3bats 21.1297 21.1911 21.1597 0.0195 −

BA-30bats 21.0353 21.1986 21.1363 0.0448 −
µBA 20.7314 20.8755 20.7972 0.0491

85

0 50000 100000 150000 200000 250000 300000 350000
FES

21

22

23

24

25

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3
0
 r

u
n
s

Ackley

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000
FES

100

101

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3
0
 r

u
n
s

Griewangs

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

27

28

29

210

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3
0
 r

u
n
s

Rastrigin

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

2-4

2-2

20

22

24

26

28

210

212

214

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3
0
 r

u
n
s

Powell

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

Figure 6.4: Convergence characteristics of µBA, BA, and DVBA for the 30-dimensional Ackley,
Griewangs, Rastrigin, and Powell functions.

86

Table 6.5: Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA
Shifted Rotated Griewangs with 10, 30, and 50 dimensions.

Function Dim Algorithms BFV WFV Mean STDEV Significant

f10

Shifted
Rotated
Griewangs

10

DVBA 2.2979 3.7364 3.0175 0.4656 −
BA-3bats 0.8388 1.0362 0.9506 0.0630 −

BA-30bats 0.8025 1.0262 0.9003 0.0850 −
µBA 0.4069 0.9148 0.7429 0.1519

30

DVBA 7.2322 8.7454 7.3364 1.9442 −
BA-3bats 1.6303 1.9125 1.7939 0.0934 −

BA-30bats 1.6556 1.8832 1.7739 0.0766 −
µBA 1.1605 1.2358 1.2008 0.0221

50

DVBA 10.8454 14.9527 11.6678 2.5123 −
BA-3bats 3.2262 3.7766 3.4695 0.1737 −

BA-30bats 3.0935 3.9139 3.4128 0.2344 −
µBA 1.4815 1.6367 1.5713 0.0453

difference of means is not statistically significant and, ′+′ stands for Not Applicable, covering

cases for which the two algorithms achieve the same accuracy results.

Fig.6.4 and 6.5 illustrates the convergence characteristics in terms of the best fitness value of

the median run of each algorithm for the test functions with D = 30. The convergence graphs

of the 10−D and 50−D problems are similar to their 30−D counterparts, so they are omitted

here to save space.

From Table 6.3, 6.4, and 6.5 it can be said that µBA gave the best results for multimodal

test functions. It is known that the complexity of the problems increases as the dimensionality

of the search increases and local traps become harder to escape for the algorithms. However, the

µBA performed successfully for the multimodal functions f1, f2, and f3 for all dimensions. For

the functions f4, the algorithms did not show a significant success but µBA has demonstrated a

better ability of global searching. For the unimodal functions, the algorithms got the best results

but they performed poorly on f8 (Rosenbrock). Rosenbrock function is grouped as a unimodal

function but it may have multiple minima when the dimension increases and converging to the

minimum is difficult [82]. Furthermore, the t-test values show that the performance of the µBA

is significantly more efficient than other compared algorithms in terms of the mean. Similar

87

0 50000 100000 150000 200000 250000 300000 350000
FES

25

27

29

211

213

215

217

219

221

223

225

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Rosenbrock

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

2-7

2-5

2-3

2-1

21

23

25

27

29

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Sphere

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000
FES

200

300

400

500

600

700

800

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Shifted Rastrigin

DVBA
BA - 30 particles
BA - 3 particles
µBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

13

14

15

16

17

18

19

20

21

22

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Shifted Rotated Ackley

DVBA
BA - 30 particles
BA - 3 particles
µBA - 3 particles

Figure 6.5: Convergence characteristics of µBA, BA, and DVBA for the 30-dimensional
Rosenbrock, Sphere, Shifted Rastrigin, and Shifted-Rotated Ackley functions.

88

observations can be made for the shifted and rotated functions. Overall, µBA obtains a smaller

mean value than the other algorithms for all problems.

Additionally, a close inspection of tables reveals that, BA does not sensitive to the population

size. BA with 3 bats and BA with 30 bats did not show significant difference on most of the

test functions.

The convergence map of algorithms in Fig.6.4 and 6.5 shows that the µBA always converges

faster than other algorithms on seven problems (f1, f5, f6, f7, f8, f9, and f10). In Fig.6.4 and

6.5, it can be seen that, while other algorithms suffer from premature convergence problem on

the function f1, f5, f7, f8, and f9, the µBA escaped from the local optima traps successfully.

For the functions f1 and f9, µBA outperformed the other algorithms significantly. f1 and f9 is

characterized by a nearly flat outer region, and a large hole at the center. The function poses

a risk for the algorithms to be trapped in one of its many local minima and difficulty to reach

the global optima in predefined time. The explorer bat helped the exploiter bat to reach the

global optima faster in these functions.

89

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The conclusions from this thesis are collected in this chapter. Moreover, in the last part of this

chapter, we present some thoughts on potential future work that could extend on this thesis.

7.1 Conclusions

In this thesis, a novel nature inspired metaheuristic optimization algorithm, Dynamic Virtual

Bats Algorithm (DVBA), is proposed. The objective proposed for this thesis were the following:

1. Make an in-depth study of echolocation and bat algorithm.

2. Develop a new algorithm by imitating the bat’s hunting strategies that can manage the

exploration and exploitation conflict in a effective and efficient way.

3. Validate the performance of the proposed algorithm DVBA by comparing with classic

and state-of-the-art optimization algorithms.

4. Analyze the performance of dynamic virtual bats algorithm on a real world problem.

5. Study on possible improvements for dynamic virtual bats algorithm by using the

advantages of the bat algorithm and analyze it.

With regards to objective 1, bat’s hunting strategies and bat algorithm are investigated

in Chapter 3. We have seen that bats are amazing creatures who can detect objects in pitch

90

black dark caves by using echolocation. They have ability to change frequency and wavelength

of the emitted sound waves. During the hunt, they can increase the rate of pulse emissions

when they near their prey. They also emit sounds very loudly during exploration and become

very quite near their prey. These are the main strategies which were the inspiration of the

bat algorithm and proposed dynamic virtual bats algorithm. Although all these abilities of the

real bats are listed in [106] for bat algorithm, a few of them are simulated in the algorithm.

Bat algorithm is like a combination of PSO and harmony search. It can be concluded that BA

lacks imitation of real bats. We also realized that BA suffers from the premature convergence

problem and it needs improvements in exploration. By modifying random walk size and the

pulse rate parameters in BA, it is possible to overcome this problem.

In Chapter 4, we have presented our new bat inspired algorithm, DVBA (Objective 2). It is

conceptually very different from BA. DVBA is a new simulation of bat’s hunting strategies.

One novelty of DVBA was the population size. DVBA needs just two bats to overcome

the exploration and exploitation trade off problem. They are called the explorer and the

exploiter bats. While the explorer bat scans large area roughly, the exploiter bat increase the

intensification of the search around the best found solution. That helps bats to avoid from local

optima traps. Another novelty was how DVBA explores the search space. The virtual bats in

the algorithm behave the same as the real bats in nature when hunting.

The overall efficiency and performance of a metaheuristic algorithm is up to its fine balance

between diversification (exploration) and intensification (exploitation). To analyze how DVBA

is coping with this problem, in Chapter 5, we have compared the DVBA with 4 standard

optimization algorithms, 4 modified BA algorithms, and 5 state-of-the-art algorithms competed

in special session at CEC 2014 over 6 classic and 30 CEC 2014 single objective optimization

test functions. From the experimental results we can say that DVBA coped with this balance

problem successfully. Objective 3 is accomplished in Chapter 5.

To fulfill the objective 4, DVBA has been applied to minimize the supply chain cost problem.

Since finding the minimal cost associated with a globally distributed supply chain is an NP-hard

problem, metaheuristics algorithms are considered a good approach to give an optimized result.

91

Therefore, the performance of DVBA was tested on supply chain cost problem with other

well-known algorithms; Particle Swarm Optimization (PSO), Bat Algorithm (BA), Genetic

Algorithm (GA), and Tabu Search (TS). The result of the case study showed that the DVBA

is much superior to other algorithms in terms of accuracy and efficiency. Although BA, PSO,

and GA start the optimization with 30 particles, they could not get better cost then DVBA in

general. Because of its complexity, after a few assessments time algorithms reach their global

optimum and then they trap there. However DVBA manages the exploration better than other

algorithms and converges in a better global optimum.

While we have been studying the effectiveness of DVBA, we realized that the exploitation

ability of DVBA can be improved by using some features of bat algorithm. Therefore, in

Chapter 6, we proposed an improved version of DVBA named micro-bat algorithm (µBA). In

µBA, the proposed new search mechanism combines the BA’s fast convergence characteristic

with DVBA’s dynamic search capability to increase the search diversity while pursuing a balance

between exploration and exploitation.

To prove the effectiveness and robustness of the proposed algorithms, the µBA was compared

with DVBA and BA on variety of optimization problems with different complexities. The results

demonstrated that the solution values achieved by µBA are several orders of magnitude better

than BA and comparable to DVBA in many cases. Also, µBA appears to be less effected when

dimension of the problem increases significantly. Therefore, it can be said that µBA achieves

a good balance between exploration and exploitation and has the best universality on different

type of problems.

Finally, We can conclude that the proposed DVBA could evolve suitable strategies and

parameter values as evolution progress by using just two bats. Exchanging the roles of the bats

dynamically helped bats to escape from local optima traps. In general, DVBA outperforms or

is comparable to other algorithms on most of the test functions. It is also good at complicated

real world problems such as supply chain cost. We can see that it is a very promising algorithm

and suitable for improvements.

92

7.2 Future Work

There are several directions for future work. There might be a refinement on DVBA’s

exploration ability. We have seen that DVBA does not perform well on most of the

high-dimensional rotated functions or composition functions.

Since DVBA has just two bats, DVBA lags behind other algorithms in terms of convergence

speed at the beginning of the FEs, although DVBA outperforms significantly after some learning

period. Especially for high-dimension problems, escaping from local optima traps becomes a

challenge. In DVBA, the explorer bat’s duty is to cope with this problem, but if it stuck in a

large optima trap, its wavelength might not be long enough to discover a better position and

escape from the trap.

As future work, the explorer bat’s history can be stored, like in Tabu Search (TS). After

some unsuccessful attempts to escape from these local optima traps the explorer bat might

restart its search again, but use previous failed experience to not waste function evaluations.

Of course this will slow down the computation time, but convergence speed might increase.

And it will help the explorer bat to explore the search space more efficiently.

Furthermore, as bats use time difference between their two ears to generate a 3D blueprint

of their environment, they can distinguish the shape, size, and texture of a tiny prey, in which

direction the prey is heading, and even the speed of the prey. Therefore, a further natural

extension to the current DVBA would be to use Doppler effect [10,81], which may lead to new

algorithms to solve dynamic optimization problems.

Also, parallel programming can be used as a future work to increase the speed of the

algorithm. In that case, bats will communicate simultaneously and increasing the number of

bats can be considered.

93

Appendix A

VERIFICATION OF OUR FRAMEWORK RESULTS

Table A.1: Comparison of PSO and BA in our framework with the results in [100]

Results from [15] Our Program Results
PSO BA PSO BA

Mean Std Mean Std Mean Std Mean Std
Circles Function 2.581 2.233 0.3862 0.1583 1.7371 0.7297 0.3019 0.1202
Rosenbrock function 1.8E+5 1.2E+6 2.8E+5 2.9E+5 1.9E+5 1.7E+6 2.9E+5 4.0E+4
Griewank’s function 0.1538 0.0988 2.3832 0.4154 5.0624 4.518 2.2881 0.5754
Ackley 1.8191 0.4036 8.1288 1.8181 3.8685 0.3191 9.9282 0.0106
Rastrigin 185.0561 33.5121 99.4527 21.1198 212.3899 42.8747 85.9725 20.3178

94

REFERENCES

[1] Aarts, E., and Korst, J. Simulated annealing and boltzmann machines: a stochastic
approach to combinatorial optimization and neural computing.

[2] Abd-Elazim, S., and Ali, E. Load frequency controller design via bat algorithm
for nonlinear interconnected power system. International Journal of Electrical Power &
Energy Systems 77 (2016), 166–177.

[3] Adarsh, B., Raghunathan, T., Jayabarathi, T., and Yang, X.-S. Economic
dispatch using chaotic bat algorithm. Energy 96 (2016), 666–675.

[4] Airas, M. Echolocation in bats. In Proceedings of spatial sound perception and
reproduction. The postgrad seminar course of HUT Acoustics Laboratory (2003), pp. 1–25.

[5] Arisha, A., and Abo-Hamad, W. Optimisation methods in supply chain applications:
a review.

[6] Baziar, A., Kavoosi-Fard, A., and Zare, J. A novel self adaptive modification
approach based on bat algorithm for optimal management of renewable mg. Journal of
Intelligent Learning Systems and Applications 5 (2013), 11.

[7] Beamon, B. M. Supply chain design and analysis:: Models and methods. International
journal of production economics 55, 3 (1998), 281–294.

[8] Bujok, P., Tvrdik, J., and Polakova, R. Differential evolution with
rotation-invariant mutation and competing-strategies adaptation. In Evolutionary
Computation (CEC), 2014 IEEE Congress on (2014), IEEE, pp. 2253–2258.

[9] Chandrasekar, C., et al. An optimized approach of modified bat algorithm to record
deduplication. International Journal of Computer Applications 62, 1 (2013).

[10] Chowning, J. M. The simulation of moving sound sources. Journal of the Audio
Engineering Society 19, 1 (1971), 2–6.

[11] Clerc, M., and Kennedy, J. The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on
6, 1 (2002), 58–73.

[12] Cuevas, E., Cortés, M. A. D., and Navarro, D. A. O. Reduction of function
evaluations by using an evolutionary computation algorithm. In Advances of Evolutionary
Computation: Methods and Operators. Springer, 2016, pp. 121–152.

95

[13] Cuevas, E., Cortés, M. A. D., and Navarro, D. A. O. A states of matter
algorithm for global optimization. In Advances of Evolutionary Computation: Methods
and Operators. Springer, 2016, pp. 35–54.

[14] Das, S., Abraham, A., Chakraborty, U. K., and Konar, A. Differential
evolution using a neighborhood-based mutation operator. Evolutionary Computation,
IEEE Transactions on 13, 3 (2009), 526–553.

[15] Deb, K., and Agrawal, R. B. Simulated binary crossover for continuous search space.
Complex Systems 9, 3 (1994), 1–15.

[16] Dixon, L. The choice of step length, a crucial factor in the performance of variable
metric algorithms. Numerical methods for non-linear optimization (1972), 149–170.

[17] Dorigo, M. St utzle t. ant colony optimization, 2004.

[18] Dorigo, M., Birattari, M., and Stützle, T. Ant colony optimization.
Computational Intelligence Magazine, IEEE 1, 4 (2006), 28–39.

[19] Dorigo, M., and Caro, G. The ant colony optimization meta-heuristic. in corne, d.,
dorigo, m. & glover, f.(eds.) new ideas in optimization, 1999.

[20] Dorigo, M., Maniezzo, V., and Colorni, A. The ant system: Optimization by
a colony of cooperating agents. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS-PART B 26, 1 (1996), 29–41.

[21] Dourado Maia, R., Nunes de Castro, L., and Matos Caminhas, W.
Real-parameter optimization with optbees. In Evolutionary Computation (CEC), 2014
IEEE Congress on (2014), IEEE, pp. 2649–2655.

[22] Fang, W., Sun, J., Chen, H., and Wu, X. A decentralized quantum-inspired particle
swarm optimization algorithm with cellular structured population. Information Sciences
330 (2016), 19–48.

[23] Fiedler, J. Prey catching with and without echolocation in the indian false vampire
(megaderma lyra). Behavioral Ecology and Sociobiology 6, 2 (1979), 155–160.

[24] Fister, I., Fong, S., Brest, J., and Fister, I. A novel hybrid self-adaptive bat
algorithm. The Scientific World Journal 2014 (2014).

[25] Fister, I., Rauter, S., Yang, X.-S., and Ljubič, K. Planning the sports training
sessions with the bat algorithm. Neurocomputing 149 (2015), 993–1002.

[26] Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné,
C. DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research
13 (jul 2012), 2171–2175.

[27] Gao, H., Kwong, S., Yang, J., and Cao, J. Particle swarm optimization based on
intermediate disturbance strategy algorithm and its application in multi-threshold image
segmentation. Information Sciences 250 (2013), 82–112.

96

[28] Geem, Z. W., Kim, J. H., and Loganathan, G. A new heuristic optimization
algorithm: harmony search. Simulation 76, 2 (2001), 60–68.

[29] Glover, F. Future paths for integer programming and links to artificial intelligence.
Computers & operations research 13, 5 (1986), 533–549.

[30] Glover, F. Tabu search-part i. ORSA Journal on computing 1, 3 (1989), 190–206.

[31] Goldberg, D. Genetic algorithms in search, optimization, and machine learning,
addison-wesley, reading, ma, 1989. NN Schraudolph and J.. 3, 1.

[32] Goldberg, D. E. Real-coded genetic algorithms, virtual alphabets, and blocking.
Complex systems 5, 2 (1991), 139–167.

[33] Griffin, D. R., Webster, F. A., and Michael, C. R. The echolocation of flying
insects by bats. Animal Behaviour 8, 3 (1960), 141–154.

[34] Handfield, R. B., and Nichols, E. L. Introduction to supply chain management,
vol. 1. prentice Hall Upper Saddle River, NJ, 1999.

[35] Holland, J. Adaptation in natural and artificial systems.

[36] Jaddi, N. S., Abdullah, S., and Hamdan, A. R. Multi-population cooperative bat
algorithm-based optimization of artificial neural network model. Information Sciences
294 (2015), 628–644.

[37] Jakobsen, L., Brinkløv, S., and Surlykke, A. Intensity and directionality of bat
echolocation signals. How nature shaped echolocation in animals (2014), 72.

[38] Jakobsen, L., Ratcliffe, J. M., and Surlykke, A. Convergent acoustic field of
view in echolocating bats. Nature 493, 7430 (2013), 93–96.

[39] Jakobsen, L., and Surlykke, A. Vespertilionid bats control the width of their biosonar
sound beam dynamically during prey pursuit. Proceedings of the National Academy of
Sciences 107, 31 (2010), 13930–13935.

[40] Jamil, M., and Yang, X.-S. A literature survey of benchmark functions for global
optimisation problems. International Journal of Mathematical Modelling and Numerical
Optimisation 4, 2 (2013), 150–194.

[41] Jordehi, A. R. A chaotic artificial immune system optimisation algorithm for solving
global continuous optimisation problems. Neural Computing and Applications 26, 4
(2015), 827–833.

[42] Kabir, M. W. U., Sakib, N., Chowdhury, S. M. R., and Alam, M. S. A
novel adaptive bat algorithm to control explorations and exploitations for continuous
optimization problems. International Journal of Computer Applications 94, 13 (2014).

[43] Karaboga, D. An idea based on honey bee swarm for numerical optimization. Tech.
rep., Technical report-tr06, Erciyes university, engineering faculty, computer engineering
department, 2005.

97

[44] Karaboga, D. Artificial bee colony algorithm. scholarpedia 5, 3 (2010), 6915.

[45] Karaboga, D., and Basturk, B. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of global optimization
39, 3 (2007), 459–471.

[46] Kaveh, A., and Zakian, P. Enhanced bat algorithm for optimal design of skeletal
structures. Asian J Civial Eng 15, 2 (2014), 179–212.

[47] Kennedy, J., and Eberhart, R. C. Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on Neural Networks (Perth, Australia, IEEE
Service Center, Piscataway, NJ, 1995), vol. 4, pp. 1942–1948.

[48] Kephart, J. O., et al. A biologically inspired immune system for computers. In
Artificial Life IV: proceedings of the fourth international workshop on the synthesis and
simulation of living systems (1994), pp. 130–139.

[49] Khooban, M. H., and Niknam, T. A new intelligent online fuzzy tuning approach for
multi-area load frequency control: Self adaptive modified bat algorithm. International
Journal of Electrical Power & Energy Systems 71 (2015), 254–261.

[50] Kumar, S. K., Tiwari, M., and Babiceanu, R. F. Minimisation of supply chain cost
with embedded risk using computational intelligence approaches. International Journal
of Production Research 48, 13 (2010), 3717–3739.

[51] Kwiatkowska, M., Mereacre, A., Paoletti, N., and Patanè, A. Synthesising
robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary
computation techniques. In Hybrid Systems Biology. Springer, 2015, pp. 119–140.

[52] Lewis, R., Paechter, B., and Rossi-Doria, O. Metaheuristics for university course
timetabling. Springer, 2007.

[53] Li, G., Niu, P., and Xiao, X. Development and investigation of efficient artificial
bee colony algorithm for numerical function optimization. Applied soft computing 12, 1
(2012), 320–332.

[54] Li, J.-q., and Pan, Q.-k. Solving the large-scale hybrid flow shop scheduling problem
with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences 316
(2015), 487–502.

[55] Li, X., Tang, K., Omidvar, M. N., Yang, Z., Qin, K., and China, H.
Benchmark functions for the cec 2013 special session and competition on large-scale global
optimization. gene 7 (2013), 33.

[56] Liang, J., Qu, B., and Suganthan, P. Problem definitions and evaluation criteria for
the cec 2014 special session and competition on single objective real-parameter numerical
optimization. Computational Intelligence Laboratory (2013).

98

[57] Liang, J., Qu, B., Suganthan, P., and Chen, Q. Problem definitions and
evaluation criteria for the cec 2015 competition on learning-based real-parameter single
objective optimization. Technical Report201411A, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological
University, Singapore (2014).

[58] Liang, J., Suganthan, P., and Deb, K. Novel composition test functions for numerical
global optimization. In Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005
IEEE (2005), IEEE, pp. 68–75.

[59] Lin, J.-H., Chou, C.-W., Yang, C.-H., Tsai, H.-L., et al. A chaotic levy flight bat
algorithm for parameter estimation in nonlinear dynamic biological systems. Computer
and Information Technology 2, 2 (2012), 56–63.

[60] Luke, S. Essentials of metaheuristics, 2nd edn. lulu (2013), 1995.

[61] Luke, S. Essentials of Metaheuristics. Lulu, 2009. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[62] Mavrovouniotis, M., and Yang, S. Ant algorithms with immigrants schemes for the
dynamic vehicle routing problem. Information Sciences 294 (2015), 456–477.

[63] Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D.,
and Zacharia, Z. G. Defining supply chain management. Journal of Business logistics
22, 2 (2001), 1–25.

[64] Mirjalili, S., Mirjalili, S. M., and Yang, X.-S. Binary bat algorithm. Neural
Computing and Applications 25, 3-4 (2014), 663–681.

[65] Mitchell, M. An introduction to genetic algorithms. MIT press, 1998.

[66] Montechiesi, L., Cocconcelli, M., and Rubini, R. Artificial immune system via
euclidean distance minimization for anomaly detection in bearings. Mechanical Systems
and Signal Processing (2015).

[67] Neuweiler, G. Foraging ecology and audition in echolocating bats. Trends in Ecology
& Evolution 4, 6 (1989), 160–166.

[68] Osman, I. H., and Laporte, G. Metaheuristics: A bibliography. Annals of Operations
research 63, 5 (1996), 511–623.

[69] Papadimitriou, C. H., and Steiglitz, K. Combinatorial optimization: algorithms
and complexity. Courier Corporation, 1982.

[70] Parapar, J., Vidal, M. M., and Santos, J. Finding the best parameter setting
particle swarm optimisation.

[71] Passino, K. M. Biomimicry of bacterial foraging for distributed optimization and control.
IEEE control systems 22, 3 (2002), 52–67.

99

[72] Pavani, G. S., de França Queiroz, A., and Pellegrini, J. C. Analysis of ant
colony optimization-based routing in optical networks in the presence of byzantine failures.
Information Sciences (2016).

[73] Picheny, V., Wagner, T., and Ginsbourger, D. A benchmark of kriging-based
infill criteria for noisy optimization. Structural and Multidisciplinary Optimization 48, 3
(2013), 607–626.

[74] Polakova, R., Tvrdik, J., and Bujok, P. Controlled restart in differential evolution
applied to cec2014 benchmark functions. In Evolutionary Computation (CEC), 2014
IEEE Congress on (2014), IEEE, pp. 2230–2236.

[75] Qin, A. K., Huang, V. L., and Suganthan, P. N. Differential evolution algorithm
with strategy adaptation for global numerical optimization. Evolutionary Computation,
IEEE Transactions on 13, 2 (2009), 398–417.

[76] Qin, A. K., Huang, V. L., and Suganthan, P. N. Differential evolution algorithm
with strategy adaptation for global numerical optimization. Trans. Evol. Comp 13, 2
(Apr. 2009), 398–417.

[77] Ramalhinho Dias Lourenço, H. Supply chain management: An opportunity for
metaheuristics. UPF Economics and Business Working Paper, 538 (2001).

[78] Ramesh, B., Mohan, V. C. J., and Reddy, V. V. Application of bat algorithm
for combined economic load and emission dispatch. Int. J. of Electricl Engineering and
Telecommunications 2, 1 (2013), 1–9.

[79] Rechenberg, I. Evolutionsstrategie 94, vol. 1 of Werkstatt Bionik und Evolutionstechnik.
Frommann-Holzboog, Stuttgart, 1994.

[80] Rekaby, A. Directed artificial bat algorithm (daba) - a new bio-inspired algorithm.
IEEE, pp. 1241–1246.

[81] Schnitzler, H.-U., and O’Dell Jr, W. H. Performance of airborne animal sonar
systems: I. microchiroptera. In Animal sonar systems. Springer, 1980, pp. 109–181.

[82] Shang, Y.-W., and Qiu, Y.-H. A note on the extended rosenbrock function.
Evolutionary Computation 14, 1 (2006), 119–126.

[83] Simmons, J. A., Fenton, M. B., and O’Farrell, M. J. Echolocation and pursuit of
prey by bats. Science 203, 4375 (1979), 16–21.

[84] Stilz, W.-P., and Schnitzler, H.-U. Estimation of the acoustic range of bat
echolocation for extended targets. The Journal of the Acoustical Society of America
132, 3 (2012), 1765–1775.

[85] Storn, R., and Price, K. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization 11, 4 (1997),
341–359.

100

[86] Stützle, T. Local search algorithms for combinatorial problems-analysis, algorithms
and new applications. DISKI–Dissertationen zur Künstliken Intelligenz (1999).

[87] Surlykke, A., Jakobsen, L., Kalko, E. K., and Page, R. A. Echolocation
intensity and directionality of perching and flying fringe-lipped bats, trachops cirrhosus
(phyllostomidae).

[88] Surlykke, A., and Kalko, E. K. Echolocating bats cry out loud to detect their prey.
PLoS one 3, 4 (2008), e2036.

[89] Tan, Y., and Zhu, Y. Fireworks algorithm for optimization. In International Conference
in Swarm Intelligence (2010), Springer, pp. 355–364.

[90] Tanabe, R., and Fukunaga, A. Success-history based parameter adaptation for
differential evolution. In Evolutionary Computation (CEC), 2013 IEEE Congress on
(2013), IEEE, pp. 71–78.

[91] Tanabe, R., and Fukunaga, A. S. Improving the search performance of shade
using linear population size reduction. In Evolutionary Computation (CEC), 2014 IEEE
Congress on (2014), IEEE, pp. 1658–1665.

[92] Topal, A. O., and Altun, O. Dynamic virtual bats algorithm (dvba) for global
numerical optimization. In Intelligent Networking and Collaborative Systems (INCoS),
2014 International Conference on (2014), IEEE, pp. 320–327.

[93] Topal, A. O., and Altun, O. A novel meta-heuristic algorithm: Dynamic virtual bats
algorithm. Information Sciences 354 (2016), 222–235.

[94] Topal, A. O., Altun, O., and Terolli, E. Dynamic virtual bats algorithm (dvba)
for minimization of supply chain cost with embedded risk. In Proceedings of the 2014
European Modelling Symposium (2014), IEEE Computer Society, pp. 58–64.

[95] Topal, A. O., Altun, O., and Yildiz, Y. E. An effective hybrid of bat algorithm and
hill climbing for global optimization of high-dimensional functions. Journal of Natural
and Technical Sciences 20, 2.

[96] Topal, A. O., Altun, O., and Yildiz, Y. E. Empirical study of dynamic
virtual bats algorithm (dvba). In Proceedings of the 2015 International Scientific
Conference-Computer Science’2015 (2015), pp. 236–241.

[97] Topal, A. O., Altun, O., and Yildiz, Y. E. Micro bat algorithm for high dimensional
optimization problems. International Journal of Computer Applications 122, 12 (2015).

[98] Voss, S., Osman, I. H., and Roucairol, C. Meta-heuristics: Advances and trends in
local search paradigms for optimization.

[99] Wang, P., Lin, H.-T., and Wang, T.-S. An improved ant colony system algorithm
for solving the ip traceback problem. Information Sciences 326 (2016), 172–187.

[100] Wang, X., Wang, W., and Wang, Y. An adaptive bat algorithm. In Intelligent
Computing Theories and Technology. Springer, 2013, pp. 216–223.

101

[101] Wilcoxon, F. Individual comparisons by ranking methods. Biometrics bulletin (1945),
80–83.

[102] Xiong, T., Bao, Y., Hu, Z., and Chiong, R. Forecasting interval time series using
a fully complex-valued rbf neural network with dpso and pso algorithms. Information
Sciences 305 (2015), 77–92.

[103] Xu, L., Li, Y.-p., Li, Q.-m., Yang, Y.-w., Tang, Z.-m., and Zhang, X.-f.
Proportional fair resource allocation based on hybrid ant colony optimization for slow
adaptive ofdma system. Information Sciences 293 (2015), 1–10.

[104] Yang, X.-S. Firefly algorithms for multimodal optimization. In Stochastic algorithms:
foundations and applications. Springer, 2009, pp. 169–178.

[105] Yang, X.-S. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[106] Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative
strategies for optimization (NICSO 2010). Springer, 2010, pp. 65–74.

[107] Yang, X.-S. Bat algorithm for multi-objective optimisation. International Journal of
Bio-Inspired Computation 3, 5 (2011), 267–274.

[108] Yang, X.-S., and Deb, S. Cuckoo search via lévy flights. In Nature & Biologically
Inspired Computing, 2009. NaBIC 2009. World Congress on (2009), IEEE, pp. 210–214.

[109] Yang, X.-S., and Hossein Gandomi, A. Bat algorithm: a novel approach for global
engineering optimization. Engineering Computations 29, 5 (2012), 464–483.

[110] Yashesh, D., Deb, K., and Bandaru, S. Non-uniform mapping in real-coded genetic
algorithms. In Evolutionary Computation (CEC), 2014 IEEE Congress on (2014), IEEE,
pp. 2237–2244.

[111] Yılmaz, S., Kucuksille, E. U., and Cengiz, Y. Modified bat algorithm. Elektronika
ir Elektrotechnika 20, 2 (2014), 71–78.

[112] Yu, C., Kelley, L., Zheng, S., and Tan, Y. Fireworks algorithm with differential
mutation for solving the cec 2014 competition problems. In Evolutionary Computation
(CEC), 2014 IEEE Congress on (2014), IEEE, pp. 3238–3245.

[113] Yuanbin, M., Xinquan, Z., and Shujian, X. Local memory search bat algorithm
for grey economic dynamic system. TELKOMNIKA Indonesian Journal of Electrical
Engineering 11, 9 (2013), 4925–4934.

[114] Zhang, J., and Sanderson, A. C. Jade: Self-adaptive differential evolution with fast
and reliable convergence performance. In Evolutionary Computation, 2007. CEC 2007.
IEEE Congress on (2007), IEEE, pp. 2251–2258.

102

CIRRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Topal, Ali Osman

Nationality: Turkish (TC)

Date and Place of Birth: 12.12.1976, Karaman

Marital Status: Married

Phone: 00 355 695374368

Email: aliotopal@gamil.com / aotopal@epoka.edu.al

EDUCATION

Degree Institution Year of Graduation

M.S. Epoka University Computer Engineering 2011

B.S. Gaziantep University Electrical-Electronic Engineering 2000

High School Karaman High School 1993

103

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2000 - 2008 Turgut Ozal Education Company IT Teacher - Vice Principal

2008 - 2013 Memorial International School of Tirana IT Teacher - Deputy Director

2013 - Epoka University Head of IT Office - Lecturer

PUBLICATIONS

Derived from this thesis

International and National Journals

[1] A. O. Topal and O. Altun, ” A novel meta-heuristic algorithm: Dynamic Virtual Bats

Algorithm”, Information Sciences, 354 (2016): 222-235 - ELSEVIER

[2] A. O. Topal, O. Altun, and Y. E. Yildiz, ”An Effective Hybrid of Bat Algorithm and Hill

Climbing for Global Optimization of High-dimensional Functions”, Journal of Natural and

Technical Sciences, vol. 20, no. 2, 2015.

[3] A. O. Topal, O. Altun, and Y. E. Yildiz, ”Micro Bat Algorithm for High Dimensional

Optimization Problems”, International Journal of Computer Applications, vol. 122, no. 12,

2015.

Conference Publications

[4] A. O. Topal, O. Altun, 2014, ’Dynamic Virtual Bats Algorithm (DVBA) for Global

Numerical Optimization’. Proceeding of the 6th Intelligent Networking and Collaborative

Systems : INCOS 2014. Salerno ITALY. IEEE.

[5] A. O. Topal, O. Altun, E Terolli, 2014, ’Dynamic Virtual Bats Algorithm (DVBA) for

Minimization of Supply Chain Cost with Embedded Risk’. Proceeding of the 8th European

Modelling Symposium on Mathematical Modelling and Computer Simulation: EMS2014. Pisa

ITALY. IEEE.

104

[6] A. O. Topal, O. Altun, Y. Emre Yildiz, ’Empirical Study of Dynamic Virtual Bats Algorithm

(DVBA)’. Proceeding of 7th International Scientific Conference:”Computer Science’2015”,

Sept.2015, pp. 236-241, DOI: 10.13140/RG.2.1.1364.7844. Durres ALBANIA. (BEST PAPER

AWARD)

105

	ABSTRACT
	ABSTRAKT
	ACKNOWLEDGEMENTS
	INTRODUCTION
	Metaheuristics
	Simulating Annealing
	Genetic Algorithm
	Particle Swarm Optimization
	Tabu Search
	Differential Evolution (DE)
	Artificial Bee Colony (ABC)

	Bat's Echolocation and Bat Algorithms
	Bats and Echolocation
	Bat Algorithm
	Bat Related Algorithms
	Novel Adaptive Bat Algorithm (NABA)
	Local Memory Search Bat Algorithm (LMSBA)
	Adaptive Bat Algorithm (ABA)
	Chaotic Local Search-based Bat Algorithm (CLSBA)

	Dynamic Virtual Bats Algorithm
	Mathematical representation of search scope of the virtual bat
	The behavior of the virtual bats
	The effects of the major parameters on DVBA
	Analyzing the number of search points and step size divisor effects on the performance of DVBA

	Numerical Experiments and Results
	Optimization test functions
	Experimental Setting
	Analyzing the performance of DVBA on optimization test functions
	Comparison Algorithms
	Comparison Experiments
	Comparison the algorithms in Group 1
	Comparison the algorithms in Group 2 and 3

	Supply Chain Cost Problem
	Experiments
	Algorithms for comparison
	Experimental results and discussions

	Improvements on Dynamic Virtual Bats Algorithm
	Micro Bat Algorithm
	The explorer bat
	The exploiter bat
	The scout bat

	Numerical Experiments and Results
	Parameter settings for the algorithms
	Benchmark Functions
	Experimental results and discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Verification of our framework results
	
	VITA

