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ABSTRACT

CHEMOTAXIS DIFFERENTIAL EVOLUTION
OPTIMIZATION TECHNIQUES FOR GLOBAL

OPTIMIZATION

Yildiz, Yunus Emre
Ph.D., Department of Computer Engineering

Supervisor: Dr. Oguz Altun

June 2016

Nature inspired and bio-inspired algorithms have been recently used for solving low

and high dimensional search and optimization problems. In this context, Bacterial

Foraging Optimization Algorithm (BFOA) and Differential Evolution (DE) have been

widely employed as global optimization techniques inspired from social foraging behavior

of Escheria coli bacteria and evolutionary ideas such as mutation, crossover, and selection,

respectively.

BFOA employs chemotaxis (tumble and run steps of a bacterium in its lifetime)

activity for local search whereas the global search is performed by elimination-dispersal

operator. Elimination-dispersal operator kills or disperses some bacteria and replaces

others randomly in the search space. This operator mimics bacterium’s death or dispersal

in case of high temperature or sudden water flow in the environment.
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DE employs the mutation and crossover operators to make a local and a global search

that explore the search space. Exploration and exploitation balance of DE is performed

by two different parameters: mutation scaling factor and crossover rate. These two

parameters along with the number of population have an enormous impact on optimization

performance.

In this thesis, two novel hybrid techniques called Chemotaxis Differential Evolution

Optimization Algorithm (CDEOA) for low dimensions and micro CDEOA (µCDEOA)

for high dimensional problems are proposed. In these techniques, we incorporate the

principles of DE into BFOA with two conditions. What makes our techniques different

from its counterparts is that it is based on two optimization strategies: exploration of a

bacterium in case of its failure to explore its vicinity for food source and exploitation of

a bacterium in case of its achievement to exploit more food source. By means of these

evolutionary ideas, we manage to establish an efficient balance between exploration of

new areas in the search space and exploitation of search space gradients. Statistics of

the computer simulations indicate that µCDEOA outperforms, or is comparable to, its

competitors in terms of its convergence rates and quality of final solution for complex high

dimensional problems.
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ABSTRAKT

TEKNIKAT E OPTIMIZMIT TË EVOLUCIONIT
DIFERENCIAL TË KEMOTAKSES PËR OPTIMIZIM

GLOBAL

Yildiz, Yunus Emre
Doktoraturë, Departamenti i Inxhinierise Kompjuterike

Udhëheqësi: Dr. Oguz Altun

Qershor 2016

Algoritmat e frymëzuar nga natyra dhe biologjia kohët e fundit po përdoren për

zgjidhjen e problemave të optimizmit me dimension kërkimi të ulët dhe të lartë. Në

këtë kontekst, Algoritmi i Optimizmit të Sjelljeve Ushqyese të Baktereve (BFOA) dhe

Evolucioni Diferencial (DE) janë përdorur gjerësisht si teknika globale të optimizmit, e

para e frymëzuar nga sjelljet ushqyese të bakterit Escherichia Coli dhe e dyta nga proçeset

evolucionare të tilla si mutacioni, kryq këmbimi dhe seleksionimi natyror.

BFOA-ja përdor aktivitetin Kemotaksik (lëvizjen e një bakteri gjatë gjithë jetës

së tij) për kërkim lokal, ndërsa kërkimi global kryhet duke përdorur operatorin e

eliminim-shpërndarjes. Operatori i eliminim-shpërndarjes vret ose shpërndan disa nga

bakteret në hapësirën e kërkimit dhe po në ketë hapësire, disa baktere të tjera i zëvendëson

në mënyre rastësore. Ky operator imiton vdekjen ose shpërndarjen e baktereve në

temperatura të larta apo në rast të një vërshimi të papritur të ujit në ambient.
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DE përdor operatoret e mutacionit dhe kryq këmbimit për kërkime lokale dhe globale në

zbulimin e hapësirës se kërkimit. Balanca e zbulimit dhe shfrytëzimit të DE realizohet

nga 2 parametra të ndryshëm: faktori i shkallëzimit të mutacionit dhe shpeshtia e kryq

këmbimit. Këto 2 parametra së bashku me numrin e popullatës kanë një ndikim të madh

në performancën e optimizmit.

Në këtë tezë propozohen 2 teknika të reja hibride, njëra për problemat me dimension të

ulët e quajtur Algoritmi i Optimizmit te Evolucionit Diferencial të Kemotakses (CDEOA)

dhe njëra për problemat me dimension të lartë quajtur mikro CDEOA (CDEOA). Në

këto teknika ne përdorim disa parime të DE në BFOA me 2 kushte. Ajo që e bën këtë

teknike të ndryshme nga simotrat e saj është fakti se ajo bazohet në 2 strategji optimizmi:

zbulimi i një bakteri në rast kur ai dështon në zbulimin e ushqimit dhe shfrytëzimin e

një bakteri kur ai arrin të shfrytëzoje më shumë burime ushqimi. Me anë të këtyre ideve

evolucionare ne arrijmë të vendosim një balancë ndërmjet zbulimit të hapësirave të reja në

hapësirën e kërkimit dhe shfrytëzimin e gradientit të hapësirës së kërkimit. Statistikat e

simulimeve kompjuterikë të CDEOA tregojnë se ajo i tejkalon ose është e krahasueshme me

konkurentet e vet në terma të kursit të konvergjencës dhe cilësisë së zgjidhjes përfundimtare

të problemave të komplikuara dhe me dimension të lartë.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In the past few decades, nature and natural processes have been studied by several researchers

in order to get inspiration for tackling complex real-world problems. Natural selection tends

to eliminate species with poor foraging strategies through methods for locating, handling,

and ingesting food and favors the propagation of genes of species with successful foraging

behavior since they are more likely to obtain enough food to enable them to reproduce. After

many generations, poor foraging strategies are either eliminated or shaped into good ones.

In this context, many nature inspired techniques such as Ant Colony Optimization (ACO)

[17], Artificial Bee Colony (ABC) [28] have been employed. Particularly, such evolutionary

principles have led Kevin M. Passino to develop a new nature-inspired technique known as

Bacterial Foraging Optimization Algorithm (BFOA) which maximizes foraging organism or

animal’s energy intake per unit time spent, considering all the constraints presented by its

own physiology such as sensing and cognitive capabilities, environment (e.g., density of prey,

risks from predators, physical characteristics of the search space) for distributed search and

optimization ( [50]; [37]).

In order to enhance BFOA performance, a considerable number of ameliorations have

been performed, including hybridization with evolutionary algorithms (EA) ( [30]; [4]), and

improvements based on analysis of the BFOA operators ( [15]; [2]; [3] ; [13]). Up to now,
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BFOA has been applied in applications in transmission loss reduction ( [63]), optimal control

design ( [50]), estimation of harmonic components ( [41]), active power filter ( [42]), learning of

artificial neural networks ( [31]), and PID controller tuning ( [32]).

In hybrid algorithms, Kim et al. [30] have proposed a hybrid algorithm BFOA-Genetic

Algorithm (GA) which manipulates on mutation, crossover, different step sizes, chemotaxis

steps, and lifetime of the bacteria. Biswas et al. [4] have proposed a BFOA-Differential

Evolution (DE) hybrid which employs mutation and crossover operators. Jarraya et al. [26]

have proposed Adaptive Chemotactic Bacterial Swarm Foraging Optimization with Differential

Evolution Strategy (ACBSFO_DES) which integrates Particle Swarm Optimization and DE

operators into BFOA to cope with the premature convergence and slowness of the standard

and variants of BFOA. As opposed to the aforementioned improvements of BFOA and the

state-of-the-art optimization algorithms in the literature, BFOA still needs to be optimized in

high dimensional unimodal and multimodal problems in terms of the convergence speed and the

quality of final solution. In order to overcome the deficiencies of BFOA, three novel optimization

algorithms are proposed in this thesis.

1.2 Originality and Motivation

Each classical algorithm has been improved with different contributions by the researchers

since its inception in the literature. In this respect, classical BFOA has been hybridized with

evolutionary and nature-inspired algorithms, too. Although there exists some hybridization

studies of BFOA with DE ( [4], [26] ), they only employ DE operators (mutation and crossover)

explicitly. The proposed techniques employ DE operators implicitly in case that some conditions

are met. In the literature of BFOA, there is no enough study as opposed to some bio inspired

optimization algorithms such as DE and Particle Swarm Optimization (PSO). On the other

hand, the fact that BFOA does not possess the evolutionary operators such as mutation and

crossover has led us to hybridize with DE operators. Furthermore, DE participated in the

First International IEEE Competition on Evolutionary Optimization and became the fastest
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algorithm ( [61]). These aforementioned milestones encouraged us to integrate DE operators

into BFOA.

1.3 Objective of Thesis

The objectives of the work proposed in this thesis are as follows:

1. Present a brief literature review of metaheuristics algorithms.

2. Develop a novel search algorithm (CDEOA) hybridizing the bacterium’s chemotaxis

operator with Differential Evolution (DE) evolutionary operators.

3. Optimize the performance of CDEOA by eliminating the premature convergence effect of

standard BFOA reproduction operator.

4. Validate the performance of the proposed algorithms (CDEOA, iCDEOA, and µCDEOA)

by comparing with its canonical and state-of-the-art counterparts.

5. Analyze the performance of the proposed algorithm (CDEOA) on a real life problem.

6. Improve the performance of the micro BFOA in terms of quality of final solution by

introducing µCDEOA for high dimensional problems.

1.4 Organization of Thesis

Organization of this thesis is as follows:

Chapter 1 presents a brief introduction and overview of the study. It also focuses on the

objectives to achieve the desired goals.

Chapter 2 presents the introduction to optimization techniques in the metaheuristics field.

It also presents a literature review of the related algorithms.
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Chapter 3 proposes two hybrid optimization techniques and discusses the numerical results

obtained in benchmark tests in detail. It also gives the optimization of Supply Chain Problem

using the proposed algorithm.

Chapter 4 includes the proposed micro bio inspired optimization technique and discusses the

numerical results obtained in benchmark tests. It also presents the hybrid micro bio inspired

techniques in the literature briefly.

Chapter 5 discusses the effects of Differential Evolution (DE) optimization algorithm

mutation strategies and DE parameters on CDEOA with the numerical results.

Chapter 6 concludes the thesis. It also presents the future aspects of three hybrid

optimization techniques.

4



CHAPTER 2

BIO INSPIRED OPTIMIZATION TECHNIQUES

2.1 Introduction

Optimization is considered to be mathematical procedures in all engineering fields. It literally

means a kind of process or technique in order to make a system or a decision as excellent

or effective as possible. In computational intelligent field, it is finding the best optimum

solution out of a number of candidate solutions. Optimization algorithms can be categorized

as deterministic or stochastic. The stochastic algorithms depend on the random variables

generated at the beginning of search. Every time the algorithm is launched, it will end up with

different points since there is a randomness in the algorithm. Some examples of stochastic

algorithms are Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential

Evolution (DE), and Bacterial Foraging Optimization Algorithm (BFOA). On other hand,

deterministic techniques work in a deterministic way without randomness. The same initial

points will yield the same final solution even if the algorithm is launched several times.

The examples of deterministic approaches are linear programming, non-linear programming,

mixed integer non-linear programming. In comparison with stochastic techniques, deterministic

methods require huge computational time, thereby tending to fail in converging the optimal

solution when the search space range and the number of dimensions of the problem increase.

Algorithms based on stochastic approaches were recently called metaheuristics which means

higher level process or heuristic ( to find or to discover by trial and error) to find near optimal
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solutions in an optimization domain. The definition of Glover and Laguna ( [21]) describes the

best what the metaheuristics is: ”master strategy that guides and modifies other heuristics to

produce solutions beyond those that are normally generated in a quest for local optimality”.

The characteristics of metaheuristics are as follows:

1. Metaheuristics algorithms need to employ local search and global search operators to

make a search.

2. A reasonable amount of time is reserved in order to find the optimal solution in a

difficult optimization problem. However, there is no guarantee that the optimal solution

is achieved.

3. Metaheuristic algorithms yield approximate solutions and are non-deterministic.

4. Metaheuristics are not problem specific.

One major impact that makes the metaheuristic algorithm superior in solving hard and

complex optimization problem is whether the algorithm possesses exploration and exploitation

balance or intensification and diversification balance [6]. Diversification helps in generating

the diverse candidate solutions in global scale to explore the whole search space whereas

intensification makes the search process more focused on the local area as long as the current

candidate solution is better than previous candidate solution. There must be a good trade-off

between intensification (exploitation) and diversification (exploration) in order to improve the

convergence rate and the quality of final solution within a period of time. Once the candidate

solution gets trapped or gets stagnated in a local optima, diversification helps the candidate

solution escape it and also increases diversity of candidate solutions.

As in Fig. 2.1, the most employed metaheuristic optimization algorithms are depicted

in the field. Bio inspired techniques are divided into two categories namely, evolutionary and

nature inspired techniques. Evolutionary algorithms are GA (Genetic Algorithm), GP (Genetic

Programming), ES (Evolutionary Strategies), and DE (Differential Evolution). Nature inspired

techniques are BFOA (Bacterial Foraging Optimization Algorithm), PSO (Particle Swarm
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Figure 2.1: Taxonomy of Bio inspired algorithms

Optimization), ACO (Ant Colony Optimization), FA (Firefly Algorithm), and ABC (Artificial

Bee Colony).

2.2 Genetic Algorithm

GA is an evolutionary based stochastic optimization algorithm which mimics the natural

selection ( [23]). It is subclass of evolutionary algorithms (EA) which generate solutions for

the optimization problems. With the power of natural evolution techniques such as mutation,

crossover, and selection, it has a potential global search ability. To generate a good solution,

a population of randomly generated candidate solutions undergoes an iterative optimization

process which the population is called generation in each iteration. In other words, the candidate

solutions (individuals) in the population which have a set of chromosomes are initialized on the
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search space. The representation of the candidate solutions are in binary as strings of 0’s and 1’s.

In each generation, every individual’s fitness (cost in case of minimization problem) is evaluated

according to objective function. Assessment of an individual is performed according to objective

function used in the optimization problem. The best individuals in terms of objective function

value are selected out of current generation which will be used for the next generation. The

general flowchart of Genetic Algorithm is shown in Fig. 2.2.

Start 

Initialize the individuals

Evaluate the fitness of 

individuals

Termination 

Criteria?

Stop

Yes

Make a selection

Crossover and mutation 

No

Figure 2.2: General flowchart of Genetic optimization

2.3 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a population based optimization algorithm that

optimizes a problem iteratively trying to help the candidate solution reach the global optimum

according to a termination criteria. The origin of the algorithm belongs to ( [18]) and the
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algorithm was employed for the simulation of social behavior: bird flock and fish school. With

the population called particles, PSO optimizes a problem by moving the particles randomly

according to objective function value on the search space.

Start

Initialize positions and 
velocities of each particles

Compute the fitness function value of 
each particle

Set particle's best position = current position and 
local best fitness = current fitness

Set global best fitness(g) = min(local 
best fitness(pi)), g = pi

Update velocities and positions of 
each particle

Compute the fitness function of each 
particle

Current fitness <
local best fitness ?

Set local best fitness = current fitness

Yes

Current fitness <
global best fitness ?

Set global best fitness = current fitness

Yes

No

No

Termination criteria met ?
No

Stop

Yes

Figure 2.3: General Flowchart of Particle Swarm Optimization
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In order for a particle to update its position, its current position and its velocity are taken

into consideration by adding these two parameters each other with a formula 2.1. According

to the formula, there are two parameters that will influence the performance of the algorithm:

particle’s best known position (pi,d) and particle’s best known position of the whole individuals

(gd). The general flowchart of Particle Swarm Optimization is shown in Fig. 2.3.

vi,d = ω ∗ vi,d + ϕp ∗ rp ∗ (pi,d − xi,d) + ϕg ∗ rg ∗ (gd − xi,d) (2.1)

where rp and rg ∼ U(0, 1), the parameters ω, ϕp, and ϕg are other parameters that are chosen

by the practitioners. These parameters control the behavior and efficiency of optimization

process of PSO.

2.4 Bacterial Foraging Optimization Algorithm

The bacterial foraging system consists of four principal mechanisms, namely chemotaxis,

swarming, reproduction, and elimination-dispersal ( [50]). Below we briefly describe each of

these processes.

2.4.1 Chemotaxis

This process is the motion of an E.coli bacterium using consecutive tumble and swim (run) steps

via flagella.1 While tumble is a unit walk in random direction, swim is the consecutive movement

in the same direction. E.coli alternates between these two modes of operation throughout

its entire life-time. Suppose θ(i, j, k, l) represents the position of the ith bacterium at jth

chemotactic, kth reproductive and lth elimination-dispersal step. The position of the bacterium

in the next step may be represented by Eq. (2.2) and Eq. (2.3),

#»
t (j) =

∆(i)√
∆T (i)∆ (i)

(2.2)

1Note that swim and run can be used interchangeably in the literature of BFOA.
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θ (i, j + 1, k, l) = θ (i, j, k, l) + C (i)
#»
t (j) (2.3)

where C (i) is the size of the unit walk (run-length unit) which is pre-defined as a constant,
#»
t (j) (Eq. 2.2) is the direction angle of the step, and ∆(i) is the random vector whose elements

lie in [−1, 1]. In a run step, #»
t (j) remains the same as #»

t (j − 1); in a tumble step, #»
t (j) is

generated randomly from uniform distribution in the range of [0, 2pi].

2.4.2 Reproduction

The health of the each bacterium is computed as the sum of the objective function values

calculated during its life-time and the population is sorted according to their health. The

healthiest 50% bacteria asexually split into two which are then placed at the same locations.

The remaining 50% with poor health is discarded to keep the population size constant.

2.4.3 Elimination and Dispersal

Elimination and dispersal events may occur in the local environment when the bacteria are

exposed to gradual or sudden changes such as significant rise of temperature or sudden flow of

water. In order to simulate these events in BFOA, some bacteria are liquidated at random with

a pre-determined probability (Ped) while the new replacements are initialized randomly in the

search space.

2.4.4 Swarming

A group of E.coli bacteria arrange themselves in a traveling ring by moving up the nutrient

gradient when placed amidst a semisolid matrix with a single nutrient chemoeffector. The

bacteria, when stimulated by a high level of succinate, release an attractant aspartate which

helps them to aggregate into groups and thus move as concentric patterns of swarms with high
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Figure 2.4: Flowchart of the Classical BFOA

bacterial density. The bacterium-to-bacterium signaling in E. coli swarm may be represented

by Eq. (2.4),

Jcc (θ, P (j, k, l)) =

S∑
i=1

Jcc (θ, θ (i, j, k, l)) =

S∑
i=1

[
−dattractantexp

(
−wattractant

p∑
m=1

(
θm − θim

)2)]

+

S∑
i=1

[
hrepellentexp

(
−wrepellent

p∑
m=1

(
θm − θim

)2)]
(2.4)
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where P (j, k, l) = {θ (j, k, l) |i = 1, 2, ..., S} represents the positions of each member in the

population, S is the total number of bacteria, p is the number of variables to be optimized that

are present in each bacterium, Jcc (θ, P (j, k, l)) is the objective function value to be added to

the actual objective function (to be minimized) to present a time-varying objective function,

θ = [θ1, θ2, ..., θp]
T is a point in the search domain, and θim is the mth elements of the ith

bacterium position θi . dattractant, wattractant, hrepellent, wrepellent are distinct coefficients from

each other.

A flowchart of the classical BFOA is given in Fig. 2.4 which is adapted from the study

of [15].

2.5 Differential Evolution

Differential evolution (DE) is a population based bio-inspired technique which utilizes mutation,

crossover, and selection operators to minimize an objective function. For each generation G, a

new population is created from the current population members,

xi,G, i = 1, 2, ..., N (2.5)

where N is the population size. The initial population (Eq. 2.5) is randomly generated in

the search domain with N vectors according to a uniform probability distribution. After

initialization, DE enters mutation, crossover, and selection processes. Basically, DE chooses

three candidate vectors randomly from the population and new solution vectors are created by

adding the scaled difference between two population vectors to a third population ( [61]).

2.5.1 Mutation

At each generation G, a mutant vector vi,G is generated for each target vector xi,G, i = 1, 2, ...N

in the current population. The most used mutation strategies2 in the literature are as follows:
2http://www.icsi.berkeley.edu/~storn/code.html

13

http://www.icsi.berkeley.edu/~storn/code.html


• “DE/rand/1”

vi,G = xr0,G + F (xr1,G − xr2,G) (2.6)

• “DE/rand/2”

vi,G = xr0,G + F (xr1,G − xr2,G) + F (xr3,G − xr4,G) (2.7)

• “DE/current-to-best/1”

vi,G = xi,G + F ( xbest,G - xi,G ) + F (xr0,G - xr1,G) (2.8)

• “DE/best/1”

vi,G = xbest,G + F (xr0,G − xr1,G) (2.9)

• “DE/best/2”

vi,G = xbest,G + F ( xr0,G - xr1,G) +F ( xr2,G - xr3,G ) (2.10)

• “DE/rand-to-best/1”

vi,G = xr0,G + F ( xr1,G - xr2,G) +F ( xrbest,G - xr1,G ) (2.11)

where r0, r1, r2, r3, and r4 are distinct integers randomly chosen from the current population

and are different from i. xbest,G is the best individual vector in the current generation G, and

F is the mutation factor generally within the range of [0, 2].
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2.5.2 Crossover

After mutation, a binomial crossover operation is carried out on vi,G and xi,G to generate a

new trial vector ui,G = (ui,1,G, ui,2,G, ..., ui,D,G):

ui,j,G =


vi,j,G, if Rj (0, 1) ≤ Cr or j = jrand

xi,j,G, if Rj (0, 1) > Cr

(2.12)

where j = 1, 2, ..., D, D is the dimension of the search space, jrand is a randomly chosen integer

in [1, D], Rj (0, 1) is uniformly generated random number between 0 and 1 for each j, and

Cr ∈ [0, 1] is the crossover rate parameter.

2.5.3 Selection

Selection process is carried out to choose the better of the parent vector xi,G and the trial vector

ui,G. In case of a minimization problem, the selected parent vector in the next generation is

given by Eq. (2.13),

xi,G+1 =


ui,G, if f (ui,G) < f (xi,G)

xi,G, otherwise

(2.13)

where f (·) is the function for minimization. If trial vector ui,G produces a better fitness value,

it replaces its parent in the next generation; otherwise the parent is kept in the population.

2.6 Artificial Bee colony

Artificial Bee Colony (ABC) [28] is another nature inspired optimization algorithm which is

based on behaviors of honey bees. In the population, there are three types of roles: employed

bees which go to the food source previously visited by itself; onlooker bees which wait on the

dance area to decide whether or not the food source is worth being visited; scout bees which
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makes a random search.

In ABC algorithm, each search process cycle is made up of three steps carried out by the

aforementioned bee groups: employed bees are sent onto food sources to measure their nectar

amounts; the food sources are chosen by the onlooker bees depending on the information of

the nectar amount which employed bees share. The scout bees are determined and sent onto

possible food sources [28]. The main steps of ABC algorithm are as follows:

• Initialize the food source positions.

• REPEAT.

1. Each employed bee goes to a food source that visited previously in her memory then

assesses the amount of nectar and makes a special dance for onlooker bees.

2. Depending on the employed bees dances, each onlooker selects one of their food

sources and assesses the quality of nectar.

3. Scouts discover new food sources and these are replaced by the abandoned food

sources.

4. The position of the best food source is kept in the memory.

• UNTIL (all the requirements are satisfied).

2.7 Benchmark Test Functions

In this section, in order to give an idea regarding the different situations which the algorithms

experience, the most frequently used single-objective optimization test problems and artificial

landscapes are presented to assess the characteristics of the optimization algorithms, such as:

convergence rate, quality of the final solution, robustness, and general performance. [43], [1].

Eq. 2.14, Eq. 2.15, Eq. 2.16, Eq. 2.17, Eq. 2.18, and Eq. 2.19 shows each problem’s function

definition. In addition to the artificial landscape and function definition, the search range and

the global minimum of problems are denoted, as well.
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1. Sphere Function

Figure 2.5: 2 dimensional Sphere function

f1 (x) =
∑D

i=1 x
2
i (2.14)

Search range : xi ∈ [−5.12, 5.12], i = 1, 2, ..., D

Global minimum : f(x∗) = 0, x∗ = (0, , , , 0)

2. Rosenbrock’s function

Figure 2.6: 2 dimensional Rosenbrock function
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f2(x) =
∑D−1

i=1 (100(x2
i − xi+1)

2 + (xi − 1)2) (2.15)

Search range : xi ∈ [−5, 10], i = 1, 2, ..., D

Global minimum : f(x∗) = 0, x∗ = (0, , , , 0)

3. Ackley’s function

Figure 2.7: 2 dimensional Ackley function

f3(x) = −20exp(−0.2
√

1
D

∑D
i=1 x

2
i ) −exp( 1

D

D∑
i=1

cos(2πxi)) + 20 + e, (2.16)

Search range : xi ∈ [−32.768, 32.768], i = 1, 2, ..., D

Global minimum : f(x∗) = 0, x∗ = (0, , , , 0)

4. Griewank’s function
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Figure 2.8: 2 dimensional Griewank function

f4(x) =
∑D

i=1
x2
i

4000 (2.17)

Search range : xi ∈ [−600, 600], i = 1, 2, ..., D

Global minimum : f(x∗) = 0, x∗ = (0, , , , 0)

5. Rastrigin’s function

Figure 2.9: 2 dimensional Rastrigin function
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f5(x) =
∑D

i=1(x
2
i − 10cos(2πxi) + 10)polghkh (2.18)

Search range : xi ∈ [−5.12, 5.12], i = 1, 2, ..., D

Global minimum : f(x∗) = 0, x∗ = (0, , , , 0)

6. Schwefel’s function

Figure 2.10: 2 dimensional Schwefel function

f16(x) = 418.9829 ∗D −
∑D

i=1 xisin(|xi|1/2) (2.19)

Search range : xi ∈ [−500, 500], i = 1, 2, ..., D

Global minimum : f(x∗) = 0, x∗ = (420.9687, , , , 420.9687)
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CHAPTER 3

BFOA BASED HYBRID OPTIMIZATION

ALGORITHMS

This chapter introduces a novel optimization approach named Chemotaxis Differential

Evolution Optimization Algorithm (CDEOA) and its improved variant (ICDEOA). This new

approach is based on the integration of two new strategies into the chemotaxis step of BFOA:

weak bacterium’s search and strong bacterium’s foraging. The performance of weak bacteria

is enhanced by randomly moving to new positions whereas the strong bacteria is enhanced

by integrating the ideas of differential evolution (DE) operators. With these strategies, we

establish an effective distribution of the responsibility of exploring new areas, and responsibility

of exploiting the search space gradients. The simulation results reveal that CDEOA has shown

superior performance in multi-model and high-dimensional functions in terms of convergence

speed and quality of final solution. The proposed algorithm has been compared with classical

BFOA, DE, and BFOA variants, and the state-of-the-art DE variants over a test suit of 30

CEC 2014 benchmark functions ( [35]).

3.1 CDEOA

Empirical studies ( [5] ; [15]) report that BFOA possesses a poor convergence behavior on

several multi-modal benchmark functions that have rough fitness landscapes when compared

with other naturally inspired optimization techniques like the Genetic Algorithm (GA) ( [65]),

21



Particle Swarm Optimization (PSO) ( [51], [29]), and DE ( [61]). In addition, the BFOA

elimination-dispersal step (the death and then random position assignment of a bacterium) is

not a complete biologically valid model ( [37]). Additionally, the performance of BFOA needs

to be improved on complex optimization problems with high dimensionality due to fact that

classical BFOA yields poor convergence behavior on high dimensional problems ( [4]).

Based on above inadequacies of classical BFOA, a novel optimization method, called CDEOA

(Algorithm 1), which hybridizes BFOA with DE is proposed. CDEOA adopts the same

mutation, crossover, and selection operations of DE as described in Eq. (2.10), Eq. (2.12),

and Eq. (2.13) in Section 2.5, respectively.

3.1.1 Distribution of the exploration and exploitation responsibilities

The basic idea behind the proposed CDEOA algorithm is centered on two different strategies: a)

making “weak” bacteria more explorative, where “weak” bacteria are the ones on positions with

low nutrient concentrations, and b) making “strong” bacteria more exploitative, where “strong”

bacteria are the ones on positions with high nutrient concentrations. Črepinšek et al. [76] wrote:

“Exploration is the process of visiting entirely new regions of a search space while exploitation

is the process of visiting those regions of a search space within the neighborhood of previously

visited points”. Exploration and exploitation are opposing forces that need to be balanced

( [19]). In this respect, in order to establish a good ratio between exploration and exploitation,

selection operator and search operators (mutation and crossover) of DE are employed in this

study. The selection operators we use favor a search toward the regions of the best individuals.

In addition, Bäck and Schwefel [7] reported that selection pressure has a great control over

level of exploration and exploitation. While high selection pressure forces the search to be more

exploitative, low selection pressure encourages the search to be more explorative. From this

perspective, CDEOA tends to have an exploitative search due to behaviors of two selection

operators, the reproduction operator of BFOA and selection operator of DE. The differential

mutation operator randomly generates different bacteria and thus increases the diversity of
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the population. From this point of view, the differential mutation operator tends to be more

exploration operator. However, the mutation strategy, “DE/best/2”, which CDEOA employs

makes the search more exploitative by guiding the search with the best solution so far discovered.

De Jong and Spears [16] wrote: “A potential number of ways in which a genetic operator can

effect a change has been called its exploratory power.” In this context, the crossover operator

which CDEOA employs urges the search toward more explorative due to its high crossover

rate. By means of random search (RS), CDEOA carries out an explorative search on the fitness

landscape. On the other hand, it is not easy to predict if individuals produced for the next

generation by a crossover and/or mutation operator will fall into the exploration or exploitation

zones ( [76]).

If the bacterium discovers a new, promising area and keeps running for a predefined number

Mr of successive generations, then this bacterium undergoes exploitation state (line 60 in

Algorithm 1). By “Discovering promising area” we mean the case when bacterium records

a fitness improvement from last generation to the current. If the bacterium’s current fitness

remain unchanged for a predefined number Mt of successive generations, then this bacterium

undergoes exploration state (line 50 in Algorithm 1). Through the means of these strategies,

we effectively distribute the responsibilities of exploration and exploitation of fitness landscape

amongst the bacteria. The proposed algorithm performs local search through the chemotaxis

movement operation of BFOA and the global search over the search space through RS and DE

operators Eq. (2.10), Eq. (2.12), and Eq. (2.13).

3.1.2 Making Weak Bacteria Explorative

During the chemotaxis process of BFOA, bacterium in the vicinity of noxious substance will try

to move to a position with better nutrient concentration by taking larger steps. This approach

is the same as the adaptive step strategy of Dasgupta et al. [15] to make the bacterium more

explorative. In the proposed approach, the bacterium performs an elimination process which

leads it to change its position randomly in fitness landscape after a number of unsuccessful
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Algorithm 1 Detailed pseudo-code of CDEOA. Comments start with “//”. The code we
discuss in the text is in boldface.

1: Parameters:
2: p← dimensions of the search space
3: S ← total number of bacteria in the population
4: Nc ← number of chemotaxis steps
5: Ns ← swimming steps
6: Nre ← number of reproduction steps
7: C(i)← the run-length unit
8: Mt ← maximum number of tumble steps
9: Mr ← maximum number of run steps

10: f ← objective function to be minimized
11: //Initialize some local variables
12: Et ←0 //bacterium’s unsuccessful tumble step
13: Er ←0 //bacterium’s unsuccessful run step
14: θbest ←random position in the search space
15: fbest ←f(θbest)
16: Mfes ←maximum number of FEs allowed
17: Nfes ←0 //current number of function evaluations
18: // Define a helper function J that will call the actual objective function f . This helper

function also updates the Nfes, θbest, and fbest variables. This approach makes the rest
of the algorithm cleaner. Depending on the programming language and programming
paradigm that will be used, this helper function may be moved outside the CDEOA block,
or may be a method of a class.

19: function J (θ):
20: v ← f(θ)
21: Nfes ← Nfes +1//update number of FEs
22: if v < fbest then
23: θbest ← θ //update global best location
24: fbest ← v //update global best function value
25: end//if
26: return v
27: end// function
28: while Nfes < Mfes do//FEs control loop
29: for k from 1 to Nre do// Reproduction loop
30: for j from 1 to Nc do// Chemotaxis loop
31: for i from 1 to S do// Tumble-Swim loop
32: Jlast ←J(θ(i, j, k))//J(·) computes the health (fitness) of a bacterium.
33: ∆(i) random vector within [−1, 1]//tumble
34: θ (i, j + 1, k) = θ (i, j, k)+ C (i) ∆(i)√

∆T (i)∆(i)

35: if J (θ (i, j + 1, k)) < J (θ (i, j, k)) then
36: Et ← Et + 1

[1]
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37: //Swim:
38: for m from 1 to Ns do// Swim loop
39: if J (θ (i, j + 1, k)) < Jlast then
40: Jlast = J (θ (i, j + 1, k))

41: θ (i, j + 1, k) = θ (i, j, k)+C (i) ∆(i)√
∆T (i)∆(i)

42: Er ← Er + 1
43: else
44: m = Ns//Break from switch loop
45: end//if
46: end//Swim loop
47: end//Tumble-Swim loop
48: //Exploration Loop
49: for i from 1 to S do
50: //Take an exploration step for bacterium i
51: if Et = Mt then
52: θ(i, j + 1, k) ←random position
53: Jlast = J(θ(i, j + 1, k))
54: if Jlast < J(θ(i, j, k)) then
55: J(θ(i, j + 1, l))← Jlast

56: end//if
57: Et = 0

58: end//if

59: end//Exploration Loop
60: //Exploitation Loop
61: for i from 1 to S do
62: if Er = Mr let bacterium undergo : then
63: DE mutation as in Eq. (2.10)
64: DE crossover as in Eq. (2.12)
65: DE selection as in Eq. (2.13)
66: end//if

67: end//ExploitationLoop
68: end //Chemotaxis loop
69: //Reproduction
70: J i

health =
∑Nc+1

j=1 J(θ(i, j, k)) // Compute the health of each bacterium
71: Sort bacteria cost Jhealth in ascending order. Let bacteria with the highest Jhealth values
die and the remaining bacteria with the best values reproduce

72: end // Reproduction loop
73: end // FEs control loop
74: return θbest
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Table 3.1: Summary of the CEC 2014 Test Functions
Search Range: [−100, 100]D

No. Functions F ∗i = Fi (x
∗)

Unimodal
Functions

1 Rotated High Conditioned Elliptic Function 100
2 Rotated Bent Cigar Function 200
3 Rotated Discus Function 300

Simple
Multimodal
Functions

4 Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Ackley’s Function 500
6 Shifted and Rotated Weierstrass Function 600
7 Shifted and Rotated Griewank’s Function 700
8 Shifted Rastrigin’s Function 800
9 Shifted and Rotated Rastrigin’s Function 900
10 Shifted Schwefel’s Function 1000
11 Shifted and Rotated Schwefel’s Function 1100
12 Shifted and Rotated Katsuura Function 1200
13 Shifted and Rotated HappyCat Function 1300
14 Shifted and Rotated HGBat Function 1400
15 Shifted and Rotated Expanded Griewank’s + Rosenbrock’s 1500
16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600

Hybrid
Functions

17 Hybrid Functions (N=3) 1700
18 Hybrid Function 2 (N=3) 1800
19 Hybrid Function 3 (N=4) 1900
20 Hybrid Function 4 (N=4) 2000
21 Hybrid Function 5 (N=5) 2100
22 Hybrid Function 6 (N=5) 2200

Composition
Functions

23 Composition Function 1 (N=5) 2300
24 Composition Function 2 (N=3) 2400
25 Composition Function 3 (N=3) 2500
26 Composition Function 4 (N=5) 2600
27 Composition Function 5 (N=5) 2700
28 Composition Function 6 (N=5) 2800
29 Composition Function 7 (N=3) 2900
30 Composition Function 8 (N=3) 3000

N:Number of functions used, D: Dimensions.
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Figure 3.1: Exploration Scheme of a Bacterium

movement attempts Mt. In other words, if the bacterium’s number of unsuccessful attempts

of taking tumble steps Et reaches the predefined maximum Mt, the bacterium is liquidated

at random (line 50-51 in Algorithm 1). By “Bacterium’s unsuccessful attempt to take step”

we mean that the bacterium does not take a step while by “bacterium’s successful step” we

mean that the bacterium takes step to a promising area. In this respect, the unsuccessful

step attempt occurs when the current bacterium’s objective function value J(θ(i, j)) is worse

than bacterium’s objective function value J(θ(i, j + 1)) in the next chemotaxis step. Notice

that this strategy randomly assigns the locations of several bacteria which make the algorithm

more explorative. This process is performed by the elimination-dispersal process in the classical

BFOA. In the proposed method, the elimination-dispersal process of BFOA is replaced with

“making weak bacteria explorative” strategy.

Fig. 3.1 illustrates the steps of a bacterium in exploration state. If a bacterium fails to

discover a promising area in its vicinity, it is randomly dispersed to another location.

3.1.3 Making Strong Bacteria Exploitative

As mentioned in Section 2.4.1, the bacterium runs for a period of time in the same direction

as long as it discovers better nutrient-rich concentration and retains its position. In order to

make the bacterium more exploitative, the bacterium is supposed to exploit the gradient of the

promising area in the vicinity of nutrient-rich substance. Accordingly, each bacterium takes
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the mutation, crossover, and selection operators of DE (line 62-64 in Algorithm 1) only if the

bacterium’s successful number of run steps Er reaches the maximum number of run steps Mr

(line 61 in Algorithm 1).

Consequently, these two strategies, making weak bacteria explorative and making strong

bacteria exploitative, which are denoted with boldface in the Algorithm 1 leads to a new global

hybrid optimization algorithm named CDEOA.

3.1.4 Experimental Study

The CDEOA algorithm was tested using a set of 30 standard benchmark functions (see Table

3.1) of IEEE CEC 2014 single objective optimization competition. These functions include

some novel basic problems, graded level of linkages, and rotated trap problems. The suite

also has composition test problems obtained by extracting features dimension-wise from several

problems. The descriptions of these functions are given in [35]. Functions 1-3 are unimodal,

functions 4-16 are simple multimodal, functions 17-22 are hybrid, and functions 23-30 are

composition functions.

Parametric Setup

In the experimental studies, parameter settings of the methods are the same as in their original

papers. The population size S for the proposed method has been kept to 50 regardless of the

dimension size of the problem. Mt and Mr parameters were both set to optimum value 3 after

a series of fine-tuning.

The control parameters F (scaling factor) and Cr (crossover rate) of DE need to be tuned

properly by the practitioner. When Cr is close to 1.0, the mutation operator can produce the

trial vector ui,G different from the target vector xi,G with a high probability. Hence trial vector

receives huge data from the mutant vector vi,G. Therefore, choosing Cr=0.9 or 1.0 not only

speeds up convergence but also diversifies the population by means of one of the best solution

dependent DE mutation strategies, “DE/best/2” (Eq. 2.10 in Chapter 2). In this context, Cr
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parameter of DE was set to be 0.9. Generally, F is selected within the range of [0.5 − 1.0]. It

is reported that a smaller F value (e.g., 0.5) can lead to the statistically better performance

than the other parameter values ( [60], [54]). In this context, F parameter of DE was set to be

0.5. Notice that CDE method employs “DE/rand/1” strategy just as in its original paper. On

the other hand, standard DE, ACBSFO_DES employ “DE/best/1” (Eq. 2.9 in Chapter 2);

CDEOA employs “DE/best/2” strategy. For the proposed method, classical BFOA, and BFOA

variants, following parameter values were chosen: Nc=100, Ns=12, Nre=16, C(i)=0.1.

Figure 3.2: (a) F1: Rotated High Conditioned Elliptic; (b) F2: Rotated Bent Cigar; (c) F3:
Rotated Discus; (d) F4: Shifted and Rotated Rosenbrock.
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Figure 3.3: (a) F5: Shifted and Rotated Ackley; (b) F6: Shifted and Rotated Weierstrass; (c)
F7: Shifted and Rotated Griewank; (d) F8: Shifted Rastrigin.

Simulation

The study introduced in this section aims to test the quality of the final solution and the

convergence speed at the end of a fixed number of function evaluations (FEs). The maximum

number of FEs was set to 3 × 105 for 30 dimensions in accordance with the instructions in

CEC 2014 special session. For illustrations, median convergence graphs of BFOA, DE, CDE,

and ACBSFO_DES, CDEOA for test functions was plotted for unimodal, simple multimodal

problems, hybrid problems, and composition problems in Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.5,

Fig. 3.6, Fig. 3.7, and Fig. 3.8. The horizontal axis of these graphs is the number of objective
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Figure 3.4: (a) F9: Shifted and Rotated Rastrigin’; (b) F10: Shifted Schwefel; (c) F11: Shifted
and Rotated Schwefel; (d) F12: Shifted and Rotated Katsuura.

function evaluations, and the vertical axis is the mean of objective function values. Notice that

all the experimental results on these graphs are mean of the function values, not the mean error

values. The error values were given in Appendix A.1 and A.3 according to (F ( #»x ) − F ( #»x ∗))

for evaluating the success of five algorithms, where #»x is the best value of the bacterium in a

run and #»x ∗ is the global best of the test function (Table 3.1). The error values of the function

which is less than 1 × 10−8 are considered as zero since such a small error is sufficient for an

acceptable convergence to a correct solution and substituted by zeros in Appendix A.1, A.2,

A.3, and A.4. CDEOA was compared with classical DE, BFOA, and two other BFOA variants
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Figure 3.5: (a) F13: Shifted and Rotated HappyCat; (b) F14: Shifted and Rotated HGBat; (c)
F15: Shifted and Rotated Expanded Griewank’s plus Rosenbrock; (d) F16: Shifted and Rotated
Expanded Scaffer’s F6.

and four state-of-the-art DE approaches.

A brief summary of the results at the last three rows of Appendix A.1 and A.3 was given.

In these last three rows of Appendix A.1 and A.3, the signs “-“, “+”, and “” indicate the

performance of the corresponding competitors as opposed to CDEOA method. “-“ means that

the corresponding method in the column performed worse than CDEOA. “+” implies that the

corresponding method in the column performed better than CDEOA. Finally, “≈ ” denotes

that the corresponding algorithm in the column performed comparable to CDEOA. The best

final function values (BFV), the worst final function values (WFV), and the median of the final
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Figure 3.6: (a) F17: Hybrid ;(N=3); F18: Hybrid 21(b) F19: Hybrid 4 (N=4); (c) F20: Hybrid
4 (N=4); (d) F21: Hybrid 5 (N=5)

values were given in Appendix A.2 and A.4.

Comparison of CDEOA with Four Soft Computing Methods

The performance of CDEOA algorithm was compared with classical BFO algorithm ( [50]),

classical DE algorithm ( [38], [61]), two classical BFOA variants, Chemotaxis Differential

Evolution (CDE) ( [4]), and Adaptive Chemotactic Bacterial Swarm Foraging Optimization

with Differential Evolution Strategy (ACBSFO_DES) ( [26]). Compared algorithms were
1The graph of F18 was not printed out due to the huge gap in objective function values of algorithms.
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Figure 3.7: (a) F22: Hybrid 6 (N=5); (b) F23: Composition 1 (N=5); (c) F24: Composition 2
(N=3); (d) F25: Composition 3 (N=3).

chosen in accordance with operators that they employ in common. Classical BFOA employs

elimination-dispersal, reproduction and chemotaxis; classical DE employs mutation, crossover

and selection; CDE employs chemotaxis, mutation, crossover, and selection; ACBSFO_DES

employs reproduction, elimination-dispersal, chemotaxis, mutation, crossover, and selection.

The experiment was performed in 30 dimensions with 25 runs for each algorithm-problem

pair. The statistics were given in Appendix A.1 and A.2.
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Figure 3.8: (a) F26: Composition 4 (N=5);(b) F27: Composition 5 (N=5); (b) F28: Composition
6 (N=5); (c) F29: Composition 7 (N=3); (e) F30: Composition 8 (N=3).
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Unimodal Functions F1 - F3

ACBSFO_DES outperforms CDEOA on the two unimodal functions F1 and F2. CDEOA and

ACBSFO_DES exhibit similar performance on one function and outperform the others.

Simple Multimodal Functions F4 - F16

CDEOA is remarkably better than BFOA, DE, CDE, and ACBSFO_DES on these 12 test

functions. However, ACBSFO_DES performs better than CDEOA on F4, F11, F12, and F16

test functions. It is interesting to note that, the five methods show similar performance on F5

test function. We can clearly observe that BFOA, DE, and CDE fail on most functions, as well.

Hybrid Functions F17 - F22

To obtain these hybrid functions, the variables are randomly divided into some subcomponents

and then different basic multimodal and unimodal functions are used for different

subcomponents. On these six functions, CDEOA exhibits better performance than four

other methods. While CDE exhibits similar performance with CDEOA on F22 test function,

ACBSFO_DES outperforms CDEOA on F17 and F18 test functions .

Composition Functions F23 - F30

The composition functions merge the properties of the sub-functions better and maintain

continuity around the global/local optima. We can observe that the performance of CDEOA

method is superior overall to that of four competitors except on F23, F24, F25, and F26 test

functions which ACBSFO_DES, CDE, and DE perform comparable to CDEOA. In addition,

the classical BFOA method catches up with CDEOA on F25 and F26 test functions.

In Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.5, Fig. 3.6, Fig. 3.7, and Fig. 3.8 the convergence

map of BFOA, DE, CDE, ACBSFO_DES, and CDEOA shows that CDEOA converges faster

than others on F6, F8, F9, and F10 problems while similar convergence performance on the rest

of the problems. Although ACBSFO_DES shows better convergence than CDEOA on some
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functions, it gets trapped in local minima. We can observe that CDEOA is superior overall to

that of four competitors in terms of quality of the final solution at the end of the fixed function

evaluations.

In short, CDEOA is superior to the four methods as compared to simple multimodal

functions, hybrid functions, and composition functions and it is the second best in unimodal

functions.

Comparison of CDEOA with Four State-of-the-art DE

CDEOA was also compared with Differential Evolution Strategy based on the Constraint of

Fitness Values Classification (FCDE) ( [34]), Partial Opposition-Based Adaptive Differential

Evolution (POBL-ADE) ( [24]), Fireworks Algorithm with Differential Mutation (FWA-DE) (

[71]), and Differential Evolution Algorithm based on Fitness Euclidean-distance ratio (FERDE)

( [55]). Compared algorithms were chosen because they are all the variants of DE that competed

in CEC 2014 on Single Objective Real Parameter Numerical Optimization Competition. For

each algorithm-problem pair, the experiment was performed in 30 dimensions with 51 runs.

The statistics were given in Appendix A.3 and A.4. The maximum number of FEs was set to 3

× 105 in accordance with instructions in CEC 2014 special session. The numerical benchmark

results were taken from the aforementioned studies.

Unimodal Functions F1 - F3

As depicted in Appendix A.3, CDEOA is the best among the five algorithms on these three

unimodal functions. It outperforms FCDE and FERDE on two test functions and exhibits

similar performance with FWA-DE and POBL-ADE.

Simple Multimodal Functions F4 - F16

FERDE is the best among the five methods on these functions. It outperforms CDEOA on

six test functions. In contrast, CDEOA performs better than FERDE on two test functions.
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Overall, CDEOA exhibits similar performance with FWA-DE. FCDE can not even outperform

on any test function while POBL-ADE outperforms on one function.

Hybrid Functions F17 - F22

On these six test functions, CDEOA is significantly better than that of the four methods.

However, FERDE and FWA-DE outperform CDEOA on F22 test function. FCDE and

POBL-ADE cannot be significantly better than CDEOA on any test function.

Composition Functions F23 - F30

FWA-DE is the best among the five methods on these eight composition functions. It

outperforms CDEOA on three test functions (i.e., F28-F30). CDEOA and FERDE exhibit

similar performance and outperform FCDE and POBL-ADE.

In short, overall, CDEOA performs better than FCDE, POBL-ADE, and FWA-DE while it

exhibits similar performance with FERDE.

3.2 Improved CDEOA

This section presents a novel variant of CDEOA, Improved Chemotaxis Differential Evolution

Optimization Algorithm (ICDEOA) [74], to cope with premature convergence of reproduction

process. In ICDEOA, reproduction operator of BFOA is replaced with probabilistic reposition

operator to enhance the intensification and the diversification of the search space. ICDEOA

was compared with state-of-the-art DE and non-DE variants on 7 numerical functions of the

2014 Congress on Evolutionary Computation (CEC 2014). Simulation results of CEC 2014

benchmark functions reveal that ICDEOA performs better than that of competitors in terms

of the quality of the final solution in unimodal and multimodal for high dimensional problems.
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3.2.1 Concept of ICDEOA

The concept of ICDEOA depends on two approaches in CDEOA ( [73]): a) making

“weak” bacteria more diversified, where “weak” bacteria are the ones in positions with

nutrient-poor medium, and b) making “strong” bacteria more intensified, where “strong”

bacteria are the ones in positions with nutrient-rich medium. Based on the aforementioned

approaches, a new operator, probabilistic repositioning, which balances the exploration and the

exploitation trade-off was introduced. The reproduction process of classical BFOA is replaced

with probabilistic repositioning operator. Unlike the reproduction process, probabilistic

repositioning operator retains the strong bacteria in the vicinity of the best bacterium, whereas

the weak bacteria are dispersed to the random positions in the search space.

ICDEOA tends to improve the optimization performance of CDEOA. In this contribution,

in place of reproduction operator of BFOA, the probabilistic repositioning operator which acts

based on the bacterium’s fitness (Algorithm 2, line 67) was employed. If the function value (cost)

of a bacterium is high, the bacterium most likely will change its position (Algorithm 2, line

70). If the function value is low, the bacterium is moved to the vicinity of the best bacterium

(Algorithm 2, line 73). Reproduction operator of CDEOA possesses intensive exploitation

capability which may result in premature convergence since it chooses the best of the population

and kills the rest for the next generation. The probabilistic repositioning operator may tend

to prevent not only the premature convergence problem of reproduction operator, but also

diversify the half of the population. The pseudo code of ICDEOA is shown in Algorithm 2.

3.2.2 Experimental Study

The study introduced in this section aims to test the quality of the final solution at the end of

a fixed number of function evaluations (FEs). The maximum number of FEs was set to 3 ×

105 for 30 dimensional functions with the population size S=50. The error function values were

given in Appendix A.5. ”Mean Error” and ”Std Dev” in Appendix A.5 indicate the average and

the standard deviation of the error values obtained in 25 runs. The CEC 2014 test functions
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Algorithm 2 Detailed pseudo-code of ICDEOA. Comments start with “//”. The code we
discuss in the text is in boldface.

1: Parameters:
2: p← dimensions of the search space
3: S ← total number of bacteria in the population
4: Nc ← number of chemotaxis steps
5: Ns ← swimming steps
6: Nr ← re-positioning steps
7: C(i)← the run-length unit
8: Mt ← maximum number of tumble steps
9: Mr ← maximum number of run steps

10: f ← objective function to be minimized
11: //Initialize some local variables
12: Et ←0 //bacterium’s unsuccessful tumble step
13: Er ←0 //bacterium’s unsuccessful run step
14: θbest ←random position in the search space
15: fbest ←f(θbest)
16: Mfes ←maximum number of FEs allowed
17: Nfes ←0 //current number of function evaluations
18: // Define a helper function J that will call the actual objective function f . This helper

function also updates the Nfes, θbest, and fbest variables.
19: function J (θ):
20: v ← f(θ)
21: Nfes ← Nfes +1//update number of FEs
22: if v < fbest then
23: θbest ← θ //update global best location
24: fbest ← v //update global best function value
25: end//if
26: return v
27: end// function
28: while Nfes < Mfes do//FEs control loop
29: for k from 1 to Nre do// Re-position loop
30: for j from 1 to Nc do// Chemotaxis loop
31: for i from 1 to S do// Tumble-Swim loop
32: Jlast J(θ(i, j, k))//J(·) computes the fitness
33: ∆(i) random vector within [−1, 1]//tumble
34: θ (i, j + 1, k) = θ (i, j, k)+ C (i) ∗ ∆(i)√

∆T (i)∗∆(i)

35: if J (θ (i, j + 1, k)) < J (θ (i, j, k)) then
36: Et ← Et + 1

[1]
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37: //Swim:
38: for m from 1 to Ns do// Swim loop
39: if J (θ (i, j + 1, k)) < Jlast then
40: Jlast = J (θ (i, j + 1, k))

41: θ (i, j + 1, k) = θ (i, j, k)+C (i) ∗ ∆(i)√
∆T (i)∗∆(i)

42: Er ← Er + 1
43: else
44: m = Ns//Break from switch loop
45: end//if
46: end//Swim loop
47: end//Tumble-Swim loop
48: //Exploration Loop
49: for i from 1 to S do
50: //Take an exploration step for bacterium i
51: if Et = Mt then
52: θ(i, j + 1, k) random position
53: Jlast = J(θ(i, j + 1, k))
54: if Jlast < J(i, j, k) then
55: J(i, j + 1, l)← Jlast

56: end//if
57: Et = 0

58: end//if

59: end//Exploration Loop
60: //Exploitation Loop
61: for i from 1 to S do
62: if Er = Mr let bacterium undergo : then
63: DE mutation, crossover, and selection

64: end//if

65: end //Exploitation Loop
66: end //Chemotaxis loop
67: Re− positioning of all bacteria
68: Prob← Assign probabilities of each bacterium
69: for i, e in enumerate(Prob) do
70: if e > random number within [0, 1] then
71: θ (i, j + 1, k)← to a random location
72: else
73: θ (i, j + 1, k)← to the vicinity of the best bacterium

74: end//Re− positioning

75: end // FEs control loop
76: return θbest
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are as follows: F1=Rotated high conditioned Elliptic, F2=Rotated Bent Cigar, F3=Rotated

discus, F4= Shifted and rotated Rosenbrock, F5=Shifted and rotated Ackley, F6=Shifted and

rotated Weierstrass, and F7=Shifted and rotated Griewank ( [35]).

3.2.3 Comparison with Three State-of-the-art DE and One Non-DE

The performance of the ICDEOA algorithm was compared with OptBees which is inspired by

the bee colonies ( [39]), Memetic Differential Evolution based on Fitness-Euclidean distance

Ratio (FERDE) ( [55]), Differential Evolution with Replacement Strategy for Real-Parameter

Numerical Optimization (RSDE) ( [66]), and CDEOA ( [73]).

Unimodal Functions F1- F3

As presented in Appendix A.5, overall, ICDEOA is better than that of four methods on these

three unimodal functions. It outperforms OptBees on 2, FERDE on 2, RSDE on 1, and CDEOA

on 2 test functions. In contrast, FERDE and RSDE perform better than ICDEOA on test

function F1. ICDEOA also exhibits similar performance with OptBees, RSDE, and CDEOA

on test function F2.

Multimodal Functions F4- F7

On these four multimodal test functions, ICDEOA outperforms OptBees on 3, FERDE on 2,

RSDE on 2, and CDEOA on 2 test functions. FERDE, RSDE, and CDEOA exhibit better

performance than ICDEOA on test function F7. Overall, ICDEOA performs better than

OptBees, FERDE, RSDE, and CDEOA.

3.3 Supply Chain Cost Problem

In this section, CDEOA has been employed to optimize the Supply Chain Cost problem [72] by

comparing the performance with other well-known algorithms; Particle Swarm Optimization
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(PSO), Bacterial Foraging Optimization Algorithm (BFOA), Tabu Search (TS) [21], Bat

Algorithm (BA) [67], and Genetic Algorithm (GA) .

In order to maximize the profits and minimize the cost, there has been always a research in

the business world. This requirement unveiled a new optimization problem known as Supply

Chain Cost Problem. When large numbers of decision variables and alternatives exist, these

kinds of problems are identified as non-deterministic polynomial-time hard (NP-hard) problems

and they need more complex optimization algorithms to guide the search for optimum or

near-optimum solutions [47]. In this context, random search techniques have been popular

in solving computationally complex (NP-hard) problems due to their ability to find effective

solutions in a short amount of time. In this field, Castillo [11] has proposed a novel capacitated

Supply Chain Network Design (SCND) model which evaluates the overall economic profit of the

supply chain with a metaheuristic-based approach. Castillo [10] has also presented an extensive

study by analyzing the application of metaheuristics to solve bio-energy supply chain models.

A supply chain is a dynamic supply and demand network of globally distributed

organizations, activities, people, and resources that provide the materials; transform these

materials into products, and distribute these products to retailers or customers. The

architecture of a supply chain as illustrated in Fig. 3.9 is: suppliers, producers, warehouses,

retailers, and customers. Suppliers provide the unprocessed materials to the producers;

producers convert the unprocessed materials to end products. By means of the warehouses

the products are transferred from producers to retailers, and retailers sell these products to the

end customers [40].

Minimizing the total cost, maximizing the profit and fulfilling customers’ needs while

ensuring satisfaction has been studied by researchers [22] in terms of designing, analyzing, and

managing of supply chain. Many companies are concerned about analyzing their supply chain as

a whole system to improve their business. However, the process of analyzing and managing the

supply chain has been performed based on experience and intuition. This implies that finding

the best supply chain strategies for a particular firm is a significant issue for industry. In this

context, bio inspired and nature inspired metaheuristics algorithm may play an important role
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Figure 3.9: Architecture of a supply chain

in helping managers and consultants in the decision-making process. Recently, metaheuristic

algorithms have been broadly employed for optimizing NP-hard since they are simple, easy to

implement, robust, and have been proven highly effective to solve complex problems [57]. The

total cost of Eq. 3.1 of a globally distributed supply chain [22] is composed of supply cost of

raw material (SCRM), cost of production (PC), cost associated with warehouses (WAC), and

cost of markets (MC).

Total Cost(TC) = SCRM + PC +WAC +MC (3.1)

The mathematical programming formulation that minimizes the total supply chain total cost

(TC) is presented in Eq. 3.1 and considers all supplier, plant, warehouse, and market costs.
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3.3.1 Experimental Study

Five different supply chain scenarios were employed to test CDEOA. In each scenario,

production capacity of suppliers and plants, capacity of warehouses, and demand of each market

were created randomly and their complexities were increased. The scenarios are presented in

Table 3.2. In scenario 2: There are 3 suppliers with production capacities, 500, 500, and 1000

units; 3 plants with production capacities, 600, 400, and 400 units; 5 warehouses with storage

capacities, 400 300, 250, 250, and 200 units; and 5 markets with demands, 100, 100, 200, 70,

and 30 units respectively.

Table 3.2: Supply chain problem scenarios

1 2 3 4 5

Suppliers 1000;1000 500;500;1000 500;500;1000 500;500 500;500;250
750;250 250;250;250

Plants 600;400;400 600;400;400 600;200 300;300;200 300;300;200;200
200;400 200;100;300 100;150;150

Warehouses 400;300;500;200 400;300;250 200;200;300 200;200;300 200;200;300
250;200 250;250;200 250;250;200 250;250;200

Markets 100;100;200 100;100;200 100;50;50 100;50;50 100;50;50
70;30 70;30 200;70;30 200;70;30 200;70;30

3.3.2 Compared Algorithms and Parametric Setup

The performance of the CDEOA was compared with BFOA, PSO, TS, BA, and GA. The study

aims to test the quality of final solution and convergence speed at the end of a fixed number

of function evaluations (FEs). The objective is to minimize the total cost of the supply chain

operation which includes supplier cost, production cost, warehouse associated cost, and market

cost. Each scenario has a distinct number of dimensions depending on the complexity of the

supply chain. In this context, scenarios have 38, 54, 72, 96, and 120 dimensions, respectively.

The maximum number of FEs was set to 1000. The population size of each algorithm was set

to 20. Each algorithm was run 30 times. For PSO, we employed the standard PSO and set the

inertia weight w = 1 and acceleration coefficients c1= c2 = 2 according to [18]. As for the BA,
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the algorithmic constants α = γ = 0.5, frequency is in the range [0, 2], and loudness A0 = 0.5.

For GA, mutation probability = 00.5 and crossover probability = 0.95. BFOA and CDEOA

employ the same parameters as follows: Nc= 100, Ns= 16, Nre= 8, C(i)= 0.1.

Table 3.3: Comparison of PSO, BFOA, TS, GA, BA, and CDEOA on Supply Chain Cost
problem.
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1 38D

PSO 171774.07 406389.87 271898.87 61422.80 262674.67 2.75
BFOA 158073.95 328604.65 256788.83 45965.09 245733.44 2.64
TS 167997.11 448938.90 265207.46 60890.62 253209.65 3.26
BA 149057.04 374563.73 264678.66 60600.65 267249.05 10.16
GA 138873.38 319263.21 247192.37 46310.93 252379.22 3.30

CDEOA 131436.66 483223.62 263664.37 66805.99 262662.79 3.65

2 54D

PSO 221549.15 424156.34 316044.20 50554.57 319207.67 16.89
BFOA 177070.27 562895.49 339305.96 91896.03 323970.03 16.55
TS 150616.39 468185.32 318433.36 73805.63 313026.23 21.98
BA 173366.76 486141.78 319110.49 78046.28 308508.69 21.43
GA 209731.19 498573.87 342671.21 65858.21 340691.22 22.19

CDEOA 178180.85 536455.05 301219.47 79367.57 303121.86 16.79

3 72D

PSO 314819.83 698583.76 501751.33 101797.08 504006.41 5.59
BFOA 301504.10 715808.25 500714.51 108195.15 508918.69 2.45
TS 325904.98 657693.39 498861.93 85473.23 510978.49 3.05
BA 289262.97 743135.80 488318.85 91721.61 490993.25 16.36
GA 323051.57 725538.68 536753.61 82662.90 528767.20 6.24

CDEOA 281094.41 739537.04 493928.04 115114.72 483599.93 3.07

4 96D

PSO 685639.86 870112.42 789663.58 63665.56 809801.15 4.83
BFOA 530568.81 944208.98 741662.90 136583.12 742537.79 5.00
TS 497928.05 981825.53 740919.58 149498.71 733425.54 5.55
BA 491848.56 978094.90 710897.41 123887.43 683134.40 26.38
GA 578853.52 1061163.49 760919.39 140865.37 700789.34 6.24

CDEOA 477030.32 1019036.83 709229.15 159874.33 669061.34 5.01

5 120D

PSO 1007800.99 1619948.08 781593.63 164448.82 414210.04 28.54
BFOA 1023073.99 1642535.82 777055.16 165842.10 392991.58 29.42
TS 1038346.98 1665123.56 772516.68 167235.38 371773.11 30.29
BA 1053619.97 1687711.30 767978.21 168628.66 350554.65 31.16
GA 1068892.96 1710299.05 763439.74 170021.94 329336.19 32.04

CDEOA 1084165.96 1732886.79 758901.27 171415.22 308117.73 32.91
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Figure 3.10: The convergence map of PSO, BFOA, TS, GA, BA, and CDEOA (a) Scenario 1;
(b) Scenario 2; (c) Scenario 3; (d) Scenario 4; (e) Scenario 5.
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3.3.3 Discussions

Table 3.3 reports the best cost value (BCV), the worst cost value (WCV), mean of the final

best function values, the standard deviation of the final best function values (STDEV), median

of the final best function values, and the mean time spent per trial in seconds. In Table 3.3, we

can observe that CDEOA is superior overall to five algorithms in five different scenarios. We

can infer the success of CDEOA in these scenarios may be due to its capability of balancing

the exploration and exploitation with the aforementioned two CDEOA strategies. CDEOA

outperforms its five competitors except GA in the first scenario. Worst cost value (WCV) of

PSO shows better performance than CDEOA in all scenarios.

In Fig. 3.10, the convergence map of PSO, BFOA, TS, GA, BA, and CDEOA shows that

the CDEOA overall led faster convergence than its competitors in all scenarios. It did fail

against BFOA, GA, and TS in the first scenario; however, these three algorithms were unable

to maintain the same performance in the rest of the scenarios. In addition, we can also observe

from scenario 1 of Table 3.3, the aforementioned algorithms slightly outperformed CDEOA.
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CHAPTER 4

MICRO BIO AND NATURE INSPIRED

OPTIMIZATION ALGORITHMS

In the past few decades, the micro bio and nature inspired algorithms have been studied

by several researchers in order to solve high dimensional optimization problems. High

dimensionality makes the problems hard and computational time consuming due to the fact

that it increases the number of parameters to be optimized. In this context, in case that

the population size remains large as in its original algorithm, it would not be that easy for the

parameters to converge to the optimal values. As a remedy to this challenge, Krishnakumar [33]

has proposed to use micro genetic algorithm (µGA) based on a very small population approach.

It is clear that although an algorithm with small population size such as (e.g. 2, 3, 5, or 6)

is good at exploiting the promising areas of the search space, it is not able to preserve the

diversity of population. However, when the diversity of population fails, the population can

be reinitialized and the best individuals are kept on the search space. This not only leads to

prevent the premature convergence but also makes the individuals explorative [44].

Micro algorithms have proved to be an efficient tool in solving optimization problems

for high dimensional (e.g. 500, 750, and 1000) problems that standard nature-inspired and

bio-inspired techniques fail. Recently, several studies have been conducted regarding the

micro bio and nature inspired algorithms to solve the high dimensional optimization problems.

Caraffino et al. [9] have proposed micro Differential Evolution (µDE) that incorporates

an extra search move into DE to improve the best solution. Chu et al. [12] proposed
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Fast Bacterial Swarming Algorithm that hybridizes BFOA and PSO. Parsopoulos [48] has

proposed a cooperative micro technique, Cooperative Micro Differential Evolution, to solve

high dimensional problems. Parsopoulos et al. [49] have also introduced a parallel master-slave

model for cooperative micro-particle swarm optimization approach. Olorunda [46] has presented

cooperative differential evolution that divides the high dimensional problem space into smaller

parts and have each part optimized by a separate population. Sotelo-Figueroa [59] have

proposed a novel approach called Micro Differential Algorithm that evolves an indirect

representation of bin packing problem. Fuentes et al. [8] have presented a particle swarm

optimizer that solves constrained optimization problems. Also, Rahnamayan et al. [56] have

proposed micro Opposition based DE that deals with minimization of dissimilarity between

the input grey-level image and the bi-level (thresholded) image in image processing field.

Olguin-Carbajal et al. [45] have proposed the micro DE Local Search that incorporates local

search technique into micro DE.

In this chapter, a micro Chemotaxis Differential Evolution Optimization Algorithm

(µCDEOA) [69] which hybridizes BFOA and DE was proposed. The inspiration was taken

from the ideas of micro Bacterial Foraging Optimization Algorithm (µBFOA) [14] which is

successfully used to solve high-dimensional optimization problems. µBFOA does not use the

reproduction operator to avoid premature convergence whereas the chemotaxis operator is

employed for updating the position of a bacterium. In µBFOA, which uses three bacteria,

the best bacterium retains its position in the swarm; the second best bacterium is re-positioned

in the vicinity of the best bacterium; and the third bacterium is dispersed to a random location.

This approach aims to avoid premature convergence and helps to maintain the search diversity.

In this study, in order to increase the convergence performance and quality of the final solution,

after re-initializing the population, the bacteria are ranked according to their cost function

values. The best bacterium’s position is preserved in the population. The second best bacterium

is reinitialized in the neighborhood of the best bacterium based on the ideas of DE technique,

whereas the rest of the bacteria (4 bacteria) are dispersed at random on the search space.
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4.1 Micro CDEOA

In µCDEOA, a population of 6 bacteria which make consecutive tumble and run steps

(chemotaxis) throughout their lifetime. After a chemotaxis loop, all the bacteria are sorted

according to their objective function values. A bacterium which is close to the global optimum

is called the best bacterium (rank 1). The second best bacterium (rank 2) attempts to

approach the neighborhood of the best bacterium through the means of DE operators (mutation,

crossover, and selection). The rest of the population (4 bacteria) are dispersed to the random

positions in the search space. Unlike the population size of µBFOA, the population size of

µCDEOA is increased to an appropriate value, 6, due to the number of the individuals chosen

in mutation strategies (Eq. 2.6, Eq. 2.8, Eq. 2.9, and Eq. 2.10). The second best bacterium

(rank 2) is positioned in the vicinity of the best bacterium. This is carried out through the

means of DE mutation strategies. In this study, we have employed DE/best/1 (Eq. 2.9 in

Chapter 2) mutation strategy which yields a best solution based trial vector.

Figure 4.1: Behavior of the bacteria on one dimension
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Figure 4.2: Flowchart of the µCDEOA

In order to figure out the behavior of the virtual bacteria in BFOA, we illustrated the six

bacteria in a one dimensional search space in Fig. (4.1). The objective is the minimization of

1-dimensional sphere function Eq. (4.1) which is a widely employed unimodal function with a
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minimum equal to 0.

F (x) = x2 (4.1)

In Eq. (4.1), the parameter x is the position of a bacterium, and f(x) is the objective function

value. The roles of six bacteria may change after a chemotaxis process. The closest position

to the global optimum of the search space is retained by the best bacterium (rank 1). The

dispersal of the second best bacterium (rank 2) to a position which is close to the best one

(rank 1) will ease local search for the next chemotaxis process. Maintaining the population

diversity and avoiding premature convergence are performed by the worst bacteria (rank 3-6).

A flowchart of the micro BFOA adapted from Dasgupta [14] is given in Fig. 4.2.

4.2 Experimental Study

The µCDEOA was tested using a set of 16 unimodal and multimodal benchmark functions (see

Section 4.2.1) taken from IEEE CEC special sessions and competitions on single objective real

parameter numerical optimization [62], [35]. Unlike standard benchmark functions, the shifted

functions shift the global optimum to a random position, i.e., F (x) = f(x− onew), where F (x)

is the new function, f(x) is the old function, and onew is the new global optimum with different

values for different dimensions. Its global optimum is not situated at the center of the search

space. The rotated functions rotate the function F (x) = f(Mx), where M is an orthogonal

rotation matrix [36]. The descriptions of these functions are given in Table 4.1. Functions 1-6

are unimodal and functions 7-16 are simple multimodal functions. 0 is the shifted vector; C is

the characteristics of test functions; U is unimodal; M is multimodal; S is separable; and N is

non-separable functions.
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Table 4.1: Global optimum, the search ranges and the global best (f(x*)) of 500 dimensional
test functions.

f Global Optimum x* f(x*) C Search Range
F1 0 0 US (-2,2)
F2 (0,0,…,0) 0 UN (-500,500)
F3 0 0 UN (-500,500)
F4 0 0 UN (-500,500)
F5 (0,0,…,0) 0 UN (-500,500)
F6 0 0 UN (-100,100)
F7 0 0 MN (-2,2)
F8 0 0 MN (-2,2)
F9 0 0 MN (-2,2)
F10 0 0 MN (-2,2)
F11 0 0 MN (-10,10)
F12 0 0 MN (-10,10)
F13 0 0 MS (-2,2)
F14 0 0 MN (-2,2)
F15 (420.96,…,420.96) 0 MN (-2,2)
F16 (420.96,…,420.96) 0 M (-500,500)

4.2.1 Shifted and Rotated Test Functions

Eq. 4.2, Eq. 4.3, Eq. 4.4, Eq. 4.5, Eq. 4.6, Eq. 4.7, Eq. 4.8, Eq. 4.9, Eq. 4.10, Eq. 4.11, Eq.

4.12, Eq. 4.13, Eq. 4.14, Eq. 4.15, Eq. 4.16, and Eq. 4.17 are the function definitions of the

problems, respectively.

1. Shifted Sphere Function

F1 (x) =

D∑
i=1

z2i (4.2)

z = x− o

o = [o1, o2, ...oD] : shifted global optimum
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2. Schwefel problem 1.2

F2(x) =

D∑
i=1

(

i∑
j=1

zj)
2 (4.3)

3. Shifted Schwefel problem 1.2

F3(x) =

D∑
i=1

(

i∑
j=1

zj)
2 (4.4)

z = x− o

o = [o1, o2, ...oD] : shifted global optimum

4. Shifted Schwefel problem 1.2 with noise in fitness

F4(x) =

D∑
i=1

(

i∑
j=1

zj)
2 ∗ (1 + 0.4|N(0, 1)|) (4.5)

z = x− o

o = [o1, o2, ...oD] : shifted global optimum

5. Schwefel problem 2.21

F5(x) = max {|xi, 1 ≤ i ≤ D|} (4.6)

6. Shifted and rotated high conditioned elliptic function

F6 =
∑

(106)
i−1
D−1

z2i (4.7)
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z = M(x− o)

o = [o1, o2, ...oD] : shifted global optimum

7. Shifted Rosenbrock’s function

F7(x) =

D−1∑
i=1

(100(x2
i − xi+1)

2 + (xi − 1)2) (4.8)

z = x− o+ 1

o = [o1, o2, ...oD] : shifted global optimum

8. Shifted and rotated Rosenbrock’s function

F8(x) =

D−1∑
i=1

(100(x2
i − xi+1)

2 + (xi − 1)2) (4.9)

z = M(x− o)

o = [o1, o2, ...oD] : shifted global optimum

9. Shifted Ackley’s function

F9(x) = −20exp(−0.2

√√√√ 1

D

D∑
i=1

z2i )− exp(
1

D

D∑
i=1

cos(2πzi)) + 20 + e, (4.10)

z = x− o

o = [o1, o2, ...oD] : shifted global optimum
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10. Shifted rotated Ackley’s function

F10(x) = −20exp(−0.2

√√√√ 1

D

D∑
i=1

z2i )− exp(
1

D

D∑
i=1

cos(2πzi)) + 20 + e, (4.11)

z = M(x− o)

o = [o1, o2, ...oD] : shifted global optimum

11. Shifted Griewank’s function

F11(x) =

D∑
i=1

z2i
4000

(4.12)

z = x− o

o = [o1, o2, ...oD] : shifted global optimum

12. Shifted and rotated Griewank’s function

F12(x) =

D∑
i=1

z2i
4000

(4.13)

z = M(x− o)

o = [o1, o2, ...oD] : shifted global optimum

13. Shifted Rastrigin’s function

F13(x) =

D∑
i=1

(z2i − 10cos(2πzi) + 10) (4.14)
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z = x− o

o = [o1, o2, ...oD] : shifted global optimum

14. Shifted and rotated Rastrigin’s function

F14(x) =

D∑
i=1

(z2i − 10cos(2πzi) + 10) (4.15)

z = M(x− o)

o = [o1, o2, ...oD] : shifted global optimum

15. Shifted noncontinuous Rastrigin’s function

F15(x) =

D∑
i=1

(y2i − 10cos(2πyi) + 10) (4.16)

yi =

round(2zi)/2, |zi| >= 1/2

zi, |zi| < 1/2

for i = 1,2,...,D

o = [o1, o2, ...oD] : shifted global optimum

16. Shwefel’s function

F16(x) = 418.9829 ∗D −
D∑
i=1

xisin(|xi|1/2) (4.17)

58



4.2.2 Parametric Setup

The same parameter values have been used as in the original papers in each technique. DE

is sensitive to the mutation scaling factor F and crossover rate Cr. Choosing Cr=0.9 or 1.0

not only speeds up convergence but also diversifies the population by means of one of the best

solution dependent DE mutation strategies, “DE/best/1”. In this context, Cr parameter of DE

was set to be 0.9. F is selected within the range of [0 − 2.0]. It is reported that a smaller F

value (e.g., 0.5) can lead to a statistically better performance than the other parameter values

( [60], [54]). Therefore, F of µ-CDEOA was set to be 0.5. For the proposed technique and the

classical BFOA, the following parameter values were set: Ns=12, Nre=16, C(i)=0.1.

4.2.3 Simulation

The study introduced in this section aims to test the quality of the final solution and the

convergence speed at the end of a fixed number of function evaluations (FEs). The maximum

number of FEs was set to 5 × 103. All simulations were done on 500 dimensional problems.

Each algorithm and the objective function pair were run 50 times. The convergence graph was

plotted in Fig. 4.3, Fig. 4.4, Fig. 4.6, and Fig. 4.5. The horizontal axis of these graphs is

the number of function evaluations and the vertical axis is the mean of function values. Table

4.2 and Table 4.3 report the best final function value (BFV), the worst final function value

(WFV), the mean of the final best function value (Mean), the standard deviation of the final

best function value (StdDev), and the median of the final best function value (Median). These

values comply (F (x)−F (x∗)) for evaluating the success of five algorithms, where #»x is the best

value of the bacterium in a run and #»x ∗ is the global best of the test function (Table 4.1). The

standard deviation of the final best function value and the mean time spent per trial in seconds

are also reported.
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Table 4.2: Comparison of BFOA-6, BFOA-30, µBFOA, and µ-CDEOA in F1 through F8.

Functions Algorithm BFV WFV Mean StdDev Med Time

F1

BFOA-6 9.17E+02 1.05E+03 9.95E+02 3.22E+01 9.96E+02 0.47
BFOA-30 1.07E+03 1.16E+03 1.12E+03 2.3E+01 1.12E+03 0.56
µ-BFOA 6.77E+02 9.05E+02 7.91E+02 5.97E+01 7.96E+02 0.65

µ-CDEOA 7.16E+02 8.68E+02 7.82E+02 3.93E+01 7.80E+02 0.55

F2

BFOA-6 2.33E+09 2.37E+09 2.35E+09 7.48E+06 2.35E+09 27.61
BFOA-30 1.69E+09 1.69E+09 1.69E+09 9.80E+05 1.69E+09 27.77
µ-BFOA 2.26E+08 6.11E+08 4.24E+08 7.93E+07 4.27E+08 28.08

µ-CDEOA 1.17E+08 5.28E+08 2.92E+08 8.65E+07 2.89E+08 27.32

F3

BFOA-6 6.27E+12 6.27E+12 6.27E+12 5.04E+08 6.27E+12 27.74
BFOA-30 6.27E+12 6.27E+12 6.27E+12 2.58E+08 6.27E+12 28.35
µ-BFOA 4.47E+12 5.70E+12 5.07E+12 2.74E+11 5.04E+12 28.42

µ-CDEOA 5.23E+12 6.18E+12 5.60E+12 2.19E+11 5.63E+12 28.43

F4

BFOA-6 7.14E+12 7.17E+12 7.14E+12 6.51E+09 7.14E+12 28.33
BFOA-30 7.14E+12 7.22E+12 7.16E+12 1.82E+10 7.15E+12 28.27
µ-BFOA 6.91E+12 7.18E+12 7.08E+12 5.85E+10 7.09E+12 28.23

µ-CDEOA 6.95E+12 7.21E+12 7.11E+12 4.86E+10 7.11E+12 28.52

F5

BFOA-6 9.81E+01 9.87E+01 9.84E+01 1.24E-01 9.85E+01 0.91
BFOA-30 9.85E+01 9.90E+01 9.87E+01 1.25E-01 9.88E+01 0.86
µ-BFOA 9.51E+01 9.80E+01 9.73E+01 5.85E-01 9.74E+01 0.96

µ-CDEOA 7.30E+01 8.94E+01 8.21E+01 3.55E+00 8.17E+01 0.90

F6

BFOA-6 1.46E+11 1.51E+11 1.51E+11 9.73E+08 1.51E+11 1.14
BFOA-30 1.14E+11 1.17E+11 1.17E+11 3.68E+08 1.17E+11 1.12
µ-BFOA 8.33E+10 1.11E+11 1.02E+11 6.92E+09 1.03E+11 1.27

µ-CDEOA 7.21E+10 1.08E+11 8.84E+10 7.77E+09 8.86E+10 1.15

F7

BFOA-6 1.30E+06 1.62E+06 1.47E+06 6.13E+04 1.47E+06 0.55
BFOA-30 1.60E+06 1.82E+06 1.73E+06 4.47E+04 1.73E+06 0.55
µ-BFOA 3.57E+05 5.79E+05 4.90E+05 5.58E+04 4.97E+05 0.59

µ-CDEOA 8.13E+05 1.25E+06 1.09E+06 7.43E+04 1.10E+06 0.52

F8

BFOA-6 5.16E+06 6.87E+06 5.91E+06 3.41E+05 5.87E+06 1.27
BFOA-30 6.43E+06 7.52E+06 7.07E+06 2.52E+05 7.08E+06 1.28
µ-BFOA 1.32E+06 2.59E+06 2.13E+06 2.80E+05 2.20E+06 1.42

µ-CDEOA 3.68E+06 4.91E+06 4.16E+06 2.91E+05 4.14E+06 1.11

60



Table 4.3: Comparison of BFOA-6, BFOA-30, µBFOA, and µ-CDEOA in F9 through F16.

Functions Algorithm BFV WFV Mean StdDev Med Time

F9

BFOA-6 6.29E+00 6.69E+00 6.49E+00 8.88E-02 6.50E+00 0.56
BFOA-30 6.69E+00 6.91E+00 6.83E+00 4.79E-02 6.83E+00 0.54
µ-BFOA 5.90E+00 6.46E+00 6.22E+00 1.20E-01 6.22E+00 0.63

µ-CDEOA 5.91E+00 6.32E+00 6.09E+00 8.63E-02 6.06E+00 0.78

F10

BFOA-6 8.52E+00 8.97E+00 8.80E+00 1.23E-01 8.83E+00 1.39
BFOA-30 8.76E+00 9.06E+00 8.92E+00 5.31E-02 8.92E+00 1.37
µ-BFOA 8.01E+00 8.67E+00 8.41E+00 1.34E-01 8.44E+00 1.83

µ-CDEOA 7.65E+00 8.22E+00 7.88E+00 1.28E-01 7.87E+00 1.18

F11

BFOA-6 8.13E+00 8.56E+00 8.39E+00 8.78E-02 8.40E+00 1.24
BFOA-30 8.50E+00 8.74E+00 8.63E+00 6.03E-02 8.64E+00 1.11
µ-BFOA 5.65E+00 7.19E+00 6.36E+00 3.74E-01 6.29E+00 1.39

µ-CDEOA 5.81E+00 6.84E+00 6.23E+00 2.06E-01 6.22E+00 1.07

F12

BFOA-6 1.66E+01 1.75E+01 1.71E+01 1.98E-01 1.71E+01 1.75
BFOA-30 1.72E+01 1.79E+01 1.77E+01 1.78E-01 1.76E+01 1.78
µ-BFOA 1.15E+01 1.50E+01 1.29E+01 8.26E-01 1.27E+01 2.19

µ-CDEOA 1.15E+01 1.34E+01 1.25E+01 4.14E-01 1.26E+01 2.09

F13

BFOA-6 1.02E+04 1.16E+04 1.10E+04 2.85E+02 1.11E+04 0.54
BFOA-30 1.18E+04 1.23E+04 1.20E+04 1.02E+02 1.20E+04 0.51
µ-BFOA 9.52E+03 1.09E+04 1.03E+04 3.39E+02 1.03E+04 0.65

µ-CDEOA 8.94E+03 1.01E+04 9.53E+03 2.80E+02 9.49E+03 0.63

F14

BFOA-6 1.95E+04 2.12E+04 2.05E+04 4.52E+02 2.06E+04 1.41
BFOA-30 2.06E+04 2.15E+04 2.11E+04 2.09E+02 2.11E+04 1.31
µ-BFOA 1.66E+04 1.99E+04 1.84E+04 6.64E+02 1.84E+04 1.52

µ-CDEOA 1.46E+04 1.70E+04 1.60E+04 5.41E+02 1.60E+04 1.12

F15

BFOA-6 1.23E+04 1.27E+04 1.25E+04 1.08E+02 1.25E+04 0.73
BFOA-30 1.20E+04 1.24E+04 1.22E+04 9.18E+01 1.22E+04 0.95
µ-BFOA 9.90E+03 1.15E+04 1.09E+04 2.69E+02 1.09E+04 0.74

µ-CDEOA 9.39E+03 1.04E+04 9.87E+03 2.28E+02 9.86E+03 0.76

F16

BFOA-6 2.04E+05 2.04E+05 2.04E+05 1.24E+02 2.04E+05 0.77
BFOA-30 1.97E+05 1.98E+05 1.98E+05 4.98E+01 1.98E+05 0.45
µ-BFOA 1.87E+05 1.98E+05 1.94E+05 2.25E+03 1.94E+05 0.50

µ-CDEOA 1.92E+05 2.02E+05 1.98E+05 2.21E+03 1.98E+05 0.48
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Figure 4.3: (a) F1: Shifted Sphere; (b) F2: Schwefel problem 1.2; (c) F3: Shifted Schwefel
problem 1.2; (d) F4: Shifted Schwefel problem 1.2 with noise in fitness;

4.2.4 Comparison of µCDEOA with three Nature-inspired Techniques

The performance of µCDEOA technique was compared with classical BFOA with 6 and 30

population sizes, BFOA-6, BFOA-30 [50] and µBFOA [14]. The compared algorithm (µBFOA)

was chosen due to fact that it possesses very small population size (3) as in its original paper. As

for BFOA, we aimed to test its performance with small population size (6) and large population

size (30).
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Figure 4.4: (a) F5: Schwefel problem 2.21; (b) F6: Shifted and rotated high conditioned elliptic;
(c) F7: Shifted Rosenbrock; (d) F8: Shifted and rotated Rosenbrock.

Unimodal Functions F1 - F6

As reported in Table 4.2, in these six unimodal functions, the micro techniques exhibit their

superiority to their classical counterparts in terms of quality of the final solution. µCDEOA

shares the first place with µBFOA in F1 and F4 functions. All the algorithms show similar

performances in F4 function. We can also observe that the proposed technique performs better

than that of other techniques in F5 and F6 functions. In contrast, µCDEOA remains behind

µBFOA in F2 and F3 functions. The classical BFOA fails in most of the problems. We can

infer that the success of a technique is problem-dependent. While BFOA-6 outperforms the
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Figure 4.5: (a) F9: Shifted Ackley. (b) F10: Shifted rotated Ackley; (c) F11: Shifted Griewank;
(d) F12: Shifted and Rotated Griewank.

BFOA-30 in only one function F1, BFOA-30 performs better than BFOA-6 in two functions,

F2 and F6.

Simple Multi-modal Functions F7 − F16

In these ten multimodal functions, overall, the proposed technique performs better than

its competitors. µCDEOA exhibits better performance in 4 functions by outperforming its

counterparts. On the other hand, µCDEOA exhibits similar performance with µBFOA in 4

functions while µBFOA outperforms the µCDEOA in 2 functions.
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Figure 4.6: (a) F13: Shifted Rastrigin; (b) F14: Shifted and Rotated Rastrigin; (c) F15: Shifted
noncontinuous Rastrigin; (d) F16: Schwefel.

The convergence map of BFOA-6, BFOA-30, µBFOA, and µCDEOA in Fig. 4.3, Fig. 4.4,

Fig. 4.6, and Fig. 4.5 implies that the proposed µCDEOA technique has significantly faster

and reliable convergence speed than that of its competitors.

In summary, although there are slight differences at the quality of final solution and

convergence speed of the algorithms, overall, the proposed technique presents superior

performance to the other techniques on unimodal and multimodal functions.
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CHAPTER 5

THE EFFECTS OF DE MUTATION STRATEGIES

AND ITS PARAMETERS ON CDEOA

Researchers have been investigating the performance of different Differential Evolution (DE)

parameters (crossover rate and mutation factor) in solving the optimization problems. It is

clear that DE parameters and mutation strategies have a huge impact in the performance of

the algorithms. In this chapter, the performance of CDEOA (Chemotaxis Differential Evolution

Optimization Algorithm) has been investigated and has been reported that the explorative and

exploitative tendency of CDEOA on a fitness landscape depends on DE mutation strategies [68]

and its parameters [70]. Bio-inspired techniques such as BFOA and DE have been employed

for achieving optimal optimization performance by incorporating evolutionary operators such

as mutation, crossover, selection, and reproduction. In order to increase the BFOA and

DE performance, a number of approaches have been presented [5] [4] [31] [64] [27]. In our

experimental study, the performance of CDEOA on different mutation and crossover rate pairs

and different mutation strategies were tested using a set of 6 standard benchmark functions.

Functions 1-2 (F1: Sphere, F2: Schwefel 2.21) are unimodal and functions 3-6 (F3: Rosenbrock,

F4: Ackley, F5: Rastrigin, F6: Griewank) are multimodal functions.
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5.1 The Effects of DE Mutation Strategies on CDEOA

In order to improve the performance of DE, a number of mutation strategies were performed in

the literature ( [60], [52]). In two studies ( [20], [61]), it was reported that DE/rand/2 (Eq. 2.7 in

Chapter 2) mutation strategy possesses better performance than DE/rand/1 (Eq. 2.6 in chapter

2) because it diversifies the population with more than 2 trial vectors. On the other hand, the

best solution based strategies such as DE/best/1 (Eq. 2.9 in chapter 2) and DE/rand-to-best/1

(Eq. 2.11 in chapter 2) perform faster on simple unimodal optimization problems. However,

it may get stuck in local minima and become unreliable in solving multimodal and high

dimensional problems. In JADE ( [27]), an adaptive mutation strategy was proposed with

optional external archive. Although metaheuristics techniques are not problem dependent,

Iorio et al. [25] proposed a new mutation strategy called rotation-invariant to solve rotated

problems.

In this section, CDEOA’s [73] (a hybrid approach of BFOA and DE) performance on five

different DE mutation strategies (See section 2.5.1 was presented. The pseudocode of CDEOA

is presented in Algorithm 1 (See section 3.1.1).

5.1.1 Experimental Study

After a series of fine tuning experiments, the control parameters F (scaling factor) and Cr

(crossover rate) of DE were set 0.5 and 0.9, respectively. For the CDEOA, following parameter

values of classical BFOA were chosen: Nc=100, Ns=16, Nre=8, C(i)=0.1. The study aims

to test the quality of final solution and the convergence speed at the end of a fixed number of

function evaluations (FEs). All of the algorithms were launched from the same initial population

to make the comparison fair. All functions were tested in 2 dimensions with 2×104 FEs. Each

method were run 30 times with a suite of functions and statistics were given in Table 5.1. ”Mean

error” indicates that the average of the error function values.
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Figure 5.1: (a) F1: Sphere; (b) F2: Schwefel problem 2.21; (c) F3: Rosenbrock; (d) F4:
Ackley;(e) F5: Rastrigin; (f) F6: Griewank.
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Table 5.1: Comparison of DE mutation strategies rand/1, best/1, rand-to-best/1, best/2, and
rand/2.

F
rand/1 best/1 rand-to-best best/2 rand/2

Mean Error Mean Error Mean Error Mean Error Mean Error
F1 4.22E-09 4.02E-09 4.96E-09 5.67E-09 5.55E-09
F2 4.78E-09 4.64E-09 1.85E-08 3.83E-09 4.85E-03
F3 6.45E-09 6.05E-09 6.56E-09 5.95E-09 6.72E-09
F4 4.11E-09 4.65E-09 4.10E-09 5.18E-09 1.42E-07
F5 2.55E-05 2.55E-05 2.55E-05 2.55E-05 8.95E-05
F6 4.24E-09 4.33E-09 5.09E-09 4.42E-09 4.78E-09

Unimodal Functions

In these two unimodal functions, we can observe the similarities at the quality of final solutions.

In particular, DE/best/1 strategy outperforms the other strategies in F1 and F2 test functions.

Multimodal Functions

Multimodal functions are known as hard optimization problems since they tend to have many

local minima. In these four multimodal functions, rand/2 strategy performs great performance

on F3 and F5 functions at the quality of final solutions as opposed to the other strategies. We

can observe the similar performances on F4 and F6 functions. The convergence map of CDEOA

led DE mutation strategies which rely on best solution discovered (best/1 (Eq. 2.9) and best/2

Eq. (2.10) in Chapter 2) possess faster convergence speed than the other strategies. From this

perspective, we can infer that the best solution strategies exhibit better performance in terms of

the quality of final solution and the convergence speed on unimodal and multimodal functions.

5.2 The Effects of DE Parameters on CDEOA

Parameter adaptation of DE has been studied by several researchers to sort the real-world

optimization problems out for years. It has been an important improvement in boosting the

success of DE optimization techniques. In this context, a number of studies has been put

forward by fine-tuning the parameters of DE ( [27], [53], [75]). The fine-tuned parameters of
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DE has been discussed in section 3.1.1. In this section, CDEOA’s (hybrid technique of BFOA)

behavior on different DE parameter pairs (mutation and crossover rate) has been reported.

5.2.1 Experimental Study

CDEOA/rand/1 implies the algorithm which employs DE/rand/1 mutation strategy (Eq. 2.6)

whereas CDEOA/best/1 implies DE/best/1 (Eq. 2.9 in Chapter 2). For both CDEOA/rand/1

and CDEOA/best/1, the control parameters F (scaling factor) and CR (crossover rate) pair

were set [F:0.5, CR:0.9], [F:0.5, CR:0.5], [F:0.1, CR:0.1], [F:0.1, CR:0.9], [F:0.2, CR:0.8]. In

DE related studies, we see that the most effective range of F value is to be [0.4, 1.0]. Since a

smaller F which is close to 0 has a tendency of helping the individuals have strong exploitative

ability, we used F = 0,1 in two cases of our experiments. CR is generally to be used within

the range of [0.1, 0.9] in the literature of DE. In contrast, Ronkkonen et al. [58] reported

that CR should be between 0 and 0.2 for separable functions and between 0.9 and 1.0 for

multimodal and non-separable functions. From this perspective, we can clearly understand

that researchers agreed on F to be between [0.4, 1.0] and CR to be either close to 0 or 1.0. The

algorithm-problem pair was launched from the same initial population to make the comparison

fair. All functions were tested in 30 dimensions with 3×105 FEs. For the CDEOA, following

parameter values of classical BFOA were chosen: Nc=100, Ns=16, Nre=8, C(i)=0.1. Each

method was run 25 times with a suite of functions and the statistics were given in Table 5.2

and Table 5.3. The convergence graph was plotted in Fig. 5.2 and Fig. 5.3. The horizontal

axis of these graphs is the number of function evaluations, and the vertical axis is the mean of

function values.

5.2.2 Comparison of five mutation and crossover rate paired

techniques based on DE/rand/1 mutation strategy

DE/rand/1 (Eq. 2.6 in Chapter 2) is one of the most used mutation strategy that possesses slow

convergence speed and exhibits much stronger exploration ability due to fact that the strategy
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randomly chooses three individuals which act the distinct search space information out of the

current population. That being the case, the aforementioned mutation strategy empowers the

exploitation ability. In contrast, it slows down the exploitation ability of an individual ( [53]).

Table 5.2: Comparison of CDEOA/rand/1 mutation and crossover rate pairs over 6 benchmark
functions.

Functions [F:0.5, CR:0.9] [F:0.5, CR:0.5] [F:0.1,CR:0.1] [F:0.1,CR:0.9] [F:0.8,CR:0.2]
Mean Error Mean Error Mean Error Mean Error Mean Error

F1 9.27E-09 9.02E-09 1.77E-06 3.31E-03 9.09E-09
F2 1.59E-02 1.03E-02 4.29E+00 2.53E+01 9.41E+00
F3 2.57E+01 2.37E+01 2.15E+01 3.68E+01 2.23E+01
F4 1.66E+00 1.66E+00 1.66E+00 1.67E+00 1.66E+00
F5 1.69E+01 3.22E+00 1.75E+00 4.00E+01 3.30E+00
F6 4.93E-04 8.89E-09 4.19E-08 6.54E-03 8.91E-09

Unimodal Functions

As reported in Table 5.2, in these two unimodal functions, [0.5, 0.9] and [0.5, 0.5] exhibit

superior performance to the other [F ,CR] pairs. Even though the CRs are different in each

pair, they end up with the similar results. Although [0.8, 0.2] has a great success in F1, it

cannot maintain its performance in F2. [0.1, 0.9] fails in two unimodal problems since F is

close to 0.0.

Multimodal Functions

In these four multimodal functions, [0.5, 0.5] and [0.8, 0.2] pairs exhibit similar performance

and outperform the others. [0.1, 0.1] is the second best pair although its F value is close to 0.0.

Due to characteristics of F3, we can also observe that [0.1, 0.1] and [0.8, 0.2] are the best in F3

and show similar performance although they possess distinct F values.
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Figure 5.2: Comparison of five mutation and crossover rate paired techniques based on
DE/rand/1 mutation strategy (a) F1: Sphere; (b) F2: Schwefel problem 2.21; (c) F3:
Rosenbrock; (d) F4: Ackley;(e) F5: Rastrigin; (f) F6: Griewank.
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5.2.3 Comparison of five mutation and crossover rate paired

techniques based on DE/best/1 mutation strategy

Strategies based on the best solution such as “DE/best/1”, “DE/best/2”, and

“DE/rand-to-best/1” possess the fast convergence rate and are efficient in unimodal problems.

On the other hand, they can tend to get stuck at a local minima, consequently, they converge

to the global optimum prematurely ( [53]).

Table 5.3: Comparison of CDEOA/best/1 mutation and crossover rate pairs over 6 benchmark
functions.

Functions [F:0.5, CR:0.9] [F:0.5, CR:0.5] [F:0.1,CR:0.1] [F:0.1,CR:0.9] [F:0.8,CR:0.2]
F1 7.87E-09 8.48E-09 2.38E-04 2.49E-03 9.31E-09
F2 5.71E-01 7.46E-01 1.01E+01 2.24E+01 3.54E+00
F3 7.97E-01 6.25E+00 2.77E+01 2.87E+01 2.15E+01
F4 1.66E+00 1.66E+00 1.66E+00 1.66E+00 1.66E+00
F5 4.14E+01 1.32E+01 1.75E+01 1.25E+02 6.17E+00
F6 5.51E-03 4.92E-03 2.91E-05 7.50E-03 9.12E-09

Unimodal Functions

In these two unimodal functions, we can observe similarities as opposed to the CDEOA/rand/1

simulation results in F1 function. [0.1, 0.9] does not perform due to its small F value. On

the other hand, [0.5, 0.9] performs better than that of the others since F=0.5 keeps the

individual’s exploration and exploitation abilities and CR=0.9 inherits most of the information

from mutated vector.

Multimodal Functions

In these four multimodal functions, [0.5, 0.9] exhibits great performance in F3. The pairs in both

CDEOA/rand/1 and CDEOA/best/1 simulation results of F4 show identical performances. It

is obvious that [0.8, 0.2] outperforms the other pairs in F5 and F6.

The convergence maps of [0.5, 0.9], [0.5, 0.5], [0.1, 0.1], [0.1, 0.9], and [0.8, 0.2] are reported in

Fig. 5.2 and Fig. 5.3. [0.8, 0.2] converges better than the others in F5 in both CDEOA/rand/1
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Figure 5.3: Comparison of five mutation and crossover rate paired techniques based on
DE/best/1 mutation strategy (a) F1: Sphere; (b) F2: Schwefel problem 2.21; (c) F3:
Rosenbrock; (d) F4: Ackley;(e) F5: Rastrigin; (f) F6: Griewank.
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and CDEOA/best/1 simulations. It is clear that each pair in both tests converged to the

global optimum in F4 prematurely. Due to the use of the DE/best/1 (Eq. 4) strategy in

CDEOA/best/1, we observe faster convergence than the others. [0.5, 0.9] possesses premature

convergence in F3 CDEOA/rand/1 simulation like the others. However, it exhibits excellent

convergence performance in F3’s CDEOA/rand/1 while the rest of the pairs fail.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 General Conclusions

A series of Bacterial Foraging Optimization Algorithm (BFOA) and Differential Evolution (DE)

evolutionary based algorithms (CDEOA, iCDEOA, and µCDEOA) were presented in this thesis.

The studies hybridizing BFOA with other evolutionary based approaches exhibit that it is

an efficient way for improving BFOA performance by combining with different algorithms

such as Genetic Algorithm (GA) , Particle Swarm Optimization (PSO), and DE . Unlike

similar methods in the literature CDEOA, iCDEOA, and µCDEOA are basically based on

two strategies: making weak bacterium more explorative and making strong bacterium more

exploitative, where two of which can be integrated into any BFOA variant in order to improve

the performance over complex fitness landscapes. The number of the failed steps of a bacterium

is accumulated and if it reaches to maximum number of allowed tumble steps, the bacterium

undergoes the process of making weak bacteria more explorative. The number of the lucky steps

of a bacterium is accumulated and if it reaches to maximum allowed run steps, the bacterium

undergoes the process of making strong bacteria more exploitative.

Improved CDEOA (iCDEOA) is to cope with the premature convergence issue of

reproduction operator of BFOA. However, it is still based on exploration and exploitation

strategies that CDEOA possesses . BFOA performs the reproduction operator by killing half of

the population with low objective function values. The rest with high objective function values
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split into two. Consequently, the population tends to converge prematurely as the algorithm

lacks of explorative population. iCDEOA disperses the population with poor function values

whereas it sends the strong population with high function value to the vicinity of the best

bacterium. Probabilistic re-positioning operator has been utilized to balance the exploration

and exploitation of the search space.

Micro CDEOA (µCDEOA) was successfully used to optimize high-dimensional optimization

problems. In this approach, in order to increase the convergence performance and quality of

the final solution, after re-initializing the population, the bacteria are ranked according to their

objective function values. The best bacterium’s position is preserved in the population. The

second best bacterium is reinitialized in the neighborhood of the best bacterium based on the

ideas of DE technique, whereas the rest of the bacteria (four bacteria) are dispersed at random

on the search space.

We have also observed the impact of DE/rand/1 and DE/best1 mutation strategies on

CDEOA technique in unimodal and multimodal functions. Generally speaking, there is no

common parameter settings for all the problems. Rather, there are optimum parameter values

for each problem after fine-tuning experiments.

The experimental studies of CDEOA were performed on 30 single objective numerical

optimization problems used in CEC2014 special session and competition. CDEOA was

compared with classical BFOA, DE, two BFOA, and four DE counterparts. ICDEOA was

compared with three state-of-the-art DE counterparts. µCDEOA was compared with classical

BFOA with 6 and 30 population sizes, and micro BFOA (µBFOA) in a set of 16 single objective

numerical optimization problems taken from IEEE CEC. Simulation results show that overall

performance of CDEOA, iCDEOA, and µCDEOA was superior to, or comparable to, that of

the other competitors.
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6.2 Future Research

CDEOA is mostly based on BFOA which consumes quite a lot computational time. Contrary to

this, DE is good at employing the local and global search operators efficiently. It is important

to employ DE based BFOA in order to reduce the computational time.

ICDEOA is good at optimizing the unimodal and multimodal functions. However, it does

not exhibit the same performance in some complex hybrid and composition functions. It is

beneficial to employ DE based operators to increase the performance as DE coupled methods

have been a powerful technique for complex hybrid and composition functions.

µCDEOA has been tested on high dimensional problems and proven to be a successful

technique as a global optimizer. However, it has not been tested on large scale optimization

problems. Therefore, µCDEOA needs to be improved in a way that can solve large scale

optimization problems.

6.3 Source Codes

The Python source codes of the algorithms classical BFOA, classical DE, CDE, ACBSFO_DES,

proposed CDEOA, iCDEOA, and µCDEOA can be downloaded from Y. Emre Yildiz’s

homepage (https://sites.google.com/site/yeyildiz12/). These codes are written to be

compatible with the opn global optimization framework available in Oğuz Altun’s Bitbucket

repository (https://bitbucket.org/oaltun/opn). Algorithm 1 and Algorithm 2 in Chapter

3 does not correspond one to one to CDEOA code given, as we wanted to hide unnecessary

details of the framework used. The lines 19-26 in Algorithm 1 and Algorithm 2 of Chapter 3

summarize what opn does to make the given code runnable.
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Appendix A

THE NUMERICAL COMPARISON OF CDEOA AND

ICDEOA WITH THEIR COUNTERPARTS
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