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ABSTRACT

CHEMOTAXIS DIFFERENTIAL EVOLUTION
OPTIMIZATION TECHNIQUES FOR GLOBAL
OPTIMIZATION

Yildiz, Yunus Emre
Ph.D., Department of Computer Engineering
Supervisor: Dr. Oguz Altun

June 2016

Nature inspired and bio-inspired algorithms have been recently used for solving low
and high dimensional search and optimization problems. In this context, Bacterial
Foraging Optimization Algorithm (BFOA) and Differential Evolution (DE) have been
widely employed as global optimization techniques inspired from social foraging behavior
of Escheria coli bacteria and evolutionary ideas such as mutation, crossover, and selection,
respectively.

BFOA employs chemotaxis (tumble and run steps of a bacterium in its lifetime)
activity for local search whereas the global search is performed by elimination-dispersal
operator. Elimination-dispersal operator kills or disperses some bacteria and replaces
others randomly in the search space. This operator mimics bacterium’s death or dispersal

in case of high temperature or sudden water flow in the environment.



DE employs the mutation and crossover operators to make a local and a global search
that explore the search space. Exploration and exploitation balance of DE is performed
by two different parameters: mutation scaling factor and crossover rate. These two
parameters along with the number of population have an enormous impact on optimization
performance.

In this thesis, two novel hybrid techniques called Chemotaxis Differential Evolution
Optimization Algorithm (CDEOA) for low dimensions and micro CDEOA (nCDEOA)
for high dimensional problems are proposed. In these techniques, we incorporate the
principles of DE into BFOA with two conditions. What makes our techniques different
from its counterparts is that it is based on two optimization strategies: exploration of a
bacterium in case of its failure to explore its vicinity for food source and exploitation of
a bacterium in case of its achievement to exploit more food source. By means of these
evolutionary ideas, we manage to establish an efficient balance between exploration of
new areas in the search space and exploitation of search space gradients. Statistics of
the computer simulations indicate that pfCDEOA outperforms, or is comparable to, its
competitors in terms of its convergence rates and quality of final solution for complex high

dimensional problems.
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ABSTRAKT

TEKNIKAT E OPTIMIZMIT TE EVOLUCIONIT
DIFERENCIAL TE KEMOTAKSES PER OPTIMIZIM
GLOBAL

Yildiz, Yunus Emre
Doktoraturé, Departamenti i Inxhinierise Kompjuterike
Udhéhegési: Dr. Oguz Altun

Qershor 2016

Algoritmat e frymézuar nga natyra dhe biologjia kohét e fundit po pérdoren pér
zgjidhjen e problemave té optimizmit me dimension kérkimi té ulét dhe té larté. Né
kété kontekst, Algoritmi i Optimizmit té Sjelljeve Ushqyese té Baktereve (BFOA) dhe
Evolucioni Diferencial (DE) jané pérdorur gjerésisht si teknika globale té optimizmit, e
para e frymézuar nga sjelljet ushqyese té bakterit Escherichia Coli dhe e dyta nga proceset
evolucionare té tilla si mutacioni, kryq kémbimi dhe seleksionimi natyror.

BFOA-ja pérdor aktivitetin Kemotaksik (1évizjen e njé bakteri gjaté gjithé jetés
sé tij) pér kérkim lokal, ndérsa kérkimi global kryhet duke pérdorur operatorin e
eliminim-shpérndarjes. Operatori i eliminim-shpérndarjes vret ose shpérndan disa nga
bakteret né hapésirén e kérkimit dhe po né keté hapésire, disa baktere té tjera i zévendéson
né meényre rastésore. Ky operator imiton vdekjen ose shpérndarjen e baktereve né

temperatura té larta apo né rast té njé vérshimi té papritur té ujit né ambient.
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DE pérdor operatoret e mutacionit dhe kryq kémbimit pér kérkime lokale dhe globale né
zbulimin e hapésirés se kérkimit. Balanca e zbulimit dhe shfrytézimit t&é DE realizohet
nga 2 parametra té ndryshém: faktori i shkallézimit té mutacionit dhe shpeshtia e kryq
kémbimit. Kéto 2 parametra sé bashku me numrin e popullatés kané njé ndikim té madh
né performancén e optimizmit.

Né kété tezé propozohen 2 teknika té reja hibride, njéra pér problemat me dimension té
ulét e quajtur Algoritmi i Optimizmit te Evolucionit Diferencial t& Kemotakses (CDEOA)
dhe njéra pér problemat me dimension té larté quajtur mikro CDEOA (CDEOA). Né
kéto teknika ne pérdorim disa parime té DE né BFOA me 2 kushte. Ajo qé e bén kété
teknike té ndryshme nga simotrat e saj éshté fakti se ajo bazohet né 2 strategji optimizmi:
zbulimi i njé bakteri né rast kur ai déshton né zbulimin e ushqimit dhe shfrytézimin e
njé bakteri kur ai arrin té shfrytézoje mé shumé burime ushqimi. Me ané té kétyre ideve
evolucionare ne arrijmé té vendosim njé balancé ndérmjet zbulimit té hapésirave té reja né
hapésirén e kérkimit dhe shfrytézimin e gradientit té hapésirés sé kérkimit. Statistikat e
simulimeve kompjuteriké t¢ CDEOA tregojné se ajo i tejkalon ose éshté e krahasueshme me
konkurentet e vet né terma té kursit té konvergjencés dhe cilésisé sé zgjidhjes pérfundimtare

té problemave té komplikuara dhe me dimension té larté.
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CHAPTER 1
INTRODUCTION

1.1 Overview

In the past few decades, nature and natural processes have been studied by several researchers
in order to get inspiration for tackling complex real-world problems. Natural selection tends
to eliminate species with poor foraging strategies through methods for locating, handling,
and ingesting food and favors the propagation of genes of species with successful foraging
behavior since they are more likely to obtain enough food to enable them to reproduce. After
many generations, poor foraging strategies are either eliminated or shaped into good ones.
In this context, many nature inspired techniques such as Ant Colony Optimization (ACO)
[17], Artificial Bee Colony (ABC) [28] have been employed. Particularly, such evolutionary
principles have led Kevin M. Passino to develop a new nature-inspired technique known as
Bacterial Foraging Optimization Algorithm (BFOA) which maximizes foraging organism or
animal’s energy intake per unit time spent, considering all the constraints presented by its
own physiology such as sensing and cognitive capabilities, environment (e.g., density of prey,
risks from predators, physical characteristics of the search space) for distributed search and
optimization ( [50]; [37]).

In order to enhance BFOA performance, a considerable number of ameliorations have
been performed, including hybridization with evolutionary algorithms (EA) ( [30]; [4]), and

improvements based on analysis of the BFOA operators ( [|15]; [2]; [3] ; [13]). Up to now,



BFOA has been applied in applications in transmission loss reduction ( [63]), optimal control
design ( [50]), estimation of harmonic components ( [41]), active power filter ( [42]), learning of
artificial neural networks ( [31]), and PID controller tuning ( [32]).

In hybrid algorithms, Kim et al. [30] have proposed a hybrid algorithm BFOA-Genetic
Algorithm (GA) which manipulates on mutation, crossover, different step sizes, chemotaxis
steps, and lifetime of the bacteria. Biswas et al. [4] have proposed a BFOA-Differential
Evolution (DE) hybrid which employs mutation and crossover operators. Jarraya et al. |26]
have proposed Adaptive Chemotactic Bacterial Swarm Foraging Optimization with Differential
Evolution Strategy (ACBSFO_DES) which integrates Particle Swarm Optimization and DE
operators into BFOA to cope with the premature convergence and slowness of the standard
and variants of BFOA. As opposed to the aforementioned improvements of BFOA and the
state-of-the-art optimization algorithms in the literature, BFOA still needs to be optimized in
high dimensional unimodal and multimodal problems in terms of the convergence speed and the
quality of final solution. In order to overcome the deficiencies of BFOA, three novel optimization

algorithms are proposed in this thesis.

1.2 Originality and Motivation

Each classical algorithm has been improved with different contributions by the researchers
since its inception in the literature. In this respect, classical BFOA has been hybridized with
evolutionary and nature-inspired algorithms, too. Although there exists some hybridization
studies of BFOA with DE ( 4], [26] ), they only employ DE operators (mutation and crossover)
explicitly. The proposed techniques employ DE operators implicitly in case that some conditions
are met. In the literature of BFOA, there is no enough study as opposed to some bio inspired
optimization algorithms such as DE and Particle Swarm Optimization (PSO). On the other
hand, the fact that BFOA does not possess the evolutionary operators such as mutation and
crossover has led us to hybridize with DE operators. Furthermore, DE participated in the

First International IEEE Competition on Evolutionary Optimization and became the fastest



algorithm ( [61]). These aforementioned milestones encouraged us to integrate DE operators

into BFOA.

1.3 Objective of Thesis

The objectives of the work proposed in this thesis are as follows:

1. Present a brief literature review of metaheuristics algorithms.

2. Develop a novel search algorithm (CDEOA) hybridizing the bacterium’s chemotaxis

operator with Differential Evolution (DE) evolutionary operators.

3. Optimize the performance of CDEOA by eliminating the premature convergence effect of

standard BFOA reproduction operator.

4. Validate the performance of the proposed algorithms (CDEOA, iCDEOA, and nCDEOA)

by comparing with its canonical and state-of-the-art counterparts.
5. Analyze the performance of the proposed algorithm (CDEOA) on a real life problem.

6. Improve the performance of the micro BFOA in terms of quality of final solution by

introducing pCDEOA for high dimensional problems.

1.4 Organization of Thesis

Organization of this thesis is as follows:

Chapter [1| presents a brief introduction and overview of the study. It also focuses on the
objectives to achieve the desired goals.

Chapter [2| presents the introduction to optimization techniques in the metaheuristics field.

It also presents a literature review of the related algorithms.



Chapter [3| proposes two hybrid optimization techniques and discusses the numerical results
obtained in benchmark tests in detail. It also gives the optimization of Supply Chain Problem
using the proposed algorithm.

Chapter [ includes the proposed micro bio inspired optimization technique and discusses the
numerical results obtained in benchmark tests. It also presents the hybrid micro bio inspired
techniques in the literature briefly.

Chapter [5| discusses the effects of Differential Evolution (DE) optimization algorithm
mutation strategies and DE parameters on CDEOA with the numerical results.

Chapter [6] concludes the thesis. It also presents the future aspects of three hybrid

optimization techniques.



CHAPTER 2
BIO INSPIRED OPTIMIZATION TECHNIQUES

2.1 Introduction

Optimization is considered to be mathematical procedures in all engineering fields. It literally
means a kind of process or technique in order to make a system or a decision as excellent
or effective as possible. In computational intelligent field, it is finding the best optimum
solution out of a number of candidate solutions. Optimization algorithms can be categorized
as deterministic or stochastic. The stochastic algorithms depend on the random variables
generated at the beginning of search. Every time the algorithm is launched, it will end up with
different points since there is a randomness in the algorithm. Some examples of stochastic
algorithms are Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential
Evolution (DE), and Bacterial Foraging Optimization Algorithm (BFOA). On other hand,
deterministic techniques work in a deterministic way without randomness. The same initial
points will yield the same final solution even if the algorithm is launched several times.
The examples of deterministic approaches are linear programming, non-linear programming,
mixed integer non-linear programming. In comparison with stochastic techniques, deterministic
methods require huge computational time, thereby tending to fail in converging the optimal
solution when the search space range and the number of dimensions of the problem increase.
Algorithms based on stochastic approaches were recently called metaheuristics which means

higher level process or heuristic ( to find or to discover by trial and error) to find near optimal



solutions in an optimization domain. The definition of Glover and Laguna ( [21]) describes the
best what the metaheuristics is: ”"master strategy that guides and modifies other heuristics to
produce solutions beyond those that are normally generated in a quest for local optimality”.

The characteristics of metaheuristics are as follows:

1. Metaheuristics algorithms need to employ local search and global search operators to

make a search.

2. A reasonable amount of time is reserved in order to find the optimal solution in a
difficult optimization problem. However, there is no guarantee that the optimal solution

is achieved.
3. Metaheuristic algorithms yield approximate solutions and are non-deterministic.
4. Metaheuristics are not problem specific.

One major impact that makes the metaheuristic algorithm superior in solving hard and
complex optimization problem is whether the algorithm possesses exploration and exploitation
balance or intensification and diversification balance [6]. Diversification helps in generating
the diverse candidate solutions in global scale to explore the whole search space whereas
intensification makes the search process more focused on the local area as long as the current
candidate solution is better than previous candidate solution. There must be a good trade-off
between intensification (exploitation) and diversification (exploration) in order to improve the
convergence rate and the quality of final solution within a period of time. Once the candidate
solution gets trapped or gets stagnated in a local optima, diversification helps the candidate
solution escape it and also increases diversity of candidate solutions.

As in Fig. the most employed metaheuristic optimization algorithms are depicted
in the field. Bio inspired techniques are divided into two categories namely, evolutionary and
nature inspired techniques. Evolutionary algorithms are GA (Genetic Algorithm), GP (Genetic
Programming), ES (Evolutionary Strategies), and DE (Differential Evolution). Nature inspired

techniques are BFOA (Bacterial Foraging Optimization Algorithm), PSO (Particle Swarm



—>GA

. —
Evolutionary Gk

algorithms ]
—>ES

—> DE

—Bio inspired algorithms— — BFOA

—— PSO

| Swarmbased |

algorithms

—> ACO

—> FA

— ABC

Figure 2.1: Taxonomy of Bio inspired algorithms

Optimization), ACO (Ant Colony Optimization), FA (Firefly Algorithm), and ABC (Artificial

Bee Colony).

2.2 Genetic Algorithm

GA is an evolutionary based stochastic optimization algorithm which mimics the natural
selection ( [23]). It is subclass of evolutionary algorithms (EA) which generate solutions for
the optimization problems. With the power of natural evolution techniques such as mutation,
crossover, and selection, it has a potential global search ability. To generate a good solution,
a population of randomly generated candidate solutions undergoes an iterative optimization
process which the population is called generation in each iteration. In other words, the candidate

solutions (individuals) in the population which have a set of chromosomes are initialized on the



search space. The representation of the candidate solutions are in binary as strings of 0’s and 1’s.
In each generation, every individual’s fitness (cost in case of minimization problem) is evaluated
according to objective function. Assessment of an individual is performed according to objective
function used in the optimization problem. The best individuals in terms of objective function
value are selected out of current generation which will be used for the next generation. The

general flowchart of Genetic Algorithm is shown in Fig.

Initialize the individuals

]

Evaluate the fitness of
individuals

Make a selection

l

Crossover and mutation

Termination
Criteria?

Figure 2.2: General flowchart of Genetic optimization

2.3 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a population based optimization algorithm that
optimizes a problem iteratively trying to help the candidate solution reach the global optimum

according to a termination criteria. The origin of the algorithm belongs to ( [1§]) and the



algorithm was employed for the simulation of social behavior: bird flock and fish school. With
the population called particles, PSO optimizes a problem by moving the particles randomly

according to objective function value on the search space.

Initialize positions and
velocities of each particles
v
Compute the fitness function value of
each particle
v
Set particle's best position = current position and
local best fitness'= current fithess

Set global best fitness(g) = min(local
best fitness(pi)), g = pi
v

Update velocities and positions of

each particle
v

Compute the fitness function of each
particle

Current fitness <
local best fitness ?

Yes
v

Set local best fitness = current fitness

No

Current fitness <
global best fitness ?

Yes
v

Set global best fitness = current fitness

No

Termination criteria met ?

Yes

Figure 2.3: General Flowchart of Particle Swarm Optimization



In order for a particle to update its position, its current position and its velocity are taken
into consideration by adding these two parameters each other with a formula According
to the formula, there are two parameters that will influence the performance of the algorithm:
particle’s best known position (p; ¢) and particle’s best known position of the whole individuals

(94). The general flowchart of Particle Swarm Optimization is shown in Fig.
Vid =W *V; g+ @p*Tp % (Did — Tid) + Pg *Tg * (ga — Tia) (2.1)

where r, and r, ~ U(0, 1), the parameters w, ¢, and ¢, are other parameters that are chosen
by the practitioners. These parameters control the behavior and efficiency of optimization

process of PSO.

2.4 Bacterial Foraging Optimization Algorithm

The bacterial foraging system consists of four principal mechanisms, namely chemotaxis,
swarming, reproduction, and elimination-dispersal ( [50]). Below we briefly describe each of

these processes.

2.4.1 Chemotaxis

This process is the motion of an E.coli bacterium using consecutive tumble and swim (run) steps
via ﬂagellaﬂ While tumble is a unit walk in random direction, swim is the consecutive movement
in the same direction. FE.coli alternates between these two modes of operation throughout
its entire life-time. Suppose 0(i,j, k,l) represents the position of the ith bacterium at jth

chemotactic, kth reproductive and /th elimination-dispersal step. The position of the bacterium

in the next step may be represented by Eq. (2.2)) and Eq. (2.3),

?(j) — &
VAT (i) A (i)

INote that swim and run can be used interchangeably in the literature of BFOA.

(2.2)
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0(i,j+1,k1)=0(i,j k1) +C> TG (2.3)

where C' (i) is the size of the unit walk (run-length unit) which is pre-defined as a constant,
() (Eq. is the direction angle of the step, and A (7) is the random vector whose elements
lie in [-1,1]. In a run step, T(j) remains the same as € (j — 1); in a tumble step, ¢ (j) is

generated randomly from uniform distribution in the range of [0, 2pi].

2.4.2 Reproduction

The health of the each bacterium is computed as the sum of the objective function values
calculated during its life-time and the population is sorted according to their health. The
healthiest 50% bacteria asexually split into two which are then placed at the same locations.

The remaining 50% with poor health is discarded to keep the population size constant.

2.4.3 Elimination and Dispersal

Elimination and dispersal events may occur in the local environment when the bacteria are
exposed to gradual or sudden changes such as significant rise of temperature or sudden flow of
water. In order to simulate these events in BFOA, some bacteria are liquidated at random with
a pre-determined probability (P.q) while the new replacements are initialized randomly in the

search space.

2.4.4 Swarming

A group of E.coli bacteria arrange themselves in a traveling ring by moving up the nutrient
gradient when placed amidst a semisolid matrix with a single nutrient chemoeffector. The
bacteria, when stimulated by a high level of succinate, release an attractant aspartate which

helps them to aggregate into groups and thus move as concentric patterns of swarms with high

11
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counterj=j+1 No
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(Discard the worse
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split the better half

into two) Yes

Yes

Swim or Run(Let the bacterium take C(i)
step size along the direction of the tumble
vector A(i))

Figure 2.4: Flowchart of the Classical BFOA

bacterial density. The bacterium-to-bacterium signaling in E. coli swarm may be represented

by Eq. ,

S
Tee (0, P (G, 1) =Y Jee (0,60 (i, 5.k, 1)) =
i=1
S p o
_dattTactantexp <_watt'r'actant (em - 0:71) (24)
i=1 m=1
S p o
+ Z hrepellentexp <_wrepellent Z (em - H:n)
i=1 m=1
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where P (j,k,1) = {6(j,k,1)|i =1,2,...,S} represents the positions of each member in the
population, S is the total number of bacteria, p is the number of variables to be optimized that
are present in each bacterium, J.. (0, P (j,k,1)) is the objective function value to be added to
the actual objective function (to be minimized) to present a time-varying objective function,
0 = [01,04, ...,GP]T is a point in the search domain, and 6/, is the mth elements of the ith
bacterium position 8? . deitrectants Wattractant Nrepellents Wrepellent are distinct coeflicients from
each other.

A flowchart of the classical BFOA is given in Fig. which is adapted from the study
of [15].

2.5 Differential Evolution

Differential evolution (DE) is a population based bio-inspired technique which utilizes mutation,
crossover, and selection operators to minimize an objective function. For each generation G, a

new population is created from the current population members,
zig,i=1,2,..,N (2.5)

where N is the population size. The initial population (Eq. is randomly generated in
the search domain with N vectors according to a uniform probability distribution. After
initialization, DE enters mutation, crossover, and selection processes. Basically, DE chooses
three candidate vectors randomly from the population and new solution vectors are created by

adding the scaled difference between two population vectors to a third population ( [61]).

2.5.1 Mutation

At each generation G, a mutant vector v; ¢ is generated for each target vector x; ¢,¢ = 1,2,..N

in the current population. The most used mutation strategiesE| in the literature are as follows:

%http://www.icsi.berkeley.edu/~storn/code.html
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e “DE/rand/1”

Ui,G = x’r‘o,G + F (xrl,G - x’r’z,G) (26)

o “DE/rand/2”

Vi.G = Ty + F (20, .6 — Try0) + F (2056 — Try6) (2.7)

¢ “DE/current-to-best/1”

vig = Ti,g + F( Tpest,a - Ti,a ) + F(@ry.c - Try,G) (2.8)

« “DE/best/1”

V.G = Thest,¢ + F (Try.c — Try,6) (2.9)

« “DE/best/2”

Vi, = Thest,¢ + F( Tro.6 - Try.6) +F( Try 6 - Tryc ) (2.10)

e “DE/rand-to-best/1”

ViG = Tro¢ + F( %G - Try6) TF( Tryery.G - Try 6 ) (2.11)

where 1q, 11, T2, 3, and r4 are distinct integers randomly chosen from the current population

and are different from 7. Zpest, is the best individual vector in the current generation G, and

F is the mutation factor generally within the range of [0, 2].

14



2.5.2 Crossover

After mutation, a binomial crossover operation is carried out on v; ¢ and z; ¢ to generate a

new trial vector u; ¢ = (Ui1,G, Ui, 2,6, -5 Ui, D,G)"

Vi,5,G>» if Rj (07 1) < Crorj = jrand
U5, = (2.12)

Ti5.Gs Zf Rj (O, 1) > CT

where j = 1,2,..., D, D is the dimension of the search space, j,.qnq is @ randomly chosen integer
in [1,D], R;(0,1) is uniformly generated random number between 0 and 1 for each j, and

C, € [0,1] is the crossover rate parameter.

2.5.3 Selection

Selection process is carried out to choose the better of the parent vector x; ¢ and the trial vector

u; . In case of a minimization problem, the selected parent vector in the next generation is

given by Eq. (2.13)),

uiq, if f(uig) < f(zia)
Ti,G4+1 = (2.13)

Ziq, Otherwise

where f (-) is the function for minimization. If trial vector u; ¢ produces a better fitness value,

it replaces its parent in the next generation; otherwise the parent is kept in the population.

2.6 Artificial Bee colony

Artificial Bee Colony (ABC) [28] is another nature inspired optimization algorithm which is
based on behaviors of honey bees. In the population, there are three types of roles: employed
bees which go to the food source previously visited by itself; onlooker bees which wait on the

dance area to decide whether or not the food source is worth being visited; scout bees which

15



makes a random search.

In ABC algorithm, each search process cycle is made up of three steps carried out by the
aforementioned bee groups: employed bees are sent onto food sources to measure their nectar
amounts; the food sources are chosen by the onlooker bees depending on the information of
the nectar amount which employed bees share. The scout bees are determined and sent onto
possible food sources [28]. The main steps of ABC algorithm are as follows:

¢ Initialize the food source positions.

« REPEAT.

1. Each employed bee goes to a food source that visited previously in her memory then
assesses the amount of nectar and makes a special dance for onlooker bees.

2. Depending on the employed bees dances, each onlooker selects one of their food
sources and assesses the quality of nectar.

3. Scouts discover new food sources and these are replaced by the abandoned food
sources.

4. The position of the best food source is kept in the memory.

e UNTIL (all the requirements are satisfied).

2.7 Benchmark Test Functions

In this section, in order to give an idea regarding the different situations which the algorithms
experience, the most frequently used single-objective optimization test problems and artificial
landscapes are presented to assess the characteristics of the optimization algorithms, such as:
convergence rate, quality of the final solution, robustness, and general performance. [43], [1].

Eq. P14 Eq. 2.15 Eq. .16, Eq. .17 Eq. 18] and Eq. shows each problem’s function

definition. In addition to the artificial landscape and function definition, the search range and

the global minimum of problems are denoted, as well.
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1. Sphere Function
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Figure 2.5: 2 dimensional Sphere function

Search range : z; € [-5.12,5.12],4=1,2,..., D

Global minimum : f(z*) =0,z* = (0,,,,0)

2. Rosenbrock’s function
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Figure 2.6: 2 dimensional Rosenbrock function
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falx) =327 (100(7 = @i1)? + (i — 1)2) (2.15)

Search range : z; € [-5,10],i =1,2,..., D

Global minimum : f(z*) =0,2z* = (0,,,,0)

3. Ackley’s function

%2 <40 40
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Figure 2.7: 2 dimensional Ackley function

D
f3(x) = —20exp(—0.24/ % Zle z?) fexp(% Z cos(2mxz;)) +20+e, (2.16)

i=1
Search range : x; € [—32.768,32.768],i = 1,2,..., D

Global minimum : f(z*) =0,z* = (0,,,,0)

4. Griewank’s function
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Figure 2.8: 2 dimensional Griewank function

fa(@) =272, % (2.17)

Search range : x; € [—600,600],i =1,2,...,D

Global minimum : f(z*) =0,2* = (0,,,,0)

. Rastrigin’s function
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Figure 2.9: 2 dimensional Rastrigin function
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fs(x) = Zf):l(mQ — 10cos(2mx;) 4+ 10)polghkh (2.18)

i

Search range : x; € [-5.12,5.12],i = 1,2,..., D

Global minimum : f(z*) =0,2z* = (0,,,,0)

6. Schwefel’s function

11.22)

Figure 2.10: 2 dimensional Schwefel function

fio(z) = 418.9829 % D — "7 wisin(|a;|'/?) (2.19)

Search range : x; € [—500,500],¢ =1,2,..., D

Global minimum : f(z*) = 0,2* = (420.9687, , ,,420.9687)
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CHAPTER 3
BFOA BASED HYBRID OPTIMIZATION
ALGORITHMS

This chapter introduces a novel optimization approach named Chemotaxis Differential
Evolution Optimization Algorithm (CDEOA) and its improved variant (ICDEOA). This new
approach is based on the integration of two new strategies into the chemotaxis step of BFOA:
weak bacterium’s search and strong bacterium’s foraging. The performance of weak bacteria
is enhanced by randomly moving to new positions whereas the strong bacteria is enhanced
by integrating the ideas of differential evolution (DE) operators. With these strategies, we
establish an effective distribution of the responsibility of exploring new areas, and responsibility
of exploiting the search space gradients. The simulation results reveal that CDEOA has shown
superior performance in multi-model and high-dimensional functions in terms of convergence
speed and quality of final solution. The proposed algorithm has been compared with classical
BFOA, DE, and BFOA variants, and the state-of-the-art DE variants over a test suit of 30

CEC 2014 benchmark functions ( [35]).

3.1 CDEOA

Empirical studies ( [5] ; |15]) report that BFOA possesses a poor convergence behavior on
several multi-modal benchmark functions that have rough fitness landscapes when compared

with other naturally inspired optimization techniques like the Genetic Algorithm (GA) ( [65]),
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Particle Swarm Optimization (PSO) ( [51], [29]), and DE ( [61]). In addition, the BFOA
elimination-dispersal step (the death and then random position assignment of a bacterium) is
not a complete biologically valid model ( [37]). Additionally, the performance of BFOA needs
to be improved on complex optimization problems with high dimensionality due to fact that
classical BFOA yields poor convergence behavior on high dimensional problems ( [4]).

Based on above inadequacies of classical BFOA, a novel optimization method, called CDEOA
(Algorithm , which hybridizes BFOA with DE is proposed. CDEOA adopts the same
mutation, crossover, and selection operations of DE as described in Eq. , Eq. ,

and Eq. (2.13)) in Section respectively.

3.1.1 Distribution of the exploration and exploitation responsibilities

The basic idea behind the proposed CDEOA algorithm is centered on two different strategies: a)
making “weak” bacteria more explorative, where “weak” bacteria are the ones on positions with
low nutrient concentrations, and b) making “strong” bacteria more exploitative, where “strong”
bacteria are the ones on positions with high nutrient concentrations. Crepinsek et al. [76] wrote:
“Exploration is the process of visiting entirely new regions of a search space while exploitation
is the process of visiting those regions of a search space within the neighborhood of previously
visited points”. Exploration and exploitation are opposing forces that need to be balanced
( |19]). In this respect, in order to establish a good ratio between exploration and exploitation,
selection operator and search operators (mutation and crossover) of DE are employed in this
study. The selection operators we use favor a search toward the regions of the best individuals.
In addition, Béck and Schwefel [7] reported that selection pressure has a great control over
level of exploration and exploitation. While high selection pressure forces the search to be more
exploitative, low selection pressure encourages the search to be more explorative. From this
perspective, CDEOA tends to have an exploitative search due to behaviors of two selection
operators, the reproduction operator of BFOA and selection operator of DE. The differential

mutation operator randomly generates different bacteria and thus increases the diversity of
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the population. From this point of view, the differential mutation operator tends to be more
exploration operator. However, the mutation strategy, “DE/best/2”, which CDEOA employs
makes the search more exploitative by guiding the search with the best solution so far discovered.
De Jong and Spears [16] wrote: “A potential number of ways in which a genetic operator can
effect a change has been called its exploratory power.” In this context, the crossover operator
which CDEOA employs urges the search toward more explorative due to its high crossover
rate. By means of random search (RS), CDEOA carries out an explorative search on the fitness
landscape. On the other hand, it is not easy to predict if individuals produced for the next
generation by a crossover and/or mutation operator will fall into the exploration or exploitation
zones ( [76]).

If the bacterium discovers a new, promising area and keeps running for a predefined number
M, of successive generations, then this bacterium undergoes exploitation state (line 60 in
Algorithm . By “Discovering promising area” we mean the case when bacterium records
a fitness improvement from last generation to the current. If the bacterium’s current fitness
remain unchanged for a predefined number M; of successive generations, then this bacterium
undergoes exploration state (line 50 in Algorithm . Through the means of these strategies,
we effectively distribute the responsibilities of exploration and exploitation of fitness landscape
amongst the bacteria. The proposed algorithm performs local search through the chemotaxis

movement operation of BFOA and the global search over the search space through RS and DE

operators Eq. (2.10)), Eq. (2.12)), and Eq. (2.13]).

3.1.2 Making Weak Bacteria Explorative

During the chemotaxis process of BFOA, bacterium in the vicinity of noxious substance will try
to move to a position with better nutrient concentration by taking larger steps. This approach
is the same as the adaptive step strategy of Dasgupta et al. [15] to make the bacterium more
explorative. In the proposed approach, the bacterium performs an elimination process which

leads it to change its position randomly in fitness landscape after a number of unsuccessful
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Algorithm 1 Detailed pseudo-code of CDEOA. Comments start with “//”. The code we
discuss in the text is in boldface.

: Parameters:

p < dimensions of the search space

S < total number of bacteria in the population
N, + number of chemotaxis steps

N, <+ swimming steps

N, + number of reproduction steps
C(i) + the run-length unit

M; + maximum number of tumble steps
M, + maximum number of run steps

f + objective function to be minimized
. //Initialize some local variables

—_

—_ =
= O

12:  E; <0 //bacterium’s unsuccessful tumble step

13:  E, <0 //bacterium’s unsuccessful run step

14:  Opese +random position in the search space

15: fbest <;f(ebest)

16:  Mjes +—maximum number of FEs allowed

170 Nyes <=0 //current number of function evaluations

18: // Define a helper function J that will call the actual objective function f. This helper

function also updates the Nyfcs, Opest, and fres: variables. This approach makes the rest
of the algorithm cleaner. Depending on the programming language and programming
paradigm that will be used, this helper function may be moved outside the CDEOA block,
or may be a method of a class.

19: function J (6):

20: v+ f(6)

21: Nyes < Nyes +1//update number of FEs

22: if v < fpest then

23: Opest < 6 //update global best location

24: frest < v //update global best function value
25: end//if

26: return v

27: end// function
28: while Ny.s < My.s do//FEs control loop
29: for k from 1 to N,. do// Reproduction loop

30: for j from 1 to N, do// Chemotaxis loop

31: for i from 1 to S do// Tumble-Swim loop
32: Jiast <J(0(i,4,k))//J(-) computes the health (fitness) of a bacterium.
33: A(i) random vector within [—1,1]//tumble
. X — (i i ; A(i)
34 0(Z7J+1?k) - 6(27])k)+ C(”’) AT(L)A(L)
35: if J(0(i,j+1,k)) < J(0(@,4,k)) then
36: E,«— E;+1
[
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37:
38:
39:
40:

41:

42:
43:
44:

45:
46:

47:
48:
49:
50:
51:
52:
53:
54:
55:

56:
57:
58:

59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:

72:

//Swim:
for m from 1 to N5 do// Swim loop
if J(0(i,j +1,k)) < Jias then
Jiast = J(0(i,5+ 1, k)) ‘
01,5 +1.k) = 06,4, k)+C (i) Zzrees
E.«—FE.+1
else
m = N,//Break from switch loop

end//if
end//Swim loop

end//Tumble-Swim loop
//Ezxploration Loop
for ¢ from 1 to S do
//Take an exploration step for bacterium i
if Et = Mt then
0(i,5 + 1,k) <random position
Jiast = J(0(i,5 + 1,k))
if Jiast < J(0(i,7,k)) then
J(O(i,j + 17l)) + Jiast
end//if
Et - O
end//if
end//Exploration Loop
//Exploitation Loop
for ¢ from 1 to S do
if E,. = M, let bacterium undergo : then
DE mutation as in Eq. (2.10)
DEFE crossover as in Eq. (2.12))
DF selection as in Eq. (2.13)

end//if
end//ExploitationLoop
end //Chemotaxis loop

//Reproduction
T} ootin = Z;V:“fl J(0(i,7,k)) // Compute the health of each bacterium

Sort bacteria cost Jpeqitn in ascending order. Let bacteria with the highest Jpeqitn values

die and the remaining bacteria with the best values reproduce

end // Reproduction loop

73: end // FEs control loop
74: return Oy
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Table 3.1: Summary of the CEC 2014 Test Functions
Search Range: [—100,100]”

No. Functions Ff=F;(z
1 Rotated High Conditioned Elliptic Function 100
Unimodal 2 Rotated Bent Cigar Function 200
Functions
3 Rotated Discus Function 300
4 Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Ackley’s Function 500
6 Shifted and Rotated Weierstrass Function 600
7 Shifted and Rotated Griewank’s Function 700
8 Shifted Rastrigin’s Function 800
Simple 9 Shifted and Rotated Rastrigin’s Function 900
Multimodal ) ) )
F S 10 Shifted Schwefel’s Function 1000
unctions
11 Shifted and Rotated Schwefel’s Function 1100
12 Shifted and Rotated Katsuura Function 1200
13 Shifted and Rotated HappyCat Function 1300
14 Shifted and Rotated HGBat Function 1400
15 Shifted and Rotated Expanded Griewank’s + Rosenbrock’s 1500
16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600
17 Hybrid Functions (N=3) 1700
18 Hybrid Function 2 (N=3) 1800
19 Hybrid Function 3 (N=4) 1900
Hybrid
Functions 20 Hybrid Function 4 (N=4) 2000
21 Hybrid Function 5 (N=5) 2100
22 Hybrid Function 6 (N=5) 2200
23 Composition Function 1 (N=5) 2300
24 Composition Function 2 (N=3) 2400
25 Composition Function 3 (N=3) 2500
26 Composition Function 4 (N=5) 2600
Compp sition 27 Composition Function 5 (N=5) 2700
Functions
28 Composition Function 6 (N=5) 2800
29 Composition Function 7 (N=3) 2900
30 Composition Function 8 (N=3) 3000

N:Number of functions used, D: Dimensions.
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Unit Walk ——»

Figure 3.1: Exploration Scheme of a Bacterium

movement attempts M;. In other words, if the bacterium’s number of unsuccessful attempts
of taking tumble steps E; reaches the predefined maximum M;, the bacterium is liquidated
at random (line 50-51 in Algorithm . By “Bacterium’s unsuccessful attempt to take step”
we mean that the bacterium does not take a step while by “bacterium’s successful step” we
mean that the bacterium takes step to a promising area. In this respect, the unsuccessful
step attempt occurs when the current bacterium’s objective function value J(6(i,j)) is worse
than bacterium’s objective function value J(6(¢,j 4+ 1)) in the next chemotaxis step. Notice
that this strategy randomly assigns the locations of several bacteria which make the algorithm
more explorative. This process is performed by the elimination-dispersal process in the classical
BFOA. In the proposed method, the elimination-dispersal process of BFOA is replaced with
“making weak bacteria explorative” strategy.

Fig. illustrates the steps of a bacterium in exploration state. If a bacterium fails to

discover a promising area in its vicinity, it is randomly dispersed to another location.

3.1.3 Making Strong Bacteria Exploitative

As mentioned in Section the bacterium runs for a period of time in the same direction
as long as it discovers better nutrient-rich concentration and retains its position. In order to
make the bacterium more exploitative, the bacterium is supposed to exploit the gradient of the

promising area in the vicinity of nutrient-rich substance. Accordingly, each bacterium takes
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the mutation, crossover, and selection operators of DE (line 62-64 in Algorithm [1]) only if the
bacterium’s successful number of run steps E, reaches the maximum number of run steps M,
(line 61 in Algorithm [I]).

Consequently, these two strategies, making weak bacteria explorative and making strong
bacteria exploitative, which are denoted with boldface in the Algorithm [1|leads to a new global

hybrid optimization algorithm named CDEOA.

3.1.4 Experimental Study

The CDEOA algorithm was tested using a set of 30 standard benchmark functions (see Table
of IEEE CEC 2014 single objective optimization competition. These functions include
some novel basic problems, graded level of linkages, and rotated trap problems. The suite
also has composition test problems obtained by extracting features dimension-wise from several
problems. The descriptions of these functions are given in [35]. Functions 1-3 are unimodal,
functions 4-16 are simple multimodal, functions 17-22 are hybrid, and functions 23-30 are

composition functions.

Parametric Setup

In the experimental studies, parameter settings of the methods are the same as in their original
papers. The population size S for the proposed method has been kept to 50 regardless of the
dimension size of the problem. M; and M, parameters were both set to optimum value 3 after
a series of fine-tuning.

The control parameters F' (scaling factor) and C, (crossover rate) of DE need to be tuned
properly by the practitioner. When C). is close to 1.0, the mutation operator can produce the
trial vector u; ¢ different from the target vector x; ¢ with a high probability. Hence trial vector
receives huge data from the mutant vector v; ¢. Therefore, choosing C,,=0.9 or 1.0 not only
speeds up convergence but also diversifies the population by means of one of the best solution

dependent DE mutation strategies, “DE /best/2” (Eq. in Chapter . In this context, C,
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parameter of DE was set to be 0.9. Generally, F is selected within the range of [0.5 — 1.0]. Tt
is reported that a smaller F' value (e.g., 0.5) can lead to the statistically better performance
than the other parameter values ( , ) In this context, F' parameter of DE was set to be
0.5. Notice that CDE method employs “DE/rand/1” strategy just as in its original paper. On
the other hand, standard DE, ACBSFO_DES employ “DE/best/1” (Eq. in Chapter |2);
CDEOA employs “DE/best/2” strategy. For the proposed method, classical BFOA, and BFOA

variants, following parameter values were chosen: N.=100, N,=12, N,..=16, C(i)=0.1.
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Figure 3.2: (a) Fi: Rotated High Conditioned Elliptic; (b) Fh: Rotated Bent Cigar; (c) Fi:
Rotated Discus; (d) Fy: Shifted and Rotated Rosenbrock.
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Simulation

The study introduced in this section aims to test the quality of the final solution and the
convergence speed at the end of a fixed number of function evaluations (FEs). The maximum
number of FEs was set to 3 x 10° for 30 dimensions in accordance with the instructions in
CEC 2014 special session. For illustrations, median convergence graphs of BFOA, DE, CDE,
and ACBSFO_DES, CDEOA for test functions was plotted for unimodal, simple multimodal
problems, hybrid problems, and composition problems in Fig. Fig. Fig. Fig.
Fig. Fig. and Fig. The horizontal axis of these graphs is the number of objective
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Figure 3.4: (a) Fy: Shifted and Rotated Rastrigin’; (b) Fig: Shifted Schwefel; (¢) Fyq: Shifted
and Rotated Schwefel; (d) Fia: Shifted and Rotated Katsuura.

function evaluations, and the vertical axis is the mean of objective function values. Notice that
all the experimental results on these graphs are mean of the function values, not the mean error
values. The error values were given in Appendix and according to (F(Z) — F(7%))
for evaluating the success of five algorithms, where ¥ is the best value of the bacterium in a
run and @ * is the global best of the test function (Table . The error values of the function
which is less than 1 x 10~® are considered as zero since such a small error is sufficient for an
acceptable convergence to a correct solution and substituted by zeros in Appendix
and CDEOA was compared with classical DE, BFOA, and two other BFOA variants
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and four state-of-the-art DE approaches.
A brief summary of the results at the last three rows of Appendix and was given.
In these last three rows of Appendix and the signs “-“, “4+” and “” indicate the

[N

performance of the corresponding competitors as opposed to CDEOA method. means that
the corresponding method in the column performed worse than CDEOA. “+4” implies that the
corresponding method in the column performed better than CDEOA. Finally, “~ ” denotes
that the corresponding algorithm in the column performed comparable to CDEOA. The best

final function values (BFV), the worst final function values (WFV), and the median of the final
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values were given in Appendix and

Comparison of CDEOA with Four Soft Computing Methods

The performance of CDEOA algorithm was compared with classical BFO algorithm ( [50]),

classical DE algorithm ( [38], [61]), two classical BFOA variants, Chemotaxis Differential

Evolution (CDE) ( |4]), and Adaptive Chemotactic Bacterial Swarm Foraging Optimization

with Differential Evolution Strategy (ACBSFO_DES) ( [26]).

Compared algorithms were

IThe graph of Fig was not printed out due to the huge gap in objective function values of algorithms.
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Figure 3.7: (a) Fpe: Hybrid 6 (N=5); (b) Fa3: Composition 1 (N=5); (c) Fa4: Composition 2
(N=3); (d) Fy5: Composition 3 (N=3).

chosen in accordance with operators that they employ in common. Classical BFOA employs
elimination-dispersal, reproduction and chemotaxis; classical DE employs mutation, crossover
and selection; CDE employs chemotaxis, mutation, crossover, and selection; ACBSFO__DES
employs reproduction, elimination-dispersal, chemotaxis, mutation, crossover, and selection.

The experiment was performed in 30 dimensions with 25 runs for each algorithm-problem

pair. The statistics were given in Appendix [A.1] and
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Unimodal Functions F| - F3

ACBSFO_ DES outperforms CDEOA on the two unimodal functions F; and F». CDEOA and

ACBSFO_DES exhibit similar performance on one function and outperform the others.

Simple Multimodal Functions Fj - Fig

CDEOA is remarkably better than BFOA, DE, CDE, and ACBSFO_DES on these 12 test
functions. However, ACBSFO_ DES performs better than CDEOA on Fy, Fy1, Fis, and Fig
test functions. It is interesting to note that, the five methods show similar performance on Fj

test function. We can clearly observe that BFOA, DE, and CDE fail on most functions, as well.

Hybrid Functions Fi7 - Fss

To obtain these hybrid functions, the variables are randomly divided into some subcomponents
and then different basic multimodal and unimodal functions are used for different
subcomponents. On these six functions, CDEOA exhibits better performance than four
other methods. While CDE exhibits similar performance with CDEOA on Fjs test function,
ACBSFO_ DES outperforms CDEOA on Fj7 and Fig test functions .

Composition Functions Fy3 - F3p

The composition functions merge the properties of the sub-functions better and maintain
continuity around the global/local optima. We can observe that the performance of CDEOA
method is superior overall to that of four competitors except on Fy3, Fby, Fos, and Fyg test
functions which ACBSFO_ DES, CDE, and DE perform comparable to CDEOA. In addition,
the classical BFOA method catches up with CDEOA on Fb5 and Fog test functions.

In Fig. Fig. [3.3] Fig. Fig. 3.5 Fig. [3.6] Fig. and Fig. [3.8 the convergence
map of BFOA, DE, CDE, ACBSFO_ DES, and CDEOA shows that CDEOA converges faster
than others on Fg, Fg, Fy, and Fig problems while similar convergence performance on the rest

of the problems. Although ACBSFO_ DES shows better convergence than CDEOA on some
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functions, it gets trapped in local minima. We can observe that CDEOA is superior overall to
that of four competitors in terms of quality of the final solution at the end of the fixed function
evaluations.

In short, CDEOA is superior to the four methods as compared to simple multimodal
functions, hybrid functions, and composition functions and it is the second best in unimodal

functions.

Comparison of CDEOA with Four State-of-the-art DE

CDEOA was also compared with Differential Evolution Strategy based on the Constraint of
Fitness Values Classification (FCDE) ( [34]), Partial Opposition-Based Adaptive Differential
Evolution (POBL-ADE) ( [24]), Fireworks Algorithm with Differential Mutation (FWA-DE) (
|71]), and Differential Evolution Algorithm based on Fitness Euclidean-distance ratio (FERDE)
([55]). Compared algorithms were chosen because they are all the variants of DE that competed
in CEC 2014 on Single Objective Real Parameter Numerical Optimization Competition. For
each algorithm-problem pair, the experiment was performed in 30 dimensions with 51 runs.
The statistics were given in Appendix [A.3]and The maximum number of FEs was set to 3
x 10° in accordance with instructions in CEC 2014 special session. The numerical benchmark

results were taken from the aforementioned studies.

Unimodal Functions F| - F3

As depicted in Appendix CDEOA is the best among the five algorithms on these three
unimodal functions. It outperforms FCDE and FERDE on two test functions and exhibits
similar performance with FWA-DE and POBL-ADE.

Simple Multimodal Functions Fj - Fig4

FERDE is the best among the five methods on these functions. It outperforms CDEOA on

six test functions. In contrast, CDEOA performs better than FERDE on two test functions.
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Overall, CDEOA exhibits similar performance with FWA-DE. FCDE can not even outperform

on any test function while POBL-ADE outperforms on one function.

Hybrid Functions Fi7 - Fby

On these six test functions, CDEOA is significantly better than that of the four methods.
However, FERDE and FWA-DE outperform CDEOA on Fsy test function. FCDE and

POBL-ADE cannot be significantly better than CDEOA on any test function.

Composition Functions Fy3 - F3g

FWA-DE is the best among the five methods on these eight composition functions. It
outperforms CDEOA on three test functions (i.e., Fyg-F3p). CDEOA and FERDE exhibit
similar performance and outperform FCDE and POBL-ADE.

In short, overall, CDEOA performs better than FCDE, POBL-ADE, and FWA-DE while it

exhibits similar performance with FERDE.

3.2 Improved CDEOA

This section presents a novel variant of CDEOA, Improved Chemotaxis Differential Evolution
Optimization Algorithm (ICDEOA) [74], to cope with premature convergence of reproduction
process. In ICDEOA, reproduction operator of BFOA is replaced with probabilistic reposition
operator to enhance the intensification and the diversification of the search space. ICDEOA
was compared with state-of-the-art DE and non-DE variants on 7 numerical functions of the
2014 Congress on Evolutionary Computation (CEC 2014). Simulation results of CEC 2014
benchmark functions reveal that ICDEOA performs better than that of competitors in terms

of the quality of the final solution in unimodal and multimodal for high dimensional problems.
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3.2.1 Concept of ICDEOA

The concept of ICDEOA depends on two approaches in CDEOA ( [73]): a) making
“weak” bacteria more diversified, where “weak” bacteria are the ones in positions with
nutrient-poor medium, and b) making “strong” bacteria more intensified, where “strong”
bacteria are the ones in positions with nutrient-rich medium. Based on the aforementioned
approaches, a new operator, probabilistic repositioning, which balances the exploration and the
exploitation trade-off was introduced. The reproduction process of classical BFOA is replaced
with probabilistic repositioning operator. Unlike the reproduction process, probabilistic
repositioning operator retains the strong bacteria in the vicinity of the best bacterium, whereas
the weak bacteria are dispersed to the random positions in the search space.

ICDEOA tends to improve the optimization performance of CDEOA. In this contribution,
in place of reproduction operator of BFOA, the probabilistic repositioning operator which acts
based on the bacterium’s fitness (Algorithm 2} line 67) was employed. If the function value (cost)
of a bacterium is high, the bacterium most likely will change its position (Algorithm [2| line
70). If the function value is low, the bacterium is moved to the vicinity of the best bacterium
(Algorithm line 73). Reproduction operator of CDEOA possesses intensive exploitation
capability which may result in premature convergence since it chooses the best of the population
and kills the rest for the next generation. The probabilistic repositioning operator may tend
to prevent not only the premature convergence problem of reproduction operator, but also

diversify the half of the population. The pseudo code of ICDEOA is shown in Algorithm

3.2.2 Experimental Study

The study introduced in this section aims to test the quality of the final solution at the end of
a fixed number of function evaluations (FEs). The maximum number of FEs was set to 3 x
10° for 30 dimensional functions with the population size S=50. The error function values were
given in Appendix "Mean Error” and ”Std Dev” in Appendix [A.F|indicate the average and

the standard deviation of the error values obtained in 25 runs. The CEC 2014 test functions
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Algorithm 2 Detailed pseudo-code of ICDEOA. Comments start with “//” The code we
discuss in the text is in boldface.

1: Parameters:

2:  p < dimensions of the search space

3: S < total number of bacteria in the population

4: N, < number of chemotaxis steps

5: Ny < swimming steps

6: N, < re-positioning steps

7. C(i) + the run-length unit

8 M, < maximum number of tumble steps

9: M, < maximum number of run steps
10: f <+ objective function to be minimized

11: //Initialize some local variables
12:  E; <0 //bacterium’s unsuccessful tumble step
13: B, <0 //bacterium’s unsuccessful run step
14:  Opesy +random position in the search space
15: fbest <_f(9best)

16:  Mjes <—maximum number of FEs allowed

170 Njes <0 //current number of function evaluations
18: // Define a helper function J that will call the actual objective function f. This helper

function also updates the Nycg, Opest, and fres variables.
19: function J (6):
20: v« f(6)
21: Nfes < Nyes +1//update number of FEs
22: if v < fpest then

23: Opest < 6 //update global best location

24: frest < v //update global best function value
25: end/ /if

26: return v

27: end// function
28: while Ny.; < My.s do//FEs control loop
29: for k from 1 to N,. do// Re-position loop

30: for j from 1 to N, do// Chemotaxis loop
31: for i from 1 to S do// Tumble-Swim loop

32: Jast J(0(i,5,k))//J(-) computes the fitness
33: A(i) random vector within [—1,1]//tumble
35: if J(O0(,7+1,k) < J(0(i,7,k)) then

36: E,«+— E;+1

1]
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37: //Swim:

38: for m from 1 to Ns; do// Swim loop

39: if J(0(i,74+1,k)) < Jiust then

40: Jiast = J (0 (Z,] + 1, k’))

41: 0(i,j+1,k) = 0(i,j,k)+C (i) * ﬁ
42: E.«—FE.+1

43: else

44: m = N, //Break from switch loop

45: end/ /if

46: end//Swim loop

47: end//Tumble-Swim loop

48: //Exploration Loop

49: for ¢ from 1 to S do

50: //Take an exploration step for bacterium i
51: if E; = M, then

52: 0(¢,7 + 1, k) random position

53: Jiast = J(@(i,jJrl,k))

54: if Jiast < J(2,7,k) then

55: J(t, 7+ 1,1) « Jiast

56: end//if

57: E;=0

58: end//if

59: end//Exploration Loop

60: //Exploitation Loop

61: for ¢ from 1 to S do

62: if E, = M, let bacterium undergo : then

63: DE mutation, crossover, and selection
64: end//if

65: end //Exploitation Loop

66: end //Chemotaxis loop

67: Re — positioning of all bacteria

68: Prob < Assign probabilities of each bacterium
69: for i, e in enumerate(Prob) do

70: if e > random number within [0,1] then

71 0 (i,j + 1,k) < to a random location

72: else

73: 0 (i,7 + 1,k) < to the vicinity of the best bacterium

74: end//Re — positioning
75: end // FEs control loop
76: return .
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are as follows: Fj=Rotated high conditioned Elliptic, Fs=Rotated Bent Cigar, F3=Rotated
discus, F,= Shifted and rotated Rosenbrock, Fs=Shifted and rotated Ackley, Fz=Shifted and

rotated Weierstrass, and Fr=Shifted and rotated Griewank ( [35]).

3.2.3 Comparison with Three State-of-the-art DE and One Non-DE

The performance of the ICDEOA algorithm was compared with OptBees which is inspired by
the bee colonies ( [39]), Memetic Differential Evolution based on Fitness-Euclidean distance
Ratio (FERDE) ( [55)), Differential Evolution with Replacement Strategy for Real-Parameter

Numerical Optimization (RSDE) ( [66]), and CDEOA ( [73]).

Unimodal Functions F- Fj3

As presented in Appendix overall, ICDEOA is better than that of four methods on these
three unimodal functions. It outperforms OptBees on 2, FERDE on 2, RSDE on 1, and CDEOA
on 2 test functions. In contrast, FERDE and RSDE perform better than ICDEOA on test
function F;. ICDEOA also exhibits similar performance with OptBees, RSDE, and CDEOA

on test function Fs.

Multimodal Functions Fy- F

On these four multimodal test functions, ICDEOA outperforms OptBees on 3, FERDE on 2,
RSDE on 2, and CDEOA on 2 test functions. FERDE, RSDE, and CDEOA exhibit better
performance than ICDEOA on test function F7. Overall, ICDEOA performs better than

OptBees, FERDE, RSDE, and CDEOA.

3.3 Supply Chain Cost Problem

In this section, CDEOA has been employed to optimize the Supply Chain Cost problem [72] by

comparing the performance with other well-known algorithms; Particle Swarm Optimization
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(PSO), Bacterial Foraging Optimization Algorithm (BFOA), Tabu Search (TS) [21], Bat
Algorithm (BA) [67], and Genetic Algorithm (GA) .

In order to maximize the profits and minimize the cost, there has been always a research in
the business world. This requirement unveiled a new optimization problem known as Supply
Chain Cost Problem. When large numbers of decision variables and alternatives exist, these
kinds of problems are identified as non-deterministic polynomial-time hard (NP-hard) problems
and they need more complex optimization algorithms to guide the search for optimum or
near-optimum solutions [47]. In this context, random search techniques have been popular
in solving computationally complex (NP-hard) problems due to their ability to find effective
solutions in a short amount of time. In this field, Castillo [11] has proposed a novel capacitated
Supply Chain Network Design (SCND) model which evaluates the overall economic profit of the
supply chain with a metaheuristic-based approach. Castillo [10] has also presented an extensive
study by analyzing the application of metaheuristics to solve bio-energy supply chain models.

A supply chain is a dynamic supply and demand network of globally distributed
organizations, activities, people, and resources that provide the materials; transform these
materials into products, and distribute these products to retailers or customers. The
architecture of a supply chain as illustrated in Fig. is: suppliers, producers, warehouses,
retailers, and customers. Suppliers provide the unprocessed materials to the producers;
producers convert the unprocessed materials to end products. By means of the warehouses
the products are transferred from producers to retailers, and retailers sell these products to the
end customers [40].

Minimizing the total cost, maximizing the profit and fulfilling customers’ needs while
ensuring satisfaction has been studied by researchers [22] in terms of designing, analyzing, and
managing of supply chain. Many companies are concerned about analyzing their supply chain as
a whole system to improve their business. However, the process of analyzing and managing the
supply chain has been performed based on experience and intuition. This implies that finding
the best supply chain strategies for a particular firm is a significant issue for industry. In this

context, bio inspired and nature inspired metaheuristics algorithm may play an important role
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in helping managers and consultants in the decision-making process. Recently, metaheuristic
algorithms have been broadly employed for optimizing NP-hard since they are simple, easy to
implement, robust, and have been proven highly effective to solve complex problems [57]. The
total cost of Eq. of a globally distributed supply chain [22] is composed of supply cost of
raw material (SCRM), cost of production (PC), cost associated with warehouses (WAC), and

cost of markets (MC).

Total Cost(TC) = SCRM + PC + WAC + MC (3.1)

The mathematical programming formulation that minimizes the total supply chain total cost

(TC) is presented in Eq. and considers all supplier, plant, warehouse, and market costs.
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3.3.1 Experimental Study

Five different supply chain scenarios were employed to test CDEOA. In each scenario,
production capacity of suppliers and plants, capacity of warehouses, and demand of each market
were created randomly and their complexities were increased. The scenarios are presented in
Table In scenario 2: There are 3 suppliers with production capacities, 500, 500, and 1000
units; 3 plants with production capacities, 600, 400, and 400 units; 5 warehouses with storage
capacities, 400 300, 250, 250, and 200 units; and 5 markets with demands, 100, 100, 200, 70,

and 30 units respectively.

Table 3.2: Supply chain problem scenarios

1 2 3 4 5
. 500500 500;500;250
Suppliers 100031000 500:500,1000  500;500;1000 20 250:250,250
Plante 600400400  600:400:400 600;200  300;300;200  300;300;200;200

200;400 200;100;300 100;150;150

400;300;250  200;200;300  200;200;300 _200;200;300
Warehouses 400;300;500:200 555 o9 250;250;200  250;250;200  250;250;200

100;100;200 100;100;200 100;50;50 100;50;50 100;50;50

Markets 70:30 70:30 200:70:30 200;70:;30 200;70;30

3.3.2 Compared Algorithms and Parametric Setup

The performance of the CDEOA was compared with BFOA, PSO, TS, BA, and GA. The study
aims to test the quality of final solution and convergence speed at the end of a fixed number
of function evaluations (FEs). The objective is to minimize the total cost of the supply chain
operation which includes supplier cost, production cost, warehouse associated cost, and market
cost. Each scenario has a distinct number of dimensions depending on the complexity of the
supply chain. In this context, scenarios have 38, 54, 72, 96, and 120 dimensions, respectively.
The maximum number of FEs was set to 1000. The population size of each algorithm was set
to 20. Each algorithm was run 30 times. For PSO, we employed the standard PSO and set the

inertia weight w = 1 and acceleration coefficients ¢;= c¢o = 2 according to |18]. As for the BA,
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the algorithmic constants a = v = 0.5, frequency is in the range [0, 2], and loudness Ay = 0.5.

For GA, mutation probability = 00.5 and crossover probability = 0.95. BFOA and CDEOA

employ the same parameters as follows: N.= 100, Ny= 16, N,..= 8, C(i)= 0.1.

Table 3.3: Comparison of PSO, BFOA, TS, GA, BA, and CDEOA on Supply Chain Cost
problem.

9] E = —~
I R > > . :
g g = 9] O S a g ko
2 2 5 : c = 7 s E
A < 2

PSO 171774.07  406389.87  271898.87  61422.80 262674.67 2.75

BFOA 158073.95  328604.65 256788.83  45965.09  245733.44  2.64

1 38D TS 167997.11  448938.90 265207.46  60890.62  253209.65 3.26

BA 149057.04  374563.73  264678.66  60600.65 267249.05 10.16

GA 138873.38  319263.21  247192.37 46310.93  252379.22  3.30

CDEOA  131436.66  483223.62 263664.37 66805.99 262662.79  3.65

PSO 221549.15  424156.34  316044.20  50554.57  319207.67 16.89

BFOA 177070.27  562895.49  339305.96 91896.03  323970.03 16.55

5 5D TS 150616.39  468185.32  318433.36  73805.63  313026.23 21.98

BA 173366.76  486141.78  319110.49  78046.28  308508.69 21.43

GA 209731.19  498573.87  342671.21 65858.21  340691.22 22.19

CDEOA  178180.85  536455.05 301219.47 79367.57 303121.86 16.79

PSO 314819.83  698583.76  501751.33 101797.08 504006.41  5.59

BFOA 301504.10  715808.25 500714.51 108195.15 508918.69  2.45

3 7D TS 325904.98  657693.39  498861.93 85473.23  510978.49  3.05

BA 289262.97  743135.80 488318.85 91721.61  490993.25 16.36

GA 323051.57  725538.68  536753.61  82662.90 528767.20 6.24

CDEOA  281094.41  739537.04 493928.04 115114.72 483599.93  3.07

PSO 685639.86  870112.42  789663.58 63665.56  809801.15  4.83

BFOA 530568.81  944208.98  741662.90 136583.12 742537.79  5.00

4 96D TS 497928.05  981825.53  740919.58 149498.71 733425.54  5.55

BA 491848.56  978094.90  710897.41 123887.43 683134.40 26.38

GA 578853.52  1061163.49 760919.39 140865.37 700789.34 6.24

CDEOA  477030.32 1019036.83 709229.15 159874.33 669061.34  5.01

PSO 1007800.99 1619948.08 781593.63 164448.82 414210.04 28.54

BFOA  1023073.99 1642535.82 777055.16 165842.10 392991.58 29.42

5 120D TS 1038346.98 1665123.56 772516.68 167235.38 371773.11 30.29

BA 1053619.97 1687711.30 767978.21 168628.66 350554.65 31.16

GA 1068892.96 1710299.05 763439.74 170021.94 329336.19 32.04

CDEOA 1084165.96 1732886.79 758901.27 171415.22 308117.73 32.91
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Figure 3.10: The convergence map of PSO, BFOA, TS, GA, BA, and CDEOA (a) Scenario 1;
(b) Scenario 2; (c¢) Scenario 3; (d) Scenario 4; (e) Scenario 5.
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3.3.3 Discussions

Table reports the best cost value (BCV), the worst cost value (WCV), mean of the final
best function values, the standard deviation of the final best function values (STDEV), median
of the final best function values, and the mean time spent per trial in seconds. In Table we
can observe that CDEOA is superior overall to five algorithms in five different scenarios. We
can infer the success of CDEOA in these scenarios may be due to its capability of balancing
the exploration and exploitation with the aforementioned two CDEOA strategies. CDEOA
outperforms its five competitors except GA in the first scenario. Worst cost value (WCV) of
PSO shows better performance than CDEOA in all scenarios.

In Fig. the convergence map of PSO, BFOA, TS, GA, BA, and CDEOA shows that
the CDEOA overall led faster convergence than its competitors in all scenarios. It did fail
against BFOA, GA, and TS in the first scenario; however, these three algorithms were unable
to maintain the same performance in the rest of the scenarios. In addition, we can also observe

from scenario 1 of Table the aforementioned algorithms slightly outperformed CDEOA.
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CHAPTER 4
MICRO BIO AND NATURE INSPIRED
OPTIMIZATION ALGORITHMS

In the past few decades, the micro bio and nature inspired algorithms have been studied
by several researchers in order to solve high dimensional optimization problems. High
dimensionality makes the problems hard and computational time consuming due to the fact
that it increases the number of parameters to be optimized. In this context, in case that
the population size remains large as in its original algorithm, it would not be that easy for the
parameters to converge to the optimal values. As a remedy to this challenge, Krishnakumar |33]
has proposed to use micro genetic algorithm (1GA) based on a very small population approach.
It is clear that although an algorithm with small population size such as (e.g. 2, 3, 5, or 6)
is good at exploiting the promising areas of the search space, it is not able to preserve the
diversity of population. However, when the diversity of population fails, the population can
be reinitialized and the best individuals are kept on the search space. This not only leads to
prevent the premature convergence but also makes the individuals explorative [44].

Micro algorithms have proved to be an efficient tool in solving optimization problems
for high dimensional (e.g. 500, 750, and 1000) problems that standard nature-inspired and
bio-inspired techniques fail. Recently, several studies have been conducted regarding the
micro bio and nature inspired algorithms to solve the high dimensional optimization problems.
Caraffino et al. [9] have proposed micro Differential Evolution (pDE) that incorporates

an extra search move into DE to improve the best solution. Chu et al. |12] proposed
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Fast Bacterial Swarming Algorithm that hybridizes BFOA and PSO. Parsopoulos [48] has
proposed a cooperative micro technique, Cooperative Micro Differential Evolution, to solve
high dimensional problems. Parsopoulos et al. |[49] have also introduced a parallel master-slave
model for cooperative micro-particle swarm optimization approach. Olorunda [46] has presented
cooperative differential evolution that divides the high dimensional problem space into smaller
parts and have each part optimized by a separate population. Sotelo-Figueroa [59] have
proposed a mnovel approach called Micro Differential Algorithm that evolves an indirect
representation of bin packing problem. Fuentes et al. [8] have presented a particle swarm
optimizer that solves constrained optimization problems. Also, Rahnamayan et al. [56] have
proposed micro Opposition based DE that deals with minimization of dissimilarity between
the input grey-level image and the bi-level (thresholded) image in image processing field.
Olguin-Carbajal et al. [45] have proposed the micro DE Local Search that incorporates local
search technique into micro DE.

In this chapter, a micro Chemotaxis Differential Evolution Optimization Algorithm
(nCDEOA) [69] which hybridizes BFOA and DE was proposed. The inspiration was taken
from the ideas of micro Bacterial Foraging Optimization Algorithm (uBFOA) [14] which is
successfully used to solve high-dimensional optimization problems. pBFOA does not use the
reproduction operator to avoid premature convergence whereas the chemotaxis operator is
employed for updating the position of a bacterium. In pBFOA, which uses three bacteria,
the best bacterium retains its position in the swarm; the second best bacterium is re-positioned
in the vicinity of the best bacterium; and the third bacterium is dispersed to a random location.
This approach aims to avoid premature convergence and helps to maintain the search diversity.
In this study, in order to increase the convergence performance and quality of the final solution,
after re-initializing the population, the bacteria are ranked according to their cost function
values. The best bacterium’s position is preserved in the population. The second best bacterium
is reinitialized in the neighborhood of the best bacterium based on the ideas of DE technique,

whereas the rest of the bacteria (4 bacteria) are dispersed at random on the search space.
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4.1 Micro CDEOA

In pCDEOA, a population of 6 bacteria which make consecutive tumble and run steps
(chemotaxis) throughout their lifetime. After a chemotaxis loop, all the bacteria are sorted
according to their objective function values. A bacterium which is close to the global optimum
is called the best bacterium (rank 1). The second best bacterium (rank 2) attempts to
approach the neighborhood of the best bacterium through the means of DE operators (mutation,
crossover, and selection). The rest of the population (4 bacteria) are dispersed to the random
positions in the search space. Unlike the population size of pBFOA, the population size of
nCDEOA is increased to an appropriate value, 6, due to the number of the individuals chosen
in mutation strategies (Eq. Eq. Eq. and Eq. . The second best bacterium
(rank 2) is positioned in the vicinity of the best bacterium. This is carried out through the
means of DE mutation strategies. In this study, we have employed DE/best/1 (Eq. in

Chapter [2) mutation strategy which yields a best solution based trial vector.

100

80

60

40

Obiective function value

20

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

Position of the bacterium

Figure 4.1: Behavior of the bacteria on one dimension
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Figure 4.2: Flowchart of the nCDEOA

In order to figure out the behavior of the virtual bacteria in BFOA, we illustrated the six
bacteria in a one dimensional search space in Fig. (4.1). The objective is the minimization of

1-dimensional sphere function Eq. (4.1]) which is a widely employed unimodal function with a
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minimum equal to 0.
F(z) = 2? (4.1)

In Eq. (4.1), the parameter x is the position of a bacterium, and f(z) is the objective function
value. The roles of six bacteria may change after a chemotaxis process. The closest position
to the global optimum of the search space is retained by the best bacterium (rank 1). The
dispersal of the second best bacterium (rank 2) to a position which is close to the best one
(rank 1) will ease local search for the next chemotaxis process. Maintaining the population
diversity and avoiding premature convergence are performed by the worst bacteria (rank 3-6).

A flowchart of the micro BFOA adapted from Dasgupta [14] is given in Fig.

4.2 Experimental Study

The nCDEOA was tested using a set of 16 unimodal and multimodal benchmark functions (see
Section taken from IEEE CEC special sessions and competitions on single objective real
parameter numerical optimization [62], [35]. Unlike standard benchmark functions, the shifted
functions shift the global optimum to a random position, i.e., F(z) = f(z — 0pew), where F(z)
is the new function, f(z) is the old function, and 0y,e, is the new global optimum with different
values for different dimensions. Its global optimum is not situated at the center of the search
space. The rotated functions rotate the function F(x) = f(Mzx), where M is an orthogonal
rotation matrix [36]. The descriptions of these functions are given in Table Functions 1-6
are unimodal and functions 7-16 are simple multimodal functions. 0 is the shifted vector; C is
the characteristics of test functions; U is unimodal; M is multimodal; S is separable; and N is

non-separable functions.
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Table 4.1: Global optimum, the search ranges and the global best (f(x*)) of 500 dimensional

test functions.

f Global Optimum x* f(x*) C  Search Range
F 0 0 US (-2,2)
j28 0,0,..,0) 0 UN  (-500,500)
F 0 0 UN  (-500,500)
F, 0 0 UN (-500,500)
F; (0,0,...,0) 0 UN (-500,500)
Fs 0 0 UN (-100,100)
Fy 0 0 MN (-2,2)
Fy 0 0 MN (-2,2)
Fy 0 0 MN (-2,2)

Fio 0 0 MN (-2,2)
Fu 0 0 MN  (-10,10)
Fio 0 0 MN  (-10,10)
Fis 0 0 MS (-2,2)
Fuy 0 0 MN (-2,2)
Fis  (420.96,..,420.96) 0 MN (-2,2)
Fig  (420.96,..,420.96) 0 M (-500,500)

4.2.1 Shifted and Rotated Test Functions

Eq. 2 Eq. (3] Eq. 4 Eq. 5 Eq. {6} Eq. {7, Eq. [£8] Eq. {9, Eq. {10, Eq. 1] Eq.
[12 Eq. 13} Eq. [f14}, Eq. .15 Eq. 16} and Eq. [f17 are the function definitions of the

problems, respectively.

1. Shifted Sphere Function

Z=T—0

o = |01, 092, ...0p] : shifted global optimum
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2. Schwefel problem 1.2

D %
Fy(x) =) (D %)

i=1 j=1

3. Shifted Schwefel problem 1.2

Z=T—0

0 = [o1, 02, ...0p] : shifted global optimum

4. Shifted Schwefel problem 1.2 with noise in fitness

D %

Fy()=> (D 2z)?*(1+04|N(0,1)])

i=1 j=1

Z=—0

0 = [o1, 02, ...0p] : shifted global optimum
5. Schwefel problem 2.21
Fs5(z) = maz {|z;,1 <i < DI}

6. Shifted and rotated high conditioned elliptic function

1

Fs = Z(loﬁ)ﬁzzz
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z=M(z — o)

0 = [o1, 02, ...0p] : shifted global optimum

7. Shifted Rosenbrock’s function

z=x—0+1

o = |01, 02, ...0p] : shifted global optimum

8. Shifted and rotated Rosenbrock’s function

D—-1
Fy(z) = Z (100(22 — z451) + (z; — 1)?) (4.9)
z=M(z— o)

0 = [o1, 02, ...0p] : shifted global optimum

9. Shifted Ackley’s function

D D
1
2y _ ,
E z7) exp(D ;:1 cos(2mz;)) + 20 + e, (4.10)

Fy(z) = —20exp(—0.2

©
I
—

Z=—0

0 = [o1, 02, ...0p] : shifted global optimum
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10. Shifted rotated Ackley’s function

&
Il
-

0 = [o1, 02, ...0p] : shifted global optimum

11. Shifted Griewank’s function

2

=3 o

i=1

S

Z=T—0

o = |01, 02, ...0p] : shifted global optimum

12. Shifted and rotated Griewank’s function

D 2
Fia(@) = 1000
1=1

z=M(z —o)

0 = [o1, 02, ...0p] : shifted global optimum

13. Shifted Rastrigin’s function
D

Fis(x) = Z(zf — 10cos(27z;) + 10)
i=1

o7

D 1 2
Zz?) - ea:p(BZcos(Qﬂzi)) +20 +e, (4.11)

i=1

(4.12)

(4.13)

(4.14)



2= —0

0 = [o1, 02, ...0p] : shifted global optimum

14. Shifted and rotated Rastrigin’s function

D
Fiy(z) = Z(%Q — 10cos(2mz;) + 10) (4.15)
z=M(z — o)

0 = [o1, 02, ...0p] : shifted global optimum

15. Shifted noncontinuous Rastrigin’s function
D

Fis(z) =Y (47 — 10cos(2my;) + 10) (4.16)

i=1

round(2z;)/2, |z >=1/2
Yi =
Ziy |ZZ‘ < 1/2

for i =1,2,...,D

0 = [01, 09, ...0p] : shifted global optimum

16. Shwefel’s function
D

Fig(x) = 418.9829 % D — > " mysin(|a;|'/?) (4.17)
i=1
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4.2.2 Parametric Setup

The same parameter values have been used as in the original papers in each technique. DE
is sensitive to the mutation scaling factor F' and crossover rate C,.. Choosing C,.=0.9 or 1.0
not only speeds up convergence but also diversifies the population by means of one of the best
solution dependent DE mutation strategies, “DE/best/1”. In this context, C, parameter of DE
was set to be 0.9. F is selected within the range of [0 — 2.0]. It is reported that a smaller F
value (e.g., 0.5) can lead to a statistically better performance than the other parameter values
( [60], [54]). Therefore, F' of n-CDEOA was set to be 0.5. For the proposed technique and the

classical BFOA, the following parameter values were set: Ny=12, N,.=16, C(:)=0.1.

4.2.3 Simulation

The study introduced in this section aims to test the quality of the final solution and the
convergence speed at the end of a fixed number of function evaluations (FEs). The maximum
number of FEs was set to 5 x 103. All simulations were done on 500 dimensional problems.
Each algorithm and the objective function pair were run 50 times. The convergence graph was
plotted in Fig. [£.3] Fig. Fig. and Fig. The horizontal axis of these graphs is
the number of function evaluations and the vertical axis is the mean of function values. Table
and Table report the best final function value (BFV), the worst final function value
(WFV), the mean of the final best function value (Mean), the standard deviation of the final
best function value (StdDev), and the median of the final best function value (Median). These
values comply (F(z) — F(z*)) for evaluating the success of five algorithms, where 7’ is the best
value of the bacterium in a run and @ * is the global best of the test function (Table[4.1)). The
standard deviation of the final best function value and the mean time spent per trial in seconds

are also reported.
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Table 4.2: Comparison of BFOA-6, BFOA-30, nBFOA, and p-CDEOA in Fj through Fg.

Functions  Algorithm BFV WEV Mean StdDev Med Time
BFOA-6 9.17E4+02 1.05E403 9.95E+02 3.22E4+01 9.96E+02  0.47

P BFOA-30 1.07TE4+03 1.16E+03 1.12E403 2.3E4+01 1.12E+03 0.56
! p-BFOA  6.77TE+02 9.056E4+02 7.91E+02 5.97E4+01 7.96E4+02 0.65
p-CDEOA  7.16E402 8.68E+02 7.82E+02 3.93E4+01 7.80E+02 0.55
BFOA-6 2.33E4+09 2.37E4+09 2.35E+09 7.48E+406 2.35E+09 27.61
r BFOA-30 1.69E4+09 1.69E+09 1.69E4+09 9.80E+05 1.69E4+09 27.77
2 p-BFOA  2.26E+08 6.11E4+08 4.24E+08 7.93E4+07 4.27E+08 28.08
p-CDEOA  1.17TE408 5.28E+08 2.92E4+08 8.65E4+07 2.89E+08 27.32
BFOA-6 6.27E+12 6.27TE+12 6.27E+12 5.04E+08 6.27TE4+12 27.74

I BFOA-30 6.27E+12 6.27TE+12 6.27TE+12 2.58E+08 6.27TE4+12 28.35
3 p-BFOA  4.47E+12 5.70E4+12 5.07E+12 2.74E+11 5.04E+12 28.42
p-CDEOA  5.23E+12 6.18E+12 5.60E4+12 2.19E+11 5.63E+12 28.43
BFOA-6 7.14E+12 7.17E+12 T7.14E4+12 6.51E4+09 7.14E+12 28.33
15 BFOA-30 7.14E+12 7.22E+12 7.16E4+12 1.82E+10 7.15E+12 28.27
4 p-BFOA  6.91E+12 7.18E+4+12 7.08E+12 5.85E4+10 7.09E+12 28.23
p-CDEOA  6.95E+4+12 7.21E+12 7.11E+12 4.86E+4+10 7.11E+12 28.52
BFOA-6 9.81E+01 9.87TE+01 9.84E+4+01 1.24E-01 9.85E+4+01  0.91

I BFOA-30 9.85E4+01 9.90E+01 9.87E4+01 1.25E-01 9.88E+01  0.86
5 p-BFOA  9.51E+01 9.80E4+01 9.73E+01 5.85E-01 9.74E+01  0.96
p-CDEOA  7.30E4+01 8.94E+01 8.21E4+01 3.55E4+00 8.17E+01  0.90
BFOA-6 1.46E+11 1.51E+11 1.51E+11 9.73E4+08 1.51E+4+11 1.14

r BFOA-30 1.14E+4+11 1.17E+11 1.17E4+11 3.68E4+08 1.17E+11 1.12
6 p-BFOA  8.33E+10 1.11E4+11 1.02E+11 6.92E409 1.03E4+11  1.27
p-CDEOA  7.21E4+10 1.08E+11 8.84E+10 7.77TE4+09 8.86E+10 1.15
BFOA-6 1.30E4+06 1.62E4+06 1.47E+06 6.13E4+04 1.47E+06 0.55

o BFOA-30 1.60E4+06 1.82E+06 1.73E406 4.47E+04 1.73E4+06 0.55
4 p-BFOA  3.57TE+05 5.79E4+05 4.90E+05 5.58E4+04 4.97E+05 0.59
p-CDEOA  8.13E4+05 1.25E+06 1.09E406 7.43E+04 1.10E4+06 0.52
BFOA-6 5.16E+06 6.87TE4+06 5.91E406 3.41E+05 5.87TE+06 1.27

I BFOA-30 6.43E4+06 7.52E+06 7.07E406 2.52E+05 7.08E4+06 1.28
8 p-BFOA  1.32E406 2.59E406 2.13E+06 2.80E4+05 2.20E+06 1.42
p-CDEOA  3.68E+4+06 4.91E+06 4.16E+06 2.91E405 4.14E+06 1.11
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Table 4.3: Comparison of BFOA-6, BFOA-30, nBFOA, and 31-CDEOA in Fy through Fig.

Functions  Algorithm BFV WEV Mean StdDev Med Time
BFOA-6 6.29E+00 6.69E4+00 6.49E+00 8.88E-02 6.50E+00 0.56

P BFOA-30 6.69E+00 6.91E+00 6.83E4+00 4.79E-02 6.83E+00 0.54
9 p-BFOA  5.90E+00 6.46E4+00 6.22E4+00 1.20E-01  6.22E+00  0.63
1-CDEOA  5.91E4+00 6.32E+00 6.09E+00 8.63E-02 6.06E+00 0.78

BFOA-6 852E+00 8.97E+00 8.80E+00 1.23E-01 8.83E+00 1.39

P BFOA-30 8.76E+00 9.06E+00 8.92E+00 5.31E-02 8.92E+00 1.37
10 p-BFOA  8.01E4+00 8.67E4+00 8.41E+00 1.34E-01 8.44E+00 1.83
1-CDEOA  7.65E+00 8.22E+00 7.88E+00 1.28E-01 7.87E+00 1.18

BFOA-6 8.13E+00 8.56E+00 8.39E+00 8.78E-02 8.40E+00 1.24

. BFOA-30 8.50E+00 8.74E+00 8.63E4+00 6.03E-02 8.64E+00 1.11
1 p-BFOA  5.65E4+00 7.19E400 6.36E+00 3.74E-01 6.29E+00 1.39
1-CDEOA  5.81E4+00 6.84E+00 6.23E+00 2.06E-01  6.22E+00 1.07

BFOA-6 1.66E+01 1.75E4+01 1.71E+01 1.98E-01 L.71E+01 1.75

P BFOA-30 1.72E+01 1.79E4+01 1.77E4+01 1.78E-01 1.76E+01 1.78
12 p-BFOA  1.15E4+01 1.50E4+01 1.29E+01 8.26E-01 1.27E+01 2.19
p1-CDEOA  1.15E4+01 1.34E+01 1.25E+01 4.14E-01 1.26E+01  2.09

BFOA-6 1.02E+04 1.16E+04 1.10E+04 2.85E+02 1.11E+04 0.54

P BFOA-30 1.18E+04 1.23E+04 1.20E4+04 1.02E4+02 1.20E4+04 0.51
13 p-BFOA  9.52E4+03 1.09E4+04 1.03E+04 3.39E+02 1.03E+04 0.65
p1-CDEOA  8.94E+03 1.01E+04 9.53E+03 2.80E+02 9.49E+03  0.63

BFOA-6 1.95E+04 2.12E4+04 2.05E+04 4.52E+02 2.06E+04 1.41

P BFOA-30 2.06E+04 2.15E+04 2.11E+04 2.09E4+02 2.11E4+04 1.31
14 p-BFOA  1.66E4+04 1.99E4+04 1.84E+04 6.64E+02 1.84E+04 1.52
p1-CDEOA  1.46E+04 1.70E+04 1.60E+04 5.41E+02 1.60E+04 1.12

BFOA-6 1.23E+04 1.27E4+04 1.25E+04 1.08E+02 1.25E+04 0.73

P BFOA-30 1.20E+04 1.24E+04 1.22E+04 9.18E+01 1.22E+04 0.95
15 p-BFOA  9.90E+03 1.15E4+04 1.09E4+04 2.69E4+02 1.09E+04 0.74
p1-CDEOA  9.39E+03 1.04E+04 9.87TE+03 2.28E+02 9.86E+03  0.76

BFOA-6 2.04E+05 2.04E+05 2.04E+05 1.24E+02 2.04E+05 0.77

P BFOA-30 1.97E+05 1.98E+05 1.98E+05 4.98E+01 1.98E+05 0.45
16 p-BFOA  1.87E4+05 1.98E4+05 1.94E+05 2.25E+03 1.94E+05 0.50
p-CDEOA  1.92E4+05 2.02E+05 1.98E+05 2.21E+03 1.98E+05 0.48
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Figure 4.3: (a) Fy: Shifted Sphere; (b) Fy: Schwefel problem 1.2; (¢) Fj:

Shifted Schwefel

problem 1.2; (d) Fy: Shifted Schwefel problem 1.2 with noise in fitness;

4.2.4 Comparison of ptCDEOA with three Nature-inspired Techniques

The performance of pCDEOA technique was compared with classical BFOA with 6 and 30

population sizes, BFOA-6, BFOA-30 and nBFOA [14). The compared algorithm (nBFOA)

was chosen due to fact that it possesses very small population size (3) as in its original paper. As

for BFOA, we aimed to test its performance with small population size (6) and large population

size (30).
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Figure 4.4: (a) F5: Schwefel problem 2.21; (b) Fg: Shifted and rotated high conditioned elliptic;
(¢) Fy: Shifted Rosenbrock; (d) Fg: Shifted and rotated Rosenbrock.

Unimodal Functions F - Fy

As reported in Table in these six unimodal functions, the micro techniques exhibit their
superiority to their classical counterparts in terms of quality of the final solution. pCDEOA
shares the first place with pnBFOA in F} and F, functions. All the algorithms show similar
performances in F; function. We can also observe that the proposed technique performs better
than that of other techniques in F5 and Fg functions. In contrast, ptCDEOA remains behind
pBFOA in F» and F3 functions. The classical BFOA fails in most of the problems. We can

infer that the success of a technique is problem-dependent. While BFOA-6 outperforms the
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Figure 4.5: (a) Fy: Shifted Ackley. (b) Fyo: Shifted rotated Ackley; (¢) Fyq: Shifted Griewank;
(d) Fio: Shifted and Rotated Griewank.

BFOA-30 in only one function F7, BFOA-30 performs better than BFOA-6 in two functions,
F2 and Fﬁ.

Simple Multi-modal Functions F; — Fig

In these ten multimodal functions, overall, the proposed technique performs better than
its competitors. pCDEOA exhibits better performance in 4 functions by outperforming its
counterparts. On the other hand, nCDEOA exhibits similar performance with pBFOA in 4

functions while pBFOA outperforms the pnCDEOA in 2 functions.
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Figure 4.6: (a) Fy3: Shifted Rastrigin; (b) Fi4: Shifted and Rotated Rastrigin; (c) Fy5: Shifted
noncontinuous Rastrigin; (d) Fig: Schwefel.

The convergence map of BFOA-6, BFOA-30, uBFOA, and pnCDEOA in Fig. Fig.
Fig. and Fig. implies that the proposed pCDEOA technique has significantly faster
and reliable convergence speed than that of its competitors.

In summary, although there are slight differences at the quality of final solution and
convergence speed of the algorithms, overall, the proposed technique presents superior

performance to the other techniques on unimodal and multimodal functions.
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CHAPTER 5
THE EFFECTS OF DE MUTATION STRATEGIES
AND ITS PARAMETERS ON CDEOA

Researchers have been investigating the performance of different Differential Evolution (DE)
parameters (crossover rate and mutation factor) in solving the optimization problems. It is
clear that DE parameters and mutation strategies have a huge impact in the performance of
the algorithms. In this chapter, the performance of CDEOA (Chemotaxis Differential Evolution
Optimization Algorithm) has been investigated and has been reported that the explorative and
exploitative tendency of CDEOA on a fitness landscape depends on DE mutation strategies [68]
and its parameters |70]. Bio-inspired techniques such as BFOA and DE have been employed
for achieving optimal optimization performance by incorporating evolutionary operators such
as mutation, crossover, selection, and reproduction. In order to increase the BFOA and
DE performance, a number of approaches have been presented [5] [4] [31] [64] [27]. In our
experimental study, the performance of CDEOA on different mutation and crossover rate pairs
and different mutation strategies were tested using a set of 6 standard benchmark functions.
Functions 1-2 (Fy: Sphere, Fy: Schwefel 2.21) are unimodal and functions 3-6 (F3: Rosenbrock,

Fy: Ackley, F5: Rastrigin, Fg: Griewank) are multimodal functions.
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5.1 The Effects of DE Mutation Strategies on CDEOA

In order to improve the performance of DE, a number of mutation strategies were performed in
the literature ( [60], [52]). In two studies ( [20], [61]), it was reported that DE/rand/2 (Eq. 2.7)in
Chapter mutation strategy possesses better performance than DE/rand/1 (Eq. in chapter
because it diversifies the population with more than 2 trial vectors. On the other hand, the
best solution based strategies such as DE/best/1 (Eq. 2.9]in chapter [2)) and DE/rand-to-best/1
(Eq. in chapter [2|) perform faster on simple unimodal optimization problems. However,
it may get stuck in local minima and become unreliable in solving multimodal and high
dimensional problems. In JADE ( [27]), an adaptive mutation strategy was proposed with
optional external archive. Although metaheuristics techniques are not problem dependent,
Torio et al. [25] proposed a new mutation strategy called rotation-invariant to solve rotated
problems.

In this section, CDEOA’s 73] (a hybrid approach of BFOA and DE) performance on five
different DE mutation strategies (See section was presented. The pseudocode of CDEOA
is presented in Algorithm 1 (See section .

5.1.1 Experimental Study

After a series of fine tuning experiments, the control parameters F (scaling factor) and Cr
(crossover rate) of DE were set 0.5 and 0.9, respectively. For the CDEOA, following parameter
values of classical BFOA were chosen: N.=100, N;=16, N,.=8, C(i)=0.1. The study aims
to test the quality of final solution and the convergence speed at the end of a fixed number of
function evaluations (FEs). All of the algorithms were launched from the same initial population
to make the comparison fair. All functions were tested in 2 dimensions with 2x10* FEs. Each
method were run 30 times with a suite of functions and statistics were given in Table[5.1] "Mean

error” indicates that the average of the error function values.
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Figure 5.1: (a) Fy: Sphere; (b) Fy: Schwefel problem 2.21; (c) Fj:

Ackley;(e) F5: Rastrigin; (f) Fg: Griewank.
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Table 5.1: Comparison of DE mutation strategies rand/1, best/1, rand-to-best/1, best/2, and
rand /2.

P rand/1 best/1 rand-to-best best/2 rand/2
Mean Error Mean Error Mean Error Mean Error Mean Error
Fy 4.22E-09 4.02E-09 4.96E-09 5.67E-09 5.55E-09
F 4.78E-09 4.64E-09 1.85E-08 3.83E-09 4.85E-03
F3 6.45E-09 6.05E-09 6.56E-09 5.95E-09 6.72E-09
Fy 4.11E-09 4.65E-09 4.10E-09 5.18E-09 1.42E-07
F5 2.55E-05 2.55E-05 2.55E-05 2.55E-05 8.95E-05
Fs 4.24E-09 4.33E-09 5.09E-09 4.42E-09 4.78E-09

Unimodal Functions

In these two unimodal functions, we can observe the similarities at the quality of final solutions.

In particular, DE/best/1 strategy outperforms the other strategies in F; and Fj test functions.

Multimodal Functions

Multimodal functions are known as hard optimization problems since they tend to have many
local minima. In these four multimodal functions, rand/2 strategy performs great performance
on F3 and F5 functions at the quality of final solutions as opposed to the other strategies. We
can observe the similar performances on F and Fg functions. The convergence map of CDEOA
led DE mutation strategies which rely on best solution discovered (best/1 (Eq. and best/2
Eq. in Chapter |2|) possess faster convergence speed than the other strategies. From this
perspective, we can infer that the best solution strategies exhibit better performance in terms of

the quality of final solution and the convergence speed on unimodal and multimodal functions.

5.2 The Effects of DE Parameters on CDEOA

Parameter adaptation of DE has been studied by several researchers to sort the real-world
optimization problems out for years. It has been an important improvement in boosting the
success of DE optimization techniques. In this context, a number of studies has been put

forward by fine-tuning the parameters of DE ( [27], [53], [75]). The fine-tuned parameters of
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DE has been discussed in section In this section, CDEOA’s (hybrid technique of BFOA)

behavior on different DE parameter pairs (mutation and crossover rate) has been reported.

5.2.1 Experimental Study

CDEOA /rand/1 implies the algorithm which employs DE/rand/1 mutation strategy (Eq.
whereas CDEOA /best/1 implies DE/best/1 (Eq. in Chapter [2). For both CDEOA /rand/1
and CDEOA /best/1, the control parameters F' (scaling factor) and C'R (crossover rate) pair
were set [F:0.5, CR:0.9], [F:0.5, CR:0.5], [F:0.1, CR:0.1], [F:0.1, CR:0.9], [F:0.2, CR:0.8]. In
DE related studies, we see that the most effective range of F value is to be [0.4, 1.0]. Since a
smaller F' which is close to 0 has a tendency of helping the individuals have strong exploitative
ability, we used F' = 0,1 in two cases of our experiments. CR is generally to be used within
the range of [0.1, 0.9] in the literature of DE. In contrast, Ronkkonen et al. [58] reported
that C'R should be between 0 and 0.2 for separable functions and between 0.9 and 1.0 for
multimodal and non-separable functions. From this perspective, we can clearly understand
that researchers agreed on F' to be between [0.4, 1.0] and CR to be either close to 0 or 1.0. The
algorithm-problem pair was launched from the same initial population to make the comparison
fair. All functions were tested in 30 dimensions with 3x10% FEs. For the CDEOA, following
parameter values of classical BFOA were chosen: N.=100, Ns=16, N,e=8, C(i)=0.1. Each
method was run 25 times with a suite of functions and the statistics were given in Table
and Table .3] The convergence graph was plotted in Fig. [5.2] and Fig. [5.3] The horizontal
axis of these graphs is the number of function evaluations, and the vertical axis is the mean of

function values.

5.2.2 Comparison of five mutation and crossover rate paired

techniques based on DE/rand/1 mutation strategy

DE/rand/1 (Eq. in Chapter [2)) is one of the most used mutation strategy that possesses slow

convergence speed and exhibits much stronger exploration ability due to fact that the strategy
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randomly chooses three individuals which act the distinct search space information out of the
current population. That being the case, the aforementioned mutation strategy empowers the

exploitation ability. In contrast, it slows down the exploitation ability of an individual ( [53]).

Table 5.2: Comparison of CDEOA /rand/1 mutation and crossover rate pairs over 6 benchmark
functions.

Functions [F:0.5, CR:0.9] [F:0.5, CR:0.5] [F:0.1,CR:0.1] [F:0.1,CR:0.9] [F:0.8,CR:0.2]

Mean Error Mean Error Mean Error Mean Error Mean Error
Fi 9.27E-09 9.02E-09 1.77E-06 3.31E-03 9.09E-09
F 1.59E-02 1.03E-02 4.29E+00 2.53E+01 9.41E4-00
F3 2.57E+01 2.37E+4+01 2.15E+01 3.68E+01 2.23E+401
Fy 1.66E+00 1.66E+00 1.66E+00 1.67E+00 1.66E+00
Fy 1.69E+01 3.22E+00 1.75E+00 4.00E+01 3.30E+00
Fg 4.93E-04 8.89E-09 4.19E-08 6.54E-03 8.91E-09

Unimodal Functions

As reported in Table in these two unimodal functions, [0.5, 0.9] and [0.5, 0.5] exhibit
superior performance to the other [F,CR] pairs. Even though the C'Rs are different in each
pair, they end up with the similar results. Although [0.8, 0.2] has a great success in F7, it
cannot maintain its performance in Fy. [0.1, 0.9] fails in two unimodal problems since F' is

close to 0.0.

Multimodal Functions

In these four multimodal functions, [0.5, 0.5] and [0.8, 0.2] pairs exhibit similar performance
and outperform the others. [0.1, 0.1] is the second best pair although its F value is close to 0.0.
Due to characteristics of F5, we can also observe that [0.1, 0.1] and [0.8, 0.2] are the best in F3

and show similar performance although they possess distinct F' values.
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Figure 5.2: Comparison of five mutation and crossover rate paired techniques based on

DE/rand/1 mutation strategy (a) Fi:

Sphere; (b) Fs:

Rosenbrock; (d) Fy: Ackley;(e) F5: Rastrigin; (f) Fs: Griewank.

72

Schwefel problem 2.21; (c) Fi:



5.2.3 Comparison of five mutation and crossover rate paired

techniques based on DE/best/1 mutation strategy

Strategies based on the best solution such as “DE/best/1”, “DE/best/2”, and
“DE/rand-to-best/1” possess the fast convergence rate and are efficient in unimodal problems.
On the other hand, they can tend to get stuck at a local minima, consequently, they converge

to the global optimum prematurely ( [53]).

Table 5.3: Comparison of CDEOA /best/1 mutation and crossover rate pairs over 6 benchmark
functions.

Functions [F:0.5, CR:0.9] [F:0.5, CR:0.5] [F:0.1,CR:0.1] [F:0.1,CR:0.9] [F:0.8,CR:0.2]

Fy 7.87E-09 8.48E-09 2.38E-04 2.49E-03 9.31E-09
Fy 5.71E-01 7.46E-01 1.01E+01 2.24E+01 3.54E+00
3 7.97E-01 6.25E+00 2.77E4-01 2.87E4-01 2.15E+01
Fy 1.66E4-00 1.66E4-00 1.66E4-00 1.66E4-00 1.66E4-00
Iy 4.14E4-01 1.32E+01 1.75E+01 1.25E+02 6.17E+00
Fs 5.51E-03 4.92E-03 2.91E-05 7.50E-03 9.12E-09

Unimodal Functions

In these two unimodal functions, we can observe similarities as opposed to the CDEOA /rand/1
simulation results in Fy function. [0.1, 0.9] does not perform due to its small F' value. On
the other hand, [0.5, 0.9] performs better than that of the others since F=0.5 keeps the
individual’s exploration and exploitation abilities and C' R=0.9 inherits most of the information

from mutated vector.

Multimodal Functions

In these four multimodal functions, [0.5, 0.9] exhibits great performance in F3. The pairs in both
CDEOA /rand/1 and CDEOA /best/1 simulation results of F; show identical performances. It
is obvious that [0.8, 0.2] outperforms the other pairs in Fj5 and Fp.

The convergence maps of [0.5, 0.9], [0.5, 0.5], [0.1, 0.1], [0.1, 0.9], and [0.8, 0.2] are reported in
Fig. [.2]and Fig. [5.3] [0.8, 0.2] converges better than the others in F5 in both CDEOA /rand/1

73



a0
------- F=0.5, CR=0.9 -=----- F=0.5, CR=0.9
——— F=0.5, CR=0.5 a0 ——— F=0.5, CR=0.5
—-—- F=0.1, CR=0.1} —-==—- F=0.1, CR=0.1
—--— F=0.1, CR=0.9 70 —--— F=0.1, CR=0.9||
s —---- F=0.8, CR=0.2 ‘e —---= F=0.8, CR=0.2
= 3
= -
8 ———, - .5 50
g 2
2z 2
5 §|4o
: ix
kY
hY
£y 10
. i .“\ 0 T e T o —
0 50000 100000 150000 200000 250000 300000 O 50000 100000 150000 200000 250000 300000
Mo. of FEs No. of FEs
(a) (®)
- 2.8
wh, T F=0.5,CR=0.9 | e F=0.5, CR=0.9
o ——— F=0.5, CR=0.5 ——=— F=0.5, CR=0.5
—-—- F=0.1, CR=0.1 26 —.—- F=0.1 CR=0.1
10! o —_——— FfO.l, Cﬂfﬂ-g —--— F=0.1, CR=0.9
8 0 e, —---- F=0.8,CR=0.2]| —---= F=0.8, CR=0.2
s % i 24
> H
< 10% b >
3 = g
ERU £ £22
5 107 ™ p
E‘ . E“‘; g‘
$w £20
1% %,
%
104 18 3
107 K .
1
8 Kl &
% 50000 100000 150000 200000 250000 300000 ‘g 50000 100000 150000 200000 250000 300000
Mo. of FEs No, of FEs
(© (d)
4 muPr\, - : .
------- F=0.5, CR=0.9 EL \_‘\ ====:+ F=0.5, CR=0.9
——=—F=05,crR=0.5[ 10*E}} Y ——— F=0.5, CR=0.5
—-—- F=0.1, CR=0.1 BN —-—- F=0.1, CR=0.1
—--— F=0.1, CR=0.9 walil v —--— F=0.1, CR=0.9
. —emom|—---- F=0.8,CR=02[{ & ({} } 1} —---= F=0.8, CR=0.2
5 gwfit ) Y
& B e =
g g
] &
2 &
S T
Z Z
" i 8
0 50000 100000 150000 200000 250000 30000 0 50000 100000 150000 200000 250000 300000
No. of FEs No, of FEs
(® ®

Figure 5.3: Comparison of five mutation and crossover rate paired techniques based on
DE/best/1 mutation strategy (a) Fi: Sphere; (b) Fi: Schwefel problem 2.21; (c) Fs:
Rosenbrock; (d) Fy: Ackley;(e) F5: Rastrigin; (f) Fs: Griewank.
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and CDEOA /best/1 simulations. It is clear that each pair in both tests converged to the
global optimum in Fy prematurely. Due to the use of the DE/best/1 (Eq. 4) strategy in
CDEOA /best/1, we observe faster convergence than the others. [0.5, 0.9] possesses premature
convergence in F3 CDEOA /rand/1 simulation like the others. However, it exhibits excellent

convergence performance in F3’s CDEOA /rand/1 while the rest of the pairs fail.
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CHAPTER 6
CONCLUSION AND FUTURE RESEARCH

6.1 General Conclusions

A series of Bacterial Foraging Optimization Algorithm (BFOA) and Differential Evolution (DE)
evolutionary based algorithms (CDEOA, iCDEOA, and pCDEOQOA) were presented in this thesis.
The studies hybridizing BFOA with other evolutionary based approaches exhibit that it is
an efficient way for improving BFOA performance by combining with different algorithms
such as Genetic Algorithm (GA) , Particle Swarm Optimization (PSO), and DE . Unlike
similar methods in the literature CDEOA, iCDEOA, and pCDEOA are basically based on
two strategies: making weak bacterium more explorative and making strong bacterium more
exploitative, where two of which can be integrated into any BFOA variant in order to improve
the performance over complex fitness landscapes. The number of the failed steps of a bacterium
is accumulated and if it reaches to maximum number of allowed tumble steps, the bacterium
undergoes the process of making weak bacteria more explorative. The number of the lucky steps
of a bacterium is accumulated and if it reaches to maximum allowed run steps, the bacterium
undergoes the process of making strong bacteria more exploitative.

Improved CDEOA (iCDEOA) is to cope with the premature convergence issue of
reproduction operator of BFOA. However, it is still based on exploration and exploitation
strategies that CDEOA possesses . BFOA performs the reproduction operator by killing half of

the population with low objective function values. The rest with high objective function values
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split into two. Consequently, the population tends to converge prematurely as the algorithm
lacks of explorative population. iCDEOA disperses the population with poor function values
whereas it sends the strong population with high function value to the vicinity of the best
bacterium. Probabilistic re-positioning operator has been utilized to balance the exploration
and exploitation of the search space.

Micro CDEOA (nCDEOA) was successfully used to optimize high-dimensional optimization
problems. In this approach, in order to increase the convergence performance and quality of
the final solution, after re-initializing the population, the bacteria are ranked according to their
objective function values. The best bacterium’s position is preserved in the population. The
second best bacterium is reinitialized in the neighborhood of the best bacterium based on the
ideas of DE technique, whereas the rest of the bacteria (four bacteria) are dispersed at random
on the search space.

We have also observed the impact of DE/rand/1 and DE/bestl mutation strategies on
CDEOA technique in unimodal and multimodal functions. Generally speaking, there is no
common parameter settings for all the problems. Rather, there are optimum parameter values
for each problem after fine-tuning experiments.

The experimental studies of CDEOA were performed on 30 single objective numerical
optimization problems used in CEC2014 special session and competition. CDEOA was
compared with classical BFOA, DE, two BFOA, and four DE counterparts. ICDEOA was
compared with three state-of-the-art DE counterparts. pCDEOA was compared with classical
BFOA with 6 and 30 population sizes, and micro BFOA (nBFOA) in a set of 16 single objective
numerical optimization problems taken from IEEE CEC. Simulation results show that overall
performance of CDEOA, iCDEOA, and pCDEOA was superior to, or comparable to, that of

the other competitors.
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6.2 Future Research

CDEOA is mostly based on BFOA which consumes quite a lot computational time. Contrary to
this, DE is good at employing the local and global search operators efficiently. It is important
to employ DE based BFOA in order to reduce the computational time.

ICDEOA is good at optimizing the unimodal and multimodal functions. However, it does
not exhibit the same performance in some complex hybrid and composition functions. It is
beneficial to employ DE based operators to increase the performance as DE coupled methods
have been a powerful technique for complex hybrid and composition functions.

PCDEOA has been tested on high dimensional problems and proven to be a successful
technique as a global optimizer. However, it has not been tested on large scale optimization
problems. Therefore, tCDEOA needs to be improved in a way that can solve large scale

optimization problems.

6.3 Source Codes

The Python source codes of the algorithms classical BFOA, classical DE, CDE, ACBSFO__DES,
proposed CDEOA, iCDEOA, and pCDEOA can be downloaded from Y. Emre Yildiz’s
homepage (https://sites.google.com/site/yeyildiz12/)). These codes are written to be
compatible with the opn global optimization framework available in Oguz Altun’s Bitbucket
repository (https://bitbucket.org/oaltun/opn). Algorithm [If and Algorithm 2 in Chapter
does not correspond one to one to CDEOA code given, as we wanted to hide unnecessary
details of the framework used. The lines 19-26 in Algorithm [T and Algorithm [2] of Chapter

summarize what opn does to make the given code runnable.
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Appendix A
THE NUMERICAL COMPARISON OF CDEOA AND
ICDEOA WITH THEIR COUNTERPARTS
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