
i

ASYMMETRIC DISTRIBUTED LOCK MANAGEMENT IN CLOUD COMPUTING

A THESIS SUBMITTED TO

THE FACULTY OF ACHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ARTUR KOÇI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

JANUARY 2019

ii

Approval of the thesis:

ASYMMETRIC DISTRIBUTED LOCK MANAGEMENT IN CLOUD

COMPUTING

Submitted by Artur Koçi in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Department of Computer Engineering, Epoka University

by,

Assoc. Prof. Dr. Sokol Dervishi

Dean, Faculty of Architecture and Engineering

Dr. Arban Uka _____________________

Head of Department, Computer Engineering, EPOKA University

Prof. Dr. Betim Çiço _____________________

Supervisor, Computer Engineering Department, EPOKA University

Examining Committee Members:

Prof. Dr. …………….. _____________________

………………. Dept., ………….. University

Prof. Dr. ……………. _____________________

………………. Dept., ………….. University

Assoc. Prof. Dr. ,,,,,,,,,,,,,,,,,,,, _____________________

………………. Dept., ………….. University

Assoc. Prof. Dr. …………………. _____________________

………………. Dept., ………….. University

Assist. Prof. Dr. ……….. _____________________

………………. Dept., ………….. University

Date: 05/03/19

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name: Artur Koçi.

 Signature:

iv

ABSTRACT

ASYMMETRIC DISTRIBUTED LOCK MANAGEMENT IN CLOUD

COMPUTING

Koçi, Artur

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Betim Çiço

Cloud computing have become part of our daily lives. They offer a dynamic environment

for costumers to store and access their data at any time in any location. The developments

of social networks have led to the necessity to build a solution which is easily accesible

and available when required. Cloud computing provide a solution that does not depend

on the location and can offer a wide range of services, while being free from failure and

errors.

Although there is an increase in the usage of the cloud storage services, there is still a

significant number of aspects such as instant servers failures, network partitioning and

natural disasters that require to be carefully addressed. Another important point that is

vital for a sustainable cloud is the implementation of an algorithm which will coordinate

and maintain concurrent access and keep shared files free from errors. One of the main

approaches to overcome these problems is to provide a set of servers which will act as a

gateway between clients and storage nodes.

v

In this thesis we propose a new approach which provides an alternative solution to the

main problematics related with cloud storages. The approach is based on multiple

strategies for eliminating the problem of node failure and network partitioning while

providing a complete distributed environment. In our approach, every server acts as a

master server for its own requests and can provide service to its clients without

interacting with other master servers. The concurrent access is maintained in an

asymmetric way through our lock manager algorithm with the least communication

among other master servers. According to the state of a specific file, master server can

execute any received request without communicating with other master servers and only

when additional information is required does further communication occur. In our

approach the network partitioning or failure of one or more master servers has no effect

on the other part of the cloud. To improve availability, we associate every master server

with a failover server which takes up the duty of a master when the master server fails or

becomes obsolete. To measure the performance of our approach we have performed

various tests and the results are presented in detailed graphs.

Keywords: Cloud Computing; Cloud Storage; Distributed Systems; Lock Manager

Algorithm; Concurrent Access; Data Availability; Data Durability.

vi

ABSTRAKT

MANAXHIMI ASIMETRIK I BLLOKUESVE TË SHPËRNADARË NË

RETË KOMPJUTERIKE

Koçi, Artur

Doktoraturë, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Prof. Dr. Betim Çiço

Retë kompjuterike janë bërë pjesë e jetës sonë të përditshme. Ato ofrojnë një mjedis

dinamik për konsumatorët për të ruajtur dhe aksesuar të dhënat e tyre në cdo

vendndodhje. Zhvillimi i rrjeteve sociale shfaq nevojën për të ndërtuar një zgjidhje e cila

është lehtësisht e aksesueshme dhe e gatshme kurdo që kërkohet. Retë kompjuterike

sigurojnë një zgjidhje që nuk varet nga vendndodhja dhe ofron një gamë të gjërë

shërbimesh, duke qenë të lira nga dështimet dhe gabimet.

Megjithëse ka një rritje në përdorimin e shërbimeve të ruajtjes në re, akoma ka një numër

të konsiderueshëm aspektesh, siç mund të jenë dështimet e çastit të serverave, ndarja e

rrjetit dhe fatkeqësitë natyrore, të cilat duhet të adresohen me kujdes. Një tjetër pikë e

rëndësishme që është jetësore për një re të qëndrueshme është implementimi i një

algoritmi që është në gjendje të koordinojë dhe mirëmbajë qasjet e njëkohshme dhe të

mbajë skedarët e shpërndara pa gabime. Një nga qasjet kryesore për të kapërcyer këto

problematika është ofrimi i një grupi serverash të cilët do të veprojnë si një portë midis

klientëve dhe nyjave të ruajtjes.

vii

Në këtë tezë ne propozojmë një qasje të re e cila u jep përgjigje problematikave kryesore

që lidhen me depot e reve. Kjo qasje bazohet në disa strategji për eliminimin e problemit

të dështimit të nyjave dhe të veçimit të rrjetit duke siguruar një mjedis të shpërndarë të

plotë. Në qasjen tonë çdo servër vepron si servër kryesor për kërkesat e tij dhe mund të

ofrojë shërbim për klientët e vet pa pasur nevojë të ndërveprojë me servërat kryesorë të

tjerë. Qasja e njëpasnjëshme mirëmbahet në një mënyre asimetrike përmes algoritmit

tonë të menaxhimit të bllokuesve duke ofruar komunikimin më të vogël të mundshëm

ndërmjet servërave kryesorë të tjerë. Sipas gjendjes specifike të një skedari, servëri

kryesor mund të ekzekutojë çdo kërkesë të marrë pa komunikuar me servërat kryesorë të

tjerë, dhe vetëm kur kërkohet informacion shtesë ndodh komunikim i mëtejshëm. Në

qasjen tonë veçimi i rrjetit ose dështimi i një ose më shumë servërave kryesorë nuk

ndikon në pjesët e tjera të resë. Për të përëmisuar disponueshmërinë, ne e shoqërojmë

çdo servër kryesor me një servër në gatishmëri, i cili merr detyrën e shefit kur servëri

kryesor dështon ose bëhet i paarritshëm. Për të matur performancën e qasjes sonë ne

kemi kryer teste të ndryshme dhe rezultatet i kemi paraqitur në grafikë të detajuar.

Fjalët kyçe: Reja Kompjuterike; Ruajtja në Re; Sistemet e Shpërndara; Algoritmi i

Menaxhimit të Bllokuesve; Qasje e Njëpasnjëshme; Disponueshmëria e të Dhënave;

Qëndrueshmëria e të Dhënave.

viii

Dedicated to my lovely family

ix

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof. Dr. Betim Çiço for his

continuous guidance, encouragement, motivation and support during all the stages of my

thesis. I sincerely appreciate the time and effort he has spent to improve my experience

during my graduate years.

I am also deeply thankful to my friend Dionis Prifti for his precious contribution to this

thesis.

My profound gratitude goes to Niuton Mulleti for his tremendous support and advice.

I am also highly appreciative of the advice and support Fatih, Edmond, Igli, Arban, Nevis

and Sokol provided whenever I have required.

Last but not least, I sincerely thank my brother Gëzim, my spouse Blerina and my son

Dejan for their sacrifice, understanding, patience, encouragement, love and support during

those challenging moments of my studies.

x

TABLE OF CONTENT

ABSTRACT .. iv

ABSTRAKT.. vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENT ... x

LIST OF TABLES .. xiv

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS .. xviii

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Quality of the Storage Services ... 2

1.3 Distributed Storage models, challenges and paradigms 5

1.4 Contribution of This Thesis ... 9

1.5 Thesis Organization ... 10

CHAPTER 2 .. 13

DISTRIBUTED STORAGE SYSTEMS: DEFINITION, EXISTING MODELS AND

BACKGROUND ... 13

2.1 Storage Systems Architecture and Design .. 13

2.2 Local Storage Systems .. 13

2.3 Distributed Storage Systems ... 14

2.4 Distributed Storage Models ... 16

2.5 Definitions ... 22

xi

CHAPTER 3 .. 25

DISTRIBUTED DATA MANAGEMENT IN CLOUD COMPUTING 25

3.1 Distributed Lock Managers ... 25

3.2 State of art ... 26

3.3 Voting Algorithm in Distributed Cloud Computing ... 29

3.4 Data Replication and Concurrent Access Management 30

3.5 Cloud Computing Platforms .. 32

3.6 Cloud Computing Architecture ... 34

3.7 Cloud Storage Architecture ... 37

3.8 Existing Platforms ... 39

3.9 Discussions .. 42

3.10 Methodology of Research and Further Steps .. 45

CHAPTER 4 .. 48

ADLMCC – ASYMMETRIC DISTRIBUTED LOCK MANAGEMENT IN CLOUD

COMPUTING .. 48

4.1 Background ... 48

4.2 Asymmetric Distributed Lock Management in Cloud Computing 52

4.2.1 ADLMCC Architecture.. 52

4.2.2 Lock Manager Algorithm... 56

4.2.3 Self-Management of Shared Locks in Servers ... 58

4.2.4 Finding a Lock Manager .. 61

4.2.5 Checking Request Migration ... 63

4.2.6 Lock Acquisition .. 65

xii

4.3 Resource Starvation in Asymmetric Distributed Lock Management in Cloud

Computing .. 68

4.3.1 Checking a Request Migration ... 68

4.3.2 Lock acquisition ... 71

CHAPTER 5 .. 74

IMPLEMENTATION OF LOCK MANAGER ALGORITHM 74

5.1 Introduction ... 74

5.1.1 Building Lock Manager Algorithm Infrastructure 78

5.1.2 Request Delivery Mode ... 79

5.1.3 Data collected ... 85

5.1.4 Filtering information .. 88

CHAPTER 6 .. 93

EXPERIMENTAL RESULTS AND DISCUSSION .. 93

6.1 A Comparative Analysis between Centralized and Distributed Models 93

6.2 Performance Evaluation of the Asymmetric Distributed Lock Management in

Cloud Computing ... 96

6.2.1 Cloud Resources Effect in Asymmetric Distributed Lock Management in

Cloud Computing ... 97

6.2.2 Number of Requests Effect in Asymmetric Distributed Lock Management

in Cloud Computing ... 101

6.3 Effect of Resource Starvation in Asymmetric Distributed Lock Management in

Cloud Computing ... 106

CHAPTER 7 .. 109

7.1 CONCLUSIONS ... 109

REFERENCES... 112

xiii

APPENDIX .. 123

REQUESTS MODULE CODE OF THE ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT ALGORITHM .. 123

CLUSTER INFRASTRUCTURE CODE OF THE ASYMMETRIC DISTRIBUTED

LOCK MANAGEMENT ALGORITHM .. 126

SERVERS MODULE CODE OF THE ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT ALGORITHM .. 133

SERVERS INFORMATION MAINTENANCE CODE OF THE ASYMMETRIC

DISTRIBUTED LOCK MANAGEMENT ALGORITHM 139

LOCK MANAGER CODE OF THE ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT ALGORITHM .. 140

FILE ATTRIBUTE CODE OF THE ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT ALGORITHM .. 143

STORAGE NODE CODE OF THE ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT ALGORITHM .. 144

FILE LOCK MANAGEMENT CODE OF THE ASYMMETRIC DISTRIBUTED

LOCK MANAGEMENT ALGORITHM .. 145

CURRICULUM VITAE .. 152

xiv

LIST OF TABLES

Table 1. List of Processes Performed for Fulfilling Execution of A Single Request 88

Table 2. Type of the Data Collected during Execution Process 92

xv

LIST OF FIGURES

Figure 1. Cloud Computing Architecture .. 51

Figure 2. Server Node Table Pseudocode .. 53

Figure 3. File Directory Pseudocode .. 54

Figure 4. Migrate Out and Migrate In Table Pseudocode.. 55

Figure 5. Request Lock Table Pseudocode .. 55

Figure 6. Lock File List Pseudocode ... 56

Figure 7. ADLMCC Architecture .. 57

Figure 8. Self-Management of Shared Locks in Server’s Pseudo Code 60

Figure 9. Self-Management of Shared Locks in Servers Activity Diagram 61

Figure 10. Initiator Server Gets Execution Permissions from Owner Server Activity

Diagram .. 62

Figure 11. Initiator Server Gets Execution Permissions from Owner Server Pseudo Code

 .. 63

Figure 12. Initiator Server Migrates Execution Permissions to Owner Server Activity

Diagram .. 64

Figure 13. Initiator Server Migrates Execution Permissions to Owner Server Pseudocode

 .. 65

Figure 14. Initiator Server Migrates Execution Permissions to Remote Server Pseudo

Code ... 66

Figure 15. Initiator Server Migrates Execution Permissions to A Remote Server Activity

Diagram .. 67

Figure 16. Initiator Server Migrates Execution Permissions to Owner Server Activity

Diagram .. 69

xvi

Figure 17. Initiator Server Migrates Execution Permissions to Owner Server Pseudo Code

 .. 70

Figure 18. Initiator Server Migrates Execution Permissions to Remote Server Activity

Diagram .. 72

Figure 19. Initiator server migrates execution permissions to remote server pseudo code

 .. 73

Figure 20. Class Diagram .. 75

Figure 21. Lock Manager Graphical Interface ... 76

Figure 22. Cluster Directory Module ... 77

Figure 23. Cluster Directory Module Sequence Diagram.. 78

Figure 24. Random Issuing Request Module ... 79

Figure 25. Ad-Hoc Request Module .. 80

Figure 26. Request Creation Sequence Diagram ... 81

Figure 27. Random Mode Delivery Request Sequence Diagram 81

Figure 28. Specific Request Deliver Sequence Diagram ... 82

Figure 29. Scenario Mode Delivery Request Sequence Diagram 83

Figure 30. Lock Management Sequence Diagram ... 84

Figure 31. Information Selection Module .. 89

Figure 32. Time until execution permissions granted in milliseconds for 100 requests in

single server mode ... 94

Figure 33. Time until execution permissions granted in milliseconds for 100 requests in

random mode.. 95

Figure 34. Time until Granted for 100 requests in random with 5 servers 97

Figure 35. Time until Granted for 100 requests in random with 10 servers 99

Figure 36. Time until Granted for 100 requests in random with 30 servers 100

Figure 37. Time until Granted for 100 requests in random ... 101

Figure 38. Time until Granted for 500 requests in random with 5 servers 102

Figure 39. Time until Granted for 500 requests in random with 10 servers 103

Figure 40.Time until Granted for 500 requests in random with 30 servers 104

xvii

Figure 41. Time until Granted for 500 requests in random ... 105

Figure 42. Execution time in milliseconds for 200 requests in single server mode without

Starvation ... 107

Figure 43. Execution time in milliseconds for 200 requests in single server mode with

Starvation ... 108

xviii

LIST OF ABBREVIATIONS

The following table describes the significance of various abbreviations and acronyms

used throughout the thesis.

Abbreviation Meaning

SNT Server Node Table

RLT Request Lock Table

LFL Locked File List

FD File Directory

Mout-T Migrate-out Table

Min-T Migrate-in Table

ADLMCC Asymmetric Distributed Lock Management in Cloud

Computing

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cloud storage services are becoming one of the main options for consumers to store data

that are accessible everywhere, from every device and to provide features to connect to

network. Since their presentation, most of the biggest companies have been moving their

data in cloud and most of financial transactions worldwide are performed online and are

not limited by their location.

The overall storage demands are growing at an exponential rate. With the recent

developments, users need to access their personal data from every device, from any

location, and they would like to share their data with their relatives in a fast and simple

manner[1]. Nowadays exist clouds storage such as Google, Amazon, Microsoft,

Facebook, etc. which provide different services and store thousands of Terabytes of user’s

data. One of the biggest concerns on cloud storage services is reliability of user’s data.

With the reliability in cloud storage we comprehend a cloud that has implemented fault

tolerant solution.

Dealing with user data, cloud platforms have to provide scalability while sustaining high

availability as well as a proper solution for maintaining concurrent access on the stored

data. To meet with these requirements, in the recent years, different datacenters providing

online storage services have been built. These storage datacenters use distributed systems

2

such as Google File System GFS [2] or Hadoop [3], [4], which are the biggest distributed

file systems designed to store very large data sets reliably and to provide high throughputs.

However, to achieve these goals, and to maintain their availability high, these datacenters

management requires lots of resources, energy consumption and hardware maintenance.

It is very important to design a sustainable solution which implements all the main

parameters of e reliable cloud while using resources efficiently.

In big datacenters, in order to avoid single points of failure, developer’s strategy is to

design a replication node server per each master node. The file concurrency is avoided by

creating snapshots and record appends operation. One of the widely used methods to

improve data reliability in distributed systems is to distribute data on several storage

devices. When using this method, it is essential to associate distributed data with

redundant information.

Reliability in distributed cloud storage is defined as the tolerance of the node failure, while

availability means any time access to the files regardless of location and time. Another

parameter to be considered in distributed cloud storage is efficiency, which is defined as

the redundant information stored in the system.

1.2 Quality of the Storage Services

According to its definition, in distributed systems, data is not stored in a single unique

local storage node but is spread in several storage nodes. A distributed storage solution is

composed of hundreds of storage nodes spread among different geographical areas,

meaning that part of a single file is physically stored in various nodes that are in multiple

locations[1] [5].

One of the main concerns in distributed systems is that distributed nodes can become

unavailable in any moment of time. In spite of that, users require the accessibility of their

data to meet the service agreement parameters property. The main properties of online

3

storage services are data durability, data scalability, retrieval time and being free from

errors.

• Data Availability: The data stored in a distributed system should be available for

all the time, even if parts of it, stored in different nodes are offline.

• Data Durability: In addition to data availability, distributed system should ensure

that, after the data are stored in the distributed storage they are never lost. This

means that the system must guarantee that even if parts of the file are lost due to

the failure of the storage nodes, they can be repaired in a short period without

affecting the overall system.

• Retrieval Time: The users can access or download their data as quick as possible.

There exist other factors that affect the retrieval time such as bandwidth and

network congestion, but the cloud service should ensure that the user will have the

least possible time from the system side.

Many distributed storage systems use techniques of replication [6], [7], [8], [9], [10] for

increasing data reliability. Replication is a process where the whole file is replicated to a

certain number of times in different nodes geographically distributed. In case that one of

the nodes fails the remaining copies can be available. Replication technique is a process

that consumes a lot of space and bandwidth and commits overhead of the system.

To avoid the old methods of replication erasure codes techniques [11], [12], [13] are

introduced. Erasure codes is a technique that divides the original file in fragments called

chunks and after encoding redundant information it stores them in different distributed

nodes. This is a way to efficiently use cloud storage resources and eliminate the need to

store many copies of the same file. In erasure codes technique only one copy of a single

file is stored. In case of failure the original file can be retrieved using a group of the total

4

number of the stored number of chunks. However, erasure codes are techniques that

consume lots of bandwidth to maintain file consistency. For every failure of a node it is

required to download information from every remaining node to construct the lost chunk.

Maximum distance separable (MDS) erasure codes described in [13], [12], [11] are

erasure codes techniques that can generate a node by contacting a subset of the group used

in erasure codes, increasing thus the total number of nodes tolerated to fail. MDS

technique increases the reliability of the cloud storage; however, compared to replication

it requires more bandwidth consumption while exchanging redundant information.

Another aspect that needs to be optimized in cloud storages is file consistency during

concurrent access. Therefore, sustainable lock management should be deployed. Lock

managers [14] are techniques for maintaining file inconsistency and avoiding

simultaneous access to the same file. They can be implemented for centralized

management [8] and for distributed management [15].

In centralized management, all client requests are directed to a single server that plays the

role of a master. In this approach master server can face the problem of completion of the

resources and can easily get overhead therefore causing service interruption. In distributed

management, lock manager is spread in multiple servers, and in case of failure of one of

them the access to storage nodes can still continue from other servers offering users the

possibility to have access to their data and provide more reliability.

Objective of this thesis

Although in Chapter 2 more details will be provided about data reliability and concurrent

access in shared resources, the main objective of this thesis is to introduce a distributed

lock manager algorithm, which will provide a sustainable solution to the main cloud

parameters properties for a reliable cloud to increase data availability and keep the shared

5

data free from errors when concurrent access happens while ensuring the least

communication possible among servers.

 Our solution is implemented in a complete distributed manner and it is centralized server-

less architecture. Our design architecture is more akin to a peer-to-peer based architecture

by providing all features of a client-server based architecture. We call servers that

participate in the distributed storage system master node and storage node or simply nodes,

all of which are used to store user`s shared files. All master nodes are equally treated and

have the same right on shared files. As in peer-to-peer based architecture [8], [16], [17],

master nodes communicate with one another to maintain the concurrent access. In contrast

to peer-to-peer architecture, our solution does not perform periodic updates or update all

masters any time a file is modified to maintain file consistency.

We propose a model without any kind of global updates and the only communication

occurring is message exchange in the moment that one of the master nodes cannot decide

itself for the consistency of a certain shared file. Another novelty proposed in this thesis

is the elimination of periodic communication between master nodes to maintain their

health status. In our proposal there is only one periodic communication which happens

between master server and its own failover server to inform about its health status.

Failover servers are backup servers associated with each of the master servers and it is

used to increase cloud availability. If a master node does not send periodic health

information, failover status takes over the master node duty.

1.3 Distributed Storage models, challenges and paradigms

As it has already been described, when concurrent access happens in distributed data file

consistency [18] is maintained by implementing a centralized management model or

distributed management model.

6

Challenge 1: A better understanding of the centralized management

A most common method used in centralized management systems is the method of master

slave model. The servers are grouped in master server and slave server. All incoming

requests from users are directed to master server and he is responsible for redirecting the

request to slaves.

Hadoop [3], [4] is one of the biggest distributed file systems designed using centralized

management. The core components of Hadoop are Namenode which stores the file system

metadata and Datanodes, which are responsible for storing applications data. Any client

who wants to read a data block firstly contacts Namenode for finding the location of data

block and then reads the data block from Datanodes.

Another distributing file system using centralized management is Google File System

GFS [2]. The architecture of GFS is composed of single master server and multiple chunk

servers. Master maintains the file system metadata such as namespace, access control and

the current location of the file. The client interacts with the master only for metadata

operation and the data-bearing commination goes directly to the chunk server avoiding

the overhead of the master server. For avoiding single point of failure, master server has

its replication server. File concurrency is avoided by creating snapshots and record

appends operation.

Another aspect that needs to be addressed for the centralized management is that they use

technique of replication [6], [7], [8], [9], [10] for increasing data reliability. Replication is

a process in which the whole file is replicated a certain number of times in different nodes;

in case that one of the nodes fails, other copies can be available. The first of the two main

concerns to be addressed while this method is implemented is that, as all the requests are

directed to a single server, the master server might fail or go offline. This is the case when

7

the entire system enters in failure mode and until the master server is back there is service

interruption. The second concern is related to the use of replication technique which is a

process that consumes a lot of space and bandwidth causing overhead of the system.

Challenge 2: A better understanding of the distributed management

In distributed management, management is spread in multiple servers and in case of failure

of one of them, access can continue from the other servers. One solution for maintaining

the file consistency in distributed cloud storages is provided by [19]. The offer lock service

named Chubby consists in two main components: a cell that is a set of servers also called

replicas, and a library that client applications link against. Client Library maintains all the

communications between client application and servers. Most of the distributed

management systems use [20], [17] conflict resolution procedures for maintaining file

consistency. Other algorithms applied in distributed system for maintaining data

consistency [21] enable every node to have information for every other node. They use

the technique of reapplication for increasing availability of their stored data. The main

concern in distributed system remains the information exchanged between server nodes

in order to maintain data consistency and avoid incorrect result when concurrent access

happens.

Comparing the two models, both centralized management and distributed management

have their positive and negative aspects. The main drawback of the centralized

management is related with the fact that the master server becomes a single point of

failure. To minimize this effect most of the new approaches offer the solution to provide

one master server that acts as the primary server or so-called online mode and the

secondary passive servers that are in offline mode. Both servers exchange communication

messages and in case that the passive server does not get any response from the active

server, it announces its presence and becomes active.

8

In distributed management this problem is solved by having a set of servers where each

of the servers has the duty of master server for its own requests. The requests from users

to access any data are directed to the closest server and by using different approaches they

maintain the consistency of the shared data. The main drawback with this mode consists

in the exchange of the messages to maintain data consistency and consumption of a lot of

bandwidth and resources.

Taking into account the above explanation, can we develop a model which will address

all the concerns raised by keeping high data reliability?

i) Can we avoid the existence of a single master server or a set of servers which

consume lots of bandwidth to receive updates from each other for maintaining

their consistency and provide a model where every server acts as master server

unaware of the existence of the other master servers?

ii) How can we implement a fully distributed model in a way that every server

acts as master server and decrease the number of the exchanged messages

among servers without decreasing the system performance?

iii) How to design a system with such requirements and avoid simultaneous

read/write in the distributed data stored and keep them free from errors?

iv) How can we analyze and provide sustainable results if this solution can be

implemented in cloud with different sizes?

v) What are the drawbacks of implementing this model and how to minimize the

impact of these drawbacks?

9

1.4 Contribution of This Thesis

In this thesis we introduce a new distributed lock manager algorithm named asymmetric

distributed lock management in cloud computing that will provide a sustainable solution

to the main concerns that are faced by distributed storage systems. Lock manager

algorithm we introduce addresses the main problematics related with storage systems such

as data durability, data scalability, retrieval time, being free from errors and provides a

stable solution to the concurrent access in the shared files.

I) With asymmetry of our lock manager we refer to the fact that our algorithm

maintains file concurrent access locally without requiring extra

communication among other servers and only when further information about

the situation of the file is needed, will extra communication with other parts of

the clouds occur.

II) Our approach reduces the number of the messages exchanged among servers

to maintain system performance. In our solution, the number of messages

exchanged will depend on the situation of the file requested and it differs from

case to case. Based on the situation of the data requested for being accessed,

the number of messages exchanged can vary from zero to a certain number in

the cases that servers need to collaborate with other servers.

III) Compared to preview proposals, the novelty of asymmetric distributed lock

management in cloud computing depends on the statement that there is no

single server which plays the role of master server; there exists a collection of

master servers, which independently of each other can execute different tasks

achieving high availability of the cloud storage.

10

IV) All servers work independently of each other and do not keep trace of the other

servers, part of the same cloud or trace of the tasks they are performing,

increasing every server autonomy and reducing bandwidth consumption.

V) Algorithm sets no limitation to the number of master servers providing high

scalability. According to its structure, new servers can be added, or old servers

can be removed without affecting the availability of the system.

VI) Another novelty in ADLMCC is provision of a complete distributed lock

management, thus avoiding the necessity for a reference server, which sends

periodic updates for maintaining cloud performance. Every server contains its

own lock manager which performs its tasks in separation from other lock

managers and maintains data consistency of the shared data under its

command.

VII) In asymmetric distributed lock management in cloud computing, the failure of

any of the servers has the least impact on the overall performance and affects

only the local users that are accessing it.

1.5 Thesis Organization

In the following section, we provide a short summery of the rest of the chapters of this

thesis.

Chapter 2 Distributed Storage Systems Definition, Existing models and Background

We provide a discussion of the existing background in distributed storage systems

and we discuss the existing solution provided as well as their millstones through a

comprehensive analysis. We focus on the most important factors that affect the

11

quality of distributed storage such as: redundancy, availability and data retrieval

time as well as relations among each other.

Chapter 3 Lock Management in Cloud Computing

In this chapter we discuss the main principles of the lock management in cloud

computing, the existing models and paradigms. We give a short description of

concurrent access, compare the benefits of each model and analyze their

drawbacks.

Chapter 4 Asymmetric Distributed Lock Management in Cloud Computing: design and

functionality

In this chapter we introduce the asymmetric distributed lock management in cloud

computing algorithm by giving a detailed explanation of its design, the relationship

and collaboration with other distributed lock managers and its functionality. We

explain all the components of the asymmetric distributed lock management in

cloud computing algorithm and explain the way how lock manager manages the

received user requests, maintains data consistency and keeps files free from errors.

We present the main novelties of our algorithm and its drawbacks.

Chapter 5 Implementation of the asymmetric distributed lock management in cloud

computing algorithm

In this chapter we describe the implementation of the asymmetric distributed lock

management in cloud computing algorithm, the environment and the way how it

works. We describe all the modules and the way we collect data which we use in

the next chapter for analyzing the performance of the asymmetric distributed lock

management in cloud computing algorithm.

Chapter 6 Performance of the asymmetric distributed lock management in cloud

computing algorithm

In this chapter we analyze and discuss the results archived from asymmetric

distributed lock management in cloud computing algorithm. We make a

comprehensive analysis to find out its conceivable implementation and

performance evolution in different cloud computing usage load.

12

Chapter 7 Conclusions

This chapter presents the conclusions that have been achieved by our work and

suggestions for future research.

13

CHAPTER 2

DISTRIBUTED STORAGE SYSTEMS: DEFINITION,

EXISTING MODELS AND BACKGROUND

2.1 Storage Systems Architecture and Design

In this chapter our aim is to introduce distributed storage systems and the important role

they play in the design of the online applications. In addition, we give a summary of

developments and improvements of the distributed storage systems over years and define

the problematics that inspired me and served as motivation for the research done in this

thesis.

2.2 Local Storage Systems

Every computer system is in need of a mechanism to store personal data and program data

persistently[1]. The first dedicated hardware designated to provide data persistence to

computers, were hard disk drives. Hard disk drives were first invented by IBM in 195611.

Since that time, the hard dick has known enormous developments and nowadays we

cannot imagine a computing device without a hard disk. In recent years hard drives have

started to be replaced by solid state drives due to their higher speed and increased

durability, but they are not still a popular choice due to their price and capacity limitations.

However, these local hard disks represent a major problem for being prone to fatal errors

and losing data that are locally stored. The traditional solution used to protect those local

stored data against fatal failure has been to replicate the stored data in external devices

like magnetic tapes or optical devices. Unfortunately, the management of these external

1https://www.thinkcomputers.org/the-history-of-the-hard-drive/

14

backups becomes very difficult and it presents poor scalability and read/write

performance. According to that, data management by domestic users was very difficult

and many of them faced the problem of losing their personal data. However, enterprise

users that could not face the risk of losing their data have been investing in more

sophisticated and expensive solutions like RAID2 storage.

RAID storage is a data storage virtualization technology that combines multiple physical

disk drive components into one or more logical units. The main advantages of RAID

storage consist in increasing data redundancy, performance improvement, and high

availability. Based on RAID configuration, faulty hard disks can be replaced without

losing their data and the replacement process can be done without necessarily turning off

the storage. Since its first presentation RAID technology has undergone a process of

improvements providing different redundancy standards solutions. RAID storages provide

weak scalability, and this was the main reason that led to the design of the distributed

storage systems that provide a sustainable solution for high availability, redundancy and

scalability storages.

2.3 Distributed Storage Systems

Distributed storage systems are a collection of storage resources from different dedicated

storage devices or computers to build a large storage service. Distributed storage systems

are widely used in the most recent cloud storage service and provide high availability,

flexibility and durability of the users’ stored data. Even though there exist different kinds

of distributed systems [1], distributed storage systems can be defined as below:

Definition 1 A distributed storage platform is an aggregation of distributed computing

systems, composed of multiple independent storage nodes that interconnect over a

computer network. The main purpose of distributed storages is to combine all these

2 RAID – Acronym for Redundant Array of Independent Disks

15

storage nodes and provide a storage service that different applications and users can access

over network.

Definition 2 A storage node [1] is a network component that combines one or more

physical storage devices to construct a unique storage component. A physical storage node

can refer to different devices such as laptop, desktops, network attached storage (NAS) or

any of storage components from data stores.

Due to its distributed nature, distributed storage systems have to face some challenges that

did not exit to local storage networks such as: node failure detection, data redundancy,

data maintenance, distributing data strategies, bandwidth and parallel access.

(i) Node failure detection. A node failure happens when node storage loses

connection with the distributed storage system. The failure can occur due to

the power outage or when node storage can enter in error mode and becomes

unavailable. Distributed storage systems have to implement a mechanism that

detects these failures and guarantees that there will not be a disruption of the

normal operation mode of the system.

(ii) Data redundancy: In distributed storage systems data are spread among

different storage nodes and are prone to loss when one or more distributed

storage nodes become inactive due to power outage or storage node failure. To

prevent the loss of data distributed storage systems needs to implement

redundancy schemes and spread data over distributed nodes so that they can

recover in any time.

(iii) Data maintenance: Data Maintenance refers to the process of regenerating

data stored in one of the storage nodes that has permanently failed either by

assigning these data to a new storage node or by redistributing them among

16

existing storage nodes. Distributed storage systems have to provide a

mechanism that will automatically carry over this process repair data before

they become permanently inaccessible.

(iv) Distributing data strategies: Distributed storage systems needs to implement

a mechanism that will distribute the data among all storage nodes, will provide

load balancing and will try to avoid bottleneck when users access any popular

content.

(v) Bandwidth and parallel access: Considering the fact that bandwidth is not

infinite and there is a bandwidth limitation, distributed storage systems should

provide strategies to reduce communication exchanged for the maintenance

and redundancy process and provide a proper solution that will eliminate

parallel access in distributed data that can occur when different applications or

users try to write the same object simultaneously.

2.4 Distributed Storage Models

Distributed storage systems design should provide solutions that meet all the requirements

described in the preview section. Basically, distributed storage systems that meet all these

requirements are designed for large data centers. Large data centers such as Google File

System GFS [2], Hadoop[3], [4] and IBM’s GPFS [22] are examples of such large data

centers, and provide high data availability and data scalability. The model of these

distributed systems is to have a few master nodes and thousands of storage nodes. Storage

nodes are used to store raw chunks of data, while the master node acts as directory service

for the file systems and stores the metadata of storage nodes raw chunks. Data redundancy

is maintained by storing a minimum of 3 replicas of each file and provides maintenance

and repair of the lost data immediately after the detection of storage failure. However,

keeping 3 copies of each file consumes a lot of storage and makes the data center very

17

expensive. Another aspect of these models is consumption of the bandwidth used to create

replica copies. Implementation of erasure codes has shown a way to reduce storage

consumption compared to the old style of the 3-way replicas.

As described in chapter 1, implementing such a distributed file system requires large, well-

provisioned and well-managed data centers that require lots of resources, which makes it

so expensive that only big enterprises can afford. To reduce the cost of these large data

centers, a new style of online storage service has been developed which integrates storage

resources from different data centers or even user storages resources into provider’s

storage. These new trends can be implemented in homogenous systems and between

heterogeneous systems.

According to their design architecture, distributed storage systems are divided in two main

categories: client-server and peer-to-peer. In client server architecture an entity can behave

either as a client or as a server but cannot be both, while a peer-to-peer architecture is

completely symmetric and each entity is capable of acting both as a client and as a server

[23].

In client-server based architecture there exists a server which provides service to client

requests [24], [2], [25], [26], [27]. In client-server based architecture, there is no ambiguity

of who is in control; the server is a central point and is reasonable for data consistency,

authentication, replication and providing service to the clients. Client-server based

architecture can be categorized into two main groups: Globally Centralized and Locally

Centralized [28].

In Globally centralized architecture there is only one server which is responsible for

everything that is subject to single point of failure. In other words, this is highly centralized

architecture that provides limited scalability.

18

To address problems related to globally centralized architecture, locally centralized

architecture has been introduced. In locally centralized architecture, instead of a server

that is responsible for everything, it is a group of servers that share responsibilities among

each other providing therefore more resiliency to outages and being more scalable [24],

[2], [25], [26].

However, even a locally centralized architecture is vulnerable to failure and limited

scalability due to its inherited bottleneck architecture. Client-server based architecture is

suitable for monitoring and controlling activities happening in the system and provides

high consistency.

To meet new challenges related with operation held in an untrusted environment such as

internet, a new wave of systems implementing peer-to-peer architecture has been released.

In peer-to-peer based architecture, every node is a potential for being a server or a client

and leaves or joins the system as they wish. The benefits of peer-to-peer architecture rely

on the fact that peer-to-peer architecture is resilient to outages, provides high scalability

and is unrestricted to the public use.

According to their design architecture, peer-to-peer storage can be classified into three

main categories: globally centralized, locally centralized and pure peer-to-peer. Each of

these categories can have a different degree of centralization that varies from being

globally or locally centralized, which means that they have some kind of centralization,

to peer-to-peer with no centralization all.

Nasper [29] is an example of globally centralized architecture of peer-to-peer systems,

which provides a central server that contains detailed information for every other peer and

their respective files. In this model peers are required to contact the central server

forgetting information about the other peers. In this model we have a limited scalability

and the system itself is a single point of failure.

19

To overcome the problem of the single point of failure local centralized architecture of

peer-to-peer systems has been created [30], [31], [32], [33]. Instead of a central, local

centralized architecture has a few masters called super nodes which maintain a repository

of metadata through which a group of local users can perform requests and get updates.

Super nodes communicate among each other to provide ways for local groups to issue

requests to a remote super node rather than broadcasting to all community. Being a

centralized point for a group of users, super nodes create a local point of centralization

architecture, but they avoid being a single point of failure.

Pure peer-to-peer architecture provides equality between all nodes. The equality between

nodes ensures that the model provides the highest scalability among three architectures

and it is very adaptive to different environments. Seen from this aspect, pure peer-to-peer

architecture is the best choice but being implemented in an asymmetric environment such

as internet it becomes very challenging. Most of the users contain asymmetric internet

connection biased toward download. This is discouraging users from sharing their

resources, which decreases the performance of peer-to-peer systems. Freenet [34], Free

Haven [35] and Ivy [36] can be mentioned as examples of pure peer-to-peer systems.

The choice of architecture design plays the biggest role on the distributed systems

functionality. Selected architecture determines the boundaries, scalability, effectiveness

performance in specific environments and functionality such as routing, consistency and

security. While a centralized architecture is suitable to control the environment and

functions, but it may lack the scalability functionalities, peer-to-peer is more suitable to

be implemented in dynamic environments offering the ability to provide unparalleled

scalability and distributed management.

Distributed systems using peer-to-peer based architecture provide high scalability and

perform well in dynamic environment. However, the biggest concern in peer-to-peer

20

systems remains reliability of the distributed storage since user resources are not available

at all time as in the centralized datacenters which are equipped with dedicated storage

resources. In the recent years researchers have been proposing many different peer-to-peer

storage solutions and decentralized client-server system to overcome these problems and

herein we will discuss the most important ones:

• Farsite [8] is a distributed file system designed by Microsoft, which in its logic

works as a centralized server but its physical realization is spread among a network

of untrusted desktop computers. The main idea of Farsite is to integrate user`s

desktop computers resources with the company. The main achievement of Farsite

is that it provides centralized management with location transparent to provide

logically centralized, secure, and reliable file-storage service.

• pStore [37] is a peer-to-peer distributed systems that provides a secure peer-to-

peer backup system. The main focus of pStore is to allow users to securely backup

and restore their data in an untrusted peer. The backups are performed in an

incremental way giving users the possibility to restore a later version of their file.

• OpenNebula [38] is a research project used to virtualize and manage

heterogeneous datacenters. As a distributed system, OpenNebula is an open source

management tool, which is vendor neutral and can combine existing virtualization

technologies to provide automated provisioning, elasticity and multi-tenancy,

which is an architecture where a single instance of software serves multiple

clusters.

• Cassandra [15]is distributed storage systems used to manage a very large amount

of users data distributed among many servers, while providing high availability

with no single point of failure. It manages thousands of nodes spread in different

data centers and maintains high availability through multi-dimensional map

https://searchcloudprovider.techtarget.com/definition/automated-provisioning

21

indexed by key. Cassandra is implemented by Facebook for maintaining the

consistency of their users' data. The core distributed systems techniques used in

Cassandra are partitioning, replication, failure handling, scaling and membership.

Any read/write requests for a key are directed to any of the nodes in Cassandra,

and then it is the node that determines which replica is responsible for that specific

key.

• Glacier [39] is a peer-to-peer distributed storage system used to manage users

backup data. It uses a combination of replication and erasure codes to ensure high

availability and low-down storage usage. The core architecture of Glacier is

composed of three layers: primary store, aggregation layer and application layer.

The primary store layer is used to ensure efficient read and write access and to

provide short-term availability of data by masking individual node failures. The

aggregation layer aggregates small objects prior to their insertion into Glacier for

efficiency. To provide data durability, when a large aggregate has accumulated, or

a time limit is reached, Glacier erasure codes the aggregate and places the

fragments at randomly selected storage nodes throughout the system. In order to

protect data against Byzantine failures, Glacier uses application layer to renew

leases for all objects they care about once per lease period.

• PAST [40] is a peer-to-peer distributed storage systems designed to provide

immutable data build due to the fact that modified files cannot be written with the

same file as its original. The PAST system is composed of nodes that can route

users request to create or modify a file. The persistence and durability of files is

ensured by replication. Each object stored in PAST is replaced multiple times and

is geographically distributed. PAST distributed systems provide high availability

of files by obliging every block that contains replica copy of each file to send

heartbeat to a node responsible to monitor data availability and any time there is a

failure of a specific node, the system automatically restores it with all its objects.

22

PAST provides a very efficient routing scheme that makes possible that clients are

served from the closet location node increasing thought resilience of the system.

• The Bayou [41], [42] is a peer-to-peer distributed system designed at Xerox

PARC to support data sharing among mobile users. The Bayou System is a

platform of replicated, highly available and variable-consistency of mobile

databases which build collaborative applications. In Bayou architecture every

device plays the role of a client or a server. Every device that can hold an entire

copy of one or more data items is called server, and clients are called the one who

reads or writes these data items. The availability of the data is maintaining thought

replication process and each data item are replicated in many servers. Any time a

file is modified all copies of a database are converging towards the same state and

will be the final state if there are no new updates using "anti-entropy" protocol[43].

• Amazon S3 [44], [45] is one of the biggest distributed storage systems composed

by a large number of data centers nodes distributed across multiple locations,

which provides high data availability and data durability for their users. Amazon

S3 architecture is composed of two-layer namespaces: buckets and data objects.

At the top layer there are buckets which contain a unique global ID and servers for

many purposes such as allowing users to organize their data, identifying users and

their rights and preparing auditing reports. The user security is maintained through

distributed hash tables (DTH). Each bucket can store an unlimited number of data.

Each object is composed of a name, an opaque blob of data and metadata

consisting of a small set of predefined entries and up to 4KB of user-specified

name/value pairs.

2.5 Definitions

In order to be considered a good service, every system has to provide some parameters

and functionalities that meet the customer requirements. These parameters are essential

for the service provider and should not be lower than the agreed condition. The main

23

functionality related to costumer is systems availability. Even though what is seen from

costumers is availability, developers have to optimize other parameters and functionalities

such as scalability, data durability, redundancy, concurrent access and retrieval time.

In this section we provide a formal definition of all these parameters and functionalities,

which we are going to use throughout this thesis.

• Data availability:[46], [47] is the notion used to describe that costumer data are

available and accessible at a required level of performance as agreed between

service provider and costumer. The level of performance should be kept from

normal through disastrous period. Data availability in cloud storage is maintained

through redundancy including where data are stored and how they can be retrieved.

• Data Durability:[48], [49], [50] is defined as the duration of time the system is

able to provide access to its stored data, which means the ability of the systems to

maintain data available even in disaster mode. It is very important to monitor

properly and not ignore data durability during evolution process especially when

the replicas in the system are susceptible to failures of a more permanent nature.

It seems quite similar to the notion of availability but, while availability deals with

accessibility when all replicas are non-operational, durability deals with

permanent loss of the replicas.

• Data Redundancy: [51], [52] In distributed storages, data redundancy is a

condition created when the same portion of data is stored in two separate places.

The process can be understood as two different spots in multiple software

environments or platforms. Anytime we have repetitive data, the process of data

redundancy is needed. There exist two ways for performing data redundancy: in

the first way the same piece of data is replicated in multiple copies and stored in

different places. If one or more copies are lost due to storage failure, the other

copies are used. This method of data redundancy is very simple to implement but

24

requires a lot of storage. The second type of data redundancy refers to the erasure

codes technique. A positive type of data redundancy works to safeguard and

promote data, which is the technique where one file is divided in exact numbers of

pieces and each piece is stored in different locations. These pieces should be

equipped with redundant information to make possible restoration of original file

if one or more pieces get lost due to failure or storage outages.

• Concurrent Access and retrieval Time: [19], [46], [53], [54]. Concurrency is a

property of distributed systems and represents the fact that multiple events are

occurring at the same time. According to [55], each distributed system may have

several independent processes, each of them being executed on its own without

interaction with one another. In addition, these processes may perform some kind

of interaction among them. Assuming that each of the processes wishes to write

the shared data, or one wishes to read and the other to write, may result in wrong

result. To avoid wrong results, it is needed to provide mechanisms to control the

different flows of execution via coordination and synchronization, while ensuring

consistency[56].

Another aspect is related with retrieval time [57], [58], which is defined as the

elapsed time from the point at which a costumer or user requests to access his data

to the point at which the distributed storage system can reply the users request with

requested data. The retrieval time is the most important parameter that can define

distrusted system quality. Retrieval time involves all other parameters such as

availability, consistency and durability.

25

CHAPTER 3

DISTRIBUTED DATA MANAGEMENT IN CLOUD

COMPUTING

3.1 Distributed Lock Managers

In distributed storage systems, lock managers [14] are techniques which maintain file

consistency and avoid simultaneous access to the same file. Distributed lock managers run

an instance on every node and are used to provide nodes in distributed systems to

cooperate and synchronize access in shared resources. It is important that every node run

an instance of the lock manager to effectively coordinate and synchronize access in shared

data. The main functionalities provided by lock managers are to: provide mutual

exclusion, notify nodes holding a lock for specific data so that the same data is requested

by another node, return information about locks, etc. Lock management in distributed

storage systems is applied according to two main approaches: centralized lock

management and distributed lock management [59].

In centralized lock management [60] there is e single node designated to control and

manage all established transaction and locking table mode for all shared resources, acting

as a coordinator for all other nodes of the distributed systems. In addition, a unique node

maintains locking information and schedules lock management for all other nodes. All

requests for accessing shared resources are directed to that node, and then it is the node

which decides the priority and the time slots that requests have. In centralized

management, concurrent access of the shared resources is resolved, and shared resources

26

are free from errors. However, existence of a single node designated to control and manage

all transactions is a single point of failure and becomes a bottleneck for locking requests,

which is the main disadvantage of this method.

In distributed lock management every node is equipped and runs an instance of lock

manager. Lock manager instance of the node is responsible for managing and maintaining

lock status of each of the files stored. When files are replicated in multiple copies to

increase redundancy, if a request is attempting to perform a read or a write operation, all

other copies have to be exclusively locked before the files are updated. Distributed lock

management is a method that improves the availability and scalability, resolves the

bottleneck issue but increases communication overhead because each update on a file has

to be propagated in every other copy. Distributed lock management has to implement

voting algorithm [61], [14], [54] and agree on the way how they will maintain consistency

of a shared file, otherwise none of the nodes can perform update on the files.

3.2 State of art

In this section we are going to discuss the existing distributed lock managers` algorithms

and their features, and in the discussion section, we will present a comparative analysis

among existing algorithms and our algorithm. One solution for maintaining the

consistency proposed by [62] consist in an algorithm in which the maintenance of the

shared file consistency is done both locally or globally and depends on the type of the

clients request and depending to the situation of the shared file. The lock manager

algorithm consists of a local lock manager and global lock manger, which respectively

handle the information processed from its own node and information of the entire lock

space for the clustered shared lock. When any of the server nodes gets a request from a

client, it gets a new local pointer in its own lock table. If the local pointer is equal to its

own number it proceeded the request without any further information, otherwise it

27

requests another lock server from the global lock table. If the returned lock server has

failed, it requests alternative lock server from alternate cluster table. The global lock

manager is fully distributed, and it is synchronized through all servers that are part of the

same cluster.

To implement a solution which synchronizes lock management among servers in the same

cluster or among different clusters, it is required to have a reliable connectivity among

lock manager servers, used for exchanging messages between servers. To avoid network

connectivity, the solution offered by [63] implements the distributed lock algorithm in the

control plane of the cloud computing environment and from there can be accessed by

distributed applications executing on resource instances in order to maintain locks on

resources that are accessible by those distributed applications using different API calls.

The lock management can be embodied in accordance with the type of the resources that

are shared. For distributed systems that provide virtual computing services to clients, it

implements a distributed lick manager which exposes an API to users and, anytime a

component of distributed lock manager receives a request to access a shared resource, the

component of the distributed lock management performs the lock operation and

communicates with other lock components to share the lock state information through

control plane network. In some other embodies the distributed lock managers can

communicate over network for managing locks on the shared resources.

Another efficient lock manager algorithm that provides high consistency in distributed

systems called Chubby [19] has been deployed. Chubby consists of two main components

that communicate via remote procedure call protocol: a cell that is a set of servers also

called replicas, and a library that client applications link against. Client Library maintains

all the communications between client application and servers. The replicas use a

distributed consensus protocol for electing the master that is responsible for reads and

writes for the database, while replica copy database from master. After being elected, the

master periodically sent updates to the replicas for retaining the position of being master.

28

The model gives a solution to the single point of failure but still requires a lot of bandwidth

during the communication for maintaining the state of the replica servers.

In order to increase the efficiency of large-scale distributed systems, according to the

approach offered by [64], the cloud is divided in three logical levels where the upper level

stands for user interface and library and interacts with middle level. The middle layer is

composed of servers that are referred to as nodes, every node has three layers: global

index, local index and data chunks. Each node has local indexes for their own data and

global index for keeping a set of shared local indexes by each node and is unique in all

nodes. The global index is responsible for maintaining the consistency for read/write

request of the data chunks stored in the cloud

Paxos consensus algorithm [6], [65] is another algorithm used to maintain distributed lock

management in distributed system which is design in layers. The fault-tolerant replica log-

based layer sits at the bottom of the protocol stuck and is responsible for maintaining a

local copy of the log. Paxos algorithm ensures that that all replicas have the identical

sequences of entries in their local log. Another layer of Paxos algorithm is fault-tolerant

replicated database which includes a local copy of the database at each replica. At the top

layer of Paxos algorithm stand Chubby which is responsible for managing and

synchronizing the database. The basic concept of Paxos algorithm stands on the fact that

it uses consensus to choose a replica to be coordinator. The coordinator selects a value

and broadcasts it to all replicas. The replicas can accept or reject this message. Once the

majority of replicas access the message the consensus is reached, and this replica is

selected as coordinator. After being elected the coordinator is responsible for coordinating

the tasks and maintain lock management. In case that the coordinator fails, the remaining

replicas can elect again another coordinator offering high scalability and solving the

problem of partitioning.

29

3.3 3Voting Algorithm in Distributed Cloud Computing

In a distributed storage system, it is necessary to implement a set of rules and regulations

which will fairly distribute the permission rights among participants. Voting [66] is

defined as the procedure through which power is distributed among participants from the

ballot box. In distributed systems voting refers to the way nodes communicate with each

other to decide for acting or not upon a change occurred or requests made for a specific

task [67]. For example, as described in [68] voting algorithm works as follows: A client

sends a request to a voting node, the voting node informs all other voting nodes about the

request. The voting nodes perform the necessary action to the request and send a reply to

the client. The client has to wait for a minimum number of replies with the same result

from voting nodes for taking or not permission for the requested task. Another approach

where voting algorithm is used is to avoid mutual exclusion[69] in shared resources.

Mutual exclusion is a mechanism to restrict the simultaneous access in shared resources.

Based on the way implemented, voting algorithms can be static and dynamic voting

algorithms.

In static voting [70] node votes once assigned remain unchanged for all the process and

the nodes do not keep trace of the current state of the votes or of the system. In one of the

earliest static voting algorithms proposed in [71] the votes were fixed and the distributed

system has been expected to be fully synchronized with no failure node. A process has to

wait for the majority of the votes from all nodes in order to enter in critical section.

However, in static voting-based approach, if network partitioning occurs due to node

failure, the system is not able to adopt new votes without interrupting system availability.

Contrary to static voting, in dynamic voting, nodes keep track of the state of other nodes.

In case of node failures due to network partitioning, new votes are assigned to form at

least a group of active nodes and keep the system active. One of the dynamic voting

3 Part of this chapter has been published in [70] which has received the best paper award

30

approaches given in [72] provides two methods for reassigning votes after network

partitioning occurs: group consensus and autonomous reassignment method. In the former

method, the nodes of the majority group decide about resigning new votes either by

distributed algorithm or by sectioning a node coordinator who will distribute votes to

nodes. In autonomous reassignment method, each node takes its own decision for

changing or not its vote. Nonetheless, before deciding for the final state of its vote, the

node is required to take the majority of the total votes.

3.4 Data Replication and Concurrent Access Management

Data replication is a process used to maintain multiple copies of data or shared resources

and to ensure consistency among redundant resources. The smallest replicable unit is an

object. By definition, an object can vary from a field of data and a data table to a file and

copy object stored in other locations, which are called replica. The remote locations where

an object is stored are called nodes.

In distributed systems, there are different types of replication such as disk storage

replication, database replication and file replication. In database replication technique

multiple copies of the same database are created and there exists a master/slave

relationship between main database and other copies. Any update on the main database is

reflected on the other copies maintaining thought data consistency. To increase

availability and avoid single point of failure, the multiple master approach is used. In this

approach, the complexity of consistency maintenance is increased.

Storage replication is a process of replicating a block of data from a disk to another one

in a different location. File-based replication is the process of logically replicating the files

in multiple locations and maintaining synchronization among copies. Data replication is

implemented to solve main issues in distributed systems related to availability,

communication overhead, fault tolerance and scalability.

31

Two of the main problems with replication process are related with deciding Where and

When [73] to perform replication. Where refers to the decision of what replicas will be

updated and the parameter When refers to the time when to propagate updates to nodes.

The strategies for selecting these two parameters mostly depend on the type of the

connection among nodes, architecture of the system and the type of replication occurring

such as synchronous or asynchronous replication.

In synchronized replication attempts to update all replicas in a single transaction, which

means that all replicas are changed any time update synchronization happens, maintain

consistency state between replicas. The major drawback with synchronous replication is

related to fact that if one of the replicas fails, then the all transaction fails making this

method not suitable to be implemented in distributed system.

In contrast to synchronous replication, asynchronous replication is the method that relies

on optimistic consistency assumption [74] and non-optimistic consistency assumption

[75]. Optimistic consistency, also known as eventual consistency, refers to the strategy

of replication when replicas can diverge. Optimistic replication is a method implemented

under the assumption that if no new update is done to a file then all accesses to that file

will return to the last update state and replicas are synchronized only when part of the

system has been lost of a certain time. In the non-optimistic approaches, it is assumed that

conflicts will occur, and a propagation strategy needs to be implemented for preventing

update conflicts. The main disadvantage of asynchronous method is that update procedure

is not stopped due to a failed replica. The failed replica is propagated at a later time.

Another problem to properly be addressed during data replication process is concurrent

access. In single master method there are one master copy of data stored in a location with

full permission and multiple copies in another location with read permission only. In

single master method shared file consistency process is simplified since it is only master

server updated, which then spreads updates to other replicas. However, this method is

32

potential for failure due to the existence of single point of failure. In multiple master

replicas, there are several masters possessing a master copy of data with permissions to

perform updates on the shared data. Clients can issue request for accessing shared data

from each of the servers. Each time one of the copies is updated other copies need to be

updated requiring a high level of consistency level on master server to prevent concurrent

access.

We can configure replication to adopt full or partial replications which mostly differ in

the dynamics of the data in the network. In full replication, every object in master copy is

replicated in a certain number of copies and each replica has the same updated copy that

the master has. In this approach communication overhead is very high and makes it very

difficult to maintain consistency in a distributed system due to bandwidth limitations.

Another drawback is related with the space used to store each of the replication copies.

To decrease bandwidth and space usage, replication method can be optimized using partial

replication[76]. In partial replication, nodes replicate a subset of the entire data. The

principles for choosing which subset of data to replicate vary mostly according to the type

of distributed systems.

3.5 Cloud Computing Platforms

With the new developments cloud computing is finding implementation in many aspects

of our life. In the new era of smartphones, people are always online and need fast, and

easy access to their data wherever they are. Nowadays most business transactions are

carried out through online platforms. The usage of social media is a new approach of

information for most people and old traditional media resources have been adapted to this

new approach. In the recent years, lots of research has been carried out to improve cloud

computing services for satisfying the costumers’ needs. There exist different definitions

of cloud computing. John McCarthy in the 1960s was one of the first who foresaw that

33

computing facilities could be provided to common users as a utility [77]. However, the

term cloud computing was first used in 2006 by Google’s CEO Eric Schmidt to describe

the business model to provide services from internet. Since then the term cloud computing

has become very popular and is used mostly as a marketing model to describe different

business approaches and ideas. Many authors have tried to standardize the definition of

cloud computing. For example, a work presented in [78] compared more than 20

definitions carried out from different authors, trying to standardize the term cloud

computing. In this thesis, to define the term cloud computing we refer to The National

Institute of Standards and Technology (NIST) [79] which in our opinion gives the

essential characteristics of cloud computing.

• NIST definition of cloud computing Cloud computing is a model for enabling

convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or

service provider interaction.

The reason why exist different definitions of Cloud Computing is because cloud

computing is not new technology, but it is a new model to carry out the operation of

bringing together different kinds of technologies to provide a new model to do business

differently. The main technologies used by cloud computing are: Grid Computing, Utility

Computing, Virtualization, and Autonomic Computing.

• Grid Computing [80]: Grid Computing is defined as a collection of computers or

computing resources distributed among several places to reach the same objective.

The grid computing can be understood as distributed systems with high workload

that involves a large number of files. Grid Computing are forms of distributed

systems composed of various geographically distributed nodes acting as cluster

and providing a high-performance task.

34

• Utility Computing [81] is a service provisioning model used by cloud service

providers to offer computing resources and infrastructure management to their

costumers according to their needs. One of the main benefits of utility computing

is that resources to costumers are offered in accordance with their need of usage

and not in a flat way, which is a model that maximizes the efficiency of resource

usage.

Virtualization [82] Virtualization is the way to create virtual resources such as desktops,

servers, storage, operation systems or network while partitioning physical computer and

storage resources. The main advantage of Virtual resources is transforming old computing

model to prepare scalable computing resources that efficiently use hardware resources

• Autonomic Computing [83] Autonomic Computing is a self-management model

which is implemented using characteristics of the human autonomic nervous

system. Autonomic Computing is designed to make decisions for adapting to

changes and performing tasks such as Self-configuration, Self-optimization, Self-

healing and Self-protection using high-level policies. Autonomic Computing

constantly monitors and optimizes its status to automatically adapt itself in case of

condition changes.

3.6 Cloud Computing Architecture

Cloud computing is composed of two main sections: front end and back end and the two

of the more network components connected through the network. The front end is desktop

user computers and application used from users to see and interact with the cloud, while

back end is cloud systems which includes servers, storage, network and various

computers. The architecture of cloud computing is divided in layers in order to make it

simpler for developers to add new features to one of the layers without effecting

functionalities of other layers. Each layer of cloud computing architecture is strongly

attached to layers standing below and above it. The main layers and services of cloud

35

computing include Application Layer, Platform Layer, Infrastructure layer and Servers

and Storage Layer.

• Application Layer: The application also referred to as "Software as a Service

(SaaS)" layer, is the top layer providing high abstraction. It consists of cloud

applications, which are different from other traditional applications in that they

offer business applications, web services and multimedia which perform scaling

features to achieve better performance and high availability. As an example of

services offered in Application Layer we can mention Google App [84], Facebook,

YouTube, Salefroce.com, etc.

• Platform Layer "Platform as a Service (PaaS)" layer is configured on top of

infrastructure layer and is used to build operation systems and application

networks. Platform layer is used to build platforms used for user authentication,

web servers, Application software configure network access, right management,

different API, etc.

• Infrastructure Management Layer Infrastructure management layer, also

referred to as "Infrastructure as a Service (IaaS), is responsible for the

virtualization process of physical resources. They use virtualization technologies

and create virtual resources such as desktops, servers, storage, operation systems

or network while partitioning physical computer and storage resources. Main

virtualization technologies in use are s Xen [85], KVM [86] and VMware [87].

The main service provider of IaaS includes Amazon EC2 [88], GoGrid [89] and

Flexiscale [90].

• Server and Storage Layer is the lowest layer where the level of abstraction is

low and comprises physical resources which include servers, storages, switches

and communication ways among them. In server and storage layer we can

36

virtualize storages, perform monitoring, manage physical resources, and issue

different upgrades. In most of the literatures servers as a layer have not been

studied as a separate layer but have been attached to Infrastructure as a Service

Layer.

According to their usage each of the layers mentioned above is a standalone solution and

is a business model which provides services to customers. Somehow cloud layers are like

OSI model and each below layer offers services to the upper layer. It is not mandatory for

a service provider whose aim is to build Software as a Service (SaaS) to also build a

Platform as a Service (PaaS); however, they may decide to rent or buy from another

provider and can later develop their own service. Here the most important cloud platform

has been mentioned. There also exist other platforms which are subsets of these,

developed to further satisfy business needs.

Based on their characteristics cloud computing can be classified as: Public Cloud, Private

cloud, Hybrid cloud and Virtual private cloud. Public cloud is distinguishing set of cloud

services that are offered to the public. Users pay for their usage and no first investment is

required. However, when using public cloud users can have lack of weekly control over

their data, network and security.

Private cloud is clouds designed and developed by private businesses to fulfill their

business needs. They can be designed and managed by a single organization or by external

contractors. Private cloud resolves most issues related to public cloud providing high

performance, data security and high data availability.

Hybrid Cloud is a mixture of private cloud and public cloud, which try to complement

each other. Hybrid clouds try to adopt main features from both types of cloud running

infrastructure services in private in order to provide high availability and security and run

other parts in public cloud.

37

Virtual private clouds are a way to eliminate the limitations that public and private cloud

have by offering a cloud service which is developed over public cloud and providing

virtual private network service thus offering service providers the option to design and

implement their own security policies.

3.7 Cloud Storage Architecture

One of the most important layers of Cloud Computing is Storage as a Service Layer. This

is the layer that combines and manipulates physical resources to provide different services

which are later used by other layers. One of the services offered by Infrastructure layer is

storage services. On account of its importance, developers have separated and developed

it as a separate layer. Cloud storage is defined as a service model used to maintain and

manage client’s data over network. Cloud storage as a service must ensure reliability and

availability of client’s data and provide high consistency. However, users have to pay the

cloud services a monthly fee based on consumption and are not charged further operating

systems fee for building other security tools. Most of storage services implement security

policies, such as encryption and authentication in order to enhance security of their

services and to ensure their costumers the highest security measures to restrict untrusted

access to stored data of their clients.

In addition to cloud computing, there are three main cloud-based storage architecture

models: public cloud-based storage, private cloud-based storage and hybrid cloud-based

storage. Public cloud-based architecture is a storage platform that is offered to public

based on a subscription agreement to store their data. Public cloud storage stores data in

an unstructured manner and is suitable for users and businesses that cannot afford to

purchase dedicated services. In public cloud storages data are stored in big data centers

that are spread in different locations. The most important public cloud storage services

that dominate the market are Amazon Simple Storage Service (S3)[45], Google Cloud

Storage [84]and Microsoft Azure [91].

38

Private cloud storages, also called cloud storage on premises, are cloud storages developed

by different organizations which provide dedicated services. Most times private clouds

provide customized application which allows users to have more control over their data.

Normally private cloud gives their services to a secure environment and their external

access is secured by firewall and other security policies.

Hybrid cloud storage is a composition of private and public clouds which interact with

each other using interconnections managed by cloud programming technology. The

interconnection is maintained infrastructure layer by defining specific rules and policies.

Hybrid cloud storages offer flexibility and more data development options to their

customers. For example, organizations can choose to store structures and data used

actively in a private cloud and store unstructured and archival data in a public cloud. Based

on benefit offers, in recent years many organizations have adopted hybrid cloud services.

However, besides the benefits, cloud storage requires high technical implementation and

management professional expertise.

Cloud storage architecture is based on infrastructure virtualization to delivery storage in

demand and provides high scalability in a multi-tenancy way. Multi-tenancy is a single

instance server designed to serve multiple costumers. Cloud storage architecture consists

of two main components: front end and back end component. Front end component refers

to an API used to access the storage. In the traditional convention API was referred to

SCASI protocol. In the recent years new forms of front end components have been

developed. Some main front ends component examples are web service front ends, file-

based front ends, and Internet SCSI, or iSCSI protocol. The middleware layer is used to

implement and perform various tasks such as replication and data-placement algorithm

and to geographically distribute data. Finally, back end component is responsible for

implementing physical storage data.

39

3.8 Existing Platforms

• One of the biggest web-based cloud computing service platforms is Amazon Web

Services (AWS) [92]. AWS is composed of a collection of online cloud

applications to provide cloud storage, different services and functionalities. The

offered services are accessible from web using HTTP, REST and SAP protocols

and enable customers to deploy different applications and services on-demand

basis at reasonable prices. The most well-known centralized service Amazon

Elastic Compute Cloud EC2 is used by users to initiate and manage servers

instance in data centers using API or different tools and utilities. Amazon EC2 is

built on top of Infrastructure layer and is core part of AWS providing the

computing ability for costumers. Using Amazon EC2 instances, customers can

initiate and build virtual machines which can be used to run different personal

applications and after finishing each instance runs as a separate virtual machine.

EC2 stores virtual machines instances in multiple locations. Each EC2 location is

composed of Regions and Available Zones geographically distributed.

Another feature used by Amazon Web Services is Amazon Simple Storage Service

(Amazon S3) that is used to store virtual machines instance. Data in Amazon S3

are stored in form of objects. Multiple objects are then grouped in buckets. The

size of each bucket can vary from 1 byte to 5 Gigabytes of data. Object names are

sued as a path name for the virtual machine instance. Each bucket must be created

prior to being used and can be stored in one of the Regions. To enhance security

and allow customers to integrate their existing services with services deployed in

amazon cloud, Amazon has deployed Amazon Virtual Private Cloud as a secure

channel between amazon cloud and companies existing IT Infrastructure. This

feature enables customers to create virtual private network connections between

customers’ premises and cloud and integrate their services with the cloud services.

40

• Google Cloud Storage [93] is an online service which allows users to store and

access data through Google cloud platform by providing high scalability, security

and sharing features. Like Amazon S3, Google Cloud storage is as an

Infrastructure as a Service (IaaS) which allows users to use API to access their

data. To enhance security, prior to building their infrastructure users are required

to authenticate and agree with the terms of reference.

According to its design data stored in Google storage are objects names that can

vary up to 100 Terabytes. Multiple objects are grouped in buckets. Buckets are

stored in multiple locations geographically distributed. Each object is identified

within a bucket by a unique user-assigned key. The main features provided by

Google cloud storage are Interoperability, Consistency, Access Control and

Resumable Uploads.

Interoperability is a feature that provides Google cloud storage to interoperate with

other cloud storage tools and libraries. Google cloud platform provides high

consistency for every read-after-write operation in uploaded files. Google cloud

storage implements access control list to access and manage stored objects and

buckets. To eliminate upload failures due to connection interruptions, Google

cloud storage provides customers with a resumable data transfer feature to resume

upload after connection establishment in the point of the interruption without

having to start data transfer from the beginning. Design, enhanced security and

simplicity to deploy new services make Google storage nowadays preferable for

many costumers.

• Microsoft Windows Azure Storage [94] is a scalable cloud storage used

exclusively by Microsoft as a search engine. Due to the number of services and

its flexible design, in recent years WAS has become very popular with thousands

of users who have started using it to store their data and to migrate their services.

41

Cloud storages in WAS are provided in three different forms such as file or blobs,

table and queuing. To comply with user needs, windows azure storage has

deployed features that include high consistency, global and scalable namespace,

disaster recovery and multi-tenancy, and Cost of Storage.

Windows azure storage maintains strong consistency providing high availability

and partition tolerance that comes due to the implementation of a specific fault

tolerant model which divides management in different layers. Stream layer is an

append-only data model and is responsible for providing high availability in case

of network partitioning or other failures. Consistency is provided by partition layer

which is built upon stream layer. Partition layer enables the separation of nodes

responsible for consistency from nodes used for storing data. In case of network

partitioning partition layer assigns the partitioned server to partitioned servers in

available racks. It is this separation and redirection of a specific collection of faults

that allow the system to provide strong consistency and high availability in case of

failures.

Windows erasure storage ensures a single global and scalable namespace that

allows clients to configure their cloud storage in a regular manner and scale its

storage space according to its needs. They control storage namespace through

DNS. Each namespace contains three parts: an account name, a partition name and

an object name.

Disaster Recovery: Windows azure storage stores data in multiple locations and

uses the replication technique to protect client’s data against disasters failures. The

locations are chosen to be far away from each other so as to avoid being affected

in case disaster happens in a region. Multi-tenancy and Cost storage is another

feature implemented by windows azure storage which permits customers to use

the same shared storage infrastructure.

42

• OpenStack[95] is a private storage platform, deployed as a joint project

by Rackspace Hosting and NASA to provide users with facilities to design cloud

Infrastructure as Service platforms. Design architecture of OpenStack is

composed by couple modules such as user management module, file management

module, and resource management module.

User management module maintains user authentication process and login-logout

sessions. Prior to using it every user has to fill in all the necessary information to

register and after successful activation, users can insert personal information. Each

platform has its own manager that is responsible for assigning roles to users and

deleting both frozen setups and restore operations for users. This is a module that

mostly deals with users` validity to access the platform and their rights

assignments in other modules.

File management module provides options where users can upload and download,

as well as delete files and folders. Users have no restriction on the type of the file

to upload. They can upload any kind of file such as video, music, images,

documents and folders. Download option maintains validity of users to access and

download the required data. File deletion and management options are used to

allow authorized users to delete certain data as well as classify and organize data

inside the module.

3.9 Discussions

In chapter 2 and in chapter 3 we have given an overview of the main existing distributing

systems and cloud platforms and their characteristics. According to CAP theorem [96],

[97], it is impossible for a distributed system to guarantee consistency availability and

Partition tolerance at the same time.

https://en.wikipedia.org/wiki/Rackspace
https://en.wikipedia.org/wiki/NASA

43

From our discussions we have seen that developers need to decide on important

parameters to be optimized for a sustainable solution. Some solutions such as BigTable

[98], HBase [99] and MongoDB [100] are all CP systems that achieve strong consistency

and Partition tolerance (CP) by losing the ability to ensure availability. In such systems

requests are likely to fail due to node failure or other forms of failure.

Other models such as Cassandra [15], and Dynamo [21] provide a solution to maintain

high availability and Partition Tolerant (AP) by not ensuring strong consistency. These

models are solutions that use the replication technique to ensure data reliability and due

to network partition outdated replicas that may disrupt file consistency might also occur.

Consistency and availability (CA) are the most difficult to be maintained and can

apparently be achieved only if there exist no partitions of the network. Most of the systems

fail to maintain high availability with strong consistency.

To overcome these obstacles developers has been deploying two main models: centralized

storage model and distributed storage model. Both models have their strengths and

weaknesses. Existence of a single node to maintain all transactions between storage nodes

and clients raises the risk of being single point of failure and posing bottleneck problems.

This is a solution that provides strong consistency at the cost of availability. To improve

availability models, [19] provides a set of servers which act as masters and have the same

right in storage nodes. In this model one of the nodes is selected as the master and other

nodes are replica nodes. In case of master failure, one of the replicas takes up the duty of

master. The main drawbacks of these storage models are the difficulty to maintain

consistency and the network overload due to the large number of messages exchanged

among master and replicas to maintain consistency.

Distributed storage model [8], [37] gives a sustainable solution for high availability in

distributed systems; every node acts as master and in case of node failure or network

44

partitioning access to shared resources can continue from other nodes. This model

eliminates the need for a permanent master node which will perform transactions between

client requests and storage nodes. The main concern with this storage model is related to

maintaining consistency. For example, the same resource may be requested by more than

one client from different nodes, and nodes need to coordinate among each other to avoid

simultaneous access. To solve these issues developers, deploy voting algorithm, where

nodes require a majority of votes from other nodes to perform a specific task or access a

shared resource.

Another aspect to be optimized is the network partitioning problem which requires

implementation of algorithm to coordinate and reestablish priorities and duties among

remaining nodes after partitioning. Some models use static voting algorithm to maintain

consistency in such cases, while others propose dynamic voting algorithm as a proper

solution.

Cloud computing is a new kind of distributed systems development and is oriented toward

business; it tries to take and implement the best practices from each model in order to offer

the costumers a service which provides high availability, strong consistency and free from

network partitioning. From user’s side cloud computing is like client-server architecture.

There is a gateway which is used by clients to connect to cloud and perform their tasks.

In the back-end side is not seen by customers and it is composed of thousands of nodes

which collaborate to provide service to the customers. To maintain availability and

consistency on the shared resources most of the cloud’s solutions integrate the concept of

distributed model discussed here.

File consistency, availability and scalability play the biggest role in defining the quality

of a cloud computing. The model we are offering to discuss herein covers most of the

problematics that existing models had. Acting as a centralized model and inhering the

features of distributed models, our algorithm reduces the number of the messages to file

45

consistency in the shared files, which is one of the main concerns, while offering high

scalability. Our algorithm is resilient to partitioning and eliminates lock inconsistency

when simultaneous access happens, by following a strict procedure for maintaining

distributed file consistency. In our model exist only one lock manager per server and the

decisions are taken independently from other lock manger servers. There exists no master

node server, and each server has equal rights.

3.10 Methodology of Research and Further Steps

This study includes both qualitative and quantitative research methods and techniques.

Qualitative methods include observation, analysis, design and implementation of our

proposal. Quantitative methods include the analysis of data collected from different tests

held with our application.

Observation was conducted in the first phase of the study. The design of existing models,

which seems to make a clear separation between the two main categories and to have a

uniformity of the way to maintain concurrent access, particularly led to the idea the

researcher has proposed and implemented.

The literature review was grouped in two categories: theoretical studies and the ones

relevant to the present field of study. The literature reviewed played a big role in denoting

the challenges that distributed storage face and in the preparation of the proposal design.

This research has been particularly influenced by the work of Kishida, Hajime, Yamazaki,

and Haruaki [14]. Even though their study is a pure centralized architecture, it inspired us

to use all its conceptual ideas and design a fully distributed model.

Prior to starting with the design of our model, a detailed analysis of all components of the

study was performed by drawing diagrams of all possible scenarios and communication

ways between servers. We used Unified Modeling Language (UML) tool to prepare our

diagrams which will be used in the coming chapters.

46

Another aspect of the qualitative methods implemented in our study is defining

components and designing a full scheme including all components and relations among

them. In our design we denote two types of components: global components which

communicate with their respective instances located in other servers and local components

which have only local duties. The implementation of our project is done by using

programing language Java.

The last used is a quantitative method and it consists in the empirical analysis of the data

collected from different tests. We have conducted several tests with the algorithm setting

configured with different preset resources. We have collected three types of data that differ

from each other in the preset resources that we define in our algorithm.

The first type of performed tests is held with the algorithm configured to work from

centralized-based architecture to distributed-based architecture with the same fixed preset

resources. We use these data to perform a comparative analysis of the performance of both

architectures.

The second type of data are collected from tests performed in distributed based

architecture and our aim is to analyze and measure how performance of our model is

affected based on the amount of resources used.

The third type of data collected is related with one behavior of our model that has to do

with resource starvation. We performed tests by pushing one of the master nodes to enter

in starvation mode, which refers to the situation when the server has no more resources to

serve to further user requests and analyzed master server’s behavior.

The evaluation and analysis of the results of the tests were carried out by the use of

Microsoft Office Excel program. Since the tests are performed for different natures of the

47

problem the evaluation is done in separate ways. According to its implementation, our

algorithm gives detailed information about every movement and procedure executed from

the moment a request is received till the end of its execution. Since our focus was the time

added during the process of exchanging messages between master nodes to eliminate

concurrent access in shared files, we have filtered the data and then manipulated it. The

result outcomes are organized in charts, which have been presented in this thesis.

48

CHAPTER 4

ADLMCC – ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT IN CLOUD COMPUTING

4.1 Background

With regard to the algorithm that we are going to discuss, we consider a code with MDS

property and discuss the basic file operations in practical approaches. We design

conditions that will prevent both read-write and write-write from simultaneously

executing at the same file [101]. When we apply Maximum Distance Separable (MDS)

[13] code to store data files, initially each file is divided into k parts that will be called

chunks. Through the application of linear combination encoding, the k chunks will be

altered in n code chunks, where n > k. Now the n code chunks are stored at N nodes. Based

on how MDS operates, to reconstruct the whole file again, it is necessary to contact k

nodes. The maximum number of failures that can be tolerated is n - k. Each node stores a

certain number of chunks that will be referred to as α chunk and considering a cloud with

n nodes they make nα chunks in total. 4

To construct a new node which can replace failed or corrupted ones, it is necessary to

contact any d nodes and download β out of α packet from each node. The operations that

can be executed on the file are three:

1) Read, download or reconstruct the entire file - that is the case when a lot of users would

perform these requests. This is the case that requires the generation of the complete file.

4 The main contribution of this chapter appears in the papers [101], [102], [103].

49

2) Write, update - Any change in the initial file requires a change of all the corresponding

data stored in nodes. This is also a normal behavior that happens frequently when lots of

users try to perform simultaneous write requests, which brings the update of the

information stored in the nodes.

3) Node Repair, which happens when any node fails or gets corrupted. In this case, it is

required to generate a new similar node. To do so, connection to d different nodes and

download of β packets from each of them is necessary.

In our proposed model, a request for a file can be received from each of the servers that

are part of the cloud Computing. According to the situation of files, the lock manager of

the server can directly execute the request without interacting with other lock managers

or must require collaborating with other lock managers for maintaining the consistency of

the file.

When one of the servers, part of the cloud computing receives any requests from end-

users, it immediately initiates the procedure to acquire the right to access the file. The user

requests can be categorized into the following scenarios. Everything happens in a smooth

way and requests coming from different servers do not interfere with each other. In a real-

world, there will continuously be two or more requests from the same server and from

different servers that will make simultaneous requests. Most of the time, these

simultaneous requests might result in some problems. It will result in file inconsistency

when a request is reading from a file and a write operation tries to write it at the same

time.

A solution to the inconsistency of the file is to put incoming write operation in queue and

to wait until read operation is completed. Following this approach, in case that another

read request comes, it will also be placed in the waiting queue after write operation. This

will create a lot of polling which is a waste of resources since two reads can occur at the

same time. In real world, there will be many requests trying to read or write many nodes

50

and in case these requests are not properly controlled and managed, the entire network

might get congested and would take a lot of time to process users’ requests.

Based on what was discussed above, the models offered are built upon the master slave

model where there is a master to whom all requests are designated, and it distributes the

load among other slaves. Another approach is to have a set of masters who collaborate by

choosing one of the servers as the master and the other servers act as replica for that. For

any failure that can happen to the master there is one of the replicas that will be elected as

master. Based on these models there will be a continuous need to have communication

and periodic updates for maintaining the state and consistency of the files in the cloud.

In the next section we describe the proposed algorithm for distributed lock management

in cloud computing and its features. Prior to that, we define some expulsion situation that

is taken for granted in all our analyses. The main concern is to define an approach which

will reduce the number of inconsistencies and give the result of the request within the least

possible time. There are six possibilities for simultaneous request cases. Despite the total

number of simultaneous requests, they will be composed of two pairs of requests only:

Write-write, read-write, write-repair, read-read, read-repair, repair-repair

According to the type of operation request by the user, requests that can be simultaneously

executed in a certain file are:

• read-read - Yes. Two simultaneous reads can happen without a problem as they do

not create inconsistency.

• read-write - No. Since write operation updates the file, it will lead to inconsistency

in read operation.

• read-repair – Yes. According to the fact that repair is another kind of a read

operation.

• write-write- No. Simultaneous writes will create inconsistency. Both will try to

simultaneously update the file giving incorrect results in the end.

51

• write-repair- No. This is same as read-write case.

• repair-repair- Yes. This is same as read-read case

Figure 1. Cloud Computing Architecture

For maintaining the consistency of the file, a unique lock-bit of one bit is denoted in every

chunk stored in the distributed nodes. Lock-bit is a one-bit value describing the lock

applied to a specific chunk, read lock or write lock. Lock bit 0 is representing the case

when no lock is applied to the chunk.

As described in Fig. 1, our diagram has three components: users that use the cloud and

deliver read/write requests to servers, servers that implement a solution based on the type

52

of request and nodes that store the chunks that are shared with every server. All servers

have the same privileges on nodes. Whenever a server gets any request for accessing any

of the files, it firstly follows the procedure described in section 4 to gain the authority to

read/write to a proper file and after that, it contacts the nodes for executing that request.

4.2 Asymmetric Distributed Lock Management in Cloud Computing

4.2.1 ADLMCC Architecture

Asymmetric distributed lock management in cloud computing [102] is accountable for

preventing data inconsistency when concurrent access for specific files stored on nodes

happens. File concurrency can occur with requests issued to one of the servers as well as

between requests issued form different servers.

The lock manager of one server collaborates with lock managers of other servers to control

concurrent access on files. This process is done by using inter-process communication

among them. For this reason, several lock statuses are kept in their internal lock control

tables.

The lock manager runs as an individual process on every server and cooperates with other

lock managers only for maintaining the inconsistency of the shared files. The purpose of

the lock manager is to coordinate the work of servers in order to maintain concurrent file

access when clients issue lock requests for files saved in the end nodes storages. Our aim

is to control read and write lock consistency in the shared files. Only one lock manager is

accountable for a file at a time across the cloud.

In the structure of the lock manager there is a database composed of six important key

factors that maintain concurrency control in the self-management of shared files and in

the condition where communication happens between servers in the cloud. The six key

factors in the structure of ADLMCC are: Server Node Table (SNT), File Directory (FD),

53

Requesting Lock Table (RLT), Migrate-out Table (Mout-T), Migrate-in Table (Min-T),

and Locked File List (LFL).

The structure of ADLMCC is essential for guaranteeing file consistency across the cloud.

Each lock manager maintains and updates two different sets of data structures: one is

maintained locally and is not propagated to any of the other servers and the other is fully

distributed among other servers.

Server Node Table (SNT) is responsible for memorizing the configurations of all servers

in the cloud. The information memorized in SNT is servers ID, Servers status and

switchover server used in the case of main server failures. According to the sensitivity of

the data, switchover server can be one server, or we may decide to have more than one

switchover. SNT table is fully synchronized among all other servers (Fig. 2).

SERVER_NODE_TABLE is a list of ServerNodeInfo

Class ServerNodeInfo consists of:

 serverId

 serverStatus

 switchOverServer

Figure 2. Server Node Table Pseudocode

File Directory (FD) is the directory which determines the path of each stored file in nodes

and it is also the server that has created the file and has its ownership. We agree that FD

is a data structure with pairs of file names and server numbers and is fully synchronized

in the cloud. File creation is related with the server from where the client initially created

or uploaded it. When a file is added in the system, the owner server propagates its path to

every other server and makes it known by everyone (Fig. 3).

54

FILE_DIRECTORY is a map, mapping all filePaths to their Server

// Insert a record for a new file and its owner server

function insertNewFile(filePath, ownerServer)

 input: filePath is the path of the file searching for

 ownerServer is the owner server of the new file

 FILE_DIRECTORY  new (filePath, ownerServer)

// Find the owner server of a file

function findFileOwner (filePath)

 input: filePath is the path of the file searching for

return FILE_DIRECTORY.get(filePath);

Figure 3. File Directory Pseudocode

Migrate-in Table (Min-T) and Migrate-out Table (Mout-T) respectively maintain

information about achieved permission for accessing specific files from another server

and the list of files that their lock has migrated to other servers.

In Migrate-in Table (Min-T) is stored information about every file to which the server has

requested access and has successfully taken it. Migrate-out Table (Mout-T) is used to keep

track of all files which the server is the owner of and access to which has been granted to

another server. Information in Migrate-in Table (Min-T) and Migrate-out Table (Mout-T)

is locally maintained and is specific for each server (Fig. 4).

55

MIGRATE_IN_TABLE is a map, mapping all file paths to the migrate-in Server

MIGRATE_OUT_TABLE is a map, mapping all file paths to the migrate-out-Server

functionremoveServerFromMiT(filePath)

 input: filePath is the path of the file requested

If (LockManager.MIGRATE_IN_TABLE contains filePath) then

 LockManager.MIGRATE_IN_TABLE removefilePath;

functionremoveServerFromMoT(filePath)

 input: filePath is the path of the file requested

If (LockManager.MIGRATE_OUT_TABLE contains filePath) then

 LockManager.MIGRATE_OUT_TABLE remove filePath;

Figure 4. Migrate Out and Migrate In Table Pseudocode

Request Lock Table (RLT) stores the list of all locks requested by one of the servers. The

information kept in RLT consists of user requester ID, file name requested, lock mode and

timestamp. The table is maintained locally and works for managing locks locally in the

server. Each server has its own RLT table maintained locally, which manages contents

and differs from the other servers (Fig. 5).

REQUEST_LOCK_TABLE is a list of LOCK_REQUEST of a SERVER

Class LOCK_REQUEST consists of:

 requesterId

lockMode

 requestedFile

startTimestamp

grantedTimestamp

finishTimestamp

Figure 5. Request Lock Table Pseudocode

56

LFL contains all the necessary information about locks that a specific lock manager is

managing and is responsible for. The set of attributes of LFL contains sets of requester’s

ID, requester server, file name, lock mode and a timestamp, and two lists for queuing lock

requests: one for granted and the other for blocked locks (Fig.6).

LOCK_FILE_LIST is a list of LOCK_FILE_INFO

Class LOCK_FILE_INFO consists of:

 requesterId

 requestedFile

 lockMode

 timestamp

Queue of Granted_Locks

Queue of Blocked_Locks

Figure 6. Lock File List Pseudocode

4.2.2 Lock Manager Algorithm

Lock managers are independent algorithms running on cloud with one manager per server.

They run independently of each other and collaborate with one another for maintaining

the consistency of the files in the cloud. In cloud there will be many client requests issued

to different servers, asking for granting simultaneous access to the same file. These

requests perform concurrent accesses to files and necessitate the intervention of the lock

managers of servers to properly maintain the inconsistency of files. The lock manager

maintains locally the consistency in files and only in case of necessity do lock managers

cooperate with others for the lock acquitting to perform lock request operations. Figure 2

shows the example of three servers that communicate with each other for maintaining the

concurrent access to the files stored under distributed storage nodes.

57

Figure 7. ADLMCC Architecture

The architecture of ADLMCC has three main components: users which deliver requests

for accessing different files, servers which serve as interface for users and maintain

concurrent access to the shared files, and storage nodes or simply nodes that store data

files. Lock manager runs in every server and each server contains all the 6 key factors that

are essential for maintaining the file inconsistency. To simplify our design, in every server

we have designed only the key factors that are used for this specific example. We refer to

the server that receives the request as lock manager initiator server. As lock manager

owner server, we refer to the server which created the file for the first time and which will

be the owner of that file for all the period of time that this file will exist. The ownership

of the file remains unchanged even when the file is being modified by requests delivered

to servers, but which are not delivered to the lock manager owner server. The permissions

of the specific file, which is requested from lock manager initiator server, might have been

58

granted to another server and now the request has to be migrated to that server, which we

will refer to as lock manager execution server. According to the state of the file requested

and its attributes, lock management algorithm will follow the sequence from one to four

procedures to archive the lock to a file and respond to the client as described in Fig. 2.

The sequence from one to four procedures is as following:

• Self-management of shared locks in servers

• Finding a lock manager

• Checking a request migration

• Lock acquisition

4.2.3 Self-Management of Shared Locks in Servers

End-users deliver a request to one of the servers for accessing a specific file stored in the

distributed storage nodes. After receiving the request, the server lock manager controls in

case the file name requested has been requested by any earlier request already existing in

RLT table. If any earlier request for that file is found in its RLT table, the lock manager

inserts the request in the table of RLT associating it with the requester ID and its related

operations for the requested file. The next step is to add the request to the LFL table for

further procedures. After receiving the request, LFL starts checking the lock type already

applied to the file for acquiring the right for read or write the file in the request. In case

the file name is not found in any of the existing requests in RLT, the lock manager does

not yet possess the necessary information about the state of the file and checks in FD to

find the owner of the file and if he is the owner, he controls in Mout-T whether it has

already given permission for executing the file.

After ensuring that the file is not found in Mout-T, the lock manager has sufficient

information for the lock status on the file and adds the file for execution; otherwise the

file is found in Mout-T. After getting the server, which is executing the file from Mout-T,

59

the lock manager transfers the file for execution to that server and removes the file from

its RLT.

Considering this scenario, when the initiator server is the owner of that specific file and

the request either is found in RLT or is not inserted in Mout-T, the request is set to LFL

table for execution. LFL receives the request and communicates with nodes to know the

availability of the chunk stored among them. Each request issued from the server to the

nodes has a unique request Id. Nodes will be available if there is no lock on them, and if

there is a lock, then the availability will depend on the type of the lock. If nodes are

available for a certain request, they will supply their adequate information to the server

[53].

The information that they will provide consists of their lock status, node number and

request Id. The server collects the information and checks in the lock table if that node

can be granted that lock. If it can be granted, it updates its lock table with the

corresponding lock as in the end user request id, and then updates lock bit on the node. It

would not be necessary to update lock bit of the nodes whose request lock is the same as

the recent lock because these requests will be read-read, read-repair or repair-repair and

all these have the same vote bit [53].

The request is managed locally by the lock manager server, and no further communication

among other lock manager servers is required. The activity diagram is explained in Fig. 9

and pseudo code is given in Fig.8. In case that the file name is not found in any of the

earlier requests existing in RLT table and the server is not the owner, it is necessary to

initially acquire execution right for the file by cooperating with the lock manager owner

and other lock managers as described in section 4.2.4.

60

function manageLock (file, LockManagerServer, request)

input: file is the file which gets a request to be accessed

 LockManagerServer is the server which starts the request to access the file

 request is the started request

If (LockManagerServer is Owner) then

 Check RLT

 If (Owner is accessing the file) then

 LFL.Queue  request;

 request.execute();

 Else

 Check in M-out T

 If (permission is granted) then

 RemoteServer  the server found in M-out T;

 Move request to RemoteServer;

 RemoteLockManager.Queue  request;

 request.execute();

 Return permission right to the Owner Server;

 Else

 request.execute();

Figure 8. Self-Management of Shared Locks in Server’s Pseudo Code

61

Figure 9. Self-Management of Shared Locks in Servers Activity Diagram

4.2.4 Finding a Lock Manager

Following the explanation in section 4.2.1 lock manager is not able to decide itself for

executing the file as requested in client request and requires additional information from

other servers. The first process after controlling in RLT and Mout-T table is to find in FD

62

table the lock manager server responsible for the file. After finding lock manager

responsible for the file, lock manager server checks on its SNT table to discover the owner

server and ensures it is alive and still in the cloud. If the Server exists alive in the Cloud,

the lock manager on that server will be taken as responsible for the file. If not, the

switchover Server in the table of SNT is engaged as the alternative node for the lock

management. The lock manager at the lock initiator server sends a lock request message

to the lock manager on the node found in the process above [53].

Figure 10. Initiator Server Gets Execution Permissions from Owner Server Activity

Diagram

63

function manageLock (file, LockManagerServer, request)

input: file is the file which gets a request to be accessed

 LockManagerServer is the server which starts the request to access the file

 request is the started request

If (LockManagerServer is Owner) then

 …

Else

 Check if file is being accessed.

 If (file is accessed) then

 …

 Else

 request.execute();

Figure 11. Initiator Server Gets Execution Permissions from Owner Server Pseudo

Code

4.2.5 Checking Request Migration

The lock manager which receives a lock request message from the lock request initiator

server is responsible for managing the lock on the file [53]. The manager checks in the

table of RLT and on Mout-T if any lock is applied to the file or the lock management is

migrated to a lock manager on another Server. In case the name of the file is not found in

RLT, or in M-out T, the responsible server places the file in Mout-T and the lock

management is migrated to the server initiator. Server initiator grants lock management

for the file, as described in the relation diagram of Fig. 10, while the pseudo code is given

in Fig 11.

64

In case the file name in the request is found in the RLT of the owner server, it means that

the server has locked the file. The responsible server informs the server initiator and the

request is migrated from the server initiator to the owner server and is processed from

there. This activity is explained in detail in Fig. 12 and pseudo code is described in Fig

13.

Figure 12. Initiator Server Migrates Execution Permissions to Owner Server Activity

Diagram

In case the name of the file in the request is found on Mout-T, the owner server replies to

the initiator with the ID of the server that has granted access to that file and the initiator

server with the information taken from the owner migrates the request to that server and

the request is progressed from that specific server. By doing so now it is the remote server

who will reply to the request and the server initiator removes the request from its queue

65

and is ready to process another request. The initiator server does not keep any track of that

request and does not get any feedback regarding its execution. Fig. 14 and Fig. 15 illustrate

the pseudo code and the activity diagram that graphically explains this specific situation.

function manageLock (file, LockManagerServer, request)

input: file is the file which gets a request to be accessed

 LockManagerServer is the server which starts the request to access the file

 request is the started request

If (LockManagerServer is Owner) then

Else

 Check if file is being accessed.

 If (file is accessed) then

 If (OwnerServer is accessing the file) then

 Move request to owner server;

 OwnerLockManager.Queue  request;

 request.execute();

 Else

Figure 13. Initiator Server Migrates Execution Permissions to Owner Server

Pseudocode

4.2.6 Lock Acquisition

The lock manager receives the request and updates its RLT. It also updates the LFL Table

with the filename and its attributes as well as informs the server initiator that the request

is added to the list for execution. Now it is the remote server who will reply to the request

and the server initiator removes the request from its queue and is ready for processing

another request. The initiator server does not keep any track of that request and does not

receive any feedback whether the execution has been carried out or not. The initiator

server removes the request from its RLT table. After the migration of the request from the

66

server initiator, the server starts sending votes to nodes for r/w/rep the file in the request.

There are two lists in LFL, which are the timeout time t_0 and a request queue. The request

queue distributes the incoming requests in two slots, where all the requests of one slot are

handled together and every request has its own priority.

function manageLock (file, LockManagerServer, request)

input: file is the file which gets a request to be accessed

 LockManagerServer is the server which starts the request to access the file

 request is the started request

If (LockManagerServer is Owner) then

 …

Else

 Check ownership of file

 Check if file is being accessed

 If (file is accessed) then

 If (OwnerServer is accessing the file) then

 …

 Else

 Get RemoteServer which is accessing the file, from

OwnerServer;

 Move request to RemoteServer;

 RemoteServerLockManager.Queue  request;

 request.execute();

 return persmissions to OwnerServer.

 Else

Figure 14. Initiator Server Migrates Execution Permissions to Remote Server Pseudo

Code

67

Figure 15. Initiator Server Migrates Execution Permissions to A Remote Server Activity

Diagram

68

4.3 Resource Starvation in Asymmetric Distributed Lock Management

in Cloud Computing

4.3.1 Checking a Request Migration

As explained in Section 4.2.5, in case the owner lock manager realizes that the request is

found either in its RLT or in Mout-T, initiator server can no longer grant the right for

accessing the file. In this point it has to collaborate for migrating the request execution to

the owner or a third lock manager.

There exist two possibilities for the file: either the file is under execution from the owner

or its right permissions have been migrated to a third server. Referring to the diagram in

Fig. 16 and pseudo code in Fig. 17, N lock managers have the right to request the execution

permission of a file but only the one who requested first will be granted it in a moment of

time.

Assuming that the file is under owner execution, any time that one of the lock managers

will request to execute the file needs to migrate the request for execution to the owner.

This can happen perpetually, and the owner lock manager will get exhausted without any

resource for serving later coming requests. In the literature of cloud computing this is

called resource starvation and requires developer’s attention for finding an appropriate

equilibrium to supply users with the agreed service performance.

Coming back to our algorithm, to provide the required availability we define a parameter

called Resources Starvation [103], which is responsible for obtaining cloud services

running. When the requests in queue reach a certain number that is equal to starvation

number, owner lock manager discards all requests and resets file permissions. In this mode

all the requests need to be reinitiated for getting the permission of the file.

69

Figure 16. Initiator Server Migrates Execution Permissions to Owner Server Activity

Diagram

70

function manageLock (file, LM1, request)

input: file is the file which gets a request to be accessed

 LM1 lock manager which receives a request to execute a file

 request is the started request

If (LockManagerServer is Owner) then

 …

Else

 Check ownership of file

 Check if file is being accessed

 If (file is accessed) then

 If (OwnerServer is accessing the file) then

 Move request from LM1 to OwnerServer;

 If (Nr of Requests > Starvation) then

 Discard all requests;

 Else

 Queue  request;

 request.execute();

 Reset file permissions to initial state;

 Else

 …

 Else

Figure 17. Initiator Server Migrates Execution Permissions to Owner Server Pseudo

Code

71

4.3.2 Lock acquisition

For the same explanations provided in Section 4.3.1, when the file in the request is found

in Mout-T of the owner and, when a new request has been delivered from any of the other

servers, it should be migrated to the remote server which has already granted permission

from the owner.

As shown in Fig. 18 and Fig. 19, there will be consistent requests from N-2 lock managers

plus owner requesting to execute file. Within this state, we will have two main aspects

that will affect the cloud service: one is the delay for one request to be migrated from the

initiator to the executor server and the other is resource starvation happing by the same

logic as described before. The new state of the system is illustrated in Fig. 18 and the

pseudo code is given in Fig. 19.

Following the same assumption in every lock manager, we denote the starvation parameter

and any time that the number of requests is equal to the starvation parameter all the

requests in queue, beside the one that is under execution, will be dropped.

After finishing the execution of the last requests, the file permissions are reset to default,

and the ownership of the file is given back to the owner. The rest of the functionalities of

the lock manager remain unchanged.

72

Figure 18. Initiator Server Migrates Execution Permissions to Remote Server Activity

Diagram

73

function manageLock (file, LM1, request)

input: file is the file which gets a request to be accessed

 LM1 lock manager which receives a request to execute a file

 request is the started request

If (LockManagerServer is Owner) then

 …

Else

 Check ownership of file

 Check if file is being accessed

 If (file is accessed) then

 If (OwnerServer is accessing the file) then

 Move request from LM1 to OwnerServer;

 If (Nr of Requests > Starvation) then

 Discard all requests;

 Else

 Queue  request;

 request.execute();

 Reset file permissions to initial state;

 Else

 …

 Else

Figure 19. Initiator server migrates execution permissions to remote server pseudo code

74

CHAPTER 5

IMPLEMENTATION OF LOCK MANAGER ALGORITHM

5.1 Introduction

In Chapter 4 we explained in detail the design and functionality of the lock manager

algorithm that we have proposed as a solution to maintain concurrent access in cloud

storages. In this chapter we are going to explain its implementation in real environment

and the way we collected data through different tests we have performed. The simulator

is implemented in programming language Java with a simple graphical user interface

which provides functions and facilities to build different cluster infrastructure and

populate cluster nodes with shared files.

The algorithm code is composed by several entities. Every entity plays an important role

for creating and maintaining the functionalities of our algorithm. From Fig. 20 we can see

the main entities divided in different classes and, their attributes and operations. One of

the entities of our algorithm is Lock Manager class which is responsible for maintaining

the components of our cluster, such as file directory, server nodes, locked file list, server

status, find owner server of a file etc. In the class Server are configured the main attributes

related with server list maintenance such as server Id, Alive status and the mode for issuing

requests to nodes. In factory class are included all the attributes and operations for creating

the clients, servers, files, storage nodes, and clients. The file node class is responsible for

maintaining information about storage nodes. Request Lock class is important for our

algorithm because it maintains the information about the mode of lock in files.

75

Figure 20. Class Diagram

76

The front-end section is composed of different modules and each module provides a

different function. From the Fig. 21 we can denote the module of cluster directory. Cluster

directory module provides functions to create cluster entities such as storage nodes, shared

files, client’s variables, and master servers. Cluster directory module implements features

to empty directory and builds the other entities with a different composition. Values of

each entity can be selected according to developer needs and there exist no boundaries to

limit cluster size.

Figure 21. Lock Manager Graphical Interface

77

Issue request module provides functions and facilities used by clients to interact with

master servers and issues request to access shared files stored under storage nodes. The

main function provided by this module is related with the way to interact with master

nodes that can happen in random mode, predefined scenarios and ad-hoc mode that gives

the option to predefine the way followed by requests and which file to access.

Select info types to be displayed is another module that provides function and facilities to

filter logs that the server will collect while running the process. This is an essential module

because it keeps track of every process running and provides detailed data which we are

going to analyze in order to measure the performance of our algorithm.

Figure 22. Cluster Directory Module

The first procedure that needs to be done is to select the path where the nodes are created

and to define the number of files per each node. The algorithm is designed to give us the

78

possibility to use predefined values; or, we can also choose the number of servers, nodes,

files per node and the number of users that deliver requests for accessing files stored in

nodes.

5.1.1 Building Lock Manager Algorithm Infrastructure

The example shown in Fig. 22 refers to Cluster directory module. We have chosen to build

an infrastructure with 10 servers, 10 nodes and 300 files stored in all nodes. There are 50

virtual users that we have named as clients, who will deliver requests for accessing the

files that are stored in shared nodes.

Figure 23. Cluster Directory Module Sequence Diagram

79

The algorithm design gives the option to define a parameter which represents the number

of requests sent by virtual users that will request to write/read one of the shared files. In

this example we have chosen to run one of the predefined values. For easy convention we

have named the cluster as test. The sequence of steps performed by cluster directory

module for creating the cluster is described in Fig. 23.

5.1.2 Request Delivery Mode

Once the infrastructure is built we can deliver requests to perform read/write operations

in the stored files. When one of the files is read/ write, we insert a stick that describes the

type of the operation performed in it, the time when the operation happened and how much

time it took to accomplish the operation. The request can be delivered in different numbers

and different modes. Through modes we understand the way how the request is delivered

and whether these requests are delivered in a chosen order or all requests are delivered

randomly. For the sake of analysis, we have implemented both modes, random and ad-

hoc mode.

Figure 24. Random Issuing Request Module

80

In the ad-hoc mode (Fig. 25), it is us who decided the number of requests, which server

was to act as initiator, which file was to be requested and what the operation performed

would be. We decided that it was a write or read operation, or we left operations to be

randomly decided by algorithm. Meanwhile, in random mode (Fig. 22) we have no control

over the type of requests delivered. The type of requests and files are chosen automatically

by the algorithm itself.

Figure 25. Ad-Hoc Request Module

Providing different modes to clients for issuing requests to servers has also different

approaching of coding. From the moment the request has been issued until its fulfilment,

the algorithm follows a strict sequence of steps. The first step implies the sequence of

request creation described in Fig. 26. The total number of requests is controlled by a loop

which continues to execute for all the time the condition is true.

81

The way of delivering request to servers changes the sequence of steps followed by the

program to perform, for the mode random the sequence of steps is presented in Fig. 27.

Figure 26. Request Creation Sequence Diagram

Figure 27. Random Mode Delivery Request Sequence Diagram

82

For the mode, where the user would like to specify the type of the client who will deliver

the request, the operation type, the server to where the request will be delivered, and which

file is required are embodied in Ad-Hoc mode, which is described in Fig. 28.

Figure 28. Specific Request Deliver Sequence Diagram

Finally, the algorithm provides some basic scenarios which can be used to perform

specific tasks according to some predefined tests. The sequence of steps followed to

perform this process is given in Fig. 29. To simplify the design, in the sequence diagram

we have listed all steps followed by one single request. The sequence for the other request

is a repetition of the same steps.

83

Figure 29. Scenario Mode Delivery Request Sequence Diagram

Once delivered, every request has its own specifics that can be similar to some other

request. There exist cases where multiple clients request the same file and wish to perform

the same operation. In some other cases multiple clients request the same file and wish to

perform different operations. These are cases which our algorithm addresses and it

eliminates the implication of different operations in the same file when concurrent access

occurs. The steps followed to maintain file consistency are described in Fig. 30.

84

Figure 30. Lock Management Sequence Diagram

85

5.1.3 Data collected

Another aspect of the design is the information collected and its manipulation. The

algorithm gives information for all internal procedures running to achieve the action of

the client request. Once the execution of all requests is finished, we are able to export the

logs in Excel format or in text file and from there we can analyze and prepare reports on

the entire execution processes.

In table 1, we introduce a detailed data description collected in lock manager algorithm,

describing each procedure starting from the moment the request was created until it was

successfully completed. For each step, algorithm inserts a timestamp referring to the

moment the procedure was initiated.

The logs exported in Excel format contain a detailed report of a number of parameters

such as Request Id, Operation mode, whether permission is already granted for that file,

Initiator Server same as Owner, Client Requesting, Requested File, Initiator Server,

Owner Server, Executer Server, Started Timestamp, Granted Timestamp, Finished

Timestamp and Execution Time.

ID Info Type \ Example

01 Request created

[01:10:27:887] [01] Req1: Request Created = RequestLock [Request

ID=Req1, Client Requesting ID=2, Lock Mode=Write, Requested

File=file3.txt, Start Timestamp=01:10:27:887, Initial Server=Server[3]]

02 Request thread started

[20:48:30:365] [02] Req2: Request started in thread 19

03 Request passed to initial server

[20:48:30:365] [03] Req2: Passed to initial Server[3]

04 Checking if request exists in RLT of initial server

[20:48:30:365] [04] Req2: Checking if exists in RLT of initial Server[3]

05 Request exists in RLT of initial server

86

06 Adding Request in RLT of initial server

07 Adding Request in LFL

 [01:10:27:945] [07] Req2: ADDING this request in LFL

08 Request doesn’t exist in RLT of initial server

[20:48:30:365] [08] Req2: This request DOESN'T EXISTS in RLT of

initial Server[3]

09 Searching the requested path in FD

[20:48:30:365] [09] Req1: Searching the requested path

'C:\Users\U000000\Google

Drive\DistributedLocking\Cluster\Node2\file2.txt' in FD

10 Found owner server in FD

[20:48:30:365] [10] Req2: Found owner Server in FD, Server[2]

11 Owner server is down

12 Getting switchover server in SNT

13 Owner server is the same as initial server

[20:48:30:365] [13] Req1: Found owner Server[2] is the same as initial

Server[2]

14 Adding Request in RLT of initial server which is the same as the owner

server

[20:48:30:365] [14] Req1: ADDING this request in RLT of initial/owner

Server[2]

15 Owner server is not the same as the initial server

[20:48:30:365] [15] Req2: Found owner Server[2] is NOT the same as

initial Server[3]

16 Request is not in the MiT of initial server, adding it

[20:48:30:365] [16] Req2: Request is not in MiT of initial Server[3],

ADDING it

17 Request is already in the MiT of initial server

[20:48:30:365] [17] Req2: Request is not in MoT of owner Server[2],

ADDING it

18 Request is not in the MoT of owner server, adding it

19 Request is already in the MoT of owner server

87

20 Adding Request in the RLT of owner server

21 Checking lock bit of request file

[20:48:30:365] [21] Req1: Checking BitLock if permission for requested

file can be granted...

22 Printing lock bit: Requested File has lock bit 0

[20:48:30:365] [22] Req1: Requested file has BitLock = 0

23 Printing Lock Mode: Lock Mode is Read

[20:48:30:365] [23] Req2: Requested LockMode is READ

24 Request added in Blocked List

[23:13:23:725] [24] Req1: Added in Blocked List

25 Request added in Granted Queue

[20:48:30:365] [25] Req1: Added in Granted Queue

26 File read successfully

[20:48:30:365] [26] Req1: File READ successfully!

27 File written successfully

[20:48:30:365] [27] Req2: File WRITTEN successfully!

28 Request finished

[20:49:46:224] [28] Req3: FINISHED! - RequestLock [Request ID=Req3,

Client Requesting ID=2, Lock Mode=Write, Requested File=file1.txt, Start

Timestamp=20:49:46:117, Granted Timestamp=20:49:46:195, Finish

Timestamp=20:49:46:224, Initial Server=Server[1], Owner

Server=Server[3]]

29 Printing all three timestamps of a finished Request

[20:48:30:365] [29] Req1: TIMESTAMPS: Start=20:48:30:337,

Granted=20:48:30:346, Finished=20:48:30:364

30 Printing the execution time in milliseconds of a finished Request

[20:48:30:365] [30] Req1: Execution time = 18 milliseconds

31 Printing lock bit: Requested File has lock bit 1

[20:48:30:365] [22] Req1: Requested file has BitLock = 1

32 Printing lock bit: Requested File has lock bit 2

[20:48:30:365] [22] Req1: Requested file has BitLock = 2

33 Printing Lock Mode: Lock Mode is Write

[20:48:30:365] [23] Req2: Requested LockMode is WRITE

34 Request removed from Granted List

[23:13:23:766] [34] Req2: Request removed from Granted List

88

35 Granted Lock List is empty, releasing Blocked Requests from Blocked

Locks Queue

[22:54:48:315] [35] Req3: Granted Lock List for File file1.txt is empty,

releasing Blocked Requests

36 No Blocked Request to release

[22:54:48:315] [36] Req3: Releasing Blocked Requests - there are no

Blocked requests for File file1.txt

37 Releasing all blocked READ requests up to a WRITE request

[22:54:48:290] [37] Req1: Releasing Blocked Requests - the first Blocked

request is READ mode. Getting all Blocked READ requests up to a

WRITE request

38 Releasing a Blocked Request

[22:54:48:290] [38] Req1: Releasing Blocked Request - releasing Req2,

Read mode

39 Releasing the first Blocked WRITE Request

[23:04:49:440] [39] Req1: Releasing Blocked Request - releasing the first

WRITE request: Req2

40 Migrating request

[14:44:58:796] [40] Req2: Owner Server[5] has granted rights to this

server, Initial Server[1]. Continuing execution with Final Executor

Server[1]

41 Request is dropped due to starvation

[23:08:53:615] [41] Req102: Request is dropped due to starvation; 100

requests are waiting for permissions for file file1.txt

42 Lock Bit Reset due to starvation

[23:08:53:619] [42] Lock Bit of file file1.txt is set to 0 due to starvation

43 Request is granted access after starvation, as the first blocked request

[23:08:53:621] [43] Req7: Request is started after starvation of file file1.txt

Table 1. List of Processes Performed for Fulfilling Execution of A Single Request

5.1.4 Filtering information

Select Info Types to be displayed section (Fig. 31) is used for filtering the kind of the

information to be collected during the execution process. The asymmetry of the algorithm

relies on the fact that requests are executed into two different ways. In the first way

89

requests are executed by the local server without collaborating with other servers, part of

the cloud; the second way refers to the approach when it is obligatory for the server to

receive information about the status of a specific file. Besides servers involved in request

execution process, no other servers have clues about the status of a specific request or of

a lock applied to a specific file. In this approach the requisite for a master to maintain the

overall consistency and load balancing is eliminated.

.

Figure 31. Information Selection Module

90

In Table 2 we provide an example of data exported in Excel format. This example refers

to the case where lock manager 7 requests lock manager server 10 to grant permission for

a file named file34. After verifying status of the requested file lock manager server 10 has

concluded that the file named file34 is free from lock and has granted execution

permission to lock manager server 7.

Client Req. File

Initial

Server

Owner

Server

Executor

Server

Started

Timestamp

Granted

Timestamp

Finished

Timestamp

Exec

Time

Time

until

Granted

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:269 09:43:33:194 09:43:33:519 1250 925

Client[1] file34.txt Server[7] Server[10]

Not

migrated 09:43:32:270 09:43:32:279 09:43:32:438 168 9

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:270 09:43:33:052 09:43:33:551 1281 782

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:272 09:43:33:072 09:43:33:547 1275 800

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:273 09:43:33:099 09:43:33:540 1267 826

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:275 09:43:32:409 09:43:32:431 156 134

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:277 09:43:33:079 09:43:33:546 1269 802

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:277 09:43:33:169 09:43:33:524 1247 892

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:278 09:43:33:181 09:43:33:521 1243 903

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:281 09:43:32:433 09:43:32:745 464 152

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:281 09:43:33:220 09:43:33:512 1231 939

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:282 09:43:32:393 09:43:32:775 493 111

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:282 09:43:32:391 09:43:32:827 545 109

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:282 09:43:33:059 09:43:33:550 1268 777

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:283 09:43:33:112 09:43:33:537 1254 829

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:283 09:43:33:188 09:43:33:520 1237 905

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:302 09:43:33:144 09:43:33:530 1228 842

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:302 09:43:33:138 09:43:33:531 1229 836

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:302 09:43:33:131 09:43:33:532 1230 829

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:302 09:43:33:125 09:43:33:534 1232 823

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:303 09:43:33:093 09:43:33:542 1239 790

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:303 09:43:33:233 09:43:33:509 1206 930

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:303 09:43:32:468 09:43:32:527 224 165

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:303 09:43:33:227 09:43:33:511 1208 924

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:304 09:43:32:409 09:43:32:762 458 105

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:305 09:43:33:086 09:43:33:544 1239 781

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:306 09:43:33:065 09:43:33:548 1242 759

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:306 09:43:32:489 09:43:33:554 1248 183

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:318 09:43:33:119 09:43:33:535 1217 801

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:318 09:43:33:163 09:43:33:525 1207 845

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:330 09:43:33:156 09:43:33:527 1197 826

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:330 09:43:32:515 09:43:32:988 658 185

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:334 09:43:32:515 09:43:32:982 648 181

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:334 09:43:33:106 09:43:33:539 1205 772

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:334 09:43:32:515 09:43:32:976 642 181

91

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:335 09:43:33:272 09:43:33:501 1166 937

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:335 09:43:32:535 09:43:32:963 628 200

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:335 09:43:32:513 09:43:32:969 634 178

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:336 09:43:32:403 09:43:32:753 417 67

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:359 09:43:33:331 09:43:33:488 1129 972

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:360 09:43:33:298 09:43:33:495 1135 938

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:360 09:43:32:524 09:43:33:020 660 164

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:360 09:43:32:505 09:43:33:026 666 145

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:360 09:43:33:207 09:43:33:515 1155 847

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:361 09:43:33:240 09:43:33:508 1147 879

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:361 09:43:32:523 09:43:33:013 652 162

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:361 09:43:33:253 09:43:33:505 1144 892

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:361 09:43:33:258 09:43:33:504 1143 897

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:362 09:43:33:151 09:43:33:528 1166 789

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:362 09:43:33:201 09:43:33:517 1155 839

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:362 09:43:33:265 09:43:33:502 1140 903

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:362 09:43:32:520 09:43:33:007 645 158

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:363 09:43:32:520 09:43:33:000 637 157

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:363 09:43:33:214 09:43:33:513 1150 851

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:363 09:43:32:499 09:43:33:038 675 136

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:363 09:43:32:501 09:43:33:045 682 138

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:364 09:43:33:246 09:43:33:507 1143 882

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:364 09:43:33:291 09:43:33:496 1132 927

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:364 09:43:32:516 09:43:32:994 630 152

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:365 09:43:33:278 09:43:33:499 1134 913

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:365 09:43:32:495 09:43:33:033 668 130

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:365 09:43:33:176 09:43:33:523 1158 811

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:369 09:43:33:285 09:43:33:498 1129 916

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:388 09:43:32:456 09:43:32:661 273 68

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:400 09:43:33:345 09:43:33:485 1085 945

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:407 09:43:33:304 09:43:33:493 1086 897

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:407 09:43:32:460 09:43:32:611 204 53

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:418 09:43:32:464 09:43:32:562 144 46

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:418 09:43:32:570 09:43:32:957 539 152

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:428 09:43:32:567 09:43:32:951 523 139

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:442 09:43:32:571 09:43:32:944 502 129

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:465 09:43:33:337 09:43:33:486 1021 872

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:465 09:43:32:583 09:43:32:938 473 118

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:476 09:43:33:317 09:43:33:490 1014 841

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:477 09:43:33:351 09:43:33:484 1007 874

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:485 09:43:33:311 09:43:33:492 1007 826

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:499 09:43:32:597 09:43:32:931 432 98

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:508 09:43:33:324 09:43:33:489 981 816

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:519 09:43:33:358 09:43:33:482 963 839

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:528 09:43:32:733 09:43:32:848 320 205

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:538 09:43:33:364 09:43:33:481 943 826

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:555 09:43:32:627 09:43:32:925 370 72

92

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:555 09:43:33:378 09:43:33:478 923 823

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:566 09:43:33:371 09:43:33:480 914 805

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:567 09:43:33:407 09:43:33:473 906 840

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:574 09:43:33:415 09:43:33:472 898 841

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:577 09:43:33:385 09:43:33:477 900 808

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:577 09:43:32:666 09:43:32:919 342 89

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:583 09:43:33:392 09:43:33:476 893 809

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:586 09:43:33:399 09:43:33:474 888 813

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:593 09:43:32:724 09:43:32:861 268 131

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:597 09:43:32:731 09:43:32:836 239 134

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:604 09:43:32:674 09:43:32:913 309 70

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:607 09:43:33:449 09:43:33:465 858 842

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:612 09:43:33:457 09:43:33:463 851 845

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:618 09:43:33:443 09:43:33:466 848 825

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:624 09:43:32:688 09:43:32:898 274 64

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:630 09:43:32:714 09:43:32:875 245 84

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:639 09:43:33:422 09:43:33:470 831 783

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:650 09:43:33:435 09:43:33:467 817 785

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:659 09:43:32:680 09:43:32:907 248 21

Client[1] file34.txt Server[7] Server[10] Server[7] 09:43:32:664 09:43:33:429 09:43:33:469 805 765

Table 2. Type of the Data Collected during Execution Process

According to our presets, there is one client who has requested the same file 100 times

and all requests are issued from lock manager server 7. Since we adopt the approach of

calculating communication cost among servers, Started Timestamp refers to initiating

process time from lock manager server 7 and Granted Timestamp refers to the received

success reply from lock manager server 10. Time until granted is given as a difference

between Granted Timestamp and Started Timestamp. Finished Timestamp refers to file

execution time according to system time. Exec Time represents the sum of Time until

Granted and additional time consumed to read/write the file from the client.

93

CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 A Comparative Analysis between Centralized and Distributed

Models

In chapter 5 we explained the implementation of the algorithm in the real setting and the

ways of collecting data that we are going to analyze herein. The lock manager algorithm

maintains the concurrent access in the shared files through three different approaches.

These approaches presented here are: a. Self-management of shared locks in server, b.

owner server management, c. third server lock management. According to [2] once

written, files are only read, and it is certain that a high probability exists that read/write

requests are issued from the server who created the file. Considering this fact, our

approach provides a sustainable solution and avoids all other communication with other

servers in cloud. Nevertheless, there will be many other requests delivered in different

servers requesting the right attribution of a certain file. This approach leads to another

state where the server which receives the request has to collaborate with other servers to

maintain file consistency. For the simplicity of our work we call it initiator server.

According to our algorithm definition5, at any time that the initiator server is not the owner

server or does not provide the necessary information about a certain file requested by a

specific client, it has to collaborate with other servers to get further information about the

state of a certain file. This extra communication will add a delay that varies mostly in the

5 The main contribution of this chapter appears in the papers [70], [104].

94

speed of the network and in the amount of required communication. We have taken in

consideration these delays and herein we have analyzed two states of the algorithm.

Through all this study we will refer to this delay as time until execution permissions

granted. In the first state we implement the first approach of the self-management of the

shared lock and in the second state the request is randomly received by all servers. In

addition to that, we are going to examine and compare the performance of both states. For

both scenarios we keep the same cluster configuration and define that clients deliver 100

requests for accessing the same file.

Figure 32. Time until execution permissions granted in milliseconds for 100 requests in

single server mode

In Fig. 32 we get the performance of execution of 100 requests by a single server[104].

The ratio between read/write requests and the order is arbitrarily decided by the algorithm.

According to our presets, all the requests are delivered to a single file by the same server.

0

100

200

300

400

500

600

700

800

900

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in single server mode

Time until Execution Permission Granted with Single
Server as Executor

95

In this example we have simulated the scenario when the initiator server is the owner

server for that specific file and no further communication with other servers is required.

As seen in the graph in Fig. 32, we can denote three parts that require further analysis. For

the first 30 requests the time until execution permission granted increases almost linearly

but remains in lower values.

Figure 33. Time until execution permissions granted in milliseconds for 100 requests in

random mode

The maximum time reaches the value of 130 milliseconds. At the same time, this is the

part where all requests delivered are read operation and they can be executed in parallel.

At request 34, we denote a vertical growth which is explained by the fact that this is the

point where it needs to wait for all read operations in queue to finish and after that to apply

write operations. This is the point that represents the major delay that our algorithm adds.

The rest of requests are write requests and again time increases almost linearly but in

0

50

100

150

200

250

300

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

Time until Execution Permissions Granted in Random

96

contrast with the read operation, now the time needed is higher since write operations

cannot be executed in parallel. In the second approach, again clients delivered 100

requests but now in contrast with the first mode, all requests are delivered in random mode

to different servers. As shown in Fig. 33, in random mode, the overall time until execution

permissions granted is less than half of the time until execution permissions granted from

single server, and even though we do not have a proper analysis of the percentage of

read/write requests, we still get a better performance compared to single server mode. One

point to be taken into account is that we have analyzed the situation when the number of

requests is equal for both cases and compared to the real situation in a real cloud

computing, there is a low number of requests. In the next sections we are going to analyze

the situation when the number of requests changes from 100 to 500 requests and issue a

comparison for each of the cases to check the behavior of our algorithm when applied in

different clouds dimensions.

6.2 Performance Evaluation of the Asymmetric Distributed Lock

Management in Cloud Computing

In chapter 5 we explained the main concepts that ADLMCC uses to maintain consistency

in distributed systems that are realized in three different approaches which consist of: a.

Self-management of shared locks in server, b. owner server management, c. remote server

lock managements. This approach implies a sustainable solution and avoids all other

communication with other servers in the cloud.

Nevertheless, there will be many other requests delivered to different servers requesting

the attribution rights of a certain file. This new condition leads to another state where the

server receiving the request has to collaborate with other servers to maintain file

consistency. For the simplicity of our work we call this imitator server. The amount of

communication between servers plays the biggest role in the system performance, adding

a delay that will differ based on the communication media and the number of the requests

97

at a certain time. Many cloud solutions are developed according to the type of the service

they provide. It is essential for developers to find the equilibrium between resources and

purpose of usage. In this chapter we measured the sustainability, delay and performance

of the lock manager algorithm and analyzed its behavior while implementing it in big data

clouds, mid-size and small size clouds.

6.2.1 Cloud Resources Effect in Asymmetric Distributed Lock

Management in Cloud Computing

According to the architecture of the lock manager, the delay added in self-management is

zero, there is no communication with other servers and the execution time depends only

on the number of the requests that the server itself receives.

Figure 34. Time until Granted for 100 requests in random with 5 servers

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

98

The biggest concern is the additional delay which occurred during the communication to

find the state of file and to decide which servers are responsible for executing that request.

We refer to this delay as Time until Granted and it is the focus of our analysis. In the first

test we defined the number of requests as a benchmark and we kept it unchanged

throughout the process, alternating the number of servers, nodes and files stored on these

nodes. Throughout our discussion, the requests were delivered asymmetrically to the

servers and were delivered at the same time and randomly. Fig. 34 shows the Time until

Granted for 100 requests delivered in random mode and the cloud is composed of 5

servers, 3 nodes, 30 files and 5 clients.

The cloud resources composition clearly demonstrates that this is an example of a small

sized cloud which is composed of a few servers and nodes. Bearing in mind the number

of requests, every client executes more than one request and a file is requested from more

than one client with a different operation mode. Because of the small number of requests,

we realize that the Time until Granted is very insignificant. The times differ from almost

zero to the highest delay of 600 milliseconds. For most of the requests Time until Grated

is less than 300 milliseconds. As the number of requests increases, we note that the graph

encompasses a nonlinear change of the Time until Granted.

Following the same explanation, in Fig. 35 we illustrate the example with 100 requests

delivered randomly and the cloud composition now is made up of 10 servers, 10 nodes,

300 files and 50 clients.

With the increase in the number of servers and files, the probability for requests to contact

the same file is reduced. Due to that, we can observe from the graph that the overall Time

until Granted for executing 100 requests is reduced by a half. In line with the first example,

with the increase in the number of requests, the time that a request has to wait starts

growing. In contrast to the first example, the increase is much more linear and now the

total Time until Granted is only 300 milliseconds

99

We continued to increase the number of resources for the same number of requests. Now

the number of servers is 30 and the number of other resources is 20 nodes, 1000 files and

200 clients. With the new changes, the cloud resources extend so that the number of clients

and the files stored in nodes is much bigger than the total number of requests. The

probability that a client delivers more than one request and that two requests access the

same file is almost zero.

Figure 35. Time until Granted for 100 requests in random with 10 servers

The obtained results, as illustrated in Fig. 36 indicate that the overall Time until Granted

continues to decrease, and the graph curve is almost linear. The Time until Granted is less

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

100

than 250 milliseconds and there is no moment in which the time rises very quickly;

everything is smooth with no specific moment to be investigated.

Figure 36. Time until Granted for 100 requests in random with 30 servers

To better understand the relationship between physical resources and the number of

requests to be executed, in Fig. 37 we present the conjunction of three graphs. The blue,

green and purple curves represent Time until Granted for executing 100 requests delivered

in random mode to respectively 10, 5 and 30 servers.

Following our discussion, we observe from graph that the explanation given for Fig. 37

becomes more explicit. Since blue and purple curves conjunctions are almost similar with

minor changes, the increase in the number of servers from 10 to 30 has not played a

significant role on the performance of systems. However, the low number of servers has

a major impact on performance and referring to the same graph, we can perceive reducing

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

101

the number of servers from 10 to 5 servers per cluster has enlarged the Time until Granted

from less than 300 milliseconds to above 500 milliseconds, adding an additional 200

milliseconds.

Figure 37. Time until Granted for 100 requests in random

6.2.2 Number of Requests Effect in Asymmetric Distributed Lock

Management in Cloud Computing

In comparison with the first implementation, to better understand how Time until Granted

differs according to the cloud resources and its usage, we conducted the same study only

by modifying the parameter of our benchmark. Now the number of the requests has

changed from 100 to 500 requests. The cloud is composed of 5 servers, 3 nodes and 30

files. All the requests for file are delivered to only 5 servers. As per the first analysis,

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Ex
ec

u
ti

o
n

 t
im

e
in

 m
ill

is
ec

o
n

d
s

Time until Granted for 100 requests in random

Time until Granted for 100 requests in Random with 10 servers

Time until Granted for 100 requests in Random with 5 servers

Time until Granted for 100 requests in Random with 30 servers

102

which took into account the cloud composition, there was a high probability that a high

number of requests were delivered by the same client and a high probability that different

requests ask to read/write the same file.

Figure 38. Time until Granted for 500 requests in random with 5 servers

In Fig. 38 we have given the variance of Time until Granted in milliseconds for 500

requests. It is clearly depicted that with the growth of the total number of requests, the

overall Time until Granted increases. The graph is almost linear for most of the time and

after a certain request it changes exponentially. It is notable from the graph that until 450

requests the time increases linearly and the maximum time for a request to wait is nearly

0

200

400

600

800

1000

1200

1400

1600

1 51 101 151 201 251 301 351 401 451

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

103

650 milliseconds, after this point time it goes up very quickly and at request number 500

the Time until Grated goes to 1400 milliseconds.

At this point, from a change of 50 requests we denote a change of time that varies from

650 to 1400 milliseconds. As for the first corresponding tests, the curves changes are

almost similar to each other’s. Another aspect that will affect the curve linearity is the type

of request delivered as the more write requests are delivered first the more Time until

granted is needed.

One remark to be mentioned from Fig. 38 is that for the given composition of cloud

resources, after a certain number of requests the time increases very rapidly. Following

the same explanation, we keep the number of requests at 500 and we change the number

of servers to 10, while the number of other resources becomes 10 nodes, 300 files and 50

clients. Still, there will be a high probability that every client delivers more than one

request and a high probability that many requests ask to read/write the same file.

Figure 39. Time until Granted for 500 requests in random with 10 servers

0

500

1000

1500

2000

2500

1 51 101 151 201 251 301 351 401 451

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

104

The graph in Fig. 39 illustrates how the Time until Granted changes for the execution of

500 requests in the new settings.

As notable from the graphs above, there is a similarity between Fig. 38 and Fig. 39. The

increase in the resources did not provide any improvement in the overall performance.

After a certain number of requests, the linearity of the graph breaks and the Time until

Grated rises exponentially. For the same number of requests, we increased the number of

servers to 30 and the number of the other resources becomes 20 nodes, 1000 files and 200

clients. Within the new configuration, the probability that a client delivers more than one

request and that the same server receives more than one request from clients remains

significant.

Figure 40.Time until Granted for 500 requests in random with 30 servers

0

200

400

600

800

1000

1200

1400

1 51 101 151 201 251 301 351 401 451

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

105

Considering the number of files, the probability that the same file is requested from more

than one request decreases. The new results are described in Fig. 40, which explains how

the Time until Granted varies for executing 500 requests with 30 servers.

Figure 41. Time until Granted for 500 requests in random

With the increase in resources, even though there still is a high possibility for each client

to deliver more than one request and for each server to execute more than one request, we

can denote that the overall Time until Granted has decreased. The linearity remains almost

unchanged for the entire process. We can note that in this new state equilibrium has been

achieved between the amount of resources and the number of the requests. If more

0

500

1000

1500

2000

2500
1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

4
6

5

4
8

1

4
9

7

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of the requests delivered in random mode

Time until Granted for 500 requests in Random with 5 servers

Time until Granted for 500 requests in Random with 10 servers

Time until Granted for 500 requests in Random with 30 servers

106

resources are added, the more Time until Granted will decrease and if more numbers of

requests are delivered, more time is required for the overall execution.

The graph curve connections presented in Fig. 41 illustrate our discussion and support our

observation that increasing cluster resources affects the overall cloud performance even

though effect moves toward diminishing. Performance evaluation and resource

optimization are very important tasks and require the attention of developers.

6.3 Effect of Resource Starvation in Asymmetric Distributed Lock

Management in Cloud Computing

In sections 4.3.1 and 4.3.2, we have redesigned our lock manager algorithm functionalities

to explain and introduce the new concept of resource starvation. With the new design, the

execution behavior will change, and a new equilibrium is required for maintaining the

overall cloud performance.

In this section we are going to analyze the data collected from test held with our algorithm

simulating the situation where the request is executed from remote lock manager. This

simulation refers to the algorithm status that is required for the initiator servers to migrate

the request to a remote server which has been already granted the execution permission

right from owner lock manager. The simulations will be held on the same environment

conditions when we apply resource starvation parameter to the lock manager and for the

condition that no resource starvation parameter is applied.

The platform is composed of 10 servers, 10 node storages, 300 files, 50 clients and for

both simulations the number of requests remains unchanged at 200 requests. For

performing the tests, we have defined in presets that all the requests are delivered to server

10 and they ask the same file that is under ownership of server 4. Server 4 has already

migrated file permission right to server 9. The same test with the same presets is issued

two times; the first time without defining resource starvation parameter and the second

107

time by adjusting the algorithms settings in accordance with the new improvements adding

the starvation parameter.

Figure 42. Execution time in milliseconds for 200 requests in single server mode

without Starvation

The graph in Fig. 42 shows time until Execution Permission granted with single server as

executor without starvation. According to the curve of the graph, we can denote three parts

that require special attention. In the first part of the graph we see that the execution time

is very low. In the second part, we have a vertical increase in time, and in the third part

again we have a stability of the execution process. This is related to the type of requests

that have been executed. In the first part we have to deal with read requests that are

executed parallel to each other. Considering the fact that read-write, write-write, write-

read cannot be executed simultaneously, the vertical increase represents the moment when

write request is waiting for read requests to finish and then start their execution. Again,

we have a stability of the graph that represents the moment when the same type of requests

is executed one after another. The maximum time until Granted for 200 requests reached

0

500

1000

1500

2000

2500

3000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of requests delivered in single server mode without starvation

108

the value of 2500 milliseconds which is quite a significant value that needs to be taken in

consideration. Following the same assumption, if the number of requests continues to be

increased, then server 9 will undergo in exhausted mode and no more requests will be

processed.

In the second simulation we performed, as shown in Fig. 43, we denoted a starvation

parameter that has prohibited server 9 from entering exhausted mode.

Figure 43. Execution time in milliseconds for 200 requests in single server mode with

Starvation

As seen from Fig. 43, when the server receives a certain number of requests, it

automatically discards them. For the simplicity of our work, the discarded request is

presented in the graph with value 0. The other part of the graph remains unchanged as in

Fig. 42, with only a slight difference that happens because of the moment change when

write requests are delivered. The resource starvation parameter can be adjusted from

provider to provider and will be mostly dependent on the hardware parameters of the

servers in use and the sensitivity of the running services.

0

500

1000

1500

2000

2500

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7E
x
ec

u
ti

o
n
 t

im
e

in
 m

il
li

se
co

n
d
s

Number of requests delivered in single server mode with starvation

109

CHAPTER 7

7.1 CONCLUSIONS

In this thesis, we proposed an algorithm that provides a mechanism to maintain

simultaneous read, write requests for accessing distributed data that are stored using

erasure codes technique. The algorithm provides a solution to manage a large number of

requests in a distributed system in such a way that they can be completed within the least

possible time.

Lock manager algorithm introduced in this thesis gives a sustainable solution to the main

aspects for a reliable cloud, by offering high availability and scalability while keeping the

stored data free from errors. The algorithm prevents concurrent access in shared files by

excluding simultaneous read-write and write-write operations to the same file.

Another characteristic of our approach is that the shared files are kept in a proper way that

they are free from the errors and fault tolerant from the server failures. For each file we

design a responsible server and a switchover server to be used in case of responsible server

failure.

Based on algorithm design and functionalities, lock manager gives solution to the main

concerns for a reliable cloud such as availability and scalability. Considering that each

server acts as a master server for the received requests, the availability of the cloud is

maintained in a distributed manner and we avoid the existence of a master server. The

number of servers can be modified in accordance with cloud usage requirements without

affecting the overall cloud performance.

110

Another aspect of our thesis has been to analyze the performance of ADLMCC when it is

implemented in different cloud environments. The lock manager is the solution for the

implementation of different cloud storages.

Based on its implementation characteristics, asymmetric distributed lock management in

cloud computing algorithm is a fully distributed solution and eliminates the need for a

master node which is going to control and maintain the consistency of shared files. Our

approach implements most of the key factors for a cloud to be a reliable and fault tolerant

cloud. On the other hand, it keeps the file consistency with the least possible

communication among other colleagues. Communication with other lock managers

happens only when extra information is needed.

One of the factors that define the quality of the service for our solution is the time to wait

for a client until its request is processed. This time is determined from the communication

between lock managers for the consistency of the file that has been named as Time until

Granted, and from the availability of the requested files. Time until Granted was the focus

of this thesis and was analyzed in detail.

According to our test results, we can conclude that Time until Granted is low for a normal

load implemented in small and mid-size clouds and becomes significant when the number

of requests is increased. Another conclusion achieved from our analysis is that, with the

increase in physical resources, there is also an increase in the performance of the cloud

and the Time until Granted decreases significantly. Time until Granted depends more on

the type of the request. For any increase in the delivered write requests more time is

required for the execution process, while for read request less time is required.

The lock manager algorithm offered is a sustainable solution and it is suitable to be

implemented in cloud storages platforms that require strong consistency and high

precision of the data modification.

111

Following the outcome from our results it can be concluded that when many requests are

directed to the same server, this might lead to server resource exhaustion and service

interruption. To maintain server availability, we have defined a parameter called resource

starvation which is responsible for maintaining the availability of the resources. According

to the test results and analysis, we conclude that the definition of such a parameter is

essential and in case that the proper attention is not paid, the server can be exhausted and

can commit server failure.

The algorithms proposed can be applied to any cloud storage, but we must keep in mind

and analyze client service requirements. If starvation point is reached some requests will

get lost and need to be reissued; this can decrease availability of the systems when the

same file is subject to be changed from many users.

This study recommends that further research focus on the use of switchover as load

balancer for mitigating the resource starvation effect.

112

REFERENCES

1 i Juárez, L.P.: ‘On the Design and Optimization of Heterogeneous Distributed

Storage Systems’, University Rovira in Virgili, Department of Engineering Information

in Mathematic, PHD thesis, 2011

2 Ghemawat, S., Gobioff, H., and Leung, S.-T.: ‘The Google file system’, SIGOPS

Oper. Syst. Rev., 2003, 37, (5), pp. 29-43

3 Maurya, M., and Mahajan, S.: ‘Performance analysis of MapReduce programs on

Hadoop cluster’, in Editor (Ed.)^(Eds.): ‘Book Performance analysis of MapReduce

programs on Hadoop cluster’ (IEEE, 2012, edn.), pp. 505-510

4 Borthakur, D.: ‘The hadoop distributed file system: Architecture and design’,

Hadoop Project Website, 2007, 11, (2007), pp. 21

5 Koçi, A., and Çiço, B.: ‘Storage Based Cloud Computing and Disaster Recovery’,

‘Storage Based Cloud Computing and Disaster Recovery’ (edn.), pp. 395

6 Lamport, L.: ‘Paxos made simple’, ACM Sigact News, 2001, 32, (4), pp. 18-25

7 Lamport, L.: ‘The part-time parliament’, ACM Transactions on Computer

Systems (TOCS), 1998, 16, (2), pp. 133-169

8 Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R.,

Howell, J., Lorch, J.R., Theimer, M., and Wattenhofer, R.P.: ‘FARSITE: Federated,

available, and reliable storage for an incompletely trusted environment’, ACM SIGOPS

Operating Systems Review, 2002, 36, (SI), pp. 1-14

9 Tewari, S., and Kleinrock, L.: ‘Analysis of search and replication in unstructured

peer-to-peer networks’, in Editor (Ed.)^(Eds.): ‘Book Analysis of search and replication

in unstructured peer-to-peer networks’ (ACM, 2005, edn.), pp. 404-405

10 Ko, A.C., and Zaw, W.T.: ‘Fault Tolerant Erasure Coded Replication for HDFS

Based Cloud Storage’, in Editor (Ed.)^(Eds.): ‘Book Fault Tolerant Erasure Coded

Replication for HDFS Based Cloud Storage’ (IEEE, 2014, edn.), pp. 104-109

11 Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R.,

Chen, S., and Borthakur, D.: ‘Xoring elephants: Novel erasure codes for big data’, in

113

Editor (Ed.)^(Eds.): ‘Book Xoring elephants: Novel erasure codes for big data’ (VLDB

Endowment, 2013, edn.), pp. 325-336

12 Dimakis, A.G., Ramchandran, K., Wu, Y., and Suh, C.: ‘A survey on network

codes for distributed storage’, Proceedings of the IEEE, 2011, 99, (3), pp. 476-489

13 Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., and Ramchandran, K.:

‘Network coding for distributed storage systems’, IEEE transactions on information

theory, 2010, 56, (9), pp. 4539-4551

14 Kishida, H., and Yamazaki, H.: ‘SSDLM: architecture of a distributed lock

manager with high degree of locality for clustered file systems’, in Editor (Ed.)^(Eds.):

‘Book SSDLM: architecture of a distributed lock manager with high degree of locality for

clustered file systems’ (IEEE, 2003, edn.), pp. 9-12

15 Lakshman, A., and Malik, P.: ‘Cassandra: a decentralized structured storage

system’, ACM SIGOPS Operating Systems Review, 2010, 44, (2), pp. 35-40

16 Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., and

Steere, D.C.: ‘Coda: A highly available file system for a distributed workstation

environment’, IEEE Transactions on computers, 1990, 39, (4), pp. 447-459

17 Satyanarayanan, M.: ‘Coda: A resilient distributed file system’, in Editor

(Ed.)^(Eds.): ‘Book Coda: A resilient distributed file system’ (1987, edn.), pp.

18 Koci, A.C., Betim: ‘DDCMCC - Distributed Data Consistency Management in

Cloud Computing ’, International Scientific Conference Computer Science`2015, 2015,

1, pp. 200 - 206

19 Burrows, M.: ‘The Chubby lock service for loosely-coupled distributed systems’,

in Editor (Ed.)^(Eds.): ‘Book The Chubby lock service for loosely-coupled distributed

systems’ (USENIX Association, 2006, edn.), pp. 335-350

20 Reiher, P.L., Heidemann, J.S., Ratner, D., Skinner, G., and Popek, G.J.:

‘Resolving File Conflicts in the Ficus File System’, in Editor (Ed.)^(Eds.): ‘Book

Resolving File Conflicts in the Ficus File System’ (1994, edn.), pp. 183-195

21 DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,

A., Sivasubramanian, S., Vosshall, P., and Vogels, W.: ‘Dynamo: amazon's highly

114

available key-value store’, in Editor (Ed.)^(Eds.): ‘Book Dynamo: amazon's highly

available key-value store’ (ACM, 2007, edn.), pp. 205-220

22 Schmuck, F.B., and Haskin, R.L.: ‘GPFS: A Shared-Disk File System for Large

Computing Clusters’, in Editor (Ed.)^(Eds.): ‘Book GPFS: A Shared-Disk File System for

Large Computing Clusters’ (2002, edn.), pp.

23 Schollmeier, R.: ‘A definition of peer-to-peer networking for the classification of

peer-to-peer architectures and applications’, in Editor (Ed.)^(Eds.): ‘Book A definition of

peer-to-peer networking for the classification of peer-to-peer architectures and

applications’ (IEEE, 2001, edn.), pp. 101-102

24 Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B.: ‘Design and

implementation of the Sun network filesystem’, in Editor (Ed.)^(Eds.): ‘Book Design and

implementation of the Sun network filesystem’ (1985, edn.), pp. 119-130

25 Anderson, T.E., Dahlin, M.D., Neefe, J.M., Patterson, D.A., Roselli, D.S., and

Wang, R.Y.: ‘Serverless network file systems’, in Editor (Ed.)^(Eds.): ‘Book Serverless

network file systems’ (ACM, 1995, edn.), pp. 109-126

26 Vazhkudai, S.S., Ma, X., Freeh, V.W., Strickland, J.W., Tammineedi, N., and

Scott, S.L.: ‘Freeloader: Scavenging desktop storage resources for scientific data’, in

Editor (Ed.)^(Eds.): ‘Book Freeloader: Scavenging desktop storage resources for

scientific data’ (IEEE Computer Society, 2005, edn.), pp. 56

27 Placek, M., and Buyya, R.: ‘A taxonomy of distributed storage systems’, Reporte

técnico, Universidad de Melbourne, Laboratorio de sistemas distribuidos y cómputo grid,

2006

28 Berretti, S., Thampi, S.M., and Dasgupta, S.: ‘Intelligent systems technologies and

applications’ (Springer, 2016. 2016)

29 Oram, A.: ‘Peer-to-Peer: Harnessing the power of disruptive technologies’ ("

O'Reilly Media, Inc.", 2001. 2001)

30 Subramanian, R., and Goodman, B.D.: ‘Peer-to-peer computing: the evolution of

a disruptive technology’ (Igi Global, 2005. 2005)

115

31 Hasan, R., Anwar, Z., Yurcik, W., Brumbaugh, L., and Campbell, R.: ‘A survey

of peer-to-peer storage techniques for distributed file systems’, in Editor (Ed.)^(Eds.):

‘Book A survey of peer-to-peer storage techniques for distributed file systems’ (IEEE,

2005, edn.), pp. 205-213

32 Albrecht, K., Arnold, R., and Wattenhofer, R.: ‘Clippee: A large-scale client/peer

system’, Technical report/ETH, Department of Computer Science, 2003, 410

33 Tutschku, K.: ‘A measurement-based traffic profile of the eDonkey filesharing

service’, in Editor (Ed.)^(Eds.): ‘Book A measurement-based traffic profile of the

eDonkey filesharing service’ (Springer, 2004, edn.), pp. 12-21

34 Clarke, I., Sandberg, O., Wiley, B., and Hong, T.W.: ‘Freenet: A distributed

anonymous information storage and retrieval system’, in Editor (Ed.)^(Eds.): ‘Book

Freenet: A distributed anonymous information storage and retrieval system’ (Springer,

2001, edn.), pp. 46-66

35 Dingledine, R.: ‘The free haven project: Design and deployment of an anonymous

secure data haven’, Massachusetts Institute of Technology, 2000

36 Muthitacharoen, A., Morris, R., Gil, T.M., and Chen, B.: ‘Ivy: A read/write peer-

to-peer file system’, ACM SIGOPS Operating Systems Review, 2002, 36, (SI), pp. 31-44

37 Batten, C., Barr, K., Saraf, A., and Trepetin, S.: ‘pStore: A secure peer-to-peer

backup system’, Unpublished report, MIT Laboratory for Computer Science, 2001, pp.

130-139

38 Milojičić, D., Llorente, I.M., and Montero, R.S.: ‘Opennebula: A cloud

management tool’, IEEE Internet Computing, 2011, 15, (2), pp. 11-14

39 Haeberlen, A., Mislove, A., and Druschel, P.: ‘Glacier: Highly durable,

decentralized storage despite massive correlated failures’, in Editor (Ed.)^(Eds.): ‘Book

Glacier: Highly durable, decentralized storage despite massive correlated failures’

(USENIX Association, 2005, edn.), pp. 143-158

40 Druschel, P., and Rowstron, A.: ‘PAST: A large-scale, persistent peer-to-peer

storage utility’, in Editor (Ed.)^(Eds.): ‘Book PAST: A large-scale, persistent peer-to-peer

storage utility’ (IEEE, 2001, edn.), pp. 75-80

116

41 Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M., and Welch, B.:

‘The Bayou architecture: Support for data sharing among mobile users’, in Editor

(Ed.)^(Eds.): ‘Book The Bayou architecture: Support for data sharing among mobile

users’ (IEEE, 1994, edn.), pp. 2-7

42 Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., and

Hauser, C.H.: ‘Managing update conflicts in Bayou, a weakly connected replicated

storage system’, in Editor (Ed.)^(Eds.): ‘Book Managing update conflicts in Bayou, a

weakly connected replicated storage system’ (ACM, 1995, edn.), pp. 172-182

43 Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,

Swinehart, D., and Terry, D.: ‘Epidemic algorithms for replicated database maintenance’,

in Editor (Ed.)^(Eds.): ‘Book Epidemic algorithms for replicated database maintenance’

(ACM, 1987, edn.), pp. 1-12

44 Palankar, M.R., Iamnitchi, A., Ripeanu, M., and Garfinkel, S.: ‘Amazon S3 for

science grids: a viable solution?’, in Editor (Ed.)^(Eds.): ‘Book Amazon S3 for science

grids: a viable solution?’ (ACM, 2008, edn.), pp. 55-64

45 Ripeanu, M., Garfinkel, S., Palankar, M., and Iamnitchi, A.: ‘Amazon s3 for

science grids: a viable solution?’, in Editor (Ed.)^(Eds.): ‘Book Amazon s3 for science

grids: a viable solution?’ (edn.), pp.

46 Balmford, A., Crane, P., Dobson, A., Green, R.E., and Mace, G.M.: ‘The 2010

challenge: data availability, information needs and extraterrestrial insights’, Philosophical

Transactions of the Royal Society of London B: Biological Sciences, 2005, 360, (1454),

pp. 221-228

47 Schwarz, T.J.: ‘Availability in global peer-to-peer storage systems’, in Editor

(Ed.)^(Eds.): ‘Book Availability in global peer-to-peer storage systems’ (Citeseer, 2004,

edn.), pp.

48 Ramabhadran, S., and Pasquale, J.: ‘Analysis of durability in replicated distributed

storage systems’, in Editor (Ed.)^(Eds.): ‘Book Analysis of durability in replicated

distributed storage systems’ (IEEE, 2010, edn.), pp. 1-12

117

49 Utard, G., and Vernois, A.: ‘Data durability in peer to peer storage systems’, in

Editor (Ed.)^(Eds.): ‘Book Data durability in peer to peer storage systems’ (IEEE, 2004,

edn.), pp. 90-97

50 Tang, B., and Fedak, G.: ‘Analysis of data reliability tradeoffs in hybrid distributed

storage systems’, in Editor (Ed.)^(Eds.): ‘Book Analysis of data reliability tradeoffs in

hybrid distributed storage systems’ (IEEE, 2012, edn.), pp. 1546-1555

51 Horn, R.L.: ‘System and method for maintaining a data redundancy scheme in a

solid state memory in the event of a power loss’, in Editor (Ed.)^(Eds.): ‘Book System

and method for maintaining a data redundancy scheme in a solid state memory in the event

of a power loss’ (Google Patents, 2013, edn.), pp.

52 Belhadj, M., Daniels, R.D., and Umberger, D.K.: ‘Raid rebuild using most

vulnerable data redundancy scheme first’, in Editor (Ed.)^(Eds.): ‘Book Raid rebuild

using most vulnerable data redundancy scheme first’ (Google Patents, 2003, edn.), pp.

53 Sheth, M., Benerjee, K.G., and Gupta, M.K.: ‘Quorum sensing for regenerating

codes in distributed storage’, in Editor (Ed.)^(Eds.): ‘Book Quorum sensing for

regenerating codes in distributed storage’ (IEEE, 2014, edn.), pp. 1-4

54 Gifford, D.K.: ‘Weighted voting for replicated data’, in Editor (Ed.)^(Eds.): ‘Book

Weighted voting for replicated data’ (ACM, 1979, edn.), pp. 150-162

55 Gammie, P.: ‘Roy Peter Van and Haridi Seif. Concepts, Techniques, and Models

of Computer Programming. The MIT Press, 2004. ISBN: 0262220695 Price $70. 930pp’,

Journal of Functional Programming, 2009, 19, (2), pp. 254-256

56 Erb, B.: ‘Concurrent programming for scalable web architectures’, 2012

57 Al-Aaridhi, R., Yüksektepe, A., Amft, T., and Graffi, K.: ‘Distributed data

structures improvement for collective retrieval time’, in Editor (Ed.)^(Eds.): ‘Book

Distributed data structures improvement for collective retrieval time’ (IEEE, 2016, edn.),

pp. 85-90

58 Amazon, E.: ‘Amazon elastic compute cloud’, Retrieved Feb, 2009, 10

59 Nachankar, V.: ‘Distributed Lock Manager’, Indiana University, 2011

118

60 Hansen, J.G., and Jul, E.: ‘Lithium: virtual machine storage for the cloud’, in

Editor (Ed.)^(Eds.): ‘Book Lithium: virtual machine storage for the cloud’ (ACM, 2010,

edn.), pp. 15-26

61 Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., and

Hauser, C.H.: ‘Managing update conflicts in Bayou, a weakly connected replicated

storage system’ (ACM, 1995. 1995)

62 Choi, S., Choi, M., Lee, C., and Youn, H.Y.: ‘Distributed lock manager for

distributed file system in shared-disk environment’, in Editor (Ed.)^(Eds.): ‘Book

Distributed lock manager for distributed file system in shared-disk environment’ (IEEE,

2010, edn.), pp. 2706-2713

63 Jenkins, G.O.: ‘Distributed lock management in a cloud computing environment’,

in Editor (Ed.)^(Eds.): ‘Book Distributed lock management in a cloud computing

environment’ (Google Patents, 2017, edn.), pp.

64 Wu, S., and Wu, K.-L.: ‘An Indexing Framework for Efficient Retrieval on the

Cloud’, IEEE Data Eng. Bull., 2009, 32, (1), pp. 75-82

65 Chandra, T.D., Griesemer, R., and Redstone, J.: ‘Paxos made live: an engineering

perspective’, in Editor (Ed.)^(Eds.): ‘Book Paxos made live: an engineering perspective’

(ACM, 2007, edn.), pp. 398-407

66 SELLSTRÖM, G.A., and TÕNISSON, M.R.: ‘Analysis of Voting Algorithms: a

comparative study of the Single Transferable Vote’

67 Hardekopf, B., Kwiat, K., and Upadhyaya, S.: ‘A decentralized voting algorithm

for increasing dependability in distributed systems’, in Editor (Ed.)^(Eds.): ‘Book A

decentralized voting algorithm for increasing dependability in distributed systems’ (2001,

edn.), pp.

68 Castro, M., and Liskov, B.: ‘Practical Byzantine fault tolerance’, in Editor

(Ed.)^(Eds.): ‘Book Practical Byzantine fault tolerance’ (1999, edn.), pp. 173-186

69 Kanrar, S., Chattopadhyay, S., and Chaki, N.: ‘A new voting-based mutual

exclusion algorithm for distributed systems’, in Editor (Ed.)^(Eds.): ‘Book A new voting-

based mutual exclusion algorithm for distributed systems’ (IEEE, 2013, edn.), pp. 1-5

119

70 Koçi, A., and Çiço, B.: ‘Distributed Lock Management in Cloud Computing:

Performance and Challenges’ International Scientific Conference Computer

Science`2018, 2018, 1, pp. 67 - 74

71 Thomas, R.H.: ‘A majority consensus approach to concurrency control for

multiple copy databases’, ACM Transactions on Database Systems (TODS), 1979, 4, (2),

pp. 180-209

72 Barbara, D., Garcia-Molina, H., and Spauster, A.: ‘Increasing availability under

mutual exclusion constraints with dynamic vote reassignment’, ACM Transactions on

Computer Systems (TOCS), 1989, 7, (4), pp. 394-426

73 Godfrey, P., Shenker, S., and Stoica, I.: ‘Minimizing churn in distributed systems’

(ACM, 2006. 2006)

74 Chidambaram, V., Pillai, T.S., Arpaci-Dusseau, A.C., and Arpaci-Dusseau, R.H.:

‘Optimistic crash consistency’, in Editor (Ed.)^(Eds.): ‘Book Optimistic crash

consistency’ (ACM, 2013, edn.), pp. 228-243

75 Ignat, C., and Norrie, M.C.: ‘Tree-based model algorithm for maintaining

consistency in real-time collaborative editing systems’, in Editor (Ed.)^(Eds.): ‘Book

Tree-based model algorithm for maintaining consistency in real-time collaborative editing

systems’ (2002, edn.), pp.

76 Peluso, S., Romano, P., and Quaglia, F.: ‘Score: A scalable one-copy serializable

partial replication protocol’, in Editor (Ed.)^(Eds.): ‘Book Score: A scalable one-copy

serializable partial replication protocol’ (Springer-Verlag New York, Inc., 2012, edn.), pp.

456-475

77 Patil, S., Gibson, G.A., Ganger, G.R., Lopez, J., Polte, M., Tantisiriroj, W., and

Xiao, L.: ‘In search of an API for scalable file systems: Under the table or above it?’, in

Editor (Ed.)^(Eds.): ‘Book In search of an API for scalable file systems: Under the table

or above it?’ (2009, edn.), pp.

78 Vaquero, L.M., Rodero-Merino, L., Caceres, J., and Lindner, M.: ‘A break in the

clouds: towards a cloud definition’, ACM SIGCOMM Computer Communication

Review, 2008, 39, (1), pp. 50-55

120

79 Mell, P., and Grance, T.: ‘The NIST definition of cloud computing’, 2011

80 Foster, I., Zhao, Y., Raicu, I., and Lu, S.: ‘Cloud computing and grid computing

360-degree compared’, in Editor (Ed.)^(Eds.): ‘Book Cloud computing and grid

computing 360-degree compared’ (Ieee, 2008, edn.), pp. 1-10

81 Sallé, M.: ‘IT Service Management and IT Governance: review, comparative

analysis and their impact on utility computing’, Hewlett-Packard Company, 2004, pp. 8-

17

82 Malhotra, L., Agarwal, D., and Jaiswal, A.: ‘Virtualization in cloud computing’,

J. Inform. Tech. Softw. Eng, 2014, 4, (2)

83 Kephart, J.O., and Chess, D.M.: ‘The vision of autonomic computing’, Computer,

2003, (1), pp. 41-50

84 Zahariev, A.: ‘Google app engine’, Helsinki University of Technology, 2009, pp.

1-5

85 Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I., and Warfield, A.: ‘Xen and the art of virtualization’, in Editor (Ed.)^(Eds.): ‘Book

Xen and the art of virtualization’ (ACM, 2003, edn.), pp. 164-177

86 Dantas, R., Sadok, D., Flinta, C., and Johnsson, A.: ‘Kvm virtualization impact on

active round-trip time measurements’, in Editor (Ed.)^(Eds.): ‘Book Kvm virtualization

impact on active round-trip time measurements’ (IEEE, 2015, edn.), pp. 810-813

87 Infrastructure, V.: ‘Resource management with VMware DRS’, VMware

Whitepaper, 2006, 13

88 Al-Fares, M., Loukissas, A., and Vahdat, A.: ‘A scalable, commodity data center

network architecture’, in Editor (Ed.)^(Eds.): ‘Book A scalable, commodity data center

network architecture’ (ACM, 2008, edn.), pp. 63-74

89 Hosting, C.: ‘CLoud Computing and Hybrid Infrastructure from GoGrid’, in

Editor (Ed.)^(Eds.): ‘Book CLoud Computing and Hybrid Infrastructure from GoGrid’

(2012, edn.), pp.

90 Prodan, R., and Ostermann, S.: ‘A survey and taxonomy of infrastructure as a

service and web hosting cloud providers’, in Editor (Ed.)^(Eds.): ‘Book A survey and

121

taxonomy of infrastructure as a service and web hosting cloud providers’ (IEEE, 2009,

edn.), pp. 17-25

91 Qian, L., Luo, Z., Du, Y., and Guo, L.: ‘Cloud computing: An overview’, in Editor

(Ed.)^(Eds.): ‘Book Cloud computing: An overview’ (Springer, 2009, edn.), pp. 626-631

92 Zhang, Q., Cheng, L., and Boutaba, R.: ‘Cloud computing: state-of-the-art and

research challenges’, Journal of internet services and applications, 2010, 1, (1), pp. 7-18

93 Gonzalez, J.U., and Krishnan, S.: ‘Building Your Next Big Thing with Google

Cloud Platform: A Guide for Developers and Enterprise Architects’ (Apress, 2015. 2015)

94 Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu,

Y., Srivastav, S., Wu, J., and Simitci, H.: ‘Windows Azure Storage: a highly available

cloud storage service with strong consistency’, in Editor (Ed.)^(Eds.): ‘Book Windows

Azure Storage: a highly available cloud storage service with strong consistency’ (ACM,

2011, edn.), pp. 143-157

95 Huo, J., Qu, H., and Wu, L.: ‘Design and implementation of private cloud storage

platform based on OpenStack’, in Editor (Ed.)^(Eds.): ‘Book Design and implementation

of private cloud storage platform based on OpenStack’ (IEEE, 2015, edn.), pp. 1098-1101

96 Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A.: ‘kvm: the Linux

virtual machine monitor’, in Editor (Ed.)^(Eds.): ‘Book kvm: the Linux virtual machine

monitor’ (Dttawa, Dntorio, Canada, 2007, edn.), pp. 225-230

97 Gilbert, S., and Lynch, N.: ‘Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services’, Acm Sigact News, 2002, 33, (2), pp. 51-59

98 Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., and Gruber, R.E.: ‘Bigtable: A distributed storage system for

structured data’, ACM Transactions on Computer Systems (TOCS), 2008, 26, (2), pp. 4

99 Khetrapal, A., and Ganesh, V.: ‘HBase and Hypertable for large scale distributed

storage systems’, Dept. of Computer Science, Purdue University, 2006, pp. 22-28

100 Chodorow, K., and Dirolf, M.: ‘MongoDB: The Definitive Guide O’Reilly

Media’, September 2010, 2010

122

101 Koçi, A., and Çiço, B.: ‘DLMCC-Distributed Lock Management in Cloud

Computing’, ‘Book DLMCC-Distributed Lock Management in Cloud Computing’ (2015,

edn.), pp. 52-58

102 Koçi, A., and Çiço, B.: ‘ADLMCC–Asymmetric distributed lock management in

cloud computing’, International Journal On Information Technologies And Security,

2018, 10, (3), pp. 37-52

103 Koci, A.C., Betim: ‘Resource Starvation in Asymmetric Distributed Lock

Management in Cloud Computing’, Albanian Journal of Natural and Technical Sciences,

2018, 47, (2), pp. 91-102

104 Koçi, A., and Çiço, B.: ‘Performance Evaluation of the Asymmetric Distributed

Lock Management in Cloud Computing’, Performance Evaluation, 2018, 180, (49)

123

APPENDIX

REQUESTS MODULE CODE OF THE ASYMMETRIC

DISTRIBUTED LOCK MANAGEMENT ALGORITHM

package main.entities;

import java.util.logging.Level;

import java.util.logging.Logger;

import main.communication.RequestLock;

public class Client {

 public final static Logger LOGGER = Logger.getLogger(Client.class.getName());

 private String id;

 public Client(String id){

 this.id=id;

 }

 //Random Server

 //STEP 1 - (1)

 public RequestLock issueRequest(RequestLock.LOCK_MODE lockMode,String

filePath) {

 //Create new FileNode object with the requested filePath

 FileNode requestedFile = new FileNode(filePath);

 Server initialServer = Cluster.getRandomServer();

 //The requester = client

 return new RequestLock(this.id, initialServer, lockMode, requestedFile,

System.currentTimeMillis());

 }

 //Specified Server

 //STEP 1 - (1)

124

 public void issueRequest(RequestLock.LOCK_MODE lockMode,String filePath,

Server initialServer) {

 //Create new FileNode object with the requested filePath

 FileNode requestedFile = new FileNode(filePath);

 //The requester = client

 RequestLock request = new RequestLock(this.id, initialServer, lockMode,

requestedFile, System.currentTimeMillis());

 }

 //Specified Server

 //STEP 1 - (1)

 public RequestLock issueRequest(String lockMode,FileNode requestedFile,

Server initialServer) {

 RequestLock request;

 if (lockMode.equals("Read")) {

 return new RequestLock(this.id, initialServer,

RequestLock.LOCK_MODE.Read, requestedFile, System.currentTimeMillis());

 } else if (lockMode.equals("Write")) {

 return new RequestLock(this.id, initialServer,

RequestLock.LOCK_MODE.Write, requestedFile, System.currentTimeMillis());

 } else {

 RequestLock.LOCK_MODE randMode =

RequestLock.getRandomLockMode();

 return new RequestLock(this.id, initialServer, randMode,

requestedFile, System.currentTimeMillis());

 }

 }

 public String getId() {

 return id;

 }

125

 public void setId(String id) {

 this.id = id;

 }

 @Override

 public String toString() {

 return "Client[" + this.id + "]";

 }

}

126

CLUSTER INFRASTRUCTURE CODE OF THE

ASYMMETRIC DISTRIBUTED LOCK MANAGEMENT

ALGORITHM

package main.entities;

import java.io.File;

import java.util.ArrayList;

import java.util.Random;

import java.util.concurrent.ThreadLocalRandom;

import java.util.logging.Level;

import java.util.logging.Logger;

public class Cluster {

 public static final Logger LOGGER =

Logger.getLogger(Cluster.class.getName());

 //add info about the created servers in the static SERVER_NODE_TABLE

(serverId-ServerStatus-SwitchOverStatus)=ServerNodeInfo

 public static ArrayList<File> STORAGE_NODES = new ArrayList<File>();

 public static ArrayList<FileNode> FILE_NODES = new ArrayList<FileNode>();

 public static ArrayList<Client> CLIENTS = new ArrayList<Client>();

 public static ArrayList<Server> SERVERS = new ArrayList<Server>();

 public static String DIRECTORY;

 public Cluster(){

 }

 public static void clear() {

 Cluster.SERVERS.clear();

 Cluster.FILE_NODES.clear();

 Cluster.STORAGE_NODES.clear();

 Cluster.CLIENTS.clear();

 }

127

 public static int checkLockBit(String filePath){

 for (FileNode file : FILE_NODES){

 if (file.getAbsolutePath().compareTo(filePath)==0)

 return file.getLockBit();

 }

 //file not found in the array - add EXCEPTION

 return -1;

 }

 public static FileNode getFileNodeFromPath(String filePath){

 for (FileNode file : FILE_NODES){

 if (file.getAbsolutePath().compareTo(filePath)==0)

 return file;

 }

 //file not found in the array - add EXCEPTION

 return null;

 }

 public static Server getRandomServer() {

 int randomNum = ThreadLocalRandom.current().nextInt(0,

SERVERS.size());

 Server server = SERVERS.get(randomNum);;

 while (!server.isAlive()) {

 randomNum = ThreadLocalRandom.current().nextInt(0,

SERVERS.size());

 server = SERVERS.get(randomNum);

 }

 return server;

 }

 public static Client getRandomClient() {

128

 int randomNum = ThreadLocalRandom.current().nextInt(0,

CLIENTS.size());

 Client client = CLIENTS.get(randomNum);;

 return client;

 }

 public static FileNode getRandomFileNode() {

 int randomNum = ThreadLocalRandom.current().nextInt(0,

FILE_NODES.size());

 FileNode fileNode = FILE_NODES.get(randomNum);

 return fileNode;

 }

 public static FileNode getFileNode(String filePath) {

 for (FileNode file : FILE_NODES) {

 if (file.getAbsolutePath().equals(filePath)) {

 return file;

 }

 }

 //Enter a new fileNode with this filePath in FILE_NODES

 FileNode newFile = new FileNode(filePath);

 FILE_NODES.add(newFile);

 return newFile;

 }

 public static boolean existsDirectory(String path){

 if (path == null || path.equals("") || path.isEmpty()) return false;

 File f = new File(path);

 if (f.exists() && f.isDirectory()) {

 return true;

129

 }

 return false;

 }

 public static boolean existsFile(String path){

 if (path.equals("") || path.isEmpty() || path == null) return false;

 File f = new File(path);

 if (f.exists() && f.isFile()) {

 return true;

 }

 return false;

 }

 public static void cleanDirectory(File dir) {

 if (dir.isDirectory()) {

 File[] files = dir.listFiles();

 if (files != null && files.length > 0) {

 for (File aFile : files) {

 removeDirectory(aFile);

 }

 } else {

 LOGGER.log(Level.INFO, "Folder '"+ dir.getAbsolutePath() +"' is

already empty!");

 }

 }

 }

 public static void removeDirectory(File dir) {

 if (dir.isDirectory()) {

 File[] files = dir.listFiles();

 if (files != null && files.length > 0) {

 for (File aFile : files) {

130

 removeDirectory(aFile);

 }

 }

 if (dir.delete()){

 LOGGER.log(Level.INFO, "Deleting folder: deleting containing folder

'"+ dir.getAbsolutePath() +"'");

 }

 else {

 LOGGER.log(Level.SEVERE, "Deleting folder: ERROR containing

folder '"+ dir.getAbsolutePath() +"' cannot be deleted!");

 }

 } else {

 if (dir.delete()) {

 LOGGER.log(Level.INFO, "Deleting folder: deleting containing file '"+

dir.getAbsolutePath() +"'");

 }

 else {

 LOGGER.log(Level.SEVERE, "Deleting folder: ERROR containing file

'"+ dir.getAbsolutePath() +"' cannot be deleted!");

 }

 }

 }

 public static void deleteEntireFolder(File folder) {

 if (Cluster.existsDirectory(folder.getAbsolutePath())) {

 LOGGER.log(Level.INFO, "Deleting folder: " +

folder.getAbsolutePath());

 File[] files = folder.listFiles();

131

 if(files!=null) { //some JVMs return null for empty dirs

 for(File f: files) {

 if(f.isDirectory()) {

 LOGGER.log(Level.INFO, "Deleting folder: deleting

containing folder '"+ f.getAbsolutePath() +"'");

 deleteEntireFolder(f);

 } else {

 System.out.println("Deleting folder: deleting containing

file '"+ f.getAbsolutePath() +"'");

 f.delete();

 }

 }

 }

 else {

 LOGGER.log(Level.INFO, "Deleting folder: folder is already

empty!");

 }

 deleteEntireFolder(folder);

 }

 else {

 LOGGER.log(Level.SEVERE, "Cluster Directory

'"+Cluster.DIRECTORY+"' is not a valid directory, cannot be cleared!");

 }

 }

 public static void cleanFolder(String path) {

 if (Cluster.existsDirectory(path)) {

 File folder = new File(path);

 cleanDirectory(folder);

 }

132

 else {

 LOGGER.log(Level.SEVERE, "Cluster Directory

'"+Cluster.DIRECTORY+"' is not a valid directory, cannot be cleared!");

 }

 }

 public static String getClusterInformation() {

 return "Cluster has: " + STORAGE_NODES.size() + " Storage Nodes, "

+FILE_NODES.size() + " Files, " +

 CLIENTS.size() + " Clients, " + SERVERS.size() + "

Servers.";

 }

}

133

SERVERS MODULE CODE OF THE ASYMMETRIC

DISTRIBUTED LOCK MANAGEMENT ALGORITHM

package main.entities;

import java.util.logging.Level;

import java.util.logging.Logger;

package main.communication;

import main.communication.RequestLock;

public class Server {

 public static final Logger LOGGER = Logger.getLogger(Server.class.getName());

 private String id;

 private LockManager lockManager;

 public static enum SERVER_STATUS {

 Running,

 Suspended,

 Idle

 }

 public Server (String serverId){

 this.id = serverId;

 this.lockManager = new LockManager();

 }

 //STEP 1 - (2)

 public void startRequest(RequestLock request){

 LOGGER.log(Level.INFO, "[04] "+request.getRequestId() + ": Checking if exists in RLT of

initial " + this);

created the file

 int indexRequestInRLT =

this.lockManager.requestExistsInRequestingLockTable(request);

 if (indexRequestInRLT != -1) {

 LOGGER.log(Level.INFO, "[05] "+request.getRequestId() + ": This request EXISTS

in RLT of initial " + this);

134

 LOGGER.log(Level.INFO, "[06] "+request.getRequestId() + ": ADDING this

request in RLT of initial " + this);

 LOGGER.log(Level.INFO, "[07] "+request.getRequestId() + ": ADDING this

request in LFL of initial " + this);

 //this means the server has requested this file earlier, so it is in its RLT

 //add this request in RLT, and then in LFL - after adding in LFL the request start

asking for permissions

 this.lockManager.getRequestingLockTable().add(request);

 LockManager.LOCKED_FILE_LIST.get(request.getRequestedPath()).addRequestLock(req

uest);

 }

 else {

 LOGGER.log(Level.INFO, "[08] "+request.getRequestId() + ": This request

DOESN'T EXISTS in RLT of initial " + this);

 LOGGER.log(Level.INFO, "[09] "+request.getRequestId() + ": Searching the

requested path '"+request.getRequestedPath()+"' in FD");

 //The first procedure is to look up FD and find the node of the lock manager

responsible for the file.

 //If the Server exists alive in the Cloud, the lock manager on that server is

responsible for the file.

 Server ownerServer =

LockManager.findFileOwner(request.getRequestedPath());

 LOGGER.log(Level.INFO, "[10] "+request.getRequestId() + ": Found owner

Server in FD, "+ownerServer);

 //The next one is to check SNT to find out if the server is alive and still in the

cloud

 if (LockManager.getServerStatus(ownerServer) != Server.SERVER_STATUS.Running) {

 LOGGER.log(Level.INFO, "[11] "+request.getRequestId() + ": Owner

"+ownerServer+" is down");

 ownerServer = LockManager.getSwitchOverServer(ownerServer);

 LOGGER.log(Level.INFO, "[12] "+request.getRequestId() + ": Getting

SwitchOver: "+ownerServer + " in SNT");

 }

 //STEP 1 - (3)

 if (this.equals(ownerServer)){

135

 LOGGER.log(Level.INFO, "[13] "+request.getRequestId() + ": Found owner

"+ownerServer+" is the same as initial "+this);

 LOGGER.log(Level.INFO, "[14] "+request.getRequestId() + ": ADDING this

request in RLT of initial/owner " + ownerServer);

 LOGGER.log(Level.INFO, "[07] "+request.getRequestId() + ": ADDING this

request in LFL");

 //add this request in RLT, and then in LFL - after adding in LFL the request start

asking for permissions

 this.lockManager.getRequestingLockTable().add(request);

 LockManager.getLockedFileInfoFromPath(request.getRequestedPath()).addRequestLoc

k(request);

 }

 else {

 LOGGER.log(Level.INFO, "[15] "+request.getRequestId() + ": Found owner

"+ownerServer+" is NOT the same as initial "+this);

 request.setOwnerServer(ownerServer);

 //put the request on M-out T of the owner Server and MIGRATE

 if (!

ownerServer.lockManager.getMigrateOutTable().containsKey(request.getRequestedPath())) {

 ownerServer.lockManager.getMigrateOutTable().put(request.getRequestedPath(),

request.getInitialServer());

 LOGGER.log(Level.INFO, "[17] "+request.getRequestId() + ": Request is

not in MoT of owner "+ownerServer+", ADDING it");

 //add this request in RLT, and then in LFL of the ownerServer

 ownerServer.lockManager.getRequestingLockTable().add(request);

 LOGGER.log(Level.INFO, "[17] "+request.getRequestId() + ": ADDING this

request in RLT of owner " + ownerServer);

 LOGGER.log(Level.INFO, "[07] "+request.getRequestId() + ": ADDING this

request in LFL");

 LockManager.getLockedFileInfoFromPath(request.getRequestedPath()).addRequestLoc

k(request);

 } else if (this ==

ownerServer.lockManager.getMigrateOutTable().get(request.getRequestedPath())) {

 LOGGER.log(Level.INFO, "[40] "+request.getRequestId() + ": Owner " +

ownerServer + " has granted rights to this server, Initial " + this

 + ". Continuing execution with Final Executor " + this);

 request.setExecutorServer(this);

136

 LOGGER.log(Level.INFO, "[07] "+request.getRequestId() + ": ADDING

this request in LFL");

 LockManager.getLockedFileInfoFromPath(request.getRequestedPath()).addRequestLoc

k(request);

 }

 else {

 Server serverMigratedTo =

ownerServer.lockManager.getMigrateOutTable().get(request.getRequestedPath());

 LOGGER.log(Level.INFO, "[17] "+request.getRequestId() + ": Request

EXISTS in the MoT of owner "+ownerServer

 + " with Migrated "+ serverMigratedTo +". Passing this

request to MIGRATED " + serverMigratedTo);

 //MIGRATE

 LOGGER.log(Level.INFO, "[40] "+request.getRequestId() + ": This

request is now handled by the Final Executor, MIGRATED server " + serverMigratedTo);

 request.setExecutorServer(serverMigratedTo);

 serverMigratedTo.startRequestAsMigrated(request);

 }

 }

 }

 }

 //In case of the final executor, just execute it in LFL

 public void startRequestAsMigrated(RequestLock request){

 LOGGER.log(Level.INFO, "[06] "+request.getRequestId() + ": ADDING this

request in RLT of migrated " + this);

 this.lockManager.getRequestingLockTable().add(request);

 //After adding in LFL the request start asking for permissions

 LOGGER.log(Level.INFO, "[07] "+request.getRequestId() + ": ADDING this

request in LFL of Final Executor " + this);

 this.lockManager.getRequestingLockTable().add(request);

137

 LockManager.getLockedFileInfoFromPath(request.getRequestedPath()).addRequestLoc

k(request);

 }

 public void removeRequestFromRLT(RequestLock request) {

 if (this.getLockManager().getRequestingLockTable().contains(request)){

 this.getLockManager().getRequestingLockTable().remove(request);

 }

 }

 public void removeServerFromMiT(String requestedPath) {

 if (this.getLockManager().getMigrateInTable().contains(requestedPath)){

 this.getLockManager().getMigrateInTable().remove(requestedPath);

 }

 }

 public void removeServerFromMoT(String requestedPath) {

 if (this.getLockManager().getMigrateOutTable().contains(requestedPath)){

 this.getLockManager().getMigrateOutTable().remove(requestedPath);

 }

 }

 public boolean isAlive() {

 if (LockManager.getServerStatus(this) == Server.SERVER_STATUS.Running)

 return true;

 return false;

 }

 @Override

 public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj == null)

 return false;

 if (getClass() != obj.getClass())

 return false;

 Server other = (Server) obj;

 if (id == null) {

 if (other.id != null)

 return false;

 } else if (!id.equals(other.id))

 return false;

 return true;

138

 }

 public void getMigratedServerForFile(String filePath) {

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public LockManager getLockManager() {

 return lockManager;

 }

 public void setLockManager(LockManager lockManager) {

 this.lockManager = lockManager;

 }

 @Override

 public String toString() {

 return "Server[" + id + "]";

 }

}

139

SERVERS INFORMATION MAINTENANCE CODE OF

THE ASYMMETRIC DISTRIBUTED LOCK

MANAGEMENT ALGORITHM

package main.entities;

public class ServerNodeInfo {

 private String serverId;

 private Server.SERVER_STATUS status;

 private Server switchOverServer;

 public ServerNodeInfo (String serverId, Server.SERVER_STATUS status, Server

switchOverServer){

 this.serverId = serverId;

 this.status = status;

 this.switchOverServer = switchOverServer;

 }

 public String getServerId() {

 return serverId;

 }

 public void setServerId(String serverId) {

 this.serverId = serverId;

 }

 public Server.SERVER_STATUS getStatus() {

 return status;

 }

 public void setStatus(Server.SERVER_STATUS status) {

 this.status = status;

 }

 public Server getSwitchOverServer() {

 return switchOverServer;

 }

 public void setSwitchOverServer(Server switchOverServer) {

 this.switchOverServer = switchOverServer;

 }

}

140

LOCK MANAGER CODE OF THE ASYMMETRIC

DISTRIBUTED LOCK MANAGEMENT ALGORITHM

package main.entities;

import java.util.ArrayList;

import java.util.Hashtable;

import java.util.logging.Logger;

import main.communication.RedirectRequest;

import main.communication.RequestLock;

public class LockManager {

 public static final Logger LOGGER = Logger.getLogger(LockManager.class.getName());

 //private Hashtable<String, Node> ServerNodeTable = new Hashtable<>();

 public static ArrayList<ServerNodeInfo> SERVER_NODE_TABLE = new

ArrayList<ServerNodeInfo>();

 public static Hashtable<String, Server> FILE_DIRECTORY = new Hashtable<String,

Server>();

 //to use: RequestLock or RedirectRequest ?

 private Hashtable<String, Server> MigrateInTable = new Hashtable<String, Server>();

 private Hashtable<String, Server> MigrateOutTable = new Hashtable<String, Server>();

 //RLT keeps track of all locks a server has requested

 private ArrayList<RequestLock> RequestingLockTable = new ArrayList<RequestLock>();

 //LFL includes all necessary information about locks for which a lock manager is managing

and is responsible for

 public static Hashtable<String, LockedFileInfo> LOCKED_FILE_LIST = new Hashtable<String,

LockedFileInfo>();

 public LockManager() {

 this.RequestingLockTable = new ArrayList<RequestLock>();

 }

 /**

 * @param request - the request to be checked if exists in the RLT

 * @return return -1 if not found, otherwise the index of the found request in the ArrayList

RLT

 */

 public int requestExistsInRequestingLockTable(RequestLock request){

 if (this.RequestingLockTable == null || this.RequestingLockTable.isEmpty()) {

141

 return -1;

 }

 int i=this.RequestingLockTable.size()-1;

 while (i>=0 && this.RequestingLockTable.get(i).compareTo(request)!=0){

 i--;

 }

 return i;

 }

 public static Server findFileOwner(String filePath) {

 Server foundServer = FILE_DIRECTORY.get(filePath);

 return foundServer;

 }

 public static Server.SERVER_STATUS getServerStatus(Server server){

 int i = 0;

 while(i<LockManager.SERVER_NODE_TABLE.size() &&

!LockManager.SERVER_NODE_TABLE.get(i).getServerId().equals(server.getId())){

 i++;

 }

 return LockManager.SERVER_NODE_TABLE.get(i).getStatus();

 }

 public static Server getSwitchOverServer(Server server){

 int i = 0;

 while(i<LockManager.SERVER_NODE_TABLE.size() &&

!LockManager.SERVER_NODE_TABLE.get(i).getServerId().equals(server.getId())){

 i++;

 }

 return LockManager.SERVER_NODE_TABLE.get(i).getSwitchOverServer();

 }

 //will add a new LockedFileInfo if the path doesn't exists

 public static LockedFileInfo getLockedFileInfoFromPath(String path) {

 if (LOCKED_FILE_LIST == null || LOCKED_FILE_LIST.isEmpty()) {

 LOCKED_FILE_LIST.put(path, new LockedFileInfo());

 } else {

 LockedFileInfo lockedFileInfo = LOCKED_FILE_LIST.get(path);

 if (lockedFileInfo == null) {

 LOCKED_FILE_LIST.put(path, new LockedFileInfo());

 }

142

 }

 return LOCKED_FILE_LIST.get(path);

 }

 public Hashtable<String, Server> getMigrateInTable() {

 return MigrateInTable;

 }

 public void setMigrateInTable(Hashtable<String, Server> migrateInTable) {

 MigrateInTable = migrateInTable;

 }

 public Hashtable<String, Server> getMigrateOutTable() {

 return MigrateOutTable;

 }

 public void setMigrateOutTable(Hashtable<String, Server> migrateOutTable) {

 MigrateOutTable = migrateOutTable;

 }

 public ArrayList<RequestLock> getRequestingLockTable() {

 return RequestingLockTable;

 }

 public void setRequestingLockTable(ArrayList<RequestLock> requestingLockTable) {

 RequestingLockTable = requestingLockTable;

 }

}

143

FILE ATTRIBUTE CODE OF THE ASYMMETRIC

DISTRIBUTED LOCK MANAGEMENT ALGORITHM

package main.entities;

import java.io.File;

public class FileNode extends File {

 /**

 *

 */

 private static final long serialVersionUID = 1L;

 private short lockBit;

 public FileNode (String pathname){

 super(pathname);

 this.lockBit = (short) 0;

 }

 public FileNode (String pathname, short lockBit){

 super(pathname);

 this.lockBit = lockBit;

 }

 public short getLockBit() {

 return lockBit;

 }

 public void setLockBit(short lockBit) {

 this.lockBit = lockBit;

 }

 public int compareToFilePath(String filePath){

 return this.getName().compareTo(filePath);

 }

 @Override

 public String toString() {

 return this.getName();

 }

 }

144

STORAGE NODE CODE OF THE ASYMMETRIC

DISTRIBUTED LOCK MANAGEMENT ALGORITHM

package main.entities;

import java.util.ArrayList;

/**

 * This is a shared folder

 */

public class Node {

 private String nodePath;

 private ArrayList<FileNode> files;

 public Node(String nodePath){

 this.nodePath = nodePath;

 }

 public String getNodePath() {

 return nodePath;

 }

 public void setNodePath(String nodePath) {

 this.nodePath = nodePath;

 }

 public ArrayList<FileNode> getFiles() {

 return files;

 }

 public void setFiles(ArrayList<FileNode> files) {

 this.files = files;

 }

}

145

FILE LOCK MANAGEMENT CODE OF THE

ASYMMETRIC DISTRIBUTED LOCK MANAGEMENT

ALGORITHM

package main.entities;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.Queue;

import java.util.logging.Level;

import java.util.logging.Logger;

import gui.ClusterScene;

import main.communication.RequestLock;

import settings.Factory;

import settings.Info;

public class LockedFileInfo {

 //for each File there will be one LockedFileInfo -> which contains 2 lists and the 2 above

fields

 public static final Logger LOGGER = Logger.getLogger(LockedFileInfo.class.getName());

 public static int STARVATION_NUMBER = 10000;

 //V1.9 Starvation 100

 public static final int STARVATION_NUMBER_DEFAULT = 100;

 public LockedFileInfo(){

 GrantedLocks = new LinkedList<RequestLock>();

 BlockedLocks = new LinkedList<RequestLock>();

 }

 private Queue<RequestLock> GrantedLocks;

 private Queue<RequestLock> BlockedLocks;

 public void addRequestLock(RequestLock request){

 LOGGER.log(Level.INFO, "[21] "+request.getRequestId() + ": Checking BitLock if

permission for requested file can be granted...");

 int lockBit = Cluster.checkLockBit(request.getRequestedPath());

146

 if (lockBit == 0) {

 LOGGER.log(Level.INFO, "[22] "+request.getRequestId() + ": Requested file has BitLock

= 0");

 } else if (lockBit == 1) {

 LOGGER.log(Level.INFO, "[31] "+request.getRequestId() + ": Requested file has BitLock

= 1");

 } else {

 LOGGER.log(Level.INFO, "[32] "+request.getRequestId() + ": Requested file has BitLock

= 2");

 }

 RequestLock.LOCK_MODE lockMode = request.getLockMode();

 if (lockMode == RequestLock.LOCK_MODE.Read) {

 LOGGER.log(Level.INFO, "[23] "+request.getRequestId() + ": Requested LockMode is

READ");

 } else {

 LOGGER.log(Level.INFO, "[33] "+request.getRequestId() + ": Requested LockMode is

WRITE");

 }

 //HERE CHECK IF PERMISSION CAN BE GRANTED - rr/ww/repREP/rw/repR/repW/

 //only when there is a WRITE, cannot be granted

 if ((Cluster.checkLockBit(request.getRequestedPath())>0 &&

request.getLockMode()==RequestLock.LOCK_MODE.Write)

 ||

 (Cluster.checkLockBit(request.getRequestedPath())>1 &&

request.getLockMode()==RequestLock.LOCK_MODE.Read)

) {

 addBlockedLock(request);

 }

 else {

 addGrantedLock(request);

 }

 }

 public void addBlockedLock(RequestLock request){

 //Check first for starvation

 //V1.9 WITH STARVATION GENERIC

 if (ClusterScene.starvationIncludedCBox.isSelected()) {

 checkForStarvation();

 }

 this.BlockedLocks.add(request);

147

 LOGGER.log(Level.INFO, "[24] "+request.getRequestId() + ": Added in Blocked

List");

 }

 //adds the request in the GrantedLocks and removes it from BlockedLocks

 public void addGrantedLock(RequestLock request){

 request.setGrantedTimestamp(System.currentTimeMillis());

 switch (request.getLockMode()){

 case Read:

 //change lockBit to 1 (lockBit remains 1 of there was another server

reading it already)

 Cluster.getFileNodeFromPath(request.getRequestedPath()).setLockBit((short) 1);

 break;

 case Write:

 Cluster.getFileNodeFromPath(request.getRequestedPath()).setLockBit((short) 2);

 break;

 }

 if (this.BlockedLocks.contains(request)) {

 this.BlockedLocks.remove(request);

 }

 this.GrantedLocks.add(request);

 LOGGER.log(Level.INFO, "[25] "+request.getRequestId() + ": Added in Granted

Queue");

 //get RequestedFile from Cluster to be used for THREAD lock object

 FileNode lockObject = Cluster.getFileNode(request.getRequestedPath());

 synchronized (lockObject) {

 try(FileWriter fw = new FileWriter(request.getRequestedPath(), true);

 BufferedWriter bw = new BufferedWriter(fw);

 PrintWriter out = new PrintWriter(bw))

 {

 if (request.getLockMode() == RequestLock.LOCK_MODE.Read)

{

 out.println("Request " + request.getRequestId() + " by client " +

request.getRequesterId() + " READ this file at " + System.currentTimeMillis()+"...");

 LOGGER.log(Level.INFO, "[26] "+request.getRequestId() + ":

File READ successfully!");

 }

 else {

148

 out.println("Request " + request.getRequestId() + " by client " +

request.getRequesterId() + " WROTE this file at " + System.currentTimeMillis()+"...");

 LOGGER.log(Level.INFO, "[27] "+request.getRequestId() + ": File

WRITTEN successfully!");

 }

 } catch (IOException e) {

 LOGGER.log(Level.SEVERE, "IOException thrown for request " +

request.getRequestId() + " while WRITING requested file: " + e.getMessage());

 } catch (NullPointerException e) {

 LOGGER.log(Level.SEVERE, "NullPointerException thrown for

request " + request.getRequestId() + " while WRITING requested file: " + e.getMessage());

 }

 //The reading, writing was done, notify other threads in BlockedList

 this.GrantedLocks.remove(request);

 LOGGER.log(Level.INFO, "[34] "+request.getRequestId() + ": Request

removed from Granted List");

 //The initiator server AND ownerServer removes the request from its

RLT/MoT/MiT table

 //initiatiorServer.getLockManager().getRequestingLockTable().remove(request);

 request.clearRequestFromSystem();

 //set LockBit of the requester file to 0

 Cluster.getFileNodeFromPath(request.getRequestedPath()).setLockBit((short) 0);

 if (this.GrantedLocks.isEmpty()){

 //means we can now insert

 LOGGER.log(Level.INFO, "[35] "+request.getRequestId()+":

Granted Lock List for File " + request.getRequestedFile().getName()

 +" is empty, releasing Blocked

Requests");

 if (! this.BlockedLocks.isEmpty()) {

 if (this.BlockedLocks.peek() != null) {

 RequestLock.LOCK_MODE mode =

this.BlockedLocks.peek().getLockMode();

 //if the first req waiting is a READ, get all

READs until a WRITE appears, ELSE get only the first WRITE

 if (mode == RequestLock.LOCK_MODE.Read){

 LOGGER.log(Level.INFO, "[37]

"+request.getRequestId()+": Releasing Blocked Requests - the first Blocked request is READ

mode."

149

 +" Getting all Blocked

READ requests up to a WRITE request");

 while (! this.BlockedLocks.isEmpty()

&& this.BlockedLocks.peek() !=null &&

this.BlockedLocks.peek().getLockMode()==RequestLock.LOCK_MODE.Read){

 RequestLock req =

this.BlockedLocks.poll();

 LOGGER.log(Level.INFO, "[38]

"+request.getRequestId()+": Releasing Blocked Request - releasing " + req.getRequestId()

 + ", " +

req.getLockMode() + " mode");

 if (req != null) {

 addGrantedLock(req);

 }

 }

 }

 else if (mode ==

RequestLock.LOCK_MODE.Write) {

 RequestLock req =

this.BlockedLocks.poll();

 LOGGER.log(Level.INFO, "[39]

"+request.getRequestId()+": Releasing Blocked Request - releasing the first WRITE request: "

 + req.getRequestId());

 addGrantedLock(req);

 }

 } else {

 LOGGER.log(Level.INFO, "[36]

"+request.getRequestId()+": Releasing Blocked Requests - there are no Blocked requests for

File "

 +

request.getRequestedFile().getName());

 }

 }

 }

 //stop this thread and FINISH here

 request.setFinishTimestamp(System.currentTimeMillis());

 LOGGER.log(Level.INFO, "[28] "+request.getRequestId() + ": FINISHED! -

" + request);

150

 LOGGER.log(Level.INFO, "[29] "+request.getRequestId() + ":

TIMESTAMPS: Start=" + Info.millisToTime(request.getStartTimestamp()) + ", "

 +

"Granted="+Info.millisToTime(request.getGrantedTimestamp()) + ", Finished=" +

Info.millisToTime(request.getFinishTimestamp()));

 String timestampDif = (request.getFinishTimestamp() -

request.getStartTimestamp()) + "";

 LOGGER.log(Level.INFO, "[30] "+request.getRequestId() +": Execution

time = " + timestampDif + " milliseconds");

 request.setRequestedFile(null);

 }

 }

 public void checkForStarvation() {

 int waitingRequestsNr = this.BlockedLocks.size();

 setStarvationNumber();

 if (waitingRequestsNr >= STARVATION_NUMBER) {

 while (! this.GrantedLocks.isEmpty()) {

 RequestLock requestToBeDroped = this.GrantedLocks.poll();

 requestToBeDroped.interrupt();

 LOGGER.log(Level.INFO, "[41]

"+requestToBeDroped.getRequestId() + ": Request is dropped due to starvation, "+

 waitingRequestsNr+" requests are waiting for

permissions for file "+requestToBeDroped.getRequestedFile());

 requestToBeDroped.setGrantedTimestamp(0L);

 requestToBeDroped.setStartTimestamp(0L);

 requestToBeDroped.setRequestedFile(null);

 requestToBeDroped = null;

 }

 //Set the lock bit of requested File to 0

 FileNode requestedFile = this.BlockedLocks.peek().getRequestedFile();

 requestedFile.setLockBit((short)0);

 LOGGER.log(Level.INFO, "[42] Lock Bit of file "+ requestedFile + " is set

to 0 due to starvation");

 //start the first request on the Blocked List

 RequestLock requestToBeStarted = this.BlockedLocks.poll();

 LOGGER.log(Level.INFO, "[43] "+requestToBeStarted.getRequestId()+":

Request is started after starvation of file "+requestedFile);

 addGrantedLock(requestToBeStarted);

151

 }

 }

 /**

 * Get the starvation number from the gui txt field - to be moved to another class

 */

 public void setStarvationNumber() {

 try {

 if (ClusterScene.starvationNumberTxt.getText() == null ||

ClusterScene.starvationNumberTxt.getText().equals("")){

 STARVATION_NUMBER = STARVATION_NUMBER_DEFAULT;

 } else {

 int starvationNumber =

Integer.parseInt(ClusterScene.starvationNumberTxt.getText());

 STARVATION_NUMBER = starvationNumber;

 }

 }

 catch (NumberFormatException ex) {

 Info.alertError("Number Format Exception", "Please insert an integer

for the random requests number!\n"+ex.getMessage());

 STARVATION_NUMBER = STARVATION_NUMBER_DEFAULT;

 }

 }

 public Queue<RequestLock> getGrantedLocks() {

 return GrantedLocks;

 }

 public void setGrantedLocks(Queue<RequestLock> grantedLocks) {

 GrantedLocks = grantedLocks;

 }

 public Queue<RequestLock> getBlockedLocks() {

 return BlockedLocks;

 }

 public void setBlockedLocks(Queue<RequestLock> blockedLocks) {

 BlockedLocks = blockedLocks;

 }

}

152

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Koçi, Artur

Nationality: Albanian

Date and Place of Birth: 08/01/1981 Burrel

Marital Status: Married

Phone: +35569 60 60 604

E-mail: akoci@epoka.edu.al

EDUCATION

March 2013 – January 2019 PhD Studies

Epoka University, Department of Computer

Engineering

October 2009 – June 2011 Master of Second Level in Computer Engineering

 Epoka University, Department of Computer

Engineering

October 2001 – July 2006 Second Cycle Integrated Diploma in Electronic

Engineering

 Polytechnic University of Tirana, Faculty of

Electronic Engineering, Department of Computer

Engineering

ACADEMIC EXPERIENCE

25 October 2018 – 15 March 2019 Part-time Lecturer

 Metropolitan University of Tirana

03 February 2014 –16 November 2015 Part-time Lecturer

 Epoka University

153

AWARDS

Best Paper Award 8th International Scientific Conference

 Computer Science`2018

FOREIGN LANGUAGES

Language Speaking Listening Writing Grammar

English C1 C1 C1 C1

Albanian C2 C2 C2 C2

Italian B2 B2 B2 B2

PUBLICATIONS (Journals)

• Artur Koci, Betim Cico - ADLMCC – Asymmetric Distributed Lock Management

in Cloud Computing. International Journal on Information Technologies and

Security, No. 3 (vol. 10), 2018, pp. 37-52.

• Artur Koci, Betim Cico- Performance Evaluation of the Asymmetric Distributed

Lock Management in Cloud Computing. International Journal of Computer

Applications 180(49):35-42, June 2018.US

• Artur Koci, Betim Cico - Resource Starvation in Asymmetric Distributed Lock

Management in Cloud Computing. Albanian Journal of Natural and Technical

Sciences (47):91-102, November 2018. Albania

ORAL PRESENTATIONS (Conferences)

• Artur Koci, Betim Cico Distributed Lock Management in Cloud Computing:

Performance and Challenges – International Scientific Conference Computer

Science’2018, 13-15 September 2018, Kavala - Greece.

154

• Artur Koci, Betim Cico. DDCMCC - Distributed Data Consistency Management

in Cloud Computers - 7th International Scientific Conference Computer

Science`2015 08-10 September 2015, Durres-Albania.

• Artur Koci, Betim Cico. Storage Based Cloud Computing and Disaster Recovery

at DSC2014 - 9th Annual South East European Doctoral Student Conference that

will be held on 25 - 26 September 2014 at Thessaloniki – Greece.

