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ABSTRACT

IRIS RECOGNITION PERFORMANCE ANALYSIS

Toli, Alessia

M.Sc., Department of Computer Engineering

Supervisor: Dr. Arban Uka

Iris recognition is among the most precise and reliable biometric

authentication technologies. Technology nowadays has come to a point where it

allows us to achieve iris recognition through several approaches. It is challenging, if

not impossible, to compromise the authentication process as it is a reliable

identifying system. Iris recognition is often applied to high-security places. In

airports, port areas, access management in institutions and companies, computer

login, criminal identification, mobile devices, etc are some of its areas of use. The

vast majority of systems for iris recognition implement Daugman's patented

algorithms, which are capable of producing successful recognition results. Yet

reported results are typically obtained under suitable environments. The unique

characteristics of the human iris are acquired through images in specific

environments and later the images are processed in stages which include

segmentation, normalization, encoding and matching. All the stages and different

methods will be included in this research. All of the data in this study was obtained

by using the IIT Delhi Iris Database.

Keywords: Iris Recognition, EER, Segmentation, Accuracy, FAR, FRR, Noise
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ABSTRAKT

ANALIZA E PERFORMANCËS SË NJOHJES SË IRISIT

Toli, Alessia

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Dr. Arban Uka

Një nga teknologjitë biometrike të autentikimit më e saktë dhe më e

besueshme është njohja e irisit. Sot teknologjia ndodhet në një fazë që na lejon të

arrijmë njohjen e irisit nëpërmjet qasjeve të ndryshme. Është sfiduese, pothuajse e

pamundur, të kompromentosh procesin e autentikimit duke qenë se është një sistem

identifikues i sigurt. Njohja e irisit shpesh aplikohet në vende me siguri te lartë. Në

aeroporte, zona portuale, menaxhimi i aksesit në institucione dhe kompani, hyrja në

kompjuter, identifikimi kriminal, paisje elektronike etj janë disa nga fushat e

përdorimit të sistemit. Shumica e sistemeve të njohjes së irisit implementojnë

algoritmat e licensuara të Daugman, të cilat mundësojnë rezultate të suksesshme të

njohjes. Sidoqoftë rezultatet e raportuara zakonisht janë përftuar nën mjedise të

përshtatshme. Karakteristikat unike të irisit të njeriut janë fituar nëpërmjet imazheve

në mjedise specifike dhe më pas imazhet janë procesuar në faza të cilat përfshijnë

segmentim, normalizim, enkodim, përputhje. Të gjitha fazat dhe metodat e ndryshme

do të përfshihen në këtë kërkim. Të gjitha të dhënat në këtë studim janë përftuar duke

përdorur bazën e të dhënave IIT Delhi.

Fjalët kyçe: Njohja e irisit, Segmentim, Saktesi, FAR, FRR, EER, Zhurmë
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CHAPTER 1

INTRODUCTION

1.1 Authentication and Biometrics

In iris recognition, authentication refers to the process of checking an

individual's identity by comparing their extracted iris pattern to a previously enrolled

template. The system checks the amount of similarity that exists between the

captured iris and the registered template by evaluating the collected features and

utilizing developed algorithms, which permits an appropriate decision about whether

to allow or prohibit access. Authentication is essential in the field of computer

science because it plays a crucial part in security. The iris does not change

throughout a person's life; thus, it is very reliable for long-term authentication. It is

very hard to replicate the unique patterns of the iris. That is the reason why iris

recognition provides high security levels.

Biometrics is the automatic identification of persons based on distinctive

physical traits, generally for safety reasons. Iris Recognition acts as a biometric

system for identifying individuals based on the specific structures found in the eye's

pupil. Biometric authentication systems work by obtaining some form of the feature,

which might be a digital image for iris recognition. After that, the instance is

converted to a biometric template via certain types of mathematical techniques. The

biometric template provides a normalized version of this feature, that may then be

accurately examined to various other templates to confirm the identity. The majority

of biometric systems have two different ways of operating. The enrolment method,

which works by adding templates into a database and also a recognition method

through which a template is prepared for a person. After that an appropriate match in

the database is found.
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1.2Human Iris

The human eye is a particular sensory organ that receives visual signals and

transmits them via the optic nerve to the brain. It is an intricate optical structure

made up of multiple interlinked elements. The iris is a prominent and colorful

component in the center part of the eye that gives individuals their own distinctive

eye color. The iris functions by regulating how much light reaches the eye via its

main aperture, known as the pupil. It is made up of a fragile system of muscles and

cells with pigment that forms structures unique to every person. These structures,

which include crypts, furrows, and radial lines, stay unchanged all over time and act

as a solid identifier. Iris recognition systems may correctly and safely verify persons

by collecting and evaluating the exact structure and properties of these patterns,

offering a very precise method for identification.

Figure 1.Human eye structure

https://drruchikaeyeclinic.com/working-of-the-eye-explained-step-by-step/

1.3Iris Recognition

The iris develops during a person's growth phase and stays constant during

the course of their lives. It is not possible to be modified clinically without risking

blindness. The iris recognition systems collect, pre-process, and then evaluate

high-quality pictures of the iris using advanced image processing algorithms,

generally by means of near-infrared light to reveal the complex features of the iris

structure. The first phase in iris recognition is to identify the iris. Through the use of

2
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image processing techniques, we can obtain the transformed image of the eye. Next,

by applying the circular Hough transform algorithm and the parabolic Hough

transform algorithm, the iris, pupil, and eyelids can be identified (Efford, 2000).

When the region required for analysis has been determined, the captured image must

be processed onto a biometric template that consists of a mathematical model of the

information stored in the iris. If an individual needs to be identified by an iris

recognition system, firstly an image of the iris is taken, and then the template is

stored in a database. The processed template will be compared to existing templates

in the database. If it matches then the person has been recognized and if not, then the

person has not been recognized and the template will be stored as a new identity.

1.4Literature Review

The field of iris recognition has proven to be a particularly robust and reliable

biometric system, having benefits like stability over time and unique characteristics

among individuals. This review covers the latest breakthroughs, difficulties, and

findings in the field of iris recognition, referring to the studies of different authors.

Daugman's research (2007, 2009) laid the foundation for modern iris

recognition by introducing innovative techniques in iris encoding and matching and

offering a comprehensive understanding of the complex process of iris recognition.

Furthermore, the study conducted by Ng, Tay, & Mok (2008) provides an analytical

comparison of different iris recognition algorithms, giving an understanding of their

efficacy and execution.

Segmentation, the method of isolating the iris from other eye structures, is a

vital component of iris recognition. Uka, Roçi, & Koç (2017) presented an enhanced

segmentation algorithm, revealing promising results in terms of efficiency and

accuracy. This is essential in addressing complex iris recognition situations, setting

the basis for subsequent processing stages.

The evolution of encoding techniques has largely contributed to the

progression of iris recognition. Oktay, Albana, & Arban suggested another approach

to iris encoding, offering a new angle on the conversion of iris patterns into
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mathematical constructs. Also, Koç & Uka (2016) developed a new encoding method

using eight quantization levels, illustrating an effective method of capturing fine iris

details.

Additionally, Koç & Uka's study explored the application of the 1D Fourier

Transform for iris recognition. Their research shows promise in dealing with changes

in lighnting and orientation, confirming the effectiveness of frequency domain-based

techniques in iris recognition.

The performance of iris recognition systems has been the focus of ongoing

research. A study by Koç, Roçi, & Uka (2019) evaluated the performance of iris

recognition by using classical and trapezoidal-shaped templates combined with an

advanced iris segmentation technique. Their research provides essential

understanding of the impact of template shape on recognition precision.

Furthermore, Koç et al. (2020) evaluated the performance of iris recognition

under non-cooperative conditions, making a significant contribution to the

development of practical, real-world iris recognition systems.

The capabilities of advanced methods, such as convolutional neural networks

(CNNs), to improve iris recognition performance has been a recent study. For

example, Koc, Balla, & Uka (2019) assessed the performance of CNNs in iris

biometrics, focusing especially on noisy iris images. Their research suggests that

advanced machine learning methods could be crucial in dealing with complex

challenges, such as noise, in iris recognition.

Despite considerable advancements, several issues, such as noise

management and improving recognition under non-cooperative circumstances, still

exist. Iris recognition has experienced significant progress over time, driven by

constant research in segmentation, encoding, and optimization techniques. The

integration of advanced strategies, like machine learning, facilitates future research.

The practical applications of iris recognition technology have increased over

the years due to technological and theoretical progress.

One noticeable application is the application of iris recognition in healthcare

systems (Koç et al., 2020). Iris recognition offers a reliable method of identification,

used for managing patient identities, providing access to individual medical records,
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and enhancing the efficiency of healthcare delivery. It excludes the risk of identity

confusion, improving the safety and security of medical practices.

Another growing application area is mobile technology. As smartphones

become essential parts of our daily lives, securing the data within these devices is of

maximum importance. Iris recognition provides a user-friendly and highly secure

way of locking and unlocking devices, adding an extra security layer to traditional

methods like passcodes or fingerprint recognition.

Despite the impressive advancements in iris recognition research and

application, a few challenges continue to hide its full potential. These mainly include

issues related to image quality, occlusions, and changes in lighting conditions.

The problem of image quality, particularly in non-cooperative scenarios or

with noisy iris images, is a significant problem. Muda (2019) and Koc, Balla, & Uka

(2019) dive into this issue, studying how noise can lower the performance of iris

recognition systems and suggesting potential methods to improve these effects. Their

studies contribute in strengthening the robustness of iris recognition in practical

cases.

Another challenge is dealing with occlusions caused by eyelids and

eyelashes. Ongoing research is centered at developing robust segmentation

algorithms that can accurately distinguish the iris from these and other eye features,

and Uka, Roçi, & Koç's work (2017) is a considerable contribution in this field.

The evolution of iris recognition, from its theoretical origins to modern

implementations, is proof to the continuing technological growth and transformation

in this area. The challenges, such as managing noise and occlusions, show chances

for more exploration and development. As research proceeds, it is expected that the

reliability and robustness of iris recognition will further improve, establishing its

position as a leading biometric technology.

1.5Thesis purpose

This thesis starts with general information about biometrics and

its applications in everyday life. Then it continues with a brief explanation of how

iris recognition systems work. Next, the iris and its structure are explained in generic
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terms. Furthermore, some information regarding the iris recognition

technology, algorithms, and techniques used in the system is presented. This

thesis will cover the fundamental concepts regarding the stages of iris

recognition such as segmentation, normalization, encoding, matching, and so on.

Based on already published articles about iris recognition and codes generated in the

MATLAB software, many tests have been made. Different segmentations and

encodings will be compared. As an input, the IIT-Delhi iris dataset has been used.

1.6IIT Delhi Iris Database

The database used in this thesis is the IIT Delhi (Indian Institute of

Technology) Iris Database version 1.0. The database consists of 2240 images. There

are 224 people and each one of them has 10 images, 5 for the left eye and 5 for the

right eye. The images are taken using JIRIS, JPC1000 and digital CMOS camera in

an indoor area. Each image is 320 x 240 pixels in size and is saved in bitmap format.

The iris database folder is organised in 224 subfolders with 10 images each.

Figure 2.Example of iris image from IIT database (person 15, pic no.1)

CHAPTER 2

IRIS RECOGNITION STEPS

2.1 Segmentation
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Iris segmentation [1] is the automatic recognition of the iris and pupil

boundaries of an iris in an image with the intention of eliminating the regions that

surround it. This procedure allows to correctly and clearly retrieve characteristics

from the iris for identification purposes.

In simpler terms, the main goal of segmentation is to remove unnecessary

regions that include those beyond the iris (skin, eyelids, eyelashes) [2]. The level of

quality of the image determines the success of the segmentation. Different

approaches, like the integro-differential operators, such as Daugman's or Hough

Transform, can be used to isolate the iris [3][4][5]. The step of segmentation defines

the iris and pupil boundaries, which later get converted to an appropriate template

during the normalization step.

Figure 3.Example of iris image segmented (person 100, pic no.2)

2.1.1. Hough Transform

The Hough Transform is an important and commonly used approach in iris

recognition for the essential task of detecting the iris and pupil boundary, which is

part of the segmentation process. It is a method for extracting features that detects

simple patterns in an image like circles, lines, and ellipses. It begins by producing an

edge map that is based on the first derivatives of the pixel values and then

thresholding the resultant image. In such a way, it determines both of the circles

where the iris is placed in-between. The derivatives that lie in the horizontal direction

detect the eyelids, while the derivatives that lie in the vertical direction detect the iris

(Efford, 2000) (Pan & Xie, 2005).
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2.1.2. Noise Detection

Detecting eyelashes may interfere with iris recognition, that's why Kong and

Zhang developed an appropriate technique. Their technique categorizes eyelashes

into two main groups: separable eyelashes and multiple eyelashes. The separation is

essential because it impacts the technique used.

To detect the first group correctly, Kong and Zhang made use of 1D Gabor

filters. The basic idea is that when a separable eyelash is convoluted with the

Gaussian smoothing function, the output value is simply low. The detection of

eyelashes that belong to the second group, known as multiple eyelashes, requires a

different approach. Multiple eyelashes can be distinguished by their dense nature,

which makes individual detection difficult. To address this, Kong and Zhang

recommended using intensity variance. Their approach involves scanning a small

window across the image and computing the intensity variance within that area. If

the variance is less than a certain threshold, it is assumed that the center of the

window corresponds to a point on an eyelash. This technique takes advantage of the

fact that eyelashes have a uniform intensity that differs from other eye features.

2.1.3. Adding Noise

The variety of persons, the kind of camera and wavelength utilized for

image collection, the brightness of the background, and the shadows created by

eyelids and eyelashes can all have a direct effect on the efficacy of iris recognition.

Given these considerations, the overall quality of images in the dataset was

intentionally dropped by adding noise.  two sorts of noise could be used, in

particular: Gaussian noise and Salt-and-pepper noise.
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Figure 4.Example of iris image with 0 noise, 0.001 noise, 0.002 noise, 0.003 noise,

0.004 noise, 0.005 noise.

2.2 Normalization

After the first phase, we get a segmented image. The second phase in the

recognition process is to normalize the iris region. During normalization, the aim

is to obtain an extracted iris template that you can compare to other irises. The

primary objective of this stage is to correct dimensional discrepancies caused by a

variety of factors such as iris stretching due to pupil enlargement when light intensity

changes, the distance, changed head position, and movement of the eye inside the

cavity of the eye. Daugman's Rubber Sheet Model normalizes irises and creates

templates that can be compared to one another. The model is meant to

convert the two-dimensional structure of the iris to a simple rectangular format.

Daugman's Rubber Sheet Model operates by translating every point within the iris

into a set of polar coordinates - with a radius 'r' and an angle 'theta'.

(b)Figure 5. (a) iris region; (b) iris region mask after the process of normalization
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Figure 6.Person 100, Image 2 after Normalization process

2.3 Encoding

Encoding is the process of converting a person's individual iris patterns into a

digital representation that can then be properly archived and compared. Following

image acquisition and preprocessing, the unique shapes of the iris are transformed

into a biometric template via an encoding technique. The use of Gabor filters or

Daugman's 2D Gabor wavelets to acquire features of the iris is a typical encoding

approach.

This thesis employs three distinct encoding techniques. The first, E1, is

known to be the conventional one because it is the version that Daugman implements

in his approach. The phase space is split into four quadrants, each of which is fifty

percent different from the others. As illustrated in the image below, each of the

quadrants is [11], [01], [00], and [10]. Since every pixel can be represented with two

bits, this encoding produces a 20x480 matrix template of data on the phase.
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Figure 7.E1

As represented in the picture below, the second encoding method

E2, transforms the phase space into four quadrants, where every one is 33% different

compared to the neighboring quadrants. The generated template will consist of a

20x720 matrix.

Figure 8. E2

The third encoding, E3, quantizes the space into four quadrants, each of

which is 25% different compared to other neighboring quadrants and 100% different

from opposing quadrants, as seen below. The generated template is a 20x960 matrix.

Figure 9.E3

11



2.4 Matching

The template developed during the feature encoding step requires a matching

metric, that provides an evaluation of similarity among two iris templates. You can

compare the different or the same iris. The terms for these comparisons are

inter-class and intra-class respectively. Because of the masked information,

Hamming Distance was chosen to be the matching metric. Each of these cases is

expected to generate separate and individual values, allowing a choice to be reached

when determining if the two templates originate from the same iris or two different

irises. To produce a satisfactory matching process while accounting for noise or head

turns, the templates go through an 8-bit shifting operation in both the left and right

directions when computing the hamming distance.

i)
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CHAPTER 3

METHODOLOGY

In this study, combinations of different segmentations and encodings were

tested using the IIT Delhi Iris Database. These tests were made using a rectangular

template. The segmentations used are Masek’s algorithm (S1), a segmentation

suggested by Liu, Bowyer, Flynn (S2) and EPK_IRIS (S3). The encodings are

referred to as E1, E2 and E3. The experimental results were made by making a

combination of the segmentations and encodings mentioned previously, which

resulted in S1E1, S1E2, S1E3, S2E3, S3E1, S3E2, S3E3. Firstly 5 sets of 20 random

people were selected. Each person in the dataset has 5 images of the left eye and 5

images of the right eye. The first 13 persons in the dataset do not have images of

both their eyes, they only have 10 images of their left eye and that is the reason why

they have not been used in the experiments. After having the sets, new images are

created by applying variance values of Gaussian noise. Each set will have an initial

noise of 0, then the sets will have variance values of 0.001, 0.002, 0.003, 0.004 and

0.005. After running all the sets with different segmentation techniques and applying

to each set different Gaussian noise, the results were recorded in order to be

analyzed.

Below are several iris images demonstrating the improvement of

segmentation for a noise value of 0.004 over the set of 20 individuals, showing a

considerable reduction of the EER.
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Figure 10.Iris images: 05610 IIT Delhi after S1 (first),

S2 (second) and, S3 (third)

Figure 11.Iris images: 08910 IIT Delhi after S1 (first),

S2 (second) and, S3 (third)

Figure 12.Iris images: 10005 IIT Delhi after S1 (first), S2 (second) and, S3 (third)
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Figure 13. Iris images: 12004 IIT Delhi after S1 (first),

S2 (second) and, S3 (third)

Figure 14.Iris images: 20102 IIT Delhi after S1 (first), S2 (second) and, S3 (third)

During the experiments, the most important calculations included the

following: FAR, FRR, EER, INTER, INTRA, accuracy, DoF and dprime.

FAR stands for False Acceptance Rate. If the iris recognition system detects

an iris pattern that isn't associated with the specified user but provides access

regardless, this is considered a false acceptance. The FAR is frequently represented

as a percentage, a smaller percentage indicating a better precision system.

FAR is calculated as follows:

𝐹𝐴𝑅 𝑛( ) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑓𝑜𝑟 𝑎 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛

𝐹𝐴𝑅 = 1
𝑁

𝑛=1

𝑁

∑ 𝐹𝐴𝑅(𝑛)
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Equation 7. FAR

FRR stands for False Rejection Rate. A false rejection occurs when an

actual authorized person attempts to be recognized by the iris recognition system but

the system wrongly denies access. The FRR, similar to the FAR, is expressed as a

percentage, so a lower percentage suggests a more precise system.

FRR is calculated as follows:

𝐹𝑅𝑅 𝑛( ) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑓𝑜𝑟 𝑎 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛

𝐹𝑅𝑅 = 1
𝑁

𝑛=1

𝑁

∑ 𝐹𝑅𝑅(𝑛)

Equation 8. FRR

EER stands for Equal Error Rate. The Equal Error Rate is the intersection

point of False Acceptance Rate (FAR) and False Rejection Rate (FRR). In order to

find EER, the values of FAR nad FRR should be plotted. Their intersection will give

the EER.

An intra-class comparison is between different images of the same person's

iris. For example, comparing an iris image captured today with an image captured a

week ago for the same person would be an intra-class comparison.

An inter-class comparison is between images of different individuals' irises.

For example, comparing the iris image of person A with that of person B would be

an inter-class comparison.

They are calculated as follows:

Equation 1.𝑁
𝑖𝑛𝑡𝑟𝑎

= 𝑁∙ 𝑛!
𝑛−2( )!∙2!

Equation 2.𝑁
𝑖𝑛𝑡𝑒𝑟

= 𝑛2 • (𝑁−1)∙𝑁
2
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The next calculation is Accuracy. Accuracy is a measure of how well the

system correctly identifies or verifies individuals.

Accuracy is calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃∙𝑖𝑛𝑡𝑟𝑎+𝑇𝑁∙𝑖𝑛𝑡𝑒𝑟
𝑖𝑛𝑡𝑒𝑟+𝑖𝑛𝑡𝑟𝑎 ∙100%

Equation 9. Accuracy

True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN) are used to measure the performance of the iris system. The following

are the definitions for these terms:

1. True Positive (TP): An instance where the system correctly identifies or

verifies an authorized user.

2. True Negative (TN): An instance where the system correctly identifies an

unauthorized user and rejects their access.

3. False Positive (FP): An instance where the system incorrectly identifies or

verifies an unauthorized user (related to FAR).

4. False Negative (FN): An instance where the system incorrectly fails to

identify or verify an authorized user (related to FRR).

Figure 15.Performance metric parameter [15]
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The term "degree of freedom" refers to the variety or uniqueness that comes

from iris patterns. We are able to compute it using the mean and standard deviation

of the interclass values.

DoF is calculated as follows:

𝐷𝑂𝐹 =
µ

𝑖𝑛𝑡𝑒𝑟
(1−µ

𝑖𝑛𝑡𝑒𝑟
)

σ
𝑖𝑛𝑡𝑒𝑟
2

Equation 4. Degrees of Freedom

Decidability, known as d', is a measure of how distinct intra-class

comparisons are against inter-class comparisons. The higher the value of d', the more

successful the system is in separating inter-class and intra-class distributions.

Dprime is calculated as follows:

𝑑 𝑝𝑟𝑖𝑚𝑒 =  
|µ

𝑖𝑛𝑡𝑟𝑎
−µ

𝑖𝑛𝑡𝑒𝑟
|

σ
𝑖𝑛𝑡𝑟𝑎
2 +σ

𝑖𝑛𝑡𝑒𝑟
2

2

Equation 5. Decidability, D Prime

CHAPTER 4

RESULTS AND DISCUSSIONS

To compare the accuracy and Equal Error Rate (EER) of different

segmentation and encoding methods, analysis was conducted using random datasets

taken from the IIT Delhi database. Specifically, the S1, S2 and S3 segmentation

methods were examined, along with the E1, E2 and E3 encoding methods. Some

other comparisons were made regarding the Degree of Freedom and dprime of each

set. For every combination of segmentation and encoding, which consisted of 20

random persons, an addition was made to the experiments, which consisted in

changing the number of images per person. The iris photos utilized in these tests

were selected randomly, without any regard to their quality or suitability.

The findings from S1 E1, S1 E2, S1 E3, S2 E3, S3 E1, S3 E2 and S3 E3 can

also be visually represented. The provided tables present data related to the

performance of the iris system under various conditions. The next tables show the
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average accuracy, average EER and the standard deviation of each respectively for 5

sets of 20 individuals with Gaussian noise from 0 up to 0.005.

Table 1.Accuracy and EER for N=20, S1 E1

N=20 Noise Accuracy Acc stdev EER EER stdev

S1 E2

0 99.758504 0.1367247 8.6866717 4.4687005

0.001 99.736802 0.1561974 8.3446065 3.7271965

0.002 99.678088 0.1952347 9.6988145 4.2120246

0.003 99.662477 0.2349992 9.4924336 5.7358331

0.004 99.626358 0.20829 10.601351 3.4225824

0.005 99.590049 0.1991294 10.187962 3.2834874

Mean 99.675379 9.5019732

Stdev 0.0640946 0.8628167

Table 2.Accuracy and EER for N=20, S1 E2

19

N=20 Noise Accuracy Acc stdev EER EER stdev

S1 E1

0 98.4733245 0.146727378 20.49400425 2.234926844

0.001 98.39641766 0.042928108 23.7812828 1.163876849

0.002 98.40479384  0.043543476 25.88178923 2.042867032

0.003 98.40144143 0.043264731 26.72094352 0.454704505

0.004 98.40341883 0.046391015 27.58653592 1.521122628

0.005 98.40569678 0.039625215 27.50126158 1.417389082

Mean 98.41418217 25.32763621

Stdev 0.029160629 2.750668019

N=20 Noise Accuracy Acc stdev EER EER stdev

S1 E3

0 98.4266529 0.02447248 17.0036962 17.0036962

0.001 98.4166031 0.03948463 22.9377011 2.39391628

0.002 98.4245502 0.04298902 26.2026086 2.91430596

0.003 98.4188825 0.03079322 28.536958 3.44712072

0.004 98.4095061 0.02900466 31.961386 2.9486391



Table 3.Accuracy and EER for N=20, S1 E3

N=20 Noise Accuracy Acc stdev EER EER stdev

S2 E3

0 98.93795248 0.740164354 13.10751703 4.785939421

0.001 98.92675869 0.732313042 16.75500784 6.127458364

0.002 98.91552114 0.726417708 19.33203371 9.274968758

0.003 98.8885677 0.679381015 22.79503411 10.84770181

0.004 98.8689142 0.664394685 24.65662663 11.8265215

0.005 98.85834614 0.654195126 26.68107153 12.06758228

Mean 98.8993433916 20.55454847

Stdev 0.03233204511 5.1141066579

Table 4.Accuracy and EER for N=20, S2 E3

N=20 Noise Accuracy Acc stdev EER EER stdev

S3 E1

0 99.98575178 0.012265038 0.523238095 0.486279596

0.001 99.94675666 0.044238115 2.668952381 2.365732364

0.002 99.94825647 0.028971045 2.146095238 1.405449807

0.003 99.9167604 0.059486524 3.140190476 2.43818242

0.004 99.87476565 0.057576978 4.007238095 2.62481215

0.005 99.83727034 0.095026765 3.519619048 2.565391025

Mean 99.91826021666 2.6675555555

Stdev 0.054259230587 1.2340312358
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0.005 98.4144534 0.03157304 33.6959319 2.42259375

Mean 98.418441 26.7230469

Stdev 0.0063884 6.13868181



Table 5.Accuracy and EER for N=20, S3 E1

N=20 Noise Accuracy Acc stdev EER EER stdev

S3 E2

0 99.98226 0.0175924 0.3357143 0.397398

0.001 99.930906 0.0521331 2.9104762 2.4182704

0.002 99.933707 0.0603669 2.2447619 2.3105094

0.003 99.894491 0.0571395 2.6380952 2.0833755

0.004 99.873016 0.0606371 3.0085714 2.1083032

0.005 99.807656 0.0939756 3.9357143 2.9238895

Mean 99.9036726 2.51222221

Stdev 0.06010494 1.20464635

Table 6.Accuracy and EER for N=20, S3 E2

N=20 Noise Accuracy Acc stdev EER EER stdev

S3 E3

0 99.9820023 0.01509157 0.42914286 0.42586638

0.001 99.9212598 0.06115301 3.43466667 2.66299991

0.002 99.9183631 0.07613468 3.00466667 2.33369119

0.003 99.8839116 0.08604704 3.75390476 2.79523433

0.004 99.8668622 0.0704576 4.44257143 3.07389561

0.005 99.8046347 0.08385153 3.4750702 3.4750702

Mean 99.8961722 3.0900037

Stdev 0.05979488 1.38742464

Table 7.Accuracy and EER for N=20, S3 E3

The next tables will show the results of the average DoF, average dprime and

the standard deviations of each respectively for 5 sets of 20 random persons with

Gaussian noise varying form 0 up to 0.005 belonging to all the different

segmentations.
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N=20 Noise DoF DoF stdev dprime dprime stdev

S1 E1

0 31.90 6.49429027 0.687460843 0.094231149

0.001 33.76072133 8.416799838 0.65810833 0.101239242

0.002 35.08723982 8.968295581 0.613966704 0.082382968

0.003 36.22811334 9.407824464 0.541064297 0.029473693

0.004 37.97973659 10.42864829 0.494416401 0.003727185

0.005 39.18193939 10.63216619  0.532027622 0.046990418

Mean 3.57E+01 0.588

Stdev 2.69E+00 0.0769

Table 8.DoF and dprime EER for N=20, S1 E1

N=20 Noise DoF Dof stdev dprime Dprime stdev

S1 E2

0 2.97E+03 6.29E+02 1.878229 0.532197

0.001 3.53E+03 6.40E+02 1.6838214 0.4231756

0.002 3.90E+03 6.33E+02 1.6122425 0.5336824

0.003 4.14E+03 6.88E+02 1.4919151 0.3976494

0.004 4.33E+03 8.33E+02 1.3860648 0.3351931

0.005 4.76E+03 6.77E+02 1.3244176 0.3431989

Mean 3.94E+03 1.56

Stdev 6.29E+02 0.205

Table 9.DoF and dprime EER for N=20, S1 E2

N=20 Noise DoF Dof stdev dprime Dprime stdev

S1 E3

0 5.14E+01 3.40E+01 0.71784298 0.12096171

0.001 4.76E+01 2.65E+01 0.41250275 0.41250275

0.002 4.57E+01 2.50E+01 0.49869355 0.49869355
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0.003 4.31E+01 4.31E+01 0.41247165 0.41247165

0.004 4.33E+01 2.21E+01 NaN NaN

0.005 4.19E+01 2.00E+01 NaN NaN

Mean 4.55E+01 0.51

Stdev 3.54E+00 0.144

Table 10.DoF and dprime EER for N=20, S1 E3

N=20 Noise DoF DoF stdev dprime Dprime stdev

S2 E3

0 1.26E+03 1.68E+03 1.211210751 0.501165491

0.001 1.50E+03 2.00E+03 1.145794938 0.499322504

0.002 1.61E+03 2.17E+03 0.897889183 0.600644165

0.003 1.87E+03 2.49E+03 0.936090318 0.508767818

0.004 1.84E+03 2.47E+03 0.890831161 0.507764577

0.005 2.01E+03 2.73E+03 1.142744086 0.077266735

Mean 1.68E+03 1.04

Stdev 2.77E+02 0.144

Table 11.DoF and dprime EER for N=20, S2 E3

N=20 Noise DoF DoF stdev dprime dprime stdev

S3

E1

0
1.64E+03

2.03E+02 3.810215172 0.636701681

0.001 1.86E+03 2.05E+02 2.883032514 0.879313995

0.002 1.96E+03 2.43E+02 2.677741502 0.629896536

0.003 2.01E+03 2.19E+02 2.308349775 0.643527106

0.004 2.09E+03 2.83E+02 2.118575391 0.532085404

0.005 2.10E+03 3.72E+02 1.961910354 0.417491571

Mean 1.94E+03 2.63

Stdev 1.73E+02 0.674

Table 12.DoF and dprime EER for N=20, S3 E1
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N=20 Noise DoF DoF stdev dprime dprime stdev

S3 E2

0 3.31E+03 3.42E+02 3.5474745 0.7102178

0.001 3.79E+03 2.87E+02 2.8912502 0.8671693

0.002 4.07E+03 3.37E+02 2.5035758 0.7427778

0.003 4.23E+03 3.21E+02 2.1323711 0.5382198

0.004 4.39E+03 4.73E+02 1.8963718 0.3721631

0.005 4.40E+03 3.55E+02 1.7982807 0.449556

Mean 4.03E+03 2.46

Stdev 4.20E+02 0.668

Table 13.DoF and dprime EER for N=20, S3 E2

N=20 Noise DoF DoF stdev dprime dprime stdev

S3 E3

0
1.72E+03

1.25E+02 3.79919764 0.70633785

0.001 1.91E+03 1.56E+02 2.83513944 1.01696982

0.002 2.03E+03 1.89E+02 2.56613687 0.90152172

0.003 2.15E+03 3.25E+02 2.21219782 0.6582676

0.004 2.28E+03 3.10E+02 1.96739851 0.46178786

0.005 2.22E+03 3.78E+02 1.80896259 0.42648144

Mean 2.05E+03 2.531505478

Stdev 2.10E+02 0.7270046231

Table 14.DoF and dprime EER for N=20, S3 E3

As mentioned previously, four key metrics are examined - Accuracy, Equal

Error Rate (EER), Degree of Freedom (DoF), and dprime. These results come from

different system combinations denoted as S1 E1, S1 E2, S1 E3, S2 E3, S3 E1, S3 E2,

and S3 E3.
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Noise: This is the amount of unwanted disturbance in the data that can

interfere with the recognition process. In this context, it is seen that as noise levels

increase, it negatively affects the other metrics, causing a decrease in system

performance.

Accuracy: This metric represents the percentage of correct iris recognition

cases. The higher the accuracy, the more reliable the system. Across all the

combinations, accuracy generally decreases as the noise increases, which is expected

as higher noise levels can faint the unique iris patterns the system is trying to detect.

However, the degree of impact differs across the segmentations. The combinations

S3 E1, S3 E2, and S3 E3 appear the most robust, with average accuracies around

99.9% despite increased noise. On the other hand, S1 E1, S1 E3, and S2 E3 have

lower average accuracies, ranging from about 98.4% to 98.9%.

Equal Error Rate (EER): The EER is the point where the rates of False

Acceptance and False Rejection are equal. A lower EER is wanted as it indicates

fewer overall errors. Here again, S3 E1, S3 E2, and S3 E3 perform the best with

average EERs between 2.5 and 3.1, despite increased noise. This suggests that these

combinations provide a good balance between avoiding errors. In contrast, S1 E1, S1

E2, S1 E3, and S2 E3 combinations have higher average EERs, indicating less

optimal performance.

Degree of Freedom (DoF): DoF represents the uniqueness in the system. In

these results, the highest DoF values occur in configurations S1 E2, S3 E2, and S3

E3, implying these systems might have the most complex setups.

dprime: This is a measure of statistical effect size - evaluates the separation of

inter class distribution and intra class distribution. A higher dprime value indicates a

bigger separation, meaning a more correct recognition. Generally, as noise increases,

the dprime value decreases, reflecting that the system's ability to distinguish between

different irises deteriorates with the introduction of more noise. This trend is

observed across all combinations.

Acc stdev (Standard Deviation of Accuracy): This measures the amount of

variation or dispersion from the average accuracy. A low standard deviation indicates

that the accuracy values tend to be close to the mean (average) accuracy value, while
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a high standard deviation indicates that the accuracy values are spread out over a

wider range.

EER stdev (Standard Deviation of EER): Similar to Acc stdev, this measures

the variation or dispersion from the average EER. A low standard deviation indicates

that the EERs are close to the mean EER, while a high standard deviation indicates

they are spread out over a wider range.

DoF stdev: This value represents the standard deviation of the Degree of

Freedom. A smaller standard deviation indicates that the DoF values are closely

clustered around the mean (average) DoF value, meaning the system's DoF is

relatively consistent under different conditions. A larger standard deviation indicates

that the DoF values are spread out over a larger range, suggesting the system's DoF

varies more significantly under different conditions.

dprime stdev: This value represents the standard deviation of the d-prime

values. Similarly, a smaller standard deviation here suggests that the system's

d-prime is consistent under different conditions, while a larger standard deviation

indicates more variability in the d-prime.

Figure 16. Histogram for S1 segmentation N=20, n=10
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Figure 17. Histogram for S2 segmentation N=20, n=10

Figure 18. Histogram for S3 segmentation N=20, n=10

Figures 16, 17 and 18 illustrates three different histograms for 20 individuals

from the IIT Delhi iris database using 3 segmentations, S1, S2 and S3. Figure

16 represents the resulting histogram from S1. Figure 17 represents the
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resulting histogram from S2 and Figure 18 represents the resulting histogram from

S3. The histograms show that the inter-class and intra-classes extend over each other.

The area of overlap within the S2 segmentation method is less than what is observed

in the S1 method, yet it exceeds that of the S3 method. Consequently, in terms of

precision, the S3 segmentation outperforms the other segmentations.

Figure 19. Accuracy for all segmentations, N=20

Figure 19 shows the accuracy of the system under different scenarios (S1 E1,

S1 E2, S1 E3, S2 E3, S3 E1, S3 E2, S3 E3) and different noise levels (from 0 to

0.005). The accuracy of the system generally decreases as the noise level increases,

in all scenarios. This means the system becomes less accurate as the environment

becomes noisier, which is a common trend in many systems. At a glance, it seems

that the scenarios S3 E1, S3 E2, and S3 E3 consistently perform better (have higher

accuracy) compared to other scenarios across all noise levels. The S1 E1, S1 E3, and

S2 E3 scenarios seem to have the lowest accuracy across all noise levels. The
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scenarios S3 E1, S3 E2, and S3 E3 seem to be more robust to noise compared to

other scenarios. They maintain relatively high accuracy even as the noise level

increases. S1 E1, S1 E3, and S2 E3 show fairly consistent accuracy scores across

different noise levels. Despite the presence of noise, the accuracy doesn't seem to

decrease significantly.

Figure 20. EER and Accuracy for N=20, n=10, noise=0

Figure 20 shows how the Equal Error Rate changes for the same set of

individuals using different segmentations and 0 Gaussian noise. By looking at the

results it can be said that:

For S1E1, the accuracy is high at 98.47% but the EER is also relatively high

at 20.49%. This means that although the model is correctly classifying a high

percentage of instances, the rate at which it makes false positive and false negative

errors is quite high.

For S1E2, it can be seen an improvement in both accuracy and EER. The

accuracy increased to 99.76% and the EER dropped to 8.69%. This suggests that the

model performs significantly better under these conditions than it did for S1E1.
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S1E3 has a slight drop in accuracy to 98.43% and an increase in EER to

17.00%, suggesting that performance is worse here than in S1E2, but slightly worse

than S1E1.

For S2E3, the accuracy improves slightly to 98.94% and the EER decreases

to 13.11%. It appears to perform better than all the S1 conditions.

Finally, the S3 combinations (S3E1, S3E2, and S3E3) all have extremely high

accuracy, nearly 100%, and extremely low EER (less than 1%), suggesting that the

system performs very well under these conditions.

So, based on the results the system appears to perform best under the

conditions represented by S3 (S3E1, S3E2, and S3E3), with nearly perfect accuracy

and very low error rates. Performance under the S1 and S2 conditions varies but is

generally worse, with S1E2 being the best among them.

Figure 21. Degree of Freedom for S1 E3, for noise levels 0, 0.001, 0.002, 0.003,

0.004, 0.005

30



Figure 22. Degree of Freedom for S2 E3, for noise levels 0, 0.001, 0.002, 0.003,

0.004, 0.005

Figure 23. Degree of Freedom for S2 E3, for noise levels 0, 0.001, 0.002, 0.003,

0.004, 0.005

Figure 21, Figure 22 and Figure 23 show how the Degree of Freedom

changes for different levels of Gaussian noise. For S1E3, as noise increases, the

mean value generally decreases, going from 51.4 at 0 noise to 41.9 at 0.005 noise.

This suggests that increasing the noise level decreases the mean value for S1E3. The
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standard deviation also generally decreases, suggesting less inconsistency in

measurements as the noise increases.

For S2E3, both the mean and standard deviation generally increase as noise

levels increase, indicating that both the average value and the inconsistency in

measurements increases with increasing noise.

For S3E3, similar to S2E3, both the mean and standard deviation generally

increase as noise levels increase. The mean increases from 1720 at 0 noise to 2220 at

0.005 noise, and standard deviation increases from 125 at 0 noise to 378 at 0.005

noise.

These results suggest that noise influences the measurements differently

depending on whether you're looking at S1E3, S2E3, or S3E3. This could suggest

that S1E3 is more robust to noise, while S2E3 and S3E3 are more sensitive.

Figure 24. EER of 0.9543for S3, N= 50, n=10
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Figure 25. Histogram for N=50, n=10 for S3 segmentation

Figure 26. Inter-class and Intra-class distributions for N=50, n=10 for S3

segmentation

Figure 24, Figure 25 and Figure 26 show graphs related to a group of 50

people and 10 images per person using S3. All the graphs prove the points mentioned
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previously on the paper regarding S3. Figure 24 shows an EER of 0.9543%. An EER

of 0.9543% means that the iris recognition system will, on average, falsely accept

unauthorized individuals and falsely reject authorized individuals approximately

0.9543% of the time. In some contexts, a less than 1% error rate might be considered

quite good. For example, if this system was being used for a generic access control in

a relatively low-security environment, this error rate could be acceptable. However,

in high-security environments, such as airports, nuclear facilities, military

installations, etc., even a 1% error rate could be considered too high because the

consequences of a false acceptance could be severe.

Figure 25 is the respective histogram of S3 segmentation for 50 people using

10 images per person.

Figure 25 show the Inter-class and Intra class distributions for N = 50 and

n = 10. Even though an overlap can be distinguished between the two distributions,

S3 still performs better than the other segmentations.

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

To summarize, the S3 E1, S3 E2, and S3 E3 combinations show superior

performance in terms of accuracy and EER, maintaining high performance even

under increasing noise levels. However, their higher DoF values suggest more

complex system settings, and while they show good dprime, this ability does

decrease as noise increases. Higher degrees of freedom reported in these
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combinations may have played a role in their better performance by

letting them accommodate more complicated patterns.

On the other hand, the S1 E1, S1 E3, and S2 E3 combinations, while still

delivering a quite high level of accuracy, show higher EERs, indicating less optimal

performance. The dprime of these configurations also decreases under noise.

The selection between these combinations would depend on the specific use

case, the acceptable errors, and the expected level of noise in the system's operating

environment. The results suggest that if high accuracy and lower EER are essential

and a complex system can be appropriate, then configurations like S3 E1, S3 E2, or

S3 E3 would be recommended. On the other hand, if the use case allows for a

slightly lower level of accuracy and a higher EER, then combinations like S1 E1, S1

E2, S1 E3, or S2 E3 might be considered.

5.2 Recommendations for future research
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Considering that noise contributes significantly to the decrease of iris

recognition performance, researching improved noise-reduction techniques could be

very helpful. It would also be valuable to explore strategies for improving the

system's ability to adapt to various types or amounts of noise.

The observed relationship between system performance and complexity, as

shown by DoF, implies that future research might look into techniques to maximize

this relationship. This might consist of researching approaches that preserve high

accuracy and low EER while reducing system complexity.

Because the ability to distinguish among various irises is essential in iris

recognition, additional research could focus on creating ways to improve

differentiability, especially in high-noise environments. Studying why particular

setups show more drop in dprime as you add noise could yield insights on how to

solve this problem.

Considering EER is a balance of FAR and FRR, comprehending how

different configurations affect this balance may be beneficial. Further research could

concentrate on establishing techniques that improve this equilibrium, resulting in

more reliable and effective systems.

Lastly, performing additional studies in a wider range of real-world situations

helps reinforce these conclusions and improve overall adaptation. This might imply

testing these systems using various iris datasets, in different environments, or with

different hardware specifications.
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APPENDIX

Custom code to create histogram of inter and intra class distributions
% Histogram calculations
[binsInter, edgesInter] = histcounts(inter, 100);
[binsIntra, edgesIntra] = histcounts(intra, 100);

% Average edges for plotting
xInter = mean([edgesInter(1:end-1); edgesInter(2:end)]);
xIntra = mean([edgesIntra(1:end-1); edgesIntra(2:end)]);

figure(1);
yyaxis left
stairs(xInter, binsInter, 'blue')
ylabel('Interclass')

hold on
yyaxis right
stairs(xIntra, binsIntra, 'red')
ylabel('Intraclass')

xlabel('Haming Distance')
title('Interclass and Intraclass distributions')

% set the x-axis limit
xlim([0 1])

% Save the figure
saveas(gcf,'figure1.png')
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