
CODE TRANSLATION OF SINC-ZOOMING APPLICATION FROM C/C++ TO

PURE C LANGUAGE: A COMPUTER ENGINEERING EXPLORATION

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

GRISILDA DODA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF THE MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JULY, 2023

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Code translation of sinc-

zooming application from C/C++ to pure C language: A computer engineering

exploration” and that in our opinion it is fully adequate, in scope and quality, as a

thesis for the degree of Master of Science.

 Dr. Arban Uka

Head of Department

 Date:

Examining Committee Members:

Dr. Arban Uka (Computer Engineering) ________________

Dr. Carlo Ciulla (Computer Engineering) ________________

Dr. Florenc Skuka (Computer Engineering) ________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name Surname: Grisilda Doda

Signature: ______________

iii

ABSTRACT

CODE TRANSLATION OF SINC-ZOOMING APPLICATION FROM

PURE C LANGUAGE: A COMPUTER ENGINEERING

EXPLORATION

Doda, Grisilda

M.Sc., Department of Computer Engineering

Supervisor: Dr. Carlo Ciulla

This thesis presents a computer engineering exploration of the code translation

process of a sinc-zooming application from C/C++ to pure C language. Sinc zooming

algorithm is a common technique used in signal processing and image resizing

applications. The original code is written in C/C ++ which includes object-oriented

programming features such as classes. For the method part we have used sinc-zoom

theory and translated the original code that involves removing object-oriented features

and converting to pure C language. The challenges encountered during this process

will be shown primarly related to the differences between these two programing

languages and steps taken to successfully translate it. As a result, we generate the same

exact images from different percentages of zoom-in, zoom-out and no zoom from both

codes. This thesis documents the translation process and analyzes the resulting code

by trying to reach the goal of generating the same exact results from both of the codes.

Keywords: Sinc-zooming, C/C++, pure C programming, translated code, image

processing

iv

ABSTRAKT

PËRKTHIMI I KODIT TË NJË APLIKACIONI NË NJË ZMADHIM

TË SIKRONIZUAR NGA GJUHA C/C++ NË C: NJË EKSPLORIM I

INXHINIERISË KOMPJUTERIKE

Doda, Grisilda

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Dr. Carlo Ciulla

Kjo tezë paraqet një eksplorim të inxhinierisë kompjuterike të proçesit të

përkthimit të kodit të një aplikacioni zmadhimi te sinkronizuar nga C/C ++ në gjuhën

e pastër C. Algoritmi i zmadhimit të sinkronizuar është një teknikë e zakonshme që

përdoret në përpunimin e sinjalit dhe në aplikacionet e ndryshimit të madhësisë së

imazhit. Kodi original është i shkruar në C/C ++ i cili përfshin veçori programimi te

orientuar nga objekti si klasat. Për pjesën e metodës ne kemi përkthyer kodin që

përfshin heqjen e veçorive te orientuara nga objekti dhe konvertimin në gjuhen C.

Sfidat e hasura gjatë këtij proçesi do të shfaqen kryesisht në lidhje me ndryshimet

midis këtyre dy gjuhëve programuese dhe hapat e ndërmarrë për ta përkthyer me

sukses atë. Si rezultat, ne gjenrojmë të njëjtat imazhe të sakta nga përqindje të

ndryshme zmadhimi nga të dyja kodet. Kjo tezë dokumenton proçesin e përkthimit dhe

analizon kodin duke u përpjekur për të gjeneruar te njëjtat imazhe nga të dyja kodet.

Fjalët kyçe: Zmadhim i sinkronizuar, C/C++, gjuha C e pastër, kodi i përkthyer,

proçesim imazh

v

ACKNOWLEDGEMENTS

This thesis contains materials that are sought to be published in a Journal paper.

Hence, this thesis cannot be published because it intersects with the current manuscript

submission.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAKT .. iv

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Sinc-zooming 1

1.2 Processing and analyzing results 1

1.3 Translating the application from C/C++ into pure C programing language 2

1.4 Organization of the thesis 3

CHAPTER 2 .. 4

LITERATURE REVIEW... 4

2.1 What is image interpolation? 4

2.2 Optical vs Digital zooming 6

2.2.1. Different zooming methods ... 8

CHAPTER 3 .. 19

METHODOLOGY ... 19

3.1 Methods ... 19

vii

 3.1.1 Sinc-zoom theory 19

3.1.2 Code Translation from C/C++ to pure C programming language 21

CHAPTER 4 .. 26

RESULTS AND DISCUSSIONS .. 26

4.1 Sample Cases Study Results.. 26

4.2 Sample Results Obtained Using Theoretical Images 29

4.3 Sample Results Obtained Using a Magnetic Resonance Image 35

 35

4.4 Results and Discussion of the Theory 42

CHAPTER 5 .. 60

CONCLUSIONS .. 60

5.1 Conclusions 60

viii

LIST OF TABLES

Table 1. Comparison table……………………………………………………..……. 7

Table 2. Image 120x120……………………………………………………………..56

Table 3. Image 128x128………………………………………………………….….57

Table 4. Image 139x176…………………………………………………………..…58

Table 5. Image 234x119………………………………………………………...…...59

ix

LIST OF FIGURES

Figure 1.Visual comparison of different interpolation methods. (a) Nearest neighbor.

(b) Bilinear. (c) Bicubic. (d) Original HR image (4x) Picture is found at ‘Super-

resolution via adaptive combination of color channels’ [5] ... 5

Figure 2.Sinc Function. Figure by Georg-Johann (2010) [7] 6

Figure 3.Removing unnecessary libraries .. 21

Figure 4. Pointers in C++ ... 22

Figure 5.Libraries in C and no ‘public’ keyword ... 22

Figure 6.Classes, pointers and declaring functions inside the class 23

Figure 7. Body of method allocateData() and method save() 24

Figure 8. Output in C++ ... 25

Figure 9. Output in C ... 25

Figure 10. Sample images…………………………………………..……..………...26

Figure 11. Case 1……………………..…………………………….………………..27

Figure 12. Case 2………………………………………………....………………….28

Figure 13. Preliminary analysis…………………………..………………………….30

Figure 14. Non-Adaptive Sinc-Zoom-in………………………………………...…..32

Figure 15. Non-Adaptive Sinc-Zoom-out ……...……………………………………34

Figure 16. Sinc-based zooming on Magnetic Resonance Angiography images …….34

Figure 17. Non-Adaptive Sinc-Zoom-in ……………………………………..……..36

Figure 18. Non-Adaptive Sinc-Zoom-out …………………………..………………38

x

Figure 19. Adaptive Sinc-Zoom-in………………………….……………………….40

Figure 20. Adaptive Sinc-Zoom-out ………………………………….……………..42

Figure 21. Zoom-in images of C/C++ and pure C………………..…………….……44

Figure 22. Zoom-out images generated from C/C++ and pure C …….……….……..46

Figure 23. Zoom-in images…………...………………………….……………….….51

Figure 24. Zoom-out images………………………………..…………………..……55

1

CHAPTER 1

INTRODUCTION

1.1 Sinc-zooming

On this thesis you will be introduced with image interpolation which is also

known as image zooming. We will list the interpolation techniques and show where

they are used and also how they are grouped and their formulas. We will also see

zooming in optical and digital and have a comparison of both. We will have different

zooming methods where authors have done their research and have showed their own

proposed method by comparing and trying to obtain better results than with the

existing ones. We will translate a sinc-zooming application from C/C++ to pure C

programing language and we will set the goal to achieve the same generated images

from both codes.

The challenges encountered during this process will be shown that will be

primarly related to the diferences between these two programming languages and the

steps taken to overcome challenges and to successfully translate it. This thesis

documents the translation process and analyzing the resulting code in terms of

performance, accuracy and maintanability by trying to reach the goal of generating the

same excact results from both of the codes.

1.2 Processing and analyzing results

In this thesis different zooming methods will be shown and compared with

other existing methods and will be analyed into showing which one is better and what

qualities do they have. Some of our objectives are:

1. Having a general understanding of image interpolation and how it is

grouped.

2

2. Having general information of optical and digital zooming and where

are they used.

3. Having different zooming methods being compared with other existing

ones and generating images and results.

4. Changes being made from a C/C++ code into a pure C programming

language.

5. Generating the same images from both codes.

6. Analyzing and explaining the images that were obtained.

The main objective for this work is to understand every concept that I have

mentioned above when you finish reading this thesis. After having general information

of sinc zooming tou will see the practical part which is translating the code and

generating images.

1.3 Translating the application from C/C++ into pure C

programing language

In this section the practical part of the thesis is translating the sinc-zooming

application from C/C++ into pure C programming language. After trasnalting the code,

we will try to generate zoomed images from both codes and the goal is to obtain the

same images. Images are zoomed-in, zoomed-out and no-zoom. Every percentage of

the zoom has its own bandwith and sampling rate. ImageJ was used for making the

comparison of images generated from code in C/C++ with images generated from the

translated code in C.

3

1.4 Organization of the thesis

This research paper is divided into 5 chapters. The organization of the chapters

are done as followed:

Starting with Chapter 1, sinc-zooming, processing, and analyzing results,

translating the application from C/C++ into pure C programming language. In Chapter

1, statement of the problem, the objective that thesis has, and scope of work is

presented. Going on with Chapter 2 by including the literature review, most of it is

about different zooming methods from different authors comparing their proposed

method with the existing ones and analyzing which one is more convenient for the

zoomed images. Also, we have shown general information of image interpolation,

which are the techniques and optical vs digital zooming. Chapter 3 consists of the

methodology by using the sinc theory and translating the code into pure C. In Chapter

4, we have results and discussion where we show results of two sample case studies,

sample results obtained using theoretical and a magnetic resonance image and results

generated from the translated code being compared with the images generated from

the original code. In Chapter 5 we have a conclusion.

4

CHAPTER 2

LITERATURE REVIEW

2.1 What is image interpolation?

Image interpolation is when you resize or distort an image from one pixel grid

to another [1]. Image resizing is needed when you want to increase or decrease the

number of pixels like zooming or shrinking an image and that can occur under a wide

variety of scenarios. Even when it is performed the same image resizing or remapping,

results depend on the interpolation algorithm. Each time the interpolation is performed,

the image will lose quality. It is done by using known data for estimating values at

unknown points. The basic idea of this concept is by first reconstructing a ‘continuous’

image from the discrete input image and sampling the image into the grid of the output

image [2]. Non-adaptive method includes a variety of algorithms (Figure 1) which are

[3]:

i. Nearest neighbor is the simplest technique that decides the value of the

intensity from the closest pixel to the specified input coordinates and

assigning the value to the coordinates of the output. The interpolation

kernel of each direction is: u(x) = {[(
0, | 𝑥| > 0.5

1, | 𝑥 | > 0.5
)]}

Where x is the distance between the interpolating point and grid point.

ii. Bilinear interpolation uses a weighted average of four neighbourhood

pixels for calculating the final interpolated value. This technique

generated better results than nearest neighbour interpolation and the time

that it takes for computing is less than bicubic interpolation. The

interpolation kernel is:

u(x) = {[(
0, | 𝑥| > 1

1 − | 𝑥 , | 𝑥 | < 1
)]}

5

iii. Bicubic image interpolation is the most effective of non-adaptive

techniques. It uses a weighted average of sixteen pixels for calculating

the final interpolated value. The interpolation kernel is [4]:

 u(x) = {[(
(𝑎+2)|x|3 − (𝑎+3)|𝑥|2 + 1, 0<= | 𝑥| > 1

𝑎|x|3 − 5𝑎|𝑥|2 + 8𝑎| 𝑥 | − 4𝑎 , 1<=| 𝑥 | < 2
)]}

where a is the free variable.

Figure 1.Visual comparison of different interpolation methods. (a) Nearest neighbor.

(b) Bilinear. (c) Bicubic. (d) Original HR image (4x) Picture is found at ‘Super-

resolution via adaptive combination of color channels’ [5]

iv. Sinc function

Sinc function (Figure 2) or else known as sine function is a symmetric function

denoted by sinc(x) [6]. It is used in mathematics, physics and engineering and

it has two definitions:

➢ Unnormalized sinc function which is usually used in mathematics:

Sinc(x) =
sin x

x

➢ Normalized sinc function which is used in signal processing that

includes radio transmission and sound recording:

 Sinc(x) =
sin 𝛑 x

𝛑x

6

The difference that stands between these two is in the scaling of the independent

variable which is on the x-axis by a factor of π. The function has a limit of value 1.

Figure 2.Sinc Function. Figure by Georg-Johann (2010) [7]

2.2 Optical vs Digital zooming

Sinc zooming is a digital signal processing technique used in image and video

processing to enlarge or zoom into an image or video while minimizing the loss of

quality and sharpness. In traditional image and video zooming, when an image is

enlarged, the software simply duplicates pixels, resulting in a blurry and pixelated

image. Sinc zooming uses a mathematical function called the sinc function to

interpolate new pixels based on the existing ones, resulting in a smoother and more

accurate zoomed-in image. It is often used in applications such as video editing, digital

photography, and medical imaging, where high-quality zooming is crucial for accurate

analysis and diagnosis.

The concept of zooming is for enlarging an image so that the details can be

clearer and more visible. The applications that zooming has are wide by using it on a

7

camera lens and ranging to zooming an image on the internet. Zooming once was

referred to in photography as using zoom lenses to change the distance that it has

between the camera and the subject. With the introduction of digital technology, the

concept of zooming has changed and has become more complicated [8].

 Optical Zoom Digital Zoom

About For wanting to get a

zoomed view of a

subject while taking a

picture with a camera,

without moving

pgysically close to the

object, optical zoom is

used from

photographers.

Digital zooming being

part of the digital camera,

helps croping the entire

image and then on a

digital way enlarging the

size of the object that is

needed for zooming on.

Function The function of the

ratio of a digital camera

is for measuring how

much the lens zoom

into the subjects for

making them appear

closer. The picture is

enlarged, but at the

same time the

resolution and

sharpness of the image

is kept high.

The function of digital

zoom is for croping the

image on an area that is

centered within the same

ratio as the original image

and having results back

with the same pixel

values as the original.

While using this method

we crop, by reducing the

resolution and the quality.

Usage Whenever we want to

get a closer view of an

object while taking a

picture without

reducing teh quality of

Digital zoom is used from

the user to get closer the

object whenever the

photographer has to be

8

the entire image of the

subject, optical zoom

comes in hand.

discrete about taking

certain pictures.

Resolution and

image quality

Optical zoom zooms

the image or the object

within a specific range,

so there there will be no

relation bewtween

optical zoom and the

resolution of the image.

With digital zoom a

portio of the picture is

cropped and then it is

enlarged back to its

original size. After that

image quality will be

reduced by comparing it

with the original one.

Table 1. Comparison table [9].

2.2.1. Different zooming methods

According to the research reported in [10], it is shown a technique used to zoom

images based on vector quantization approximation. This technique is used mainly for

compressing data called approximation vector. Their idea is to apply this technique to

the process of zooming the images, by making sure to have a better zoomed image

with all the details. The proposed method wants to achieve improving the quality of

the zoomed images using an advanced technique of vector. The paper starts by

analyzing the challenges during zooming images and shows the existing methods of

zooming images. This method comes with an algorithm to determine quantization

vectors and to minimize the loss of data during the zooming process. This method

comes with an algorithm to determine quantization vectors and to minimize the loss of

data during the zooming process.

It starts by using a vectorization process to separate the image into small blocks.

These blocks are later presented with their respective vectors. A certain base of vectors

is used to represent these small blocks. Then an approximate vectorization process is

used for finding the most nearby vectors with the image blocks. This process uses a

9

form of compressing data, replacing the original vectors of the blocks with their

vectors. This creates a form of concentration of data, by easing the zooming process

of the image.

With the experiments that are done with different images, authors demonstrate

that the proposed method offers improved results compared with the existing methods

of zooming images. The quality of the zoomed images generated from this method is

approximately the same of the original images, by securing the details and avoiding

the loss of data. After the approximated vectors, a specific algorithm is used for

improving the quality of the zoomed image. This algorithm works in an iterative way,

and it is seen through the approximated vectors. It performs operations for rebuilding

the blocks of the original images, by using the data of the approximate vectors found.

Authors at the end, give conclusions for the perspective for work on the future in the

field of zooming images and improving the existing methods.

According to another author [11] a representation is given of a method of

discrete scaling based on the operator theory. Authors show a new method that is based

on using discrete operators for zooming in and out images by keeping the data and the

main characteristics of the original image. They present an innovative method that

allows zooming signals in a discrete way by using a matrix acquisition. It begins with

examining the existing methods of discrete zooming signals and the challenges that

are encountered. After identifying the challenges, a new method is proposed that used

the operator theory for zooming signals in a discrete way. The proposed method is

about the matrix acquisition using a transforming matrix. This matrix acquisition

allows zooming the signal using specific mathematical operations that guarantee good

results in the aspect of the quality of the zoomed signal.

On the paper a mathematical model is used to describe the acquisition

operations for it to describe changes on the structure and image details. After this, a

discrete algorithm is used for implementing the acquisition using the operators

identified on the first step. The results show the advantages of the proposed method in

comparison with other existing methods of the acquisition of images. The method

proposed provides a suitable result on keeping the data of the original image and

keeping the most necessary characteristics of the image.

10

Through these experiments and other analyses performed, authors demonstrate

that the proposed method offers other advantages comparing it with other existing

methods of discrete zooming images. The proposed method assures correct zooming

and good quality of the zoomed image using a good mathematical base. The paper

presents a contribution on the field of image processing and offers an appropriate

algorithm needed to complete a discrete acquisition of the images with a high quality.

On their results, authors show that their method offers an improvement on the

quality of the zoomed images comparing it with other techniques. Usage of the

approximate vector allows keeping more details of the original image, producing a

better and more clear result for the human eye. Also, authors evaluate the sensitivity

of their method for most of the details, using specific indexes of their performance.

Compared with the existing techniques, their method shows a better sensibility,

keeping more precisely the structures and details of the original image.

Concerning the duration of the process, authors show that their method is

effective and can be used in real time. Using the techniques of the approximate vector

allows a quicker processing of the images, offering a practical solution for zooming

images on different applications. This paper presents a contribution to the field of

image processing and offers an efficient method for zooming images with high quality

and a low duration of the processing. For summarizing the paper, it describes the main

steps of the method and the results achieved compared with the other existing methods.

Research reported in [12] presents an algorithm completely automatic for

adaptive zooming for the colored images. On the paper, authors review the challenges

of zooming colored images and the disadvantages of the existing methods. Then they

present an appropriate algorithm that uses a combination of the techniques that

determine zooming and analyzing the context for zooming in an automatic way the

colored images on a single scan.

The proposed method uses specialized algorithms to identify the details and the

context of the images and to define what parts of the image need zooming. The usage

of the adaptive techniques and analyzing the context assures that the algorithm

determines the necessary zooming for every part of the image in an automatic way. On

their paper authors present a new method for an adaptive zooming of these colored

11

images. The proposed method works on a single scan, and it is completely automatic,

making it suitable for different applications that are looking for a quick and efficient

zoom.

An analysis of the image is used for discovering the main characteristics of the

image and identifying which are the parts that need zooming. This preliminary

research makes the usage of the spectral and topological data of the image to define

the details and the boundaries of different objects. After that, a specific algorithm is

used for identifying the key factors that need to be considered for zooming the image.

This algorithm comes from the analysis done and uses filtering and evaluating

techniques to determine the most important factors for every pixel of the image. Also,

an adaptive zooming process is used for fixing and adapting the fixing levels for every

pixel of the image. This is done by using the values that are determined from the

algorithm by applying a transformation that it needs for achieving the final zoom of

the image.

At the end, authors present their results by comparing their method with those

existing methods. They use a set of data images for testing the performance of their

method in some respects like the image quality, precision, and duration of the process.

Authors value the performance of their method by analyzing the criteria of the image

quality, including the level of the details, contrast, visual perception, and sensitivity

from the image deformation.

On their results, authors show that the proposed algorithm offers a clear

improvement on the zoomed image quality compared with other existing techniques.

Their method of adaptive zoom works in a single scan and offers a good compromise

between creating details and not losing the contrast of the image. This results in

zoomed images with more details and better visual perception. Also, authors display

that their method is efficient from the perspective of the duration of processing. Using

a single scan allows the algorithm to work in a more efficient way, by reducing the

time needed to zoom the images.

Based on the research reported in [13], it shows a method of zooming images

by using directional cubic convolution interpolation. The method that they propose

12

secures a way for increasing the resolution of the image by not losing details and

minimizing the effects of changing the view of the zoomed image.

On the paper, authors explain the problem of zooming images and the

challenges of the interpolation existing methods. They display a new method that

combines cubic convolution with analyzing the direction of the text of the image, this

technique allows precise zooming of the detail of the font and improves the quality of

the zoomed images. The proposed method uses directional cubic convolution

interpolation, by having on account the direction of the font on these images. This

convolution is convenient for zooming the details and suitable for the objects of the

text. Usage of directional text during the interpolation gives a clearer and better result

for visual perception.

An analysis of the direction of the points of the images is used for determining

the main direction of the image structures. This direction is important for being used

later the processing the interpolation direction. Then the directional cubic convolution

interpolation is used for enlarging the image. This process does a directional move

onto the direction of the points, by applying the cubic convolution onto the values of

the points to find the values of the zoomed points. This directional interpolation helps

not to lose the details of the image and improves the quality of the zoomed result. The

results are then compared with the results of the existing techniques. They use a set of

image data for testing the performance of their method on the aspects of image quality,

precision and not losing the details.

 Additional research [14] has as an objective to analyze the methods and the

main developments on the field of deep learning for image super resolution. Authors

analyze methods that use deep learning and mainly the techniques of the deep neural

networks, to address the problems that are faced during super zooming of the images.

They describe the development and the progress of these methods by reviewing the

main aspects of the architecture of these deep networks, deep learning algorithm and

other techniques that bring these techniques on these results.

 Methodology on the paper shows a deep review of the literature, by analyzing

the scientific papers and other work that address all the challenges of the super

resolution of the images using deep learning. Authors identify and classify different

13

methods used in this field, by grouping them on deep convolutional networks (CNN),

neural networks and deep architecture with residual (ResNet).

On the paper, authors analyze challenges and problems that they have faced

with the traditional methods of zooming images and how deep learning has offered a

good solution for these challenges. They consider every architecture and the models

of deep learning that are used for zooming images and describe the training process

and the usage of these models.

Through their paper, authors put on focus advantages and disadvantages of

these methods on super resolution of the images, by considering parameters like the

performance of the model, speed of the process and the way of choosing these

parameters. They also show different actual trends and the discovering being made on

deep learning for the super resolution images. The paper presents an important

contribution to the field of processing images and deep learning.

Furthermore, research presented in [15] reports a method for super-resolution

by using discrete cosine transform (DCT) with local binary patterns (LBP) like a

characteristic pattern. Authors propose a method based of discrete cosine transform

for realizing image super-resolution. They use LBP like a characteristic model to

determine colors and texture of an image. The proposed method uses a division process

of an image into blocks and zooms every block with DCT.

They propose a method based on the usage of DCT and LBP, by combining the

benefits of these two techniques by generating zoomed images with high quality and

improved details. The proposed method uses DCT for determining the coefficient of

the high frequency of the zoomed images, and on the other hand LBP is used as a

characteristic pattern to determine the texture and the details of an image. The

combination of these two techniques ensures improved quality and better details of the

zoomed images.

The given image is divided into small blocks and LBP is used for determining

the characteristics of the texture for every block. Then, the transformation DCT is done

for identifying the changes made on the frequency and for zooming the image. At the

end, the process of composing for not losing the edges and for generating the final

zoomed image.

14

A scheme called Error-Amended Sharp Edge (EASE) for zooming the images

is presented in [16]. Authors present an innovative scheme for zooming images that

uses an access based on the sharp edges of the images. The scheme EASE combines a

method called Directional Interpolation (DBI) with a correction process of the errors

and improving the quality of the results of the zoomed images.

It explains the challenges and the problems that have encountered during the

process of zooming images, by emphasizing problems of error-amended edges and the

weaknesses of the quality of the zoomed images. They propose a method based on a

detailed review of the structure of the original image and the application of the

necessary changes made for improving the quality of the zoomed images. Method

EASE combines two key steps which are processing of the edges and improving the

quality. On the first step, authors evaluate and reprocess the data of the edges of the

original image to identify the edges of the objects and the important structures. After

this step, they use adaptive scaling that is used for changing values of the pixel and for

achieving an image with an improved quality.

Firstly, DBI is used for zooming the image by having on considerate the sharp

edges. Adter that, a correction error algorithm is used for fixing and improving the

quality of the zoomed image. This algorithm identifies and corrects the possible errors

made from the zoomed process, especially those on sharp edge of the images, by

ensuring a better result. Authors present their results by comparing scheme EASE with

other zooming techniques. The results show that scheme EASE offers an improvement

in the quality of the zoomed image, especially those on the sharp edge and onto the

details of the image.

 Authors of the research reported in [17] present a general study that reviews

the techniques used for retargeting the images. Authors analyze and review different

techniques used for changing the size and the form of the image, a process that is

known as retargeting images. Retargeting the images is a field that is widely studied

on the processing of images and has a lot of applications on different fields like for

example the visualization of the images on different devices and adapting the content

of the images for the mobile devices.

15

Their objective is to analyze the existing methods of re-orientation and offer a

general view of them. The paper starts with the explanation of the need for new re-

orientation techniques and the challenges that are related to the changes of their size.

They classify the methods of reorientation into different categories and investigate

them in the most detailed way. The methods that have been reviewed include

techniques based on the transformation of the texture, gambling and losing data, the

segmentation of objects and distributing energy. Authors present the benefits and

restrictions of every single method and evaluate them based on their performance and

keeping all the details, perceptual suitability, and visual results.

The methodology on the paper includes a detailed analysis of the techniques

used for retargeting images. Authors classify the methods that are used in different

categories like geometric transformation, energy optimizing, and the methods based

on the analysis of the content of the image. They present technical details and describe

the advantages and the restrictions of every technique.

Methods are being compared in aspects like resistance to deformation,

maintaining the important data, subjective perception, and the processing cost. The

results and the achievements are used to present a general perspective on efficiency

and application of different techniques in image retargeting.

Furthermore, a fast and correct method is presented for super resolution of red

infrared images [18]. Authors present a method based on the mechanisms of zooming

for improving the quality of the red infrared images. This method uses a fast and

correct strategy for achieving a super resolution image by using the data detected from

the zooming mechanism.

The zooming mechanism is used for generating a zoomed image based on the

disposable information. After this an optimizing process is used for improving the

quality of the zoomed image and for adapting the details of the red infrared image. The

results are presented by comparing the results of their proposed method with other

techniques of zooming the red infrared image.

They present a method that used the zooming mechanism and intercommunion

between pixels of the image for improving the quality of the infrared red images.

Method includes two key steps which are base zooming and improving the resolution.

16

At the first step, authors use a zooming mechanism that uses data of the original image

to improve the size of the red infrared image. After that, they developed a fast

algorithm to improve the resolution by using interaction between pixels and spectral

information.

A fuzzy adapted algorithm for zooming images by using linear interpolation is

also studied in [19]. The authors present an improved method for zooming images and

the algorithm uses a fuzzy technique to determine the weights of the points in the

process of the linear interpolation, by keeping in mind the level of importance and the

influence on the zooming result.

The proposed method uses a combination of the linear interpolation algorithm

and fuzzy techniques for achieving an improved result on the aspect of the quality of

the zoomed images. On the paper authors explain the need for zooming techniques and

present the challenges related to this process. They propose an algorithm based on

linear interpolation that is being changed and adapted with the help of the techniques

fuzzy. This algorithm allows the system to take all the detailed data from the original

image and to adapt it to the context for generating better results on the aspect of

zooming.

Method includes some key steps. Into the first step, authors discover the

differences between the pixels of original image with those of the zoomed image to

identify the parts with big changes. Then they use the fuzzy techniques to determine

how to treat pixels on these places based on the certain fuzzy rules. This allows the

algorithm to make adaptive decisions according to the detailed changes of the image.

According to this method in the beginning a fuzzy matrix is calculated to represent the

weights of the points of the original image. This process uses fuzzy techniques to

classify the points into different categories with the importance base. After that, a

linear interpolation is used by considering the fuzzy matrix to select the needed

weights for the new points created during the zoomed process.

Based on the research from authors Danilo Costarelli et al. in [20], a study is

presented that shows the difference between Kantorovich algorithm for digital image

processing with some interpolation methods and quasi-interpolation. The Kantorovich

17

algorithm is a method based on the transport theory, which can be used to find a

function that minimizes the differences between two images.

They focus on the Kantorovich algorithm which is based on the theory of

transport and has as an objective to improve the quality of the images through the

model of distribution of the intensity of pixels. Authors develop a comparison between

Kantorovich algorithm and other interpolation methods like linear interpolation, spline

interpolation and other similar methods with interpolation. They evaluate the

performance of every method on the aspect of the quality of the zoomed image,

cleaning noises and the time of execution.

The methodology on the paper includes the steps of comparing and evaluating

the performance of the Kantorovich algorithm with other methods of interpolation and

quasi-interpolation. Authors use a set of data of the images to test the performance of

their algorithm on the parameters like the quality of the generated image, objective

perception, and stability of the algorithm on the cases when the parameters change.

From the experiments that were done with different images, authors highlight the

advantages and disadvantages of Kantorovich algorithm compared with other

interpolation methods. They conclude that the Kantorovich algorithm offers a better

performance on the aspects of processing digital images, by improving and keeping all

the details of the image.

According to authors Pierre-Yves Laffont et al. [21] a method is presented for

interactive zooming of images by using the content information. Authors present an

advanced algorithm for zooming images, the content, and the details of the image for

ensuring the wanted result. The proposed method is based on an extended effort for

determining the important parts of an image and regulating zoom in accordance with

these parts.

First a technique for identifying and determining the important part of the image

is used like, for example, the faces of people or the main objects. After this, an

algorithm is used for enlarging the image by taking on account these important parts

and ensuring an appropriate zooming. On the paper, authors propose an innovative

technique that allows the user to enlarge the details of an image by not losing the

important parts and by avoiding unnecessary distortions.

18

The paper starts with presenting the challenges that occur during the zooming

process of the images and the need for a method that offers interactive control and the

important content on the results of zooming. Authors explain that most of the existing

methods have difficulty in keeping all the details and avoiding unnecessary distortions,

especially in the case when image includes a text, a face, or other important objects.

The method proposed, ‘Interactive Content-Aware Zooming’, uses a technique

called ‘graph-cut-base zooming’ to identify and treat the most important parts of the

image. This technique uses a graph to present the structure of the image and uses an

algorithm based on the detachment of the graph to identify and save the parts that have

the most important information.

An important aspect of this method is interactivity, which allows the user to

select the parts of the image that he wants to save with all the details during zooming.

Users can use a simple interface to select and determine the important pixels. Method

then uses the information given from the user by achieving results with good details

and with no unnecessary deformations.

19

CHAPTER 3

METHODOLOGY

3.1 Methods

3.1.1 Sinc-zoom theory

 The Whittaker-Shannon interpolation formula and the Nyquist-Shannon

sampling theorem set as theoretical basis of the technique. The Whittaker-Shannon

interpolation formula is reported in equation (1), where the sequence 𝑥[𝑛] allows

reconstruction in the domain of the time variable ‘t’, T is the period, and the bandlimit

1

2𝑇
 is measured in Hertz. The sampling frequency is 𝑓𝑠 =

1

𝑇
 and the Nyquist frequency

is
 𝑓𝑠

2
 [22].

𝒙(𝒕) = ∑ 𝒙[𝒏𝑻] ∙ 𝒔𝒊𝒏𝒄

∞

𝒏=−∞

 (
𝒕 − 𝒏𝑻

𝑻
) (1)

The Nyquist-Shannon sampling theorem (reported in equation (2)) states that

“If a function 𝑥(𝑡) contains no frequencies higher than 𝐵 hertz, it is completely

determined by giving its ordinates at a series of points spaced 1/(2𝐵) seconds apart

[23].” Moreover, perfect reconstruction is guaranteed possible for 𝐵 <
 𝑓𝑠

2
. With 𝑥𝑛

the nth sample of the sequence, the function 𝑥(𝑡) is calculated as:

𝒙(𝒕) = ∑ 𝒙𝒏 ∙
𝒔𝒊𝒏[𝝅(𝟐𝑩𝒕 − 𝒏)]

[𝝅(𝟐𝑩𝒕 − 𝒏)]
 (2)

∞

𝒏=−∞

20

The Nyquist-Shannon sampling theorem is implemented in equation (3).

𝑰(𝒊, 𝒋) = ∑ ∑ 𝑰(𝒑, 𝒔) ∙ 𝑺𝒊𝒏𝒄𝒙 ∙ 𝑺𝒊𝒏𝒄𝒚

𝑵𝒚

𝒑=𝟏

𝑵𝒙

𝒔=𝟏

 (3)

Where equations (4) and (5) calculate the sinc functions

𝑺𝒊𝒏𝒄𝒙 = 𝑺𝒊𝒏𝒄 { 𝝅 [𝟐. 𝟎 ∙ 𝑩 ∙ (𝒑 −
𝑵𝒙

𝟐
) − 𝑺 ∙ (𝒋 −

𝑵𝒙

𝟐
)]} (4)

𝑺𝒊𝒏𝒄𝒚 = 𝑺𝒊𝒏𝒄 { 𝝅 [𝟐. 𝟎 ∙ 𝑩 ∙ (𝒔 −
𝑵𝒚

𝟐
) − 𝑺 ∙ (𝒊 −

𝑵𝒚

𝟐
)]} (5)

The rectangular image space region 𝑅𝑥𝑦 that determines the sampling interval

and so the magnitude of the zoom is:

 𝑹𝒙𝒚 = 𝑹𝒙 · 𝑹𝒚 (6)

 𝑹𝒙 = [𝟐. 𝟎 ∙ 𝑩 ∙ (𝒑 −
𝑵𝒙

𝟐
) − 𝑺 ∙ (𝒋 −

𝑵𝒙

𝟐
)] (7)

 𝑹𝒚 = [𝟐. 𝟎 ∙ 𝑩 ∙ (𝒔 −
𝑵𝒚

𝟐
) − 𝑺 ∙ (𝒊 −

𝑵𝒚

𝟐
)] (8)

21

3.1.2 Code Translation from C/C++ to pure C programming

language

This is a Sinc zoom application [24] which is written in C/C++ programming

language and will be translated in pure C language.

#include <iostream>
#include <fstream>
#include <string>
#include <io.h>
#include <dos.h>
#include <conio.h>
#include <stdlib.h>
#include <sstream>
#include <stdio.h>
#include <iomanip>
#include <istream>
#include <math.h>

using namespace std;

void OnZoom_Sinc(char imageFileName[], int rcxres, int rcyres, double m_Bandwidth,
double m_TheSamplingRate);
void OnFourierTransform(char imageFilename[], int rcxres, int rcyres);

class Sinc_Int_2022 {

 int n1;
 int n2;

Figure 3.Removing unnecessary libraries

 In Figure 3 we have all the libraries that are used both in C++ and C. There are

two functions that are declared which are OnZoom_Sinc() and

OnFourierTransform().These functions are also used in pure C. In C++ we have a class

Sinc_Int_2022 declared and it has got two variables int n1 and int n2.

22

struct data {

 double** Signal;

 double** Edge_X;

 double** Edge_Y;

 double** Region_XY;

 }*pointer;

Figure 4. Pointers in C++

In C++, ‘pointer’ is a pointer to an object of type ‘struct data’ in Figure 4. So

the pointer is pointer to the element of the structure ‘data, which points to the memory

address.

#define _CRT_SECURE_NO_DEPRECATE

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#define endl "\n"

void OnZoom_Sinc(char imageFileName[], int rcxres, int rcyres, double
m_Bandwidth, double m_TheSamplingRate);
void OnFourierTransform(char imageFilename[], int rcxres, int rcyres);

struct data {
 double** Signal;
 double** Edge_X;
 double** Edge_Y;
 double** Region_XY;
};

//typedef struct Sinc_Int_2022 {
struct Sinc_Int_2022 {
 int n1;
 int n2;
 struct data* pointer;
};

Figure 5.Libraries in C and no ‘public’ keyword

The changes in Figure 5 were made to remove the C++ specific syntax and

libraries from the code and convert it to pure C language syntax. The libraries that are

specific for C++ such as <iostream>, <fsream>, <string>, <iomanip> etc. were

removed and replaced with equivalent C libraries. In C++, the keyword ‘class’ is used

23

to define a class, whereas in C language there is no such keyword. The class body

contains the member variables and member functions of the class, which are declared

and defined inside the class. In C language, a structure can be used to a group of

variables and functions, but the functions must be defined outside the structure.

Replace ‘*pointer’ with ‘struct data* pointer’. In C++, ‘pointer’ is a pointer to an object

of type ‘struct data’. In pure C, we need to specify the type of the pointer by using

‘struct data* pointer’ instead of ‘*pointer’.

public:

 struct data {

 double** Signal;

 double** Edge_X;

 double** Edge_Y;

 double** Region_XY;

 }*pointer;

public:

 Sinc_Int_2022(int x, int y) : n1(x), n2(y) { pointer = 0; };
 void allocateData();
 void save();
 ~Sinc_Int_2022() { }

};

void Sinc_Int_2022::allocateData() {

 pointer = new data;

 pointer->Signal = new double* [this->n2];

Figure 6.Classes, pointers and declaring functions inside the class

This code in Figure 6 defines a C++ class named ‘Sinc_Int_2022’ that contains

a structure named ‘data’. The ‘data’ structure includes four double pointer members,

‘Signal’, ‘Edge_X’, ‘Edge_Y’, and ‘Region_XY’, which are used to represent a matrix

or an image.

The class ‘Sinc_Int_2022’ has a constructor that takes two integer arguments

‘x’ and ‘y’. The constructor initializes two private variables ‘n1’ and ‘n2’ with the

values of ‘x’ and ‘y’, respectively. It also sets the ‘pointer’ member variable of the

‘data’ structure to 0 (null pointer).

24

The class ‘Sinc_Int_2022’ has two public functions, ‘allocateData()‘ and

‘save()’. ‘allocateData()’ is a method of the class that allocates memory for the

‘Signal’, ‘Edge_X’, ‘Edge_Y’, and ‘Region_XY’ members of the ‘data’ structure

using nested ’for’ loops. ‘save()’ is another method that saves data to a file.

void allocateData(Sinc_Int_2022* sinc) {
 sinc->pointer = (struct data*)malloc(sizeof(struct data));
 sinc->pointer->Signal = (double**)malloc(sinc->n2 * sizeof(double*));
 for (int v = 0; v < sinc->n2; v++) {
 sinc->pointer->Signal[v] = (double*)malloc(sinc->n1 *
sizeof(double));
 }
 for (int v = 0; v < sinc->n2; v++) {
 for (int f = 0; f < sinc->n1; f++) {
 sinc->pointer->Signal[v][f] = (double)0.0;
 }
 }
}
void save(Sinc_Int_2022* sinc) {
 FILE* savedata;
 char outputFile[128];
 sprintf(outputFile, "%s", "Signal.img");
 if ((savedata = fopen(outputFile, "wb")) == NULL)
 {
 printf("Cannot open output file, Now Exit...\n");
 exit(0);
 }
 else {
 for (int v = 0; v < sinc->n2; v++) {
 for (int f = 0; f < sinc->n1; f++)
 fwrite(&sinc->pointer->Signal[v][f], sizeof(double), 1,
savedata);
 }
 fclose(savedata);
 }
}

Figure 7. Body of method allocateData() and method save()

In figure 7 in C, we would need to use ‘struct’ instead of ‘class’, and we would

not have access specifiers such as ‘public:’ or ‘private:’.

• Remove constructor and destructor: In C++, classes can have constructors and

destructors that are automatically called when an object is created. In pure C,

we don't have classes, so we don't need constructors or destructors.

• Declare functions outside the struct: In C++, member functions of a class are

declared inside the class using the ‘className::functionName()’ syntax. In

25

pure C, we declare the functions outside the struct and use the

‘structName.functionName()’ syntax to call them.

• Replace ‘malloc()’ with ‘new’: In C++, the ‘new’ keyword is used to allocate

memory dynamically, whereas in C we use ‘malloc()’ to allocate memory

dynamically. Therefore, we need to replace all instances of ‘new’ with

‘malloc()’.

std::cout << endl;
std::cout << "Please type the image file name" << endl;
std::cout << "Please make sure that the image format is Analyze 'double': 64 bits
real" << endl;
std::cout << "Please enter the following values: " << endl;
std::cout << "The number of pixels along the X direction (integer)" << endl;
std::cout << "The number of pixels along the Y direction (integer)" << endl;
std::cout << "The Bandwidth (double) in [0.1, 4.0]" << endl;
std::cout << "The Sampling Rate (double) in [0.1, 4.0]" << endl;
std::cout << endl;

Figure 8. Output in C++

In C++ we use cout with << for executing the program and printing the ouput.

We can use as many cout as we need to (Figure 8). We have used endl because in this

case we want to insert a new line between outputs.

printf("%s", endl);
printf("Please type the image file name%s", endl);
printf("Please make sure that the image format is Analyze 'double': 64 bits real%s",
endl);
printf("Please enter the following values: %s", endl);
printf("The number of pixels along the X direction (integer)%s", endl);
printf("The number of pixels along the Y direction (integer)%s", endl);
printf("The Bandwidth (double) in [0.1, 4.0]%s", endl);
printf("The Sampling Rate (double) in [0.1, 4.0]%s", endl);

Figure 9. Output in C

In pure C programming language (Figure 9) we use printf for printing an input

instead of cout that we used in C++. Like in C++ we can use as many printf as we need

and in order for the output to be inserted in a new line, we use endl but not with the

operator << before it.

26

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Sample Cases Study Results

Original and zoomed images are presented in Figure 17. The values of 𝐵 and 𝑆

were: 0.3 and 0.71 (zoom-out); 0.31 and 0.3 (zoom-in); 0.3 and 0.6 (no-zoom).

Figure 10. Sample images. From left to right: departing image (a), zoom-out (b),

zoom-in (c), and no-zoom (d) images. Note the Gibbs effect in (b) by zoom-out and

(d) by no-zoom. The image is free of artifacts when oversampling

The images presented in Figures 18 and 19 illustrate two of four cases that are

possible in each of the scenarios of zoom-out (first column from left), zoom-in (second

column from right), and no-zoom (right-most column). The map of 𝑆𝑖𝑛𝑐𝑥 ∙

 𝑆𝑖𝑛𝑐𝑦 shows that the source of Gibbs effect for the two cases of zoom-out and no-

zoom (see bottom rows).

(a) (b) (c) (d)

27

Case 1. When 2.0 ∙ 𝐵 ∙ (𝑝 −
𝑁𝑥

2
) < 𝑆 ∙ (𝑗 −

𝑁𝑥

2
) , and 2.0 ∙ 𝐵 ∙ (𝑠 −

𝑁𝑦

2
) <

 𝑆 ∙ (𝑖 −
𝑁𝑦

2
), it follows from Equations (7) and (8), that the edge 𝑅𝑥 < 0 and the

edge 𝑅𝑦 < 0. Figure 2 shows from left to right, the map of 𝑅𝑥 (top row) and 𝑅𝑦 (second

row from the top), and 𝑅𝑥𝑦 (bottom row), for zoom-out, zoom-in, and no-zoom,

respectively.

Figure 11. Case 1. For the three cases of zoom-out, zoom-in, and no-zoom, and from

left to right the figure shows the following maps: edge 𝑅𝑥 < 0 (in the top row), edge

Zoom-out Zoom-in No-Zoom

Rxy

Sincx · Sincy

Rx

Ry

28

𝑅𝑦 < 0 (in the second row from the top), region 𝑅𝑥𝑦 (in the third row from the top),

𝑆𝑖𝑛𝑐𝑥 ∙ 𝑆𝑖𝑛𝑐𝑦 (in the bottom row).

 Case 2. When 2.0 ∙ 𝐵 ∙ (𝑝 −
𝑁𝑥

2
) > 𝑆 ∙ (𝑗 −

𝑁𝑥

2
) , and 2.0 ∙ 𝐵 ∙ (𝑠 −

𝑁𝑦

2
) <

 𝑆 ∙ (𝑖 −
𝑁𝑦

2
), it follows from Equations (7) and (8), that the edge 𝑅𝑥 > 0 and the

edge 𝑅𝑦 < 0. Figure 3 shows from left to right, the map of 𝑅𝑥 (top row) and 𝑅𝑦 (second

row from the top), and 𝑅𝑥𝑦 (bottom row), for zoom-out, zoom-in, and no-zoom,

respectively.

R

y

Zoom-out Zoom-in No-Zoom

fx

Ry

Sincx · Sincy

Rx

Rxy

29

Figure 12. Case 2. For the three cases of zoom-out, zoom-in, and no-zoom, and from

left to right the figure shows the following maps: edge 𝑅𝑥 > 0 (in the top row), edge

𝑅𝑦 < 0 (in the second row from the top), region 𝑅𝑥𝑦 (in the third row from the top),

𝑆𝑖𝑛𝑐𝑥 ∙ 𝑆𝑖𝑛𝑐𝑦 (in the bottom row).

4.2 Sample Results Obtained Using Theoretical Images

In Figure 13 there is the preliminary analysis of the images provided with a

series of test images that are (a, b, c, d) on different zoom levels along with their

corresponding pixel-local and k-space magnitudes. Starting from the left of (a) top row

and then proceeding towards the right and then with the next rows (b, c, d) we observe

the patterns as followed:

On test image (a) we have a 10% zoom-out, with a sampling rate of 1.8 spatial

frequency units (sfu). On the right a 55% zoom-in is applied resulting a sampling rate

of 1.3 sfu. The last image is the original image applying no zoom with a sampling rate

of 2.0 sfu. On the second row with the test image (b) we start with a 40% zoom-out

with a sampling rate of 1.2 sfu. Moving to the 20% zoomed-in image with a sampling

rate of 2.4 sfu. Similar with the first row, the last image has no zoom applied with a

sampling rate of 2.0 sfu. On the third row with the test image (c) we start with a 60%

zoom-out with a sampling rate of 0.8 sfu. Moving to the 60% zoomed-in image with a

sampling rate of 3.2 sfu. Similar with the other rows, the last image has no zoom

applied maintaining a sampling rate of 2.0 sfu. On the last row, the test image (d) has

an increased zoom-out percentage of 70% with a sampling rate of 0.6 sfu. Image is

zoomed-in on 100%, but the reconstruction is unsatisfactory with a sampling rate of

4.0 sfu. The last grid portrays no zoom with a sampling rate of 2.0 sfu.

When the zoom-in effect is applied onto the image, it allows us to examine finer

details. In Figure 6 we see different percentages of zoom-ins on different test images.

In test image (a), a 55% zoom-in is applied, by enlarging the image and increasing the

spatial resolution. When the percentage is increased, the sampling rate is increased too

30

by having a potential degradation and a loss of image quality, which that is not a good

case. When the percentage is low (b), with a 20% zoom in and with a low sfu, the

zoom-in effect enhances the visibility of the details within this image.

Different from the zoom-in effect, zoom-out reduces the scale of the image, by

portraying wider field of the view and resulting in loss of details. With the increased

percentage of the zoom-out effect, the sampling rate is reduced. On test image (a) with

a 10 % zoom-out effect and a sampling rate of 1.8 sfu, allows us for a broader view of

the image and emphasizing the global features that are extracted from the overall

image. With the decreased sampling rate, there is an emphasized overview of the

image, but with a loss of detail and clarity.

The no-zoom images are the unaltered versions of the test images. The

sampling rate that is maintained is 2.0 sfu by keeping the level of detail and the original

scale that is on the original images. The no-zoomed images are used as a reference for

comparing with the versions of zoom-in and zoom-out and to see the impact and the

quality of the images of these applied effects. Zoom-in and zoom-out effects reveals

different levels of detail or enlargement of large structures. They show the loss or

enhancement of the details from image to image.

(b)

(a)

31

Figure 13. Preliminary analysis.

A theoretical image is used for zooming-in with four different percentage

zooming with a k-space magnitude and map of the sinc function across the image grid

(Figure 14). Second row: Zoom-in 5%. Third row: Zoom-in 7.5%, Fourth row: Zoom-

in 10%. Fifth row: Zoom-in 15%. The percentages that are used are 5%, 7.5%, 10 %

and 15 % where we can see that from figure to figure there is a gradually change of

zooming-in, with the increase of the percentage factor. With zoom-in we get larger

images by focusing on finer details.

Theoretical Image k-space Magnitude

zoom-in 5%

(c)

(d)

32

Figure 14. Non-Adaptive Sinc-Zoom-in. Top row: Theoretical image (left) and its k-

space magnitude (right).

 The same theoretical image was used (Figure 15), but on this case for zooming-

out with the percentages: 5%, 10%, 15%, 20%, 25% with a k-space magnitude. Grids

of the rows are enlarged from row to row with the percentage being increased.

zoom-in 7.5%

zoom-in 10%

zoom-in 15%

zoom-in 20%

zoom-in 25%

33

Theoretical Image k-space Magnitude

zoom-out 5%

zoom-out 10%

zoom-out 15%

zoom-out 20%

34

Figure 15. Non-Adaptive Sinc-Zoom-out. Top row: Theoretical image (left) and its

k-space magnitude (right).

Figure 16. Sinc-based zooming on Magnetic Resonance Angiography images. Rows

labelled with (a) and (b), show from left to right: the departing MRA, the k-space of

the departing MRA. Rows labelled with (c) and (d), present the case of non-adaptive

Sinc-based zooming and show from left to right: zoom-out MRA 50%, zoom-in

MRA 15%, and no-zoom MRA.

zoom-out 25%

(a)

(b)

(c)

(b)

(d)

35

4.3 Sample Results Obtained Using a Magnetic Resonance Image

MRI Image k-space Magnitude

zoom-in 5%

zoom-in 7.5%

zoom-in 10%

36

Figure 17. Non-Adaptive Sinc-Zoom-in. Top row: MRI (left) and its k-space

magnitude (right).

zoom-in 15%

zoom-in 25%

zoom-in 50%

37

MRI Image k-space Magnitude

zoom-out 5%

zoom-out 7.5%

zoom-out 10%

38

Figure 18. Non-Adaptive Sinc-Zoom-out. Top row: MRI image (left) and its k-space

magnitude (right).

zoom-out 15%

zoom-out 25%

zoom-out 45%

MRI Image k-space Magnitude

39

zoom-in 5%

zoom-in 7.5%

zoom-in 10%

zoom-in 15%

40

Figure 19. Adaptive Sinc-Zoom-in. Top row: MRI image (left) and its k-space

magnitude (right).

zoom-in 25%

zoom-in 50%

MRI Image k-space Magnitude

41

zoom-out 5%

zoom-out 7.5%

zoom-out 10%

zoom-out 15%

42

Figure 20. Adaptive Sinc-Zoom-out. Top row: MRI image (left) and its k-space

magnitude (right).

4.4 Results and Discussion of the Theory

We compare the images generated from the code in C/C++ with the images generated

from the code in pure C programming language (Figure 27).

MRI image

zoom-out 25%

zoom-out 45%

43

MRI image

C/C++ images

25%

C images Difference

Zoom-in 5 %

zoom-out 7.5%

44

Figure 21. Zoom-in images of C/C++ and pure C

zoom-in 10%

zoom-in 15%

zoom-in 25%

zoom-out 50%

Difference C images

image########out

25%

C/ C++images

image########out

25%

Zoom-out 5%

image########out

25%

45

Zoom-out 7.5%

images########out 25%

Zoom-out 10%

images########out 25%

Zoom-out 15%

images########out 25%

Zoom-out 25%

images########out 25%

46

Figure 22. Zoom-out images generated from C/C++ and pure C

We take zoom-in 5% and compare the images generated from the program in

C/C++ with the images generated from the program in pure C programming language

(Figure 29) of the same percentage. After we subtract those two images on ImageJ, we

get the results with x and y equal with 0.

Edgex

EdgeY

C/C++ images C images Difference

zoom-in 5%

Zoom-out 40%

images########out 25%

47

K-Spacel

K-SpaceM

K-SpaceR

nEdgeX

48

nEdgeY

RegionXY

RegionXYnegx

RegionXYnegxy

49

Signal

 Snsincx

Snsincy

RegionXYnegy

50

Spsincx

Spsincy

TwoDsumsincnegx

TwoDsumsincnegxy

51

Figure 23. Zoom-in images. For the two cases of zoom-in for 5%, and from left

images generated from the program in C/C++ to right images generated in C

On Figure Edge X and Edge Y are sampling interval edge images. The former

refers to the Rx image when Rx is positive, and the latter refers to Ry image when Ry

is positive.

Region XY, Region XY neg, Region XY neg X and Region XY neg Y are all

regions’ images (they are the sampling intervals of the Sinc functions). Region XY is

the Rxy image when both Rx and Ry are positive, Region XY neg is the Rxy image

when both Rx and Ry are negative, Region XY neg X is the Rxy image when Rx is

negative, and Ry is positive and Region XY neg Y is the Rxy image when Rx is

positive and Ry is negative.

Sinc neg X, Sinc neg Y, Sinc pos X and Sinc pos Y are images obtained from

1D sinc functions. Sinc neg X is sinc of Rx negative, Sinc neg Y is sinc of Ry negative,

Sinc pos X is the sinc of Rx positive and Sinc pos Y is the sinc of Ry positive.

Sinc XY, Sinc neg X, Sinc neg Y and Sinc neg XY are images obtained from

2D sinc functions. Sinc XY is sinc of Rxy positive, Sinc neg X is sinc of Rxy when

TwoDsumsincnegy

TwoDsumsincxy

52

Rx negative and Ry positive, sinc neg Y is Sinc of Rxy when Rx positive and Ry

negative and Sinc neg XY is sinc of Rxy when Rx negative and Ry negative.

We take zoom-out 5% and compare the images generated from the program in

C/C++ with the images generated from the program in pure C programming language

(Figure 24) with this percentage. After we subtract those two images on ImageJ, we

get the results with x and y equal with 0.

C/C++ images C images Difference

zoom-out 5%

Edgex

EdgeY

K-Spacel

53

K-SpaceM

K-SpaceR

nEdgeX

nEdgeY

54

Snsinx

Snsincy

Spsincx

Spsincy

55

Figure 24. Zoom-out images. For the two cases of zoom-out for 5%, and from left

images generated from the program in C/C++ to right images generated in C

TwoDsumsincnegx

TwoDsumsincnegxy

TwoDsumsincnegy

TwoDsumsincxy

56

=

Image in

size

120x120

Images generated

in C/C++

Images generated

in C

Running

time of

images in

C/C++

Running

time of

images in C

No-zoom

135 seconds 129 seconds

Zoom-in

144 seconds 108 seconds

Zoom-out

154 seconds 109 seconds

Table 2. Image 120x120

On Table 2 images with no-zoom, zoom-in and zoom-out are generated from

both programs, code in C/C++ and code in pure C. From the running time of these

images, we could see that the code in C generated images in a shorter period than from

the code in C/C++.

57

Image in

size

128x128

Images generated

in C/C++

Images generated

in C

Running

time of

images in

C/C++

Running

time of

images in

C

No-zoom

 184

seconds

159

seconds

Zoom-in

 181

seconds

150

seconds

Zoom-out

 179

seconds

155

seconds

Table 3. Image 128x128

On Table 3 images of size 128x128 with no-zoom, zoom-in and zoom-out are

generated from both programs, code in C/C++ and code in pure C. From the running

time of these images, we could see that the code in C generated images in a shorter

period than from the code in C/C++.

58

Image in

size

139x176

Images generated in

C/C++

Images generated in

C

Running

time of

images in

C/C++

Running

time of

images in

C

No-

zoom

386

seconds

 246

seconds

Zoom-in

408

seconds

 395

seconds

Zoom-

out

 404

seconds

 363

seconds

Table 4. Image 139x176

On Table 4 images of size 139x176 with no-zoom, zoom-in and zoom-out are

generated from both programs, code in C/C++ and code in pure C. From the running

time of these images, we could see that the code in C generated images in a shorter

period than from the code in C/C++.

59

Size

234

x119

Images generated in

C/C++

Images generated in C Running

time of

images

in

C/C++

Running

time of

images

in C

No-

zoom

493

sec

 308

sec

Zoom

-in

 518

sec

 453

sec

Zoom

-out

382

sec

463

sec

Table 5. 234x119

On Table 5 images of size 234x119 with no-zoom, zoom-in and zoom-out are

generated from both programs, code in C/C++ and code in pure C. From the running

time of these images, we could see that the code in C generated images in a shorter

period than from the code in C/C++.

60

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

This thesis translates a novel Sinc Zooming application from C/C ++ to pure C

programming language and achieves the same results as generated from two

programming languages. The first step for the methods part was to translate the

application from C/C++ into pure C programming language. During the translation we

removed the libraries that were specific only on C++ and replaced them with

equivalent C libraries. It was observed that there was the keyword ‘class’ that was used

to obtain C classes, whereas there is no such a keyword in C. Pointers in C++ are

pointers to ‘struct data’, but in C we specify the type of pointer. For printing something

which in our case was printing an image, in C++ it is used cout, while in C it is used

printf.

After the code was translated in pure C, we started generating zoomed images

from the program written in C/C++. The images were generated with cmd for every

percentage of zoom-in and zoom-out with their respective bandwidth (B) and sampling

rate (SR). With the program in C/C ++ adaptive and non-adaptive zoom images were

generated in different percentages by generating the zoom-in, zoom-out and no-zoom

images with the k-space magnitude. Zooming-in (image magnification) was for us to

see finer and more visible details of an image, while zooming-out (image reduction)

was for showing a wider view of an image. With zooming-in, the magnification level

of the image was increased, by focusing on a specific area of the image and making it

appear larger. With zooming-out the image is reduced making the image appear

smaller and with less visible details by providing the context of a larger picture. No-

zoom was the same as the original image 100%.

With the increased percentage of zoom-in, sampling rate was increased too

which meant potential degradation and loss of image quality. When the percentage

61

was low, for example 20% and with a low sfu, zoom-in effect enhanced the visibility

of the details on the image. In zoom-out with the increased percentage, sampling rate

was reduced. With a 10% zoom-out, the global features extracted from the overall

image were emphasized. When the sampling rate decreased, then there was loss of

detail and clarity. No-zoom was for the unaltered versions of test images, by

maintaining a sample rate of 2.0 by keeping the level of detail from the original images.

 Then images like Sinc image, k-space of the Sinc image and SincXY, with the

program that was translated into pure C programming language, were generated again

with the same percentages as the program in C/C++. We compared those three images

from both programs and saw that the generated images were the same. Also, to be

more precise with the results, we took a 5% zoom-in and generated all the images in

ImageJ and compared them with the 5% of the zoom-in of the program in C and

generated the same images. Then we also took a 5% zoom-out and did the same thing

and generated the same exact images from the two programs. To see if there were any

differences in those images, we used subtraction on ImageJ and plotted histograms to

be more correct.

The results that were obtained at the end from the programs, were the results

that show that we can generate the same zoom images using two programs written with

different programming languages. In our case we had a combination of two

programming languages (C and C++) and another one in a pure C programming

language.

When we estimated the running time of the images of four different sizes from

both programs in C/C++ and in C, the running time differ from one code to another.

With the increasing of the image sizes, we could see that the images needed more time

to generate and from both programs we could see that the program in C took less time

which means that it was faster.

In conclusion we have concluded that we can get the same zoomed images from

two different programming languages, like in our case that the same images were

generated from both the code in C/C++ with the code in C. The goal was reached by

obtaining no errors after the substruction of two images with a result with x and y = 0.

62

REFERENCES

[1] Digital Image Interpolation. Understanding Digital Image Interpolation. (n.d.).

https://www.cambridgeincolour.com/tutorials/image-interpolation.htm

[2] Vincent Mazet (Université de Strasbourg). (2020). Basics of Image Processing.

Interpolation - Basics of Image Processing.

[3] Mahajan, S., & Harpale, V. K. (2015). Adaptive and Non-adaptive Image

Interpolation Techniques

[4] Y. Zhang, Y. Li, J. Zhen, J. Li, and R. Xie, “The hardware realization of the

bicubic interpolation enlargement algorithm based on FPGA,” in Proc. 3rd Int.

Symp. Inform. Process., pp. 277-281, Oct. 2010

[5] Xu, J., Chang, Z., Fan, J., Zhao, X., Wu, X., Wang, Y., & Zhang, X. (2015).

Super-resolution via adaptive combination of color channels. Multimedia Tools

and Applications, 76(1), 1553–1584.

[6] Mircea Merca. (2015, October 22). The cardinal sine function and the

chebyshev–stirling numbers. Journal of Number Theory.

[7] Wikimedia Foundation. (2021, August 26). SINC function. Wikipedia.

[8] Concept of zooming. Online Courses and eBooks Library. (n.d.).

[9] Digital Zoom vs optical zoom. Diffen. (2014).

[10] Chang, C.-C., Chou, Y.-C., Yu, Y.-H., & Shih, K.-J. (2005). An image zooming

technique based on vector quantization approximation. Image and Vision

Computing, 23(13), 1214–1225.

[11] Koç, A., Bartan, B., & Ozaktas, H. M. (2020). Discrete scaling based on

operator theory. Digital Signal Processing, 102904.

[12] Arcelli, C., Brancati, N., Frucci, M., Ramella, G., & Sanniti di Baja, G. (2011). A

fully automatic one-scan adaptive zooming algorithm for color images. Signal

Processing, 91(1), 61–71.

[13] Zhou, D., Shen, X., & Dong, W. (2012). Image zooming using directional cubic

convolution interpolation. IET image processing, 6(6), 627-634.

63

[14] Wang, Z., Chen, J., & Hoi, S. C. (2020). Deep learning for image super-

resolution: A survey. IEEE transactions on pattern analysis and machine

intelligence, 43(10), 3365-3387.

[15] Doshi, M., Gajjar, P., & Kothari, A. (2022). Zoom based image super-resolution

using DCT with LBP as characteristic model. Journal of King Saud University-

Computer and Information Sciences, 34(2), 72-85.

[16] Cha, Y., & Kim, S. (2007). The error-amended sharp edge (EASE) scheme for

image zooming. IEEE Transactions on Image Processing, 16(6), 1496-1505.

[17] Vaquero, D., Turk, M., Pulli, K., Tico, M., & Gelfand, N. (2010). A survey of

image retargeting techniques. Applications of Digital Image Processing XXXIII.

[18] Sun, C., Lv, J., Li, J., & Qiu, R. (2018). A rapid and accurate infrared image

super-resolution method based on zoom mechanism. Infrared Physics &

Technology, 88, 228–238.

[19] Chen, H.-C., & Wang, W.-J. (2009). Fuzzy-adapted linear interpolation

algorithm for image zooming. Signal Processing, 89(12), 2490–2502..

[20] Costarelli, D., Seracini, M., & Vinti, G. (2020). A comparison between the

sampling Kantorovich algorithm for digital image processing with some

interpolation and quasi-interpolation methods. Applied Mathematics and

Computation, 374, 125046.

[21] Laffont, P., Jun, J. K., Wolf, C., Tai, Y., Idrissi, K., Drettakis, G., & Yoon, S.

(2010). Interactive content-aware zooming. In Graphics Interface (pp. 79–87).

[22] Wikimedia Foundation. (2010, March 10). Whittaker-Shannon interpolation

formula.Wikipedia.https://en.wikipedia.org/wiki/Whittaker-

Shannon_interpolation_formula

[23] Wikimedia Foundation. (2010a, February 20). Nyquist-Shannon sampling

theorem.Wikipedia.https://en.wikipedia.org/wiki/Nyquist-

Shannon_sampling_theorem

[24] Almira, J.M. and Romero, A.E. (2011) Image zooming based on - mat.uab.cat.

Available at: https://mat.uab.cat/~matmat/ebook2011/V2011n01-ebook.pdf.

