
DEEP REINFORCEMENT LEARNING IN PHYSICS-BASED

SIMULATIONS

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

DEVID DUMA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JULY, 2023

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Deep reinforcement learning

in physics-based simulations” and that in our opinion it is fully adequate, in scope

and quality, as a thesis for the degree of Master of Science.

Dr. Arban Uka

Head of Department

 Date: July 13, 2023

Examining Committee Members:

Prof. Dr. Betim Çiço (Computer Engineering) ________________

Dr. Arban Uka (Computer Engineering) ________________

Dr. Florenc Skuka (Computer Engineering) ________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name Surname: Devid Duma

Signature: ______________

iii

ABSTRACT

DEEP REINFORCEMENT LEARNING IN PHYSICS-BASED

SIMULATIONS

Duma, Devid

Master of Science, Department of Computer Engineering

Supervisor: Dr. Arban Uka

In neuroscience, reinforcement learning is an important concept for the learning

process of all organisms. Tunicata, a marine invertebrate animal, has during larval

stage a primitive brain and eyes, swims around and learns to find the best rock to

attach itself into. In the adult stage it digests its brain, emphasizing that the point of

having a brain is to make decisions and take intelligent actions.

In computer science, reinforcement learning (RL) is a mathematical framework

based on Markov Decision Processes, concerned with building rational agents that

act so as to achieve the best expected outcome, whilst interacting with an environment

without an explicit teacher. Deep reinforcement learning (Deep RL) augments the

foundational work in RL with neural networks to solve more complicated tasks, like

games, physics-based simulations and robotics.

In robotics, physics-based simulations are crucial for training real-life robots.

Simulations have seen adoption accelerated by the rapid growth in computational

power over the last three decades [1]. Robots are very complicated systems, training

them in the real world can be challenging, since execution and feedback is slow.

Physics-based simulation allows sampling experience millions times faster than in

the real world, making it possible to train very complicated robots.

In the first chapter of this thesis, I give a brief introduction on RL theoretical

fundamentals. In the second chapter, I introduce the theoretical background behind

deep RL methods. In the third chapter, I evaluate the performance of deep RL

methods in physics-based simulations with MuJoCo, an excellent engine for

advanced physics-based simulations. In the fourth chapter, I research the application

iv

of off-policy learning methods in robotics simulations. I evaluate the performance of

off-policy learning methods in Fetch mobile manipulator, a 7-DoF robotic arm with

a two-fingered parallel gripper. Finally, I draw concluding remarks.

Keywords: deep reinforcement learning, physics-based simulations, robotics

simulations

v

ABSTRAKT

TË MËSUARIT PËRFORCUES I THELLË NË SIMULIMET E

BAZUARA NË FIZIKË

Duma, Devid

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Dr. Arban Uka

Në neuroshkencë, të mësuarit përforcues është një koncept i rëndësishëm për

procesin e të mësuarit të të gjithë organizmave. Tunikata, një kafshë jovertebrore

detare, ka një tru dhe sy primitiv gjatë fazës së larvës, noton përreth dhe mëson të

gjejë shkëmbin më të mirë për t'u lidhur. Kur rritet ajo e konsumon trurin e vet, çka

thekson se qëllimi i të pasurit tru është të marrësh vendime dhe të ndërmarrësh

veprime inteligjente.

Në shkencën kompjuterike, të mësuarit përforcues (RL) është një kornizë

matematikore e bazuar në Proceset e Vendimit Markov, që ka të bëjë me ndërtimin e

agjentëve racionalë që veprojnë në mënyrë që të arrijnë rezultatin më të mirë në

pritshmëri, ndërkohë që ndërveprojnë me një mjedis, pa një mësues të dedikuar. Të

mësuarit përforcues i thellë (Deep RL) shton mbi punën themelore në RL rrjetet

neuronale për të zgjidhur detyra më të ndërlikuara, si lojërat, simulimet e bazuara në

fizikë dhe simulimet robotike.

Në robotikë, simulimet e bazuara në fizikë janë thelbësore për trajnimin e

robotëve në jetën reale. Simulimet kanë parë adoptimin e përshpejtuar nga rritja e

shpejtë e fuqisë llogaritëse të sistemeve kompjuterike gjatë tre dekadave të fundit [1].

Robotët janë sisteme shumë të komplikuara, trajnimi i tyre në botën reale mund të

jetë sfidues, pasi ekzekutimi dhe reagimet janë të ngadalta. Simulimi i bazuar në

fizikë lejon mbledhjen e përvojës miliona herë më shpejt se në botën reale, duke bërë

të mundur trajnimin e robotëve shumë të komplikuar.

vi

Në kapitullin e parë të kësaj teze, unë bëj një hyrje të shkurtër mbi bazat teorike

të të mësuarit përforcues (RL). Në kapitullin e dytë, unë prezantoj sfondin teorik

prapa metodave të të mësuarit përforcues të thellë (Deep RL). Në kapitullin e tretë,

unë vlerësoj performancën e metodave të të mësuarit përforcues të thellë në simulimet

e bazuara në fizikë me MuJoCo, një projekt motor i shkëlqyer për simulime të

avancuara të bazuara në fizikë. Në kapitullin e katërt, unë hulumtoj zbatimin e

metodave të të mësuarit off-policy në simulimet e robotikës. Unë vlerësoj

performancën e metodave off-policy në manipuluesin e lëvizshëm robotik Fetch, një

krah robotik 7-DoF me një kapëse me dy gishta paralele. Së fundi, unë nxjerr vërejtjet

përmbyllëse.

Fjalë kyçe: të mësuarit përforcues i thellë, simulime të bazuara në fizikë,

simulime robotike

vii

This thesis is dedicated with much love to my excellent sister, Flavia, and my dear

parents, Elizabeta and Roland. I am fortunate to have you in my life.

viii

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Dr. Arban Uka, for being a true scientific and

ethical human model, as well as an excellent mentor during my studies in the

bachelors degree and masters degree at Epoka University. Every time I had a

hesitation or dilemma regarding my studies, I was able to go through it thanks to your

help. Particularly while I was writing this thesis, your feedback and support have been

of key importance to the successful completion of my thesis. May the sun always

shine on your path.

ix

TABLE OF CONTENTS

Abstract .. iii

Abstrakt ... v

Acknowledgements .. viii

Table of Contents ... ix

List of Abbreviations ... xiii

List of Notations ... xiv

 Reinforcement Learning .. 1

1.1 Introduction .. 1

1.2 Definition of Reinforcement Learning ... 2

1.3 Bellman backup operators .. 4

1.4 Terminology ... 7

1.5 Dynamic Programming methods .. 8

1.5.1 Policy Iteration .. 8

1.5.2 Value Iteration .. 9

1.6 Monte Carlo methods ... 10

1.7 Temporal Difference learning methods.. 12

1.7.1 TD-0 .. 12

1.7.2 SARSA .. 13

1.8 Q-Learning methods ... 13

1.8.1 Q-Learning .. 14

1.8.2 Double Q-Learning ... 15

 Deep Reinforcement Learning .. 16

2.1 Introduction .. 16

2.2 Definition of Deep Reinforcement Learning 17

x

2.3 Types of Deep Reinforcement Learning methods 18

2.4 Value function methods ... 19

2.4.1 Deep Q-Network (DQN) .. 19

2.4.2 Double Deep Q-Network (DDQN) ... 20

2.5 Policy Gradient methods .. 21

2.5.1 Policy Gradient Theorem .. 21

2.5.2 REINFORCE .. 23

2.5.3 What are Policy Gradients actually doing? 24

2.5.4 Improving Policy Gradient ... 24

2.5.5 Natural Policy Gradient (NPG) ... 26

2.6 Actor-Critic methods .. 28

2.7 On-policy Actor-Critic methods... 29

2.7.1 Advantage Actor-Critic (A2C) ... 29

2.7.2 Trust Region Policy Optimization (TRPO) 30

2.7.3 Proximal Policy Optimization (PPO).. 32

2.8 Off-policy Actor-Critic methods .. 34

2.8.1 Deep Deterministic Policy Gradient (DDPG)............................. 34

2.8.2 Twin-Delayed DDPG (TD3)... 35

2.8.3 Soft Actor-Critic (SAC) .. 36

2.8.4 Randomized Ensembled Double Q-Learning (REDQ)............... 37

2.9 Successful applications .. 38

 Deep Reinforcement Learning in physics-based simulations 39

3.1 Introduction .. 39

3.2 Software components ... 40

3.3 MuJoCo environments ... 41

3.4 Hardware .. 47

xi

3.5 Methodology .. 47

3.6 Experimental results ... 49

3.6.1 Ant-v4 ... 49

3.6.2 HalfCheetah-v4 ... 50

3.6.3 Hopper-v4 ... 51

3.6.4 HumanoidStandup-v4 ... 52

3.6.5 Humanoid-v4 .. 53

3.6.6 InvertedDoublePendulum-v4 .. 54

3.6.7 InvertedPendulum-v4 .. 55

3.6.8 Pusher-v4 .. 56

3.6.9 Reacher-v4 .. 57

3.6.10 Swimmer-v4 .. 58

3.6.11 Walker2d-v4 ... 59

3.6.12 Best scores .. 60

3.6.13 Running times ... 66

3.6.14 Speed of training ... 70

3.7 Summary .. 74

 Off-policy learning in robotics simulations .. 76

4.1 Introduction .. 76

4.2 Software components ... 77

4.3 Fetch mobile manipulator .. 77

4.4 Hardware .. 80

4.5 Methodology .. 80

4.5.1 Hindsight Experience Replay Buffer .. 82

4.6 Experimental results ... 83

4.6.1 FetchReach-v3 .. 83

xii

4.6.2 FetchPush-v2 .. 83

4.6.3 FetchPickAndPlace-v2 .. 84

4.6.4 Best scores .. 84

4.7 Summary .. 86

 Conclusions ... 87

 Bibliography .. 89

 Appendix ... 94

Chapter 3: Losses from experimental results .. 94

Chapter 4: Losses from experimental results .. 106

xiii

LIST OF ABBREVIATIONS

RL Reinforcement Learning

DRL Deep Reinforcement Learning

MDP Markov Decision Process

𝑄-function State value function

𝑉-function State-action value function

MuJoCo Multi-Joint dynamics with Contact

DoF Degree of Freedom

TD Temporal Difference learning

SARSA State-action-reward-state-action

SGD Stochastic Gradient Descent

DQN Deep Q-Network

PG Policy Gradient method

AC Actor-Critic method

NPG Natural Policy Gradient

A2C Advantage Actor Critic

TRPO Trust Region Policy Optimization

PPO Proximal Policy Optimization

DDPG Deep Deterministic Policy Gradient

TD3 Twin-Delayed DDPG

SAC Soft Actor-Critic

REDQ Randomized Ensembled Double Q-Learning

xiv

LIST OF NOTATIONS

𝑡 Timestep in episode

𝑇 Duration of episode

st ∈ 𝑆 State 𝑠𝑡 in timestep 𝑡 in state space 𝑆

𝑎𝑡 ∈ 𝐴 Action of agent in timestep 𝑡 from action space A

𝑎′ or 𝑎𝑡+1 Action of agent in the next state, i.e. timestep 𝑡 + 1

𝑟𝑡 Reward of agent in timestep 𝑡

𝑟′ or 𝑟𝑡+1 Reward of agent in the next state, i.e. timestep 𝑡 +

1

𝛾 Discount factor

𝛼 Learning rate

𝑅𝑡 Forward-looking returns of agent until terminal

state

𝜋(𝑎𝑡|𝑠𝑡) Policy of agent given state 𝑠 in timestep 𝑡

𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) Transition probabilities to state 𝑠𝑡+1

𝑉𝜋(𝑠) State value function under policy 𝜋

𝑄𝜋(𝑠, 𝑎) State-action value function under policy 𝜋

𝐴𝜋(𝑠, 𝑎) Advantage value function under policy 𝜋

𝜃 Parameters of a neural network for the actor

�̅� Target network for the actor

∅ Parameters of a neural network for the critic

∅̅ Target network for the critic

𝐷 Experience Replay Buffer

𝑏 Baseline

𝜏~𝜋𝜃 Trajectory 𝜏 = (𝑠1, 𝑠2…𝑠𝑛) sampled under policy

𝜋𝜃 from initial state 𝑠1 until terminal state 𝑠𝑛

𝑚𝑎𝑥 𝐽(𝜃) DRL objective: Maximize expected returns of

trajectory 𝜏 sampled under policy 𝜋 parameterized

by 𝜃

∇𝜃𝐽(𝜃) or ∇𝜃 Gradient descent update w.r.t. parameters 𝜃 at the

end of an episode

xv

𝐿(𝜃) Loss of parameters 𝜃

�̂�𝜃
𝜋, �̂�𝜃

𝜋, �̂�𝜃
𝜋 Approximations of value functions parameterized

by 𝜃

𝐷𝐾𝐿(πθ|πθ + ∇θ) KL-Divergence

𝐻(𝜃) Hessian Matrix

𝐹(𝜃) Fisher Information Matrix

𝐾 Number of backtracking steps in TRPO and PPO

1

CHAPTER 1

 REINFORCEMENT LEARNING

1.1 Introduction

In the domain of artificial intelligence, two of its pioneers Stuart Russell and

Peter Norvig propose an interesting taxonomy for the approaches taken when

studying AI in their famous book “Artificial Intelligence: A Modern Approach” [2].

According to the authors, we can classify artificial intelligence algorithms into one of

the following: thinking humanly, thinking rationally, acting humanly and acting

rationally.

Thinking Humanly

Cognitive science

Thinking Rationally

Mathematical logic

Acting Humanly

Turing test

Acting Rationally

Intelligent agents

The most successful approach in building Artificial Intelligence agents has

proven to be acting rationally. Reinforcement learning follows exactly this acting

rationally approach.

Reinforcement learning stands besides supervised learning and unsupervised

learning as one of three machine learning paradigms. In reinforcement learning there

is no supervisor like in supervised learning, only a reward signal as feedback in each

state after executing an action. Moreover, the data is sequential instead of independent

and identically distributed. Agent’s actions affect the subsequent data it receives.

2

1.2 Definition of Reinforcement Learning

Reinforcement Learning (RL) is a mathematical framework based on Markov

Decision Processes [3]. It is concerned with building rational agents that act so as to

achieve the best expected outcome, whilst interacting with an environment without

an explicit instructor.

Figure 1-1 Reinforcement Learning loop

Markov Decision Process

Markov Decision Processes are formally defined with the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾):

o 𝑆 : A finite state space.

o 𝐴 : A finite set of actions, which are available from each state 𝑠.

o 𝑃 : A transition probability model that specifies 𝑃(𝑠’|𝑠, 𝑎).

o 𝑅 : A reward function that maps a state-action pair to rewards (real numbers),

i.e. 𝑅 ∶ 𝑆 × 𝐴 → ℝ.

o 𝛾 : Discount factor 𝛾𝜖[0; 1].

3

Markov Property

Markov Decision Processes possess the Markov Property. A stochastic process

has the Markov Property, if and only if:

𝑃(𝑠𝑡+1 | 𝑠0, 𝑠1, 𝑠2… 𝑠𝑡) = 𝑃(𝑠𝑡+1 | 𝑠𝑡) ∀ 𝑡 ∈ ℕ

In other words, expectations over future states are dependent only on the current

state, not on past states. For this reason, RL algorithms are memoryless regarding the

past.

Return

The agent’s objective in an RL algorithm is to maximize the expected returns 𝐺𝑡,

i.e. future cumulative reward.

𝐺𝑡 =∑𝛾𝑖𝑅𝑖
𝑖=𝑡

The discount factor 𝛾 takes values in the range [0,1]. When 𝛾 = 1, we value all

future rewards in all future states equally. When 0 < 𝛾 < 1, we value immediate

future rewards more than future rewards from very far in the future.

Value function

Value functions specify the expected value of future cumulative rewards.

o State value function 𝑉𝑡
𝜋 ∶ (𝑠) → 𝔼[𝐺𝑡] specifies the expected value of future

cumulative rewards, starting from state 𝑠 in timestep 𝑡, then following policy

𝜋.

o State-action value function 𝑄𝑡
𝜋 ∶ (𝑠, 𝑎) → 𝔼[𝐺𝑡] specifies the expected value

of future cumulative rewards, starting from state 𝑠 and action 𝑎 in timestep 𝑡,

then following policy 𝜋.

This is different from the return 𝐺𝑡, which specifies the real value of future

cumulative rewards. Analytically, we calculate the expectation bootstrapping with

the Bellman backup operator.

4

Policy

Policy 𝜋 determines the best action 𝑎 to execute in a given state 𝑠. The action

that delivers the maximal value function is chosen.

𝜋 ∶ 𝑠 → 𝑉𝜋(𝑠)

𝜋 ∶ 𝑠 → 𝑄𝜋(𝑠, 𝑎)

The objective of an RL agent is to choose a policy which maximizes the value

function, i.e. the expected returns.

A fundamental theorem in RL states that, given any stationary policy 𝜋, we can

generate a new deterministic stationary policy 𝜋′ that is no worse than the existing

policy. In other words, we can make step-by-step improvements to a current policy

𝜋.

The policy in an RL algorithm is implemented as a lookup table.

Causality

Policy π�̅� at timestep 𝑡̅ cannot affect rewards from previous timesteps, i.e.

reward 𝑅𝑡 at timestep 𝑡 when 𝑡 < 𝑡̅.

1.3 Bellman backup operators

Suppose we are given an MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) and a policy 𝜋, which can be

deterministic or stochastic. Let’s assume an infinite horizon, stationary rewards 𝑅,

stationary transition probabilities 𝑃 and a stationary policy 𝜋.

Let’s derive a formula for 𝑄𝑡
𝜋(𝑠, 𝑎):

5

𝑄π(𝑠, 𝑎) = 𝑄0
π(𝑠, 𝑎) = 𝔼[𝐺0|𝑠0 = 𝑠, 𝑎0 = 𝑎] = 𝔼 [∑γ𝑖𝑅𝑖|𝑠0 = 𝑠, 𝑎0 = 𝑎

∞

𝑖=0

]

= 𝔼[𝑅0|𝑠0 = 𝑠, 𝑎0 = 𝑎] +∑γ𝑖𝔼[𝑅𝑖|𝑠0 = 𝑠, 𝑎0 = 𝑎]

∞

𝑖=1

=
(𝑎)
↔ 𝑅(𝑠, 𝑎) +∑γ𝑖 (∑𝑃(𝑠1 = 𝑠’|𝑠0 = 𝑠, 𝑎0 = 𝑎)𝔼[𝑅𝑖|𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝑠1 = 𝑠’]

𝑠′𝜖𝑆

)

∞

𝑖=1

=
(𝑏)
↔ 𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑠′|𝑠, 𝑎) (∑γ𝑖−1𝔼[𝑟𝑖|𝑠1 = 𝑠

′]

∞

𝑖=1

)

𝑠’∈𝑆

=
(𝑐)
↔ 𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)

𝑠’∈𝑆

Eq. 1-1

Remarks: (a) is due to the law of total expectation, (b) follows from the Markov

Property, (c) follows from linearity of expectation.

Moreover:

𝑅π(𝑠) = ∑π(𝑎|𝑠)𝑅(𝑠, 𝑎)

𝑎∈𝐴

𝑃𝜋(𝑠′|𝑠) = ∑𝜋(𝑎|𝑠)𝑃(𝑠′|𝑠, 𝑎)

𝑎∈𝐴

𝑉π(𝑠) = 𝜋(𝑎|𝑠)𝑄π(𝑠, 𝑎) = 𝑚𝑎𝑥
𝑎′∈𝐴

[𝑄𝑡
π(𝑠, 𝑎′)]

Calculating 𝑉π(𝑠) = 𝜋(𝑎|𝑠)𝑄π(𝑠, 𝑎) yields:

𝑉π(𝑠) = 𝑅π(𝑠) + 𝛾∑ 𝑃π(𝑠′|𝑠)𝑉π(𝑠′)

𝑠′∈𝑆

Eq. 1-2

Calculating 𝑉π(𝑠) = 𝑚𝑎𝑥
𝑎′∈𝐴

[𝑄𝑡
π(𝑠, 𝑎′)] yields:

6

𝑉π(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

[𝑅π(𝑠) + γ∑ 𝑃π(𝑠′|𝑠)𝑉π(𝑠′)

𝑠′∈𝑆

]

Eq. 1-3

Similar to the formulas we derived in Eq. 1-1, Eq. 1-2 and Eq. 1-3 we define

Bellman backup operators:

Bellman expectation backup operator

(𝐵π𝑈)(𝑠) = 𝑅π(𝑠) + 𝛾∑ 𝑃π(𝑠′|𝑠)𝑈(𝑠′),

𝑠′∈𝑆

 ∀𝑠 ∈ 𝑆

Bellman optimality backup operator

(𝐵∗𝑈)(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

[𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)

𝑠′∈𝑆

], ∀𝑠 ∈ 𝑆

Both operators are contraction operators. Applying them iteratively guarantees

convergence of RL methods towards a single value, a global optimum. Finally,

Bellman backup operators have been studied in-depth and contain useful

mathematical properties.

7

1.4 Terminology

Model-based vs model-free

Model-based methods require full knowledge of all states and transition

dynamics of the environment. We can either build a model of the environment from

first principles, or we can learn a model of the environment by performing

experiments. Using first principles method, we might result in models that are not

accurate, hence the policy learned might be suboptimal. Learning a model from

experiments is preferred. Important measures for the efficiency of the models are

memory requirements and scalability.

Model-free methods do not require full knowledge of all states and transition

dynamics of the environment. They scale better to larger applications. Model-free

methods are either value function based or policy search. Value function based

methods try to learn a value function, then infer an optimal policy from it. Policy

search methods directly search in the space of the policy parameters to find an optimal

policy.

On-policy vs off-policy

On-policy learning methods attempt to evaluate or improve the policy that is used

to make decisions and generate the data.

Off-policy learning methods evaluate or improve a policy different from that

used to generate the data. The policy being learned about is called the target policy,

whereas the policy used to sample experience is called the behavior policy.

8

1.5 Dynamic Programming methods

DP methods are model-based and on-policy.

1.5.1 Policy Iteration

Policy Iteration [4] searches over a policy space, by iteratively improving on an

existing policy, until that policy converges to a global optimum. Iteratively improving

on a stationary policy 𝜋 is possible, because of this theorem:

Theorem: Given any stationary policy 𝜋, we can generate a new deterministic

stationary policy that is no worse than the existing policy.

Policy Iteration is comprised of Policy Evaluation and Policy Improvement.

Policy Evaluation calculates value function for a stationary policy 𝜋, with the help of

Bellman expectation backup operator. In Policy Improvement, given policy 𝜋, we

generate a new, improved policy 𝜋′, with the help of Bellman optimality backup

operator.

Policy Iteration repeatedly calls Policy Evaluation and Policy Improvement until

the policy stops changing, i.e. the algorithm converges and returns an optimal policy.

algorithm POLICY EVALUATION (𝑀, π, ϵ):

 Define 𝑅π(𝑠) = ∑ π(𝑎|𝑠)𝑅(𝑠, 𝑎)𝑎∈𝐴 , ∀𝑠 ∈ 𝑆

 Define 𝑃π(𝑠′|𝑠) = ∑ π(𝑎|𝑠)𝑃(𝑠′|𝑠, 𝑎)𝑎∈𝐴 , ∀𝑠, 𝑠′ ∈ 𝑆

 Initialize 𝑉′(𝑠) ← 0, 𝑉(𝑠) ← ∞, ∀𝑠 ∈ 𝑆

 while ‖𝑉 − 𝑉′‖∞ > 𝜖 do:

 𝑉 ← 𝑉′

 𝑉′(𝑠) = 𝑅π(𝑠) + 𝛾 ∑ 𝑃π(𝑠′|𝑠)𝑉(𝑠′)𝑠′∈𝑆

return 𝑉′(𝑠), ∀𝑠 ∈ 𝑆

Algorithm 1 Policy Evaluation algorithm as presented in the literature

9

algorithm POLICY IMPROVEMENT (𝑀, 𝑉𝜋):

 π̂ ← 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴

 [𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉π(𝑠′)𝑠′∈𝑆] , ∀𝑠 ∈ 𝑆

 return π̂(𝑠), ∀𝑠 ∈ 𝑆

Algorithm 2 Policy Improvement algorithm as presented in the literature

algorithm POLICY ITERATION (𝑀, ϵ):

 Initialize 𝜋 ← randomly choose a policy 𝜋 ∈ Π

 while true do:

 𝑉𝜋 ← POLICY EVALUATION (𝑀, π, ϵ)

 𝜋∗ ← POLICY IMPROVEMENT (𝑀, 𝑉𝜋)

 if π∗(𝑠) = 𝜋(𝑠) then

 break

 else

 𝜋 ← 𝜋∗

 𝑉∗ ← 𝑉𝜋

 return 𝑉∗(𝑠), π∗(𝑠), ∀𝑠 ∈ 𝑆

Algorithm 3 Policy Iteration algorithm as presented in the literature

1.5.2 Value Iteration

Value Iteration [5] searches over a value function space, by applying the Bellman

optimality backup operator iteratively, until an optimal policy is found.

Value Iteration is guaranteed to converge towards a global optimum.

10

algorithm VALUE ITERATION (𝑀, ϵ):

 Initialize 𝑉′(𝑠) ← 0, 𝑉(𝑠) ← ∞

 while ‖𝑉 − 𝑉′‖∞ > 𝜖 do:

 𝑉 ← 𝑉′

 𝑉′(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

 [𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′∈𝑆] , ∀𝑠 ∈ 𝑆

 V∗ ← 𝑉,   ∀𝑠 ∈ 𝑆

 𝜋∗ ← 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴

 [𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)V∗(𝑠′)𝑠′∈𝑆] , ∀𝑠 ∈ 𝑆

 return 𝑉∗(𝑠), π∗(𝑠), ∀𝑠 ∈ 𝑆

Algorithm 4 Value Iteration algorithm as presented in the literature

1.6 Monte Carlo methods

Monte Carlo on-policy evaluation [6] uses the Monte Carlo computational

method. In Monte Carlo, we first sample an entire episode, then update the 𝑉-value

or 𝑄-value.

Monte Carlo methods are model-free and on-policy. Compared to dynamic

programming methods introduced previously, Monte Carlo methods being model-

free do not require full knowledge of all states and transition dynamics of the

environment, hence scale better to larger applications. Even though Monte Carlo is

model-free, it is analytically guaranteed to converge to a global optimum. Moreover,

Monte Carlo methods are agnostic to the Markov Decision Process setting, hence can

be applied to a very wide range of problems.

Monte Carlo on-policy evaluation can be implemented in three versions:

o First visit Monte Carlo: If the current state 𝑠 is visited for the first time, update

𝑉(𝑠) or 𝑄(𝑠, 𝑎).

o Every visit Monte Carlo: For every visit of state 𝑠, no matter if it is the first

visit, update 𝑉(𝑠) or 𝑄(𝑠, 𝑎).

o Incremental Monte Carlo: Introduces a learning rate 𝛼.

Monte Carlo on-policy evaluation can either update 𝑉(𝑠) or 𝑄(𝑠, 𝑎), depending

on the implementation.

11

algorithm MONTE CARLO EVALUATION (𝑀, 𝑠, 𝑡, 𝑁):

 Initialize 𝑖 ← 0

 Initialize 𝐺𝑡 ← 0

 while 𝑖 ≠ 𝑁 do:

 Sample an episode, starting from state 𝑠 and time 𝑡

 Using sampled episode, calculate return 𝑔 ← ∑ γ𝑖−𝑡𝑟𝑖
𝐻−1
𝑖=𝑡

 𝐺𝑡 ← 𝐺𝑡 + 𝑔

 𝑖 ← 𝑖 + 1

 Update rule for 𝑉(𝑠) or 𝑄(𝑠, 𝑎)

 return 𝑉𝑡(𝑠) or 𝑄𝑡(𝑠, 𝑎)

Algorithm 5 Monte Carlo Evaluation algorithm as presented in the literature

Update rules for First Visit Monte Carlo:

if first visit then

𝑉𝑡(𝑠) ← 𝐺𝑡/𝑁(𝑠)

if first visit then

𝑄𝑡(𝑠, 𝑎) ← 𝐺𝑡/𝑁(𝑠, 𝑎)

Update rules for Every Visit Monte Carlo:

𝑉𝑡(𝑠) ← 𝐺𝑡/𝑁(𝑠) 𝑄𝑡(𝑠, 𝑎) ← 𝐺𝑡/𝑁(𝑠, 𝑎)

Update rules for Incremental Monte Carlo:

𝑉𝑡(𝑠) ← 𝑉𝑡(𝑠) + 𝛼[𝐺𝑡 − 𝑉𝑡(𝑠)] 𝑄𝑡(𝑠, 𝑎) ← 𝑄𝑡(𝑠, 𝑎) + 𝛼[𝐺𝑡 − 𝑄𝑡(𝑠, 𝑎)]

12

1.7 Temporal Difference learning methods

Temporal Difference (TD) learning [7] bootstraps the value functions with

Bellman backup operator while sampling. This is an improvement over Monte Carlo,

which calculates value functions only after sampling an entire episode. For this

reason, TD learning methods are a better choice than Monte Carlo methods in MDPs

with very long episodes, or non-episodic domains.

TD learning methods are model-free and on-policy. In TD learning, we bootstrap

the next state's value estimate to get the current state's value estimate, so the estimate

is biased by the estimated value of the next state.

1.7.1 TD-0

TD-0 calculates the TD target 𝑅 + 𝛾𝑉𝜋(𝑠𝑡+1) every step of the episode, hence

bootstraps information while sampling.

algorithm TD-0 (𝛼, 𝑛):

 Initialize 𝑉π(𝑠) ← 0

 while 𝑛 > 0 do:

 Begin episode 𝐸 at state 𝑠

 while 𝑛 > 0 and episode 𝐸 has not terminated do:

 𝑎 ← action at state 𝑠 under policy 𝜋

 Take action 𝑎 in 𝐸 and observe reward 𝑟, next state 𝑠’

 𝑉π(𝑠) ← 𝑉π(𝑠) + 𝛼(𝑅 + γ𝑉π(𝑠′) − 𝑉π(𝑠))

 𝑠 ← 𝑠′

 return 𝑉π

Algorithm 6 TD-0 algorithm as presented in the literature

13

1.7.2 SARSA

SARSA [8] calculates the TD target 𝑅𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) every step of the

episode, hence bootstrap the information while sampling. Essentially, SARSA is the

same as TD-0, but instead of using 𝑉-values in its update rules like in TD-0, SARSA

uses 𝑄-values in its update rule.

algorithm SARSA (α𝑡 , 𝜖):

 Initialize 𝑄(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 arbitrarily, except 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0

 𝜋 ← 𝜖-greedy policy w.r.t. 𝑄

 for each episode do:

 Set state 𝑠1 as starting state

 Choose action 𝑎1 from policy 𝜋(𝑠1)

 while episode 𝐸 has not terminated do:

 Take action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

 Choose action 𝑎𝑡+1 from policy 𝜋(𝑠𝑡+1)

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + α𝑡[𝑟𝑡 + γ𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)]

 𝜋 ← 𝜖-greedy w.r.t. 𝑄 (policy improvement)

 𝑡 ← 𝑡 + 1

return 𝑄, 𝜋

Algorithm 7 SARSA algorithm as presented in the literature

1.8 Q-Learning methods

Q-Learning [9] is an off-policy learning method for Temporal Difference style

control. Q-Learning is similar to SARSA, but it bootstraps the 𝑄-value from the next

state, by checking 𝑄-values of all possible actions, before actually choosing and

executing that action.

Q-Learning methods are model-free and off-policy.

14

1.8.1 Q-Learning

algorithm Q-LEARNING (𝜖, 𝛼, γ):

 Initialize 𝑄(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 arbitrarily, except 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0

 𝜋 ← 𝜖-greedy policy w.r.t. 𝑄

 for each episode do:

 Set state 𝑠1 as starting state

 𝑡 ← 1

 while episode 𝐸 has not terminated do:

 Choose action 𝑎𝑡 from policy 𝜋(𝑠𝑡)

 Take action 𝑎𝑡 and observe reward 𝑟𝑡, next state 𝑠𝑡+1

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + γmax
a′
𝑄(𝑠𝑡+1, 𝑎

′) − 𝑄(𝑠𝑡 , 𝑎𝑡)]

 𝜋 ← 𝜖-greedy w.r.t. 𝑄 (policy improvement)

 𝑡 ← 𝑡 + 1

return 𝑄, 𝜋

Algorithm 8 Q-Learning algorithm as presented in the literature

Q-Learning introduces maximization bias. In other words, some optimistic bias

is present towards some actions, making them better than their actual 𝑄-value.

Depending on the problem, maximization bias can be beneficial or a drawback.

15

1.8.2 Double Q-Learning

Double Q-Learning [10] is exactly the same as Q-Learning, with a modified

update rule that prevents maximization bias. Double Q-Learning decouples the action

selection from 𝑄-value evaluation, by using two independent, unbiased estimates of

𝑄-values: 𝑄1 and 𝑄2. 𝑄1 is used to select the action yielding the maximal returns,

whereas 𝑄2 is used to estimate the value of this maximum return. With 0.5 probability

𝑄1 is updated and with 0.5 probability 𝑄2 is updated.

algorithm DOUBLE Q-LEARNING (𝜖, 𝛼, γ):

 Initialize 𝑄1(𝑠, 𝑎), 𝑄2(𝑠, 𝑎) ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴

 𝜋 ← 𝜖-greedy policy w.r.t. 𝑄1 + 𝑄2

 for each episode do:

 Set state 𝑠1 as starting state

 𝑡 ← 1

 while episode 𝐸 has not terminated do:

 Choose action 𝑎𝑡 from policy 𝜋(𝑠𝑡)

 Take action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

if (with 0.5 probability) then

 𝑄1(𝑠𝑡 , 𝑎𝑡) ← 𝑄1(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑄2 (𝑠𝑡+1, 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎′

 𝑄1(𝑠𝑡+1, 𝑎
′)) −

𝑄1(𝑠𝑡 , 𝑎𝑡)]

 else

 𝑄2(𝑠𝑡 , 𝑎𝑡) ← 𝑄2(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑄1 (𝑠𝑡+1, 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎′

 𝑄2(𝑠𝑡+1, 𝑎
′)) −

𝑄2(𝑠𝑡 , 𝑎𝑡)]

 𝜋 ← 𝜖-greedy w.r.t. 𝑄1 + 𝑄2 (policy improvement)

 𝑡 ← 𝑡 + 1

return 𝑄1 + 𝑄2, 𝜋

Algorithm 9 Double Q-Learning algorithm as presented in the literature

16

CHAPTER 2

 DEEP REINFORCEMENT LEARNING

2.1 Introduction

Traditional RL saves 𝑄-values internally using a lookup table. It also

approximates the 𝑄-value analytically with Bellman backup operators. This approach

might not scale with very large state and action spaces. In other cases, we might prefer

quickly learning good approximate value functions over exact value functions. Deep

RL parameterizes the policy with weights 𝜃 in a neural network, serving as a function

approximator for the 𝑄-value. Input features of the network are observations 𝑜𝑡 for

state 𝑠𝑡 and rewards 𝑅𝑡, from some fixed size replay buffer.

Other possible architectures for function approximators could be linear

combinations, decision trees, nearest neighbors or Fourier or wavelet bases.

Nevertheless, the most popular choice for weights 𝜃 are neural networks.

Deep RL allows us to solve more complicated tasks, like physics-based

simulations and robotics tasks. However, it is important to note that Deep RL methods

are not guaranteed to converge. Research in Deep RL has high computational

complexity and requires long computational time, in order to find the best

hyperparameters that lead to convergence, i.e. solve a task.

17

2.2 Definition of Deep Reinforcement Learning

Objective

Deep reinforcement learning techniques can be framed as an optimization

problem on parameters 𝜃, in order to find the optimal θ∗:

θ∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
θ

𝔼τ~𝑝θ(τ) [∑𝑟(𝑠𝑡 , 𝑎𝑡)

𝑡

]

We can use a variety of optimization techniques, like Stochastic Gradient

Descent to optimize this objective.

To be more concrete, let us define the term inside 𝑎𝑟𝑔𝑚𝑎𝑥
θ

 as a function 𝐽(θ):

𝐽(θ) = 𝔼τ~πθ(τ)[𝑟(τ)]

We could re-write function 𝐽(𝜃) as:

𝐽(θ) = ∫πθ𝑟(τ)𝑑τ

With this integral, we can easily take the gradient to perform gradient descent or

ascent. Essentially, optimizing the new objective 𝐽(θ) with gradient descent or ascent

is equivalent to taking the operator 𝑎𝑟𝑔𝑚𝑎𝑥
θ

, i.e. finding the optimal parameters 𝜃.

Experience replay buffer

Sampling trajectories 𝜏 from the environment consecutively, means that they will

be temporally correlated. If we were to feed them to a neural network directly, it

would lead to overfitting. Experience replay buffer keeps a fixed number of

trajectories in the buffer 𝛽, sampled from different timesteps. The temporal

correlation between the trajectories in the buffer is broken. Each training step of the

policy, trajectories are chosen from the replay buffer at random.

18

2.3 Types of Deep Reinforcement Learning methods

Value function based

Value based methods estimate V-function or Q-function of the optimal policy.

There is no explicit policy, but rather the policy is inferred from the value functions.

Policy Gradient

Policy Gradient methods directly differentiate the RL objective.

∇θ𝐽(θ) = ∇θ 𝔼τ~𝑝θ(τ) [∑𝑅(𝑠𝑡 , 𝑎𝑡)

𝑡

]

Actor-Critic

Actor-Critic methods estimate value function or Q-function of the current policy,

then use it to improve the policy.

Model based

Model based methods estimate the transition model and then use it for planning,

with no explicit policy, as well as to improve a policy. As we saw in the previous

chapter, model based methods are common in Reinforcement Learning. However,

they are not common in Deep Reinforcement Learning.

19

2.4 Value function methods

2.4.1 Deep Q-Network (DQN)

Deep Q-Network (DQN) [11] is based on Q-Learning, but uses a neural network

as a function approximator for the 𝑄-value. The network is trained by minimizing a

loss function at every iteration 𝑖, given by:

𝐿𝑖(θ𝑖) = 𝐸𝑠~ρπ(∙),𝑎~π(∙)[𝑅𝑖 − 𝑄(𝑠, 𝑎; θi)]
2

𝑅𝑖 = 𝐸𝑠′~ϵ [𝑟𝑖 + γ 𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′, θ𝑖−1|𝑠, 𝑎)]

R𝑖 is the target at iteration 𝑖, 𝜋(𝑠|𝑎) is the behavior policy, 𝜌𝜋(∙) is the

distribution of states under policy 𝜋, and 𝜖 refers to the environment.

To minimize the loss function, the gradient of the loss function is computed w.r.t.

the weights:

∇θ𝑖L(θ𝑖) = 𝐸𝑠~ρπ(∙),𝑎~π(∙),𝑠′~ϵ [(𝑟𝑖 + γ max
𝑎′

𝑄(𝑠′, 𝑎′; θ𝑖−1)

− 𝑄(𝑠, 𝑎; θ𝑖)) ∇θ𝑖𝑄(𝑠, 𝑎; θ𝑖)]

Stochastic Gradient Descent is used to minimize the loss function. The behavior

policy is an 𝜖 −greedy policy to ensure sufficient exploration.

Deep Q-Networks make use of an experience replay buffer.

20

algorithm DEEP Q-NETWORK:

Initialize replay memory 𝐷

Initialize 𝑄-value with random weights 𝑤

for each episode do:

 Observe initial state 𝑠1

 for t=1:T do:

 Select action 𝑎𝑡 using Q (e.g. 𝜖 −greedy)

 Take action 𝑎𝑡

 Observe reward 𝑟𝑡 and new state 𝑠𝑡+1

 Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in replay buffer 𝐷

 Sample random transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝐷

 for each transition do:

 Calculate target 𝑅𝑖 like below:

 if 𝑠𝑖+1 is terminal then

 𝑅𝑖 = 𝑟𝑖

 else

 𝑅𝑖 = 𝑟𝑖 + γ𝑚𝑎𝑥
𝑎′

𝑄(𝑠𝑖+1, 𝑎
′; θ)

 Train the Q network on (𝑅𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖; θ))
2
using SGD

Algorithm 10 DQN algorithm as presented in the literature

Like in Q-Learning, maximization bias is present.

2.4.2 Double Deep Q-Network (DDQN)

Double deep Q-networks (DDQN) [12] make use of a target network to stabilise

training in Deep Q-Networks. The online network is used to evaluate the greedy

policy and select an action to execute. The target network is used to calculate the new

value function for the update. The update is the same as for DQN, but replacing the

target with:

𝑅𝑖 = 𝑟𝑖 + γmax
𝑎′
Q(𝑠𝑖+1;  argmax

𝑎
 𝑄(𝑠𝑖+1, 𝑎, θ);  θ

′)

DDQN is shown to reduce bias and improve performance on the same set of

problems that DQN is used.

21

2.5 Policy Gradient methods

Policy Gradient methods [13] attempt to optimize the policy directly. This is

different from 𝑄-value methods described before, which parameterize and optimize

the 𝑄-value.

Policies represent action probabilities. Parameterizing the policy directly means

that we are estimating the probabilities of the agent to take the action at a specific

state, instead of estimating a table of action-state-rewards. Policy Gradient methods

train the policy with trajectories directly when they are sampled, then discard the

trajectory. They don’t use replay buffers or similar techniques to store previous

experiences.

Unlike Q-Learning based algorithms, Policy Gradients are capable of

functioning in continuous action spaces. Furthermore, Policy Gradients can be

employed in scenarios where actions do not need to be executed in discrete steps, like

pressing on-off switch. Instead actions are continuous, like a car’s steering wheel

turn.

2.5.1 Policy Gradient Theorem

Let us derive a mathematical expression for directly calculating the derivate of

the policy. This is done by directly differentiating the Deep RL objective:

𝐽(θ) = 𝔼τ~πθ(τ)[𝑟(τ)] = ∫πθ(τ)𝑟(τ)𝑑τ

Let us also recall a convenient identity:

πθ(τ)∇θ𝑙𝑜𝑔πθ(τ) = πθ(τ)
∇θπθ(τ)

πθ(τ)
= ∇θπθ(τ)

Using this identity, we can take the gradient of 𝐽(θ) in an elegant way:

∇θ𝐽(θ) = ∫∇θπθ𝑟(τ)𝑑τ

= ∫πθ(τ)∇θ𝑙𝑜𝑔πθ(τ)𝑟(τ)𝑑τ

= 𝔼τ~πθ(τ)[∇θ𝑙𝑜𝑔πθ(τ)𝑟(τ)]

22

Recall that, by Bayes’ rule:

πθ(τ) = 𝑝(𝑠1)∏πθ(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=1

Taking the 𝑙𝑜𝑔 on both sides, we get:

𝑙𝑜𝑔 πθ(τ) = 𝑙𝑜𝑔 𝑝(𝑠1) +∑𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡) + 𝑙𝑜𝑔 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

We substitute into our original gradient:

∇θ𝐽(θ) = 𝔼τ~πθ(τ) [∇θ(𝑙𝑜𝑔 𝑝(𝑠1) +∑𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)

+ 𝑙𝑜𝑔 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)) 𝑟(τ)]

= 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡))(∑𝑟(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=1

)]

We cancel out 𝑙𝑜𝑔 𝑝(𝑠1) and 𝑙𝑜𝑔 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡), because we are taking the

gradient w.r.t. 𝜃. Both these expressions do not depend on 𝜃.

23

2.5.2 REINFORCE

We derived a mathematical expression for directly calculating the derivate of the

policy, which involved an expectation. The above expression is foundational for

Policy Gradient methods. However, in most cases we cannot easily obtain this

expectation. With increasing complexity of problems and huge state and action

spaces, the expectation will involve an intractable integral.

As presented in the previous chapter, Monte Carlo methods are perfect for

approximations. We take 𝑁 samples and average them out:

∇θ𝐽(θ) ≅
1

𝑁
∑(∑∇θ

𝑇

𝑡=1

𝑙𝑜𝑔πθ(𝑎𝑖,𝑡|𝑠𝑖,𝑡) (∑𝑟(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)

𝑇

𝑡=1

))

𝑁

𝑖=1

where 𝑡 means timestep 𝑡 and 𝑖 means 𝑖-th rollout

With the above gradient, we can do gradient descent on parameters 𝜃, by:

𝜃 ← 𝜃 + 𝛼∇θ𝐽(θ)

REINFORCE algorithm [14] makes use of these gradient derivations, with the

additional Monte Carlo technique. It is the simplest Policy Gradient algorithm.

algorithm REINFORCE:

Require: base policy πθ(𝑎𝑡|𝑠𝑡), sample trajectories τ𝑖

while true do:

 Sample τ𝑖 from πθ(𝑎𝑡|𝑠𝑡)

 ∇θ𝐽(θ) ≅
1

𝑁
 ∑ (∑ ∇θ𝑡 𝑙𝑜𝑔πθ(𝑎𝑖,𝑡|𝑠𝑖,𝑡)) (∑ 𝑟(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)𝑡)𝑖

 Improve policy by 𝜃 ← 𝜃 + 𝛼∇θ𝐽(θ)

 return optimal trajectory from gradient ascent as τ𝑟𝑒𝑡𝑢𝑟𝑛

Algorithm 11 REINFORCE algorithm as presented in the literature

REINFORCE suffers from high variance.

24

2.5.3 What are Policy Gradients actually doing?

Notice that the first item in the final expectation formula is similar to Maximum

Likelihood Estimation:

∇θ𝐽𝑀𝐿(θ) =
1

𝑁
∑∇θ𝑙𝑜𝑔 πθ(τ𝑖)

That being said, the intuition behind the derived formula:

∇θ𝐽(θ) ≅
1

𝑁
∑(∑∇θ

𝑇

𝑡=1

𝑙𝑜𝑔πθ(𝑎𝑖,𝑡|𝑠𝑖,𝑡) (∑𝑟(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)

𝑇

𝑡=1

))

𝑁

𝑖=1

 is that with Policy Gradient methods, we are trying to make:

o good trajectories more likely

o bad trajectories less likely

Figure 2-1. Improving the likelihood of good trajectories with Policy Gradients

2.5.4 Improving Policy Gradient

Reward-to-go

In the update rule derived in Policy Gradient Theorem, we can substitute

∑ 𝑟(𝑠𝑡 , 𝑎𝑡)
𝑇
𝑡=1 with an approximation of 𝑄-function �̂�𝑖,𝑡, also called the “reward-to-

go”. �̂�𝑖,𝑡 can be parameterized by ∅ and we can improve it using gradient descent.

We get a new update rule:

∇θ𝐽(θ) ≅ 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)) �̂�𝑖,𝑡
∅]

25

Reward-to-go and similar techniques are the standard in more advanced methods,

like Actor-Critic methods.

Baselines

The goal of Policy Gradient methods is to make good trajectories more likely

and worse trajectories less likely. Nevertheless, this leads to high variance. To reduce

variance, we could define a better goal: we make better than average trajectories

more likely and worse than average trajectories less likely. We refer to these averages

as baselines.

Property of baselines: Subtracting a baseline from the gradient update formula

is unbiased in expectation, hence we will converge towards the same optimum.

∇θ𝐽(θ) = 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)) (𝑟(τ) − 𝑏)]

A naïve baseline could be the average of all returns from all episodes:

𝑏 =
1

𝑁
∑𝑟(τ)

𝑁

𝑖=1

Although not optimal, this baseline is practical in implementation and delivers

very good results. This is the baseline that is mostly used.

We could also find an optimal baseline analytically, by analyzing the variance of

∇θ𝐽(θ) and setting its gradient to 0.

𝑑𝑉𝑎𝑟

𝑑𝑏
=
𝑑

𝑑𝑏
𝔼[∇θ𝑙𝑜𝑔πθ(𝑎𝑡|𝑠𝑡)

2(𝑟(τ) − 𝑏)2]

Finally, the optimal baseline which reduces variance is:

𝑏 =
𝔼[∇θ𝑙𝑜𝑔πθ(τ)𝑟(τ)]

𝔼[∇θ𝑙𝑜𝑔πθ]

Advantage Function

26

Another possible term that could act as a baseline is the 𝑉-value function 𝑉(𝑠𝑡).

In that case, we choose to subtract it from the reward-to-go. Intuitively, we are

calculating how much better choosing action 𝑎𝑖,𝑡 in state 𝑠𝑖,𝑡 is to choosing the

average action for that state. The update rule becomes:

∇θ𝐽(θ) = 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)) (𝑄(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡) − 𝑉(𝑠𝑖,𝑡))]

The term �̂�𝑖,𝑡 ≔ 𝑄(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡) − 𝑉(𝑠𝑖,𝑡) is called the advantage function.

Importance Sampling

In importance sampling, we do not use sample trajectories 𝜏 from πθ(τ) in our

calculations of 𝐽(𝜃) and updates to the parameters 𝜃, but instead we use trajectories

from another πθ̂(τ), where πθ̂(τ) could be an old policy, or demonstrations from a

person. Actually, Policy Gradient with Importance Sampling is off-policy.

In expectation, it is proven analytically that using Importance Sampling, we

converge towards the same optimum as without Importance Sampling.

2.5.5 Natural Policy Gradient (NPG)

In Natural Policy Gradient [15], the argument is that a more refined update rule

than Gradient Descent is necessary, one that represents the steepest descent direction

based on the underlying structure of the parameter space of 𝜃. Natural Policy Gradient

introduces a new update rule called the Natural Gradient Descent.

NGD calculates an Advantage function �̂�𝑡
π𝑘, similar to reward-to-go.

Furthermore, a KL-divergence between the Hessian Matrix �̂�𝑘 and Fisher

Information Matrix 𝐹(𝜃) is introduced. Hessian Matrix presents us the second-order

derivative of 𝜋𝜃, which measures how much the policy 𝜋𝜃 changes. Finally, the KL-

divergence computes the difference between the policy before and after the update.

The KL-divergence has the form:

𝐷𝐾𝐿(πθ|πθ + ∇θ) =∑πθ(𝑥)𝑙𝑜𝑔

𝑥𝜖𝑋

(
πθ(𝑥)

πθ + ∇θ(𝑥)
)

27

The Fisher Matrix has the form:

𝐹(θ) = 𝔼θ[∇θ𝑙𝑜𝑔πθ(𝑥)∇θ𝑙𝑜𝑔πθ(𝑥)
𝑇]

algorithm NATURAL POLICY GRADIENT (NPG) :

 Initialize policy parameters θ0

for 𝑘 = 0:𝐾 do:

 Collect set of trajectories 𝐷𝑘 on policy π𝑘 = 𝜋(θ𝑘)

 Estimate advantages �̂�𝑡
π𝑘 using any advantage estimation algorithm

 Form sample estimates for:

o Policy gradient �̂�𝑘 (using advantage estimates)

o KL-divergence Hessian / Fisher Information Matrix �̂�𝑘(𝜃)

 Compute Natural Policy Gradient update:

θ𝑘+1 = θ𝑘 +√
2𝛿

�̂�𝑘
𝑇�̂�𝑘

−1(𝜃)�̂�𝑘
�̂�𝑘
−1(𝜃)�̂�𝑘

Algorithm 12 NPG algorithm (simplified) as presented in the literature

There are downsides to NPG. NGD may misrepresent the actual distance

between policies, causing step sizes to be too large. Inversing the Fisher matrix F is

a costly operation of 𝑂(𝑁3) complexity. Fisher Information Matrix 𝐹 is a |𝜃| ⋅ |𝜃|

matrix, which may take substantial memory to store. KL-divergence constraint might

not be satisfied. Furthermore, policy improvement is not verified. All these issues are

addressed by more advanced methods, like TRPO and PPO.

28

2.6 Actor-Critic methods

Actor-Critic methods [13] build upon the Policy Gradient framework and

augment it with learned 𝑉-value functions and 𝑄-functions. The methodology behind

them is Policy Iteration, which alternates between policy evaluation and policy

improvement [16]. In an Actor-Critic method, two key components are present, the

actor and the critic.

The actor’s parameters 𝜃 directly recommend the action that the agent should

take. Actor updates its policy taking into account the critics output. Notice that the

actor implements a Policy Gradient, for updating parameters 𝜃. The critic’s

parameters ∅ estimate 𝑄-values to measure how good the choices made by the actor

are. Critics rely on replay buffers. To address large-scale RL applications with

continuous action spaces, the 𝑄-value function and policy are optimized jointly,

because it is impractical to run either of these steps to convergence.

Actor-Critic methods can either be on-policy or off-policy. On-policy training

tends to improve stability, but suffers from high variance and results in poor sample

efficiency [16]. Off-policy learning methods reduce variance and are more sample

efficient. In off-policy learning methods, the actor needs 2 network parameters, one

for the behavior policy used to sample experience and another for the target policy,

the policy we update for learning.

29

2.7 On-policy Actor-Critic methods

On-policy Actor-Critic methods are stable, but are high variance. They are not

sample efficient, hence require a lot of training samples.

2.7.1 Advantage Actor-Critic (A2C)

Advantage Actor-Critic (A2C) is the synchronous version of Asynchronous

Advantage Actor-Critic (A3C) [17]. A2C calculates the advantage function as a

reward-to-go. First, A2C waits for each actor to finish its segment of experience

before updating. Then, to calculate the value function it averages over all of the actors.

This more effectively uses GPUs due to larger batch sizes.

algorithm ADVANTAGE ACTOR-CRITIC:

 Initialize parameters 𝑠, 𝜃, ∅ and learning rates αθ, α∅

 while true do:

 Take action 𝑎~πθ(𝑎|𝑠) and observe (𝑠, 𝑎, 𝑠′, 𝑟)

 Update �̂�∅
π(𝑠) using target 𝑦 = 𝑟 + 𝛾�̂�∅

π(𝑠′)

 Evaluate �̂�π(𝑠𝑖 , 𝑎𝑖) = 𝑅(𝑠𝑖 , 𝑎𝑖) + �̂�∅(𝑠𝑖
′) − �̂�∅(𝑠𝑖)

 Calculate update ∇θ𝐽(θ) ≅ ∑ ∇θ𝑖 𝑙𝑜𝑔πθ(𝑎𝑖|𝑠𝑖)�̂�
π(𝑠𝑖 , 𝑎𝑖)

 Improve policy by 𝜃 ← 𝜃 + 𝛼∇θ𝐽(θ)

 return optimal policy from gradient ascent as π𝑟𝑒𝑡𝑢𝑟𝑛

Algorithm 13 A2C algorithm as presented in the original paper

30

2.7.2 Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) [18] improves over NPG, introducing

three improvements.

Conjugate gradient method

In Natural Gradient Descent, computing the inverse Fisher matrix is time-

consuming, with 𝑂(𝑁3) time complexity and is often numerically unstable. Instead

of calculating the entire inverse Fisher matrix and Hessian matrix, we approximate

them with an iterative algorithm.

Conjugate Gradient improves NGD by approximating the Fisher matrix and

Hessian matrix iteratively. CG generally converges within |θ| steps.

Line search

In Natural Gradient Descent, the optimal step size given the constraint placed on

KL-divergence may not be satisfied. Line search iteratively reduces the size of the

update, until it does not violate the KL-divergence constraint.

Natural policy presumes the divergence constraint is met, whereas line search

performed in TRPO enforces it. Finally, the trust region shrinks, i.e. the region within

we trust the update to actually improve the objective.

algorithm LINE SEARCH FOR TRPO:

 Compute proposed policy step θ𝑘+1 = θ𝑘 + α
𝑗√

2𝛿

�̂�𝑘
𝑇�̂�𝑘�̂�𝑘

�̂�𝑘

 for 𝑗 = 0,1,2, … , 𝐿 do:

 compute proposed update 𝜃 = 𝜃𝑘 + 𝛼
𝑗Δ𝑘

 if 𝐿(𝜃) ≥ 0 and 𝐷𝐾𝐿(𝜃|𝜃𝑘) ≤ δ then

 accept the update and set 𝜃𝑘+1 = 𝜃𝑘 + 𝛼
𝑗Δ𝑘

 break

Algorithm 14 Line Search for TRPO as presented in the literature

31

Improvement check

Rather than presuming the update will improve the surrogate advantage ℒ(𝜃),

we verify whether our update actually improves the policy before accepting it. We

compute advantages based on the old policy, using importance sampling to adjust the

probabilities.

algorithm TRUST REGION POLICY OPTIMIZATION (TRPO):

 Input: initial policy parameters θ0, initial value function parameters ∅0

Hyperparameters: KL-divergence limit 𝛿, learning rate 𝛼, maximum number of

backtracking steps 𝐾

 for 𝑘 = 0:𝐾 do:

 Collect trajectories 𝐷𝑘 = {τ𝑖}, by running policy π𝑘 = 𝜋(θ𝑘) in the

environment

 Compute rewards-to-go �̂�𝑡

 Compute advantage estimates, �̂�𝑡 (using any method of advantage

estimation) based on the current value function 𝑉∅𝑘.

 Estimate policy gradient as:

�̂�𝑘 =
1

|𝐷𝑘|
∑ ∑∇𝜃

𝑇

𝑡=0𝜏∈𝐷𝑘

𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡) |θ𝑘 �̂�𝑡

 Use the conjugate gradient algorithm to compute:

�̂�𝑘 ≅ �̂�𝑘
−1�̂�𝑘

where �̂�𝑘 is the Hessian of the sample average KL-divergence.

Update the policy by backtracking line search with:

θ𝑘+1 = θ𝑘 + α
𝑗√

2𝛿

�̂�𝑘
𝑇�̂�𝑘�̂�𝑘

�̂�𝑘

where 𝑗 ∈ {0,1,2…𝐾} is the smallest value which improves the sample loss

and satisfies the sample KL-divergence constraint.

Fit value function by regression on mean-squared error:

∅𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
∅

1

|𝐷𝑘|𝑇
∑ ∑(𝑉∅(𝑠𝑡) − �̂�𝑡)

2
𝑇

𝑡=0τ∈𝐷𝑘

 typically via some gradient descent algorithm.

Algorithm 15 TRPO algorithm as presented in the literature

32

2.7.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [19] [20] is a state-of-the-art method in on-

policy actor-critic methods. PPO is similar to TRPO conceptually, although a lot

easier to implement, as well as more accurate. It can be formulated in two versions,

PPO with adaptive KL penalty, which is the version most similar to TRPO and PPO

with clipped objective.

PPO with adaptive KL penalty

PPO reliably determines the scaling parameter β that allows meaningful updates,

yet avoids excessive drifts.

Δθ∗ = argmax
Δ𝜃

𝐿θ+Δθ(θ + Δθ) − β(𝐷𝐾𝐿(πθ|πθ+Δθ))

It is hard to determine a single value for β that works for multiple problem

settings. PPO sets a ‘target divergence’ 𝛿, large enough to substantially alter the

policy, but small enough for updates to be stable.

After each update, PPO checks the size of the update. If the realized KL-

divergence exceeds the target divergence by more than 1.5δ, the next iteration we

penalize divergence by doubling 𝛽. If KL-divergence is less than 0.75𝛿, the next

iteration we expand the trust region by halving 𝛽.

33

algorithm PPO WITH ADAPTIVE KL PENALTY:

 Input: policy parameters 𝜃0, initial KL penalty 𝛽0, target KL-divergence 𝛿

 for 𝑘 = 0:𝐾 do:

 Collect set of partial trajectories 𝐷𝑘 on policy 𝜋𝑘 = 𝜋(𝜃𝑘)

 Estimate advantages �̂�𝑡
𝜋𝑘 using any advantage estimation algorithm

 Compute policy update

𝜃𝑘+1 = argmax
𝜃

𝐿𝜃𝑘(𝜃) − 𝛽𝑘�̅�𝐾𝐿(𝜃|𝜃𝑘)

 by taking 𝐾 steps of minibatch SGD (via Adam)

 if �̅�𝐾𝐿(𝜃𝑘+1|𝜃𝑘) ≥ 1.5𝛿 then

𝛽𝑘+1 = 2𝛽𝑘

 else if �̅�𝐾𝐿(𝜃𝑘+1|𝜃𝑘) ≤ 𝛿/1.5 then

𝛽𝑘+1 = 𝛽𝑘/2

Algorithm 16 PPO with adaptive KL penalty as presented in the literature

PPO with clipped objective

Instead of changing penalties over time, we restrict the range within which the

policy can change. Advantages achieved by updates outside the clipping range are

not used for updating purposes. We provide an incentive to stay relatively close to

the existing policy.

algorithm PPO WITH CLIPPED OBJECTIVE:

 Initial policy parameters 𝜃0, clipping threshold 𝜖

 for 𝑘 = 0,1,2…𝑁 do:

 Collect set of partial trajectories 𝐷𝑘 on policy 𝜋𝑘 = 𝜋(𝜃𝑘)

 Estimate advantages �̂�𝑡
𝜋𝑘 using any advantage estimation algorithm

 Compute policy update

𝜃𝑘+1 = argmax
𝜃

𝐿𝜃𝑘
𝐶𝐿𝐼𝑃(𝜃)

 by taking K steps of minibatch SGD (via Adam), where

𝐿𝜃𝑘
𝐶𝐿𝐼𝑃(𝜃) = 𝔼𝜏~𝜋𝑘 [∑[𝑚𝑖𝑛(𝑟𝑡(𝜃)�̂�𝑡

𝜋𝑘 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡
𝜋𝑘)]

𝑇

𝑡=0

]

Algorithm 17 PPO with clipped objective as presented in the literature

34

2.8 Off-policy Actor-Critic methods

Off-policy Actor-Critic methods reduce variance, hence are very sample

efficient.

2.8.1 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [21] [22] is the first off-policy

actor-critic to be introduced. DDPG is an off-policy algorithm and is trained with

samples from a replay buffer to minimize correlations between samples. Moreover,

it introduces one target critic 𝑄-network to give consistent targets during

bootstrapping of 𝑄-values and improve stability. A key feature of DDPG is its

simplicity: it requires only a straightforward actor-critic architecture [21].

Nevertheless, this simplicity makes it very sensitive to hyperparameter tuning.

algorithm DEEP DETERMINISTIC POLICY GRADIENT (DDPG):

Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃) and actor 𝜇(𝑠|∅) with weights 𝜃

and ∅

Initialize target network 𝑄′ and μ′ with weights 𝜃′ ← 𝜃, ∅′ ← ∅

Initialize replay buffer 𝐷

for 𝑡 = 1: 𝑇 do:

 Take some action 𝑎𝑡 = 𝜇(𝑠𝑡|∅)

Observe (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) and add it to 𝐷

 Sample random mini-batch of N transitions (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖) from 𝐷

 Select 𝑎𝑖+1 = μ
′(𝑠𝑖+1|∅

′)

 Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑠𝑖+1, 𝑎𝑖+1|𝜃

′) using target networks 𝜃′ and ∅′

 Update critic by minimizing loss:

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃))

2

𝑖

 Update the actor policy using the sampled policy gradient:

∇∅𝐽 ≅
1

𝑁
∑∇𝑎𝑄(𝑠, 𝑎|𝜃)|𝑠=𝑠𝑖,𝑎=μ(𝑠𝑖)∇∅μ(𝑠|∅)|𝑠𝑖
𝑖

 Update the target networks:

∅′ ← ∅′ − 𝛼∑
𝑑𝑄∅′

𝑑∅′
𝑗

(𝑠𝑗 , 𝑎𝑗)(𝑄∅′(𝑠𝑗 , 𝑎𝑗) − 𝑦𝑗)

35

𝜃′ ← 𝜃′ + 𝛽∑
𝑑𝜇

𝑑𝜃′
𝑗

(𝑠𝑗)
𝑑𝑄∅′

𝑑𝑎
(𝑠𝑗 , 𝑎)

Algorithm 18 DDPG algorithm as presented in the original paper

2.8.2 Twin-Delayed DDPG (TD3)

Twin-Delayed DDPG (TD3) [23] is essentially the same as DDPG. Instead of

updating the policy in each timestep, TD3 updates it every 𝑑 timesteps. Using this

simple technique, TD3 is more stable than DDPG and less sensitive to

hyperparameter tuning.

algorithm TWIN-DELAYED DDPG (TD3):

 Initialize critic networks 𝑄θ1 , 𝑄θ2 and actor network π∅ with random

parameters θ1, θ2, 𝜃

 Initialize target networks θ1
′ ← θ1, θ2

′ ← θ2, ∅
′ ← ∅

 Initialize replay buffer 𝐷

 for t=1:T do:

 Select action 𝑎 with exploration noise 𝑎~π∅(𝑠) + 𝜖, 𝜖~𝜂(0, σ) and

observe reward 𝑟 and new state 𝑠′

 Store transition tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from 𝐷

 Sample mini-batch of 𝑁 transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝐷

 Take new actions 𝑎𝑖+1 ← π∅(𝑠
′) + 𝜖, 𝜖~𝑐𝑙𝑖𝑝(𝜂(0, σ̅), −𝑐, 𝑐)

 Set 𝑦 ← 𝑟 + 𝛾𝑚𝑖𝑛𝑗=1,2𝑄θ𝑗
′(𝑠𝑖+1, 𝑎𝑖+1)

 Update critics:

θ𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛
θ𝑗

1

𝑁
∑(𝑦 − 𝑄θ𝑖(𝑠, 𝑎))

2

 if t mod d then

 Update ∅ by the deterministic policy gradient:

∇θ𝐽(∅) =
1

𝑁
∑∇𝑎𝑄θ1(𝑠, 𝑎)|𝑎=π∅(s)∇∅π∅(s)

 Update target networks:

θ𝑖
′ ← 𝜏θ𝑖 + (1 − τ)θ𝑖

′ , 𝑖 ∈ {1,2}

∅′ ← 𝜏∅ + (1 − τ)∅′

Algorithm 19 TD3 as presented in the original paper

36

2.8.3 Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) [16] is based on the maximum entropy framework. The

entropy appears in both the actor and critic.

SAC introduces a stochastic policy, meant for both maximizing expected reward

and maximizing entropy. This prevents premature convergence of the policy

variance. Moreover, two critic 𝑄-networks are introduced, to mitigate positive bias

in the policy improvement step, which is known to degrade performance of value

based methods. The critics encourage exploration by increasing the 𝑄-value of

regions of state space that lead to high entropy behaviour. SAC also makes use of two

target critic 𝑉-networks to give consistent targets during bootstrapping of 𝑄-values

and improve stability.

algorithm SOFT ACTOR-CRITIC (SAC):

 Input: initial parameters for policy 𝜃 and critic ∅1, ∅2

 Initialize target weights for critic ∅̅1 ← ∅1, ∅̅2 ← ∅2

 Initialize empty replay buffer 𝐷

 for each iteration do:

 for each environment step do:

 Sample action from the policy 𝑎𝑡~πθ(𝑎𝑡|𝑠𝑡)

 Observe new state 𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

 Store the tuple in the replay buffer 𝐷 ← 𝐷 ∪
(𝑠𝑡 , 𝑎𝑡 , 𝑟(𝑠𝑡 , 𝑎𝑡), 𝑠𝑡+1)

 for each gradient step do:

 Update the critic parameters ∅𝑖 ← ∅𝑖 − λ𝑄∇∅𝑖𝐽𝑄(∅𝑖), 𝑖 ∈

{1,2}

 Update policy weights 𝜃 ← 𝜃 − λπ∇̂θ𝐽π(θ)

 Update temperature 𝛼 ← 𝛼 − 𝜆∇̂α𝐽(α)

 Update critic target weights ∅i̅ ← 𝜏∅i + (1 − τ)∅i̅,    𝑖 ∈ {1,2}

Algorithm 20 SAC as presented in the original paper

37

2.8.4 Randomized Ensembled Double Q-Learning (REDQ)

Randomized Ensembled Double Q-Learning [24] works in conjunction with an

underlying off-policy algorithm. It is model-free. It is also very sample efficient, with

an Update-To-Data: 𝐺 ≫ 1.

REDQ uses an ensemble of 𝑁 𝑄-functions. This effectively reduces the variance

in the 𝑄-function estimate. Each 𝑄-function is randomly and independently

initialized, but updated with the same target. Furthermore, the target for the 𝑄-

function includes a minimization over a random subset 𝑀 of the 𝑁 𝑄-functions. This

effectively reduces over-estimation bias. The size of the subset 𝑀 is kept fixed, and

is referred to as the in-target minimization parameter. The default value 𝑀 = 2,

hence the name Double Q-Learning.

algorithm RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING (REDQ):

 Initialize policy 𝜃, 𝑁 𝑄-functions ∅𝑖 , 𝑖 = 1…𝑁, empty replay buffer 𝐷.

Set target parameters ∅𝑡𝑎𝑟𝑔,𝑖 ← ∅𝑖 , 𝑖 = 1…𝑁

for each episode do:

 Take action 𝑎𝑡~πθ(∙ |𝑠𝑡). Observe reward 𝑟𝑡, new state 𝑠𝑡+1.

 Add data to buffer: 𝐷 ← 𝐷 ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}

 for G updates do:

 Sample a mini-batch 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠′)} from 𝐷

 Sample a set 𝜅 of 𝑀 distinct indices from {1,2, … , 𝑁}

 Compute the 𝑄 target 𝑦 (same for all of the N Q-functions):

𝑦 = 𝑟 + 𝛾 (𝑚𝑖𝑛
𝑖∈𝜅

𝑄∅𝑡𝑎𝑟𝑔,𝑖 (𝑠
′, �̅�′) − α 𝑙𝑜𝑔πθ(�̅�

′|𝑠′))

where �̅�′~πθ(∙ |𝑠
′)

 for 𝑖 = 1…𝑁 do:

 Update ∅𝑖 with gradient descent using:

∇∅
1

|𝐵|
∑ (𝑄∅𝑖(𝑠, 𝑎) − 𝑦)

2

(𝑠,𝑎,𝑟,𝑠′)∈𝐵

 Update target networks with:

∅𝑡𝑎𝑟𝑔,𝑖 ← 𝜌∅𝑡𝑎𝑟𝑔,𝑖 + (1 − ρ)∅𝑖

 Update policy parameters 𝜃 with gradient ascent using:

38

∇θ
1

|𝐵|
∑(

1

𝑁
∑𝑄∅𝑖(𝑠, �̅�θ(𝑠))

𝑁

𝑖=1

− α 𝑙𝑜𝑔πθ(�̅�θ(𝑠)|𝑠))

𝑠∈𝐵

 where �̅�θ(𝑠)~πθ(∙ |𝑠)

Algorithm 21 REDQ algorithm as presented in the original paper

2.9 Successful applications

Deep Reinforcement Learning methods have seen successful applications in

many industry sectors [25], like recommender systems, computer systems, energy

management, finance, healthcare, games, robotics and transportation. Furthermore,

there have been successful applications in communications, networking and packet

routing [26]. Deep RL methods are also used during training of advanced commercial

neural network architectures, like ChatGPT.

Finally, in a study by Gartner in 2019, Deep Reinforcement Learning was

shortlisted among artificial intelligence disciplines that are expected to get a lot of

hype in the next 5-10 years [27]. We can expect the field to grow and real-world

applications to be numerous in the future.

39

CHAPTER 3

 DEEP REINFORCEMENT LEARNING IN PHYSICS-

BASED SIMULATIONS

3.1 Introduction

Physics-based simulation provides a virtual world for predicting the outcome of

real-world phenomena. Many physical systems in the real world are too complex to

be investigated via analytical solutions. Through physics-based simulations, we can

explore the response and performance of such systems [1]. In order to achieve a 1.7%

risk of failure for its mission on Mars with the Curiosity rover, NASA simulated the

“seven minutes of terror” millions of times. Moreover, an important milestone was

achieved in helping computer-aided design in bioengineering and disease treatment.

The life cycle of the world’s smallest free-living bacterium, Mycoplasma genitalium,

was simulated.

Over the last three decades, a rapid growth in computational power has

accelerated the adoption of physics-based simulation as an important tool. For

instance, nowadays a GPU card in 2023 has more than 100 billion transistors. By

comparison, an Intel Pentium chip from 1993 had circa 3.1 million transistors. These

transistors are organized either as processing units or as cache memories. Such

architectures provide incredible amounts of compute power, up to trillions of

arithmetic operations per second. Furthermore, they help keeping costs low. Physics-

based simulations in robotics use computationally intensive numerical operations,

hence can benefit from these hardware advances.

Acquiring robot interaction data through real world experiments requires careful

organization. Such experiments can be challenging and risky to the robots and

experimenters. Furthermore, the quantity of training data needed for the

reinforcement learning algorithms is quite large, so acquiring this data in the real

world is very time consuming. Through physics-based simulation we can generate

40

training data at low cost. It also allows us to gain experience with a wider range of

scenarios and operate in a risk-free manner.

Finally, we should note that physics-based simulations are not yet always

effective. Many designs produced in simulation fail to deliver in the real world. This

is also called the simulation-to-reality gap. Nevertheless, up-to-date there are no

better alternatives to physics-based simulations in robotics for generating a lot of

experience fast, in a risk-free manner while keeping costs low.

3.2 Software components

To train Deep Reinforcement Learning algorithms in physics-based simulations,

we need the following software components.

MuJoCo

MuJoCo [28] stands for Multi-Joint dynamics with Contact. It provides a physics

engine for running physics-based simulations. It is built with a focus on speed,

accuracy and useful features to be used. Moreover, it can compute both forward and

inverse dynamics.

Tianshou

Tianshou [29] is an elegant, modular framework for Deep RL, which facilitates

research by being flexible and reliable for experimentation. Tianshou provides 20

Deep RL implementations with support for online and offline training, with a unified

interface.

Gymnasium

Gymnasium is a standard API for a diverse collection of reference environments,

including physics-based simulation environments based on MuJoCo. Gymnasium

interface is simple, pythonic, and capable of representing general RL problems.

41

Jupyter Lab

JupyterLab is a web-based user interface that enables us to work with documents

and activities such as Jupyter notebooks [30], text editors, terminals and custom

components. JupyterLab is flexible, integrated and extensible. For communicating

and performing interactive computing, Jupyter Notebooks are a community standard.

Tensorboard

TensorBoard helps the machine learning workflow by providing measurements

and visualizations. It can track metrics like loss and accuracy, or it can visualize the

model graph or project embeddings to a lower dimensional space.

3.3 MuJoCo environments

Ant

Description: Ant [31] is a 3D robot,

which consists of one free-rotational torso

with four legs attached to it. Each leg has two

links.

Task: Coordinate the four legs to move

in the forward (right) direction. This is

achieved by applying torques on the eight

hinges. The hinges connect the two links of

each leg and the torso.

Action Space: Action space is a vector

of size 8, representing the torques applied at the hinge joints.

Figure 3-1 Ant environment

42

Half Cheetah

Description: Half Cheetah [32] is a 2-

dimensional robot which consists of 9 links,

8 joints and 2 paws.

Task: Apply a torque on the joints to

make the cheetah run forward (right) as fast

as possible.

Details: The torso and head of the

cheetah are fixed. The torque can only be

applied on the 6 joints. The joints are over the

front and back thighs connecting to the torso,

over the shins connecting to the thighs and over the feet connecting to the shins.

Action Space: Action space is a vector of size 6, representing the torques applied

between links.

Hopper

Description: Hopper [33] is a two-

dimensional, one-legged figure. It consist of

a torso at the top, a thigh in the middle, a leg

in the bottom and a single foot on which the

entire body rests.

Task: Make hops that move in the

forward (right) direction. Apply torques on

the three hinges that connect the four body

parts.

Action Space: Action space is a vector

of size 3, representing the torques applied between links.

Figure 3-2 Half Cheetah environment

Figure 3-3 Hopper environment

43

Humanoid

 Description: 3D bipedal Humanoid

robot [34] is designed to simulate a human. It

has a torso (abdomen) with a pair of legs and

arms. The legs each consist of two links and

the arms (representing the knees and elbows

respectively).

Task: Walk forward as fast as possible

without falling over.

Action Space: Action space is a vector

of size 17 with continuous values in [-1, 1],

representing the torques applied at the hinge joints.

Humanoid Standup

Description: 3D bipedal robot [34] is

designed to simulate a human. The

environment starts with the humanoid laying

on the ground.

Task: Make the humanoid stand up.

Then, keep it standing by applying torques on

the various hinges.

Action Space: Action space is a vector

of size 17 with continuous values in [-1, 1],

representing the torques applied at the hinge

joints.

Figure 3-4 Humanoid environment

Figure 3-5 Humanoid Standup

environment

44

Inverted Double Pendulum

Description: Inverted Double

Pendulum originates from [35] and it

involves a cart. The cart can move linearly

with a pole fixed on it. A second pole is

fixed on the other end of the first one. This

leaves the second pole as the only one with

one free end. The cart can be pushed left or

right.

Task: Balance the second pole on top

of the first pole, both on top of the cart.

Apply continuous forces on the cart.

Action Space: Action space is a continuous action in [-1, 1]. It represents the

numerical force applied to the cart. Magnitude represents the amount of force and

sign represents the direction.

Inverted Pendulum

Description: This environment

originates from [35] and it involves a cart.

The cart can move linearly, with a pole fixed

on it at one end, having another end free. The

cart can be pushed left or right.

Task: Balance the pole on the top of the

cart. Apply forces on the cart.

Action Space: Action space is a

continuous action in [-3, 3]. Action represents

the numerical force applied to the cart.

Magnitude represents the amount of force.

The sign represents the direction.

Figure 3-6 Inverted Double Pendulum

environment

Figure 3-7 Inverted Pendulum

environment

45

Pusher

Description: “Pusher” is a multi-jointed

robot arm, very similar to that of a human.

The robot consists of a shoulder, an elbow, a

forearm and wrist joints.

Task: Move a target cylinder, called

object, to a goal position. Use the robot’s end

effector, called fingertip.

Action Space: Action space is a vector

of size 7. It represents the torques applied at

the hinge joints.

Reacher

 Description: Reacher is a two-jointed

robot arm.

Task: Move the robot’s end effector

(called fingertip) close to a target that is

spawned at a random position.

Action Space: Action space is a vector

of size 2, representing the torques applied at

the hinge joints.

Figure 3-8 Pusher environment

Figure 3-9 Reacher environment

46

Swimmer

 Description: Swimmer [36] consists of

three or more links. The links are connected

with rotor joints. Each rotor joint connect

exactly two links to form a linear chain. The

swimmer is suspended in a two dimensional

pool. It always starts in the same position,

with some deviation drawn from a uniform

distribution.

 Task: Move towards the right as fast as

possible. Apply torque on the rotors and use

the fluids friction.

Action Space: Action space is a vector of size 2, representing the torques applied

between links.

Walker

Description: Walker builds on Hopper

[33], by adding another set of legs. This

makes possible for the robot to walk forward

instead of hop. There is a single torso at the

top, with two legs splitting after the torso.

Furthermore, there are two thighs in the

middle below the torso. Two legs are in the

bottom below the thighs. Finally, two feet are

attached to the legs on which the entire body

rests.

Task: Coordinate feet, legs and thighs to move in the forward (right) direction.

Apply torques on the six hinges, which connect the six body parts.

Action Space: Action space is a vector of size 6. It represents the torques applied

at the hinge joints.

Figure 3-11 Walker environment

Figure 3-10 Swimmer environment

47

3.4 Hardware

To speed up training, we trained on a machine with GPU acceleration. GPU

acceleration substantially speeds up training, because of hardware-level

parallelization and faster I/O rates.

AMD Ryzen Threadripper 3970X

o Base speed: 3.70 GHz

o 32 Cores and 64 Logical processors

o L1 cache: 2.0 MB, L2 cache: 16.0 MB, L3 cache: 128 MB

NVIDIA RTX A6000

o Shared GPU memory: 64 GB

o NVIDIA Ampere Architecture Based CUDA Cores, Second-Generation RT

Cores, Third-Generation Tensor Cores

o 38.7 TFLOPs of FP32 performance

3.5 Methodology

In this chapter, the methodology follows the general principles of the MuJoCo

benchmark from Tianshou framework [29]. I benchmarked 5 on-policy learning

methods and 4 off-policy learning methods in 11 out of 11 environments from the

Gymnasium MuJoCo task suite provided by Gymnasium. Each algorithm keeps the

same hyperparameters in all environments.

On-policy learning methods are trained for 100 epochs with 30000 steps per

epoch, for a total of 3 million timesteps. The discount factor gamma 𝛾 of future

rewards is kept at 0.99 for all methods. We choose Adam optimizer as our gradient

descent method for training actor and critic methods. Buffer size is kept at 4096. The

policy is a two-layer neural network with size [64, 64].

Off-policy learning methods are trained for 200 epochs with 5000 steps per

epoch, for a total of 1 million timesteps. The discount factor gamma 𝛾 of future

48

rewards is kept at 0.99 for all methods. We choose Adam optimizer as our gradient

descent method for training actor and critic methods. Buffer size is kept at 1000000.

Except for REINFORCE, which contains only one actor network, the actor and critic

networks are a two-layer neural network with size [256, 256].

Learning rates for on-policy learning methods are presented below:

Table 3-1 Learning rates for on-policy learning methods in MuJoCo experiments

On-policy learning methods Learning rates 𝛼 (actor and critic)

REINFORCE 10−3 (only actor)

A2C 7 ∗ 10−4

NPG 10−3

PPO 3 ∗ 10−4

TRPO 10−3

Learning rates for off-policy learning methods are presented below:

Table 3-2 Learning rates for off-policy learning methods in MuJoCo experiments

Off-policy learning

methods

Learning rates 𝛼 (actor) Learning rates 𝛼 (critic)

DDPG 10−3 10−3

TD3 3 ∗ 10−4 3 ∗ 10−4

SAC 10−3 10−3

REDQ 10−3 10−3

The choice of learning rate values is made in accordance with the original

papers.

49

3.6 Experimental results

3.6.1 Ant-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-12 Mean rewards (testing) during

timesteps

Figure 3-13 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-14 Mean rewards (testing) during

timesteps

Figure 3-15 Std. deviation of rewards

(testing) during timesteps

50

3.6.2 HalfCheetah-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-16 Mean rewards (testing) during

timesteps

Figure 3-17 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-18 Mean rewards (testing) during

timesteps

Figure 3-19 Std. deviation of rewards

(testing) during timesteps

51

3.6.3 Hopper-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-20 Mean rewards (testing) during

timesteps

Figure 3-21 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-22 Mean rewards (testing) during

timesteps

Figure 3-23 Std. deviation of rewards

(testing) during timesteps

52

3.6.4 HumanoidStandup-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-24 Mean rewards (testing) during

timesteps

Figure 3-25 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-26 Mean rewards (testing) during

timesteps

Figure 3-27 Std. deviation of rewards

(testing) during timesteps

53

3.6.5 Humanoid-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-28 Mean rewards (testing) during

timesteps

Figure 3-29 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-30 Mean rewards (testing) during

timesteps

Figure 3-31 Std. deviation of rewards

(testing) during timesteps

54

3.6.6 InvertedDoublePendulum-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-32 Mean rewards (testing) during

timesteps

Figure 3-33 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-34 Mean rewards (testing) during

timesteps

Figure 3-35 Std. deviation of rewards

(testing) during timesteps

55

3.6.7 InvertedPendulum-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-36 Mean rewards (testing) during

timesteps

Figure 3-37 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-38 Mean rewards (testing) during

timesteps

Figure 3-39 Std. deviation of rewards

(testing) during timesteps

56

3.6.8 Pusher-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-40 Mean rewards (testing) during

timesteps

Figure 3-41 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-42 Mean rewards (testing) during

timesteps

Figure 3-43 Std. deviation of rewards

(testing) during timesteps

57

3.6.9 Reacher-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-44 Mean rewards (testing) during

timesteps

Figure 3-45 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-46 Mean rewards (testing) during

timesteps

Figure 3-47 Std. deviation of rewards

(testing) during timesteps

58

3.6.10 Swimmer-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-48 Mean rewards (testing) during

timesteps

Figure 3-49 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-50 Mean rewards (testing) during

timesteps

Figure 3-51 Std. deviation of rewards

(testing) during timesteps

59

3.6.11 Walker2d-v4

On-policy learning methods

 REINFORC

E

 A2C NPG PPO TRP

O

Figure 3-52 Mean rewards (testing) during

timesteps

Figure 3-53 Std. deviation of rewards

(testing) during timesteps

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 3-54 Mean rewards (testing) during

timesteps

Figure 3-55 Std. deviation of rewards

(testing) during timesteps

60

3.6.12 Best scores

On-policy learning methods

Table 3-3 Best scores achieved by on-policy learning methods in MuJoCo experiments

 REINFO

RCE

A2C NPG TRPO PPO

Ant-v4 443.07 ±

245.38

5377.74 ±

194.95

4898.47 ±

120.45

5340.45 ±

132.30

4303.13 ±

116.90

HalfCheetah-v4 909.51 ±

125.96

1575.62 ±

29.65

5007.75 ±

117.07

5949.44 ±

232.49

8919.43 ±

143.83

Hopper-v4 377.14 ±

65.59

2485.17 ±

449.64

3169.62 ±

323.34

3366.23 ±

4.74

3368.42 ±

13.95

Humanoid-v4 484.12 ±

109.99

5688.02 ±

485.07

5256.30 ±

1253.43

5508.71 ±

490.57

1060.80 ±

208.83

HumanoidStandup-v4 92332.42

±

16033.78

108764.1

4 ±

3925.53

54425.88

±

14916.48

51864.43

± 8294.39

117003.2

9 ±

29036.77

InvertedDoublePendulu

m-v4

879.02 ±

387.30

8429.23 ±

2788.62

9357.32 ±

0.92

9358.51 ±

1.34

9345.79 ±

0.37

InvertedPendulum-v4 1000.00 ±

0.00

486.10 ±

240.95

1000.00 ±

0.00

1000.00 ±

0.00

1000.00 ±

0.00

Pusher-v4 -77.75 ±

5.64

-38.17 ±

2.49

-21.63 ±

1.65

-23.96 ±

1.55

-22.99 ±

2.10

Reacher-v4 -13.79 ±

1.71

-4.04 ±

1.32

-3.14 ±

1.47

-3.31 ±

1.45

-3.06 ±

1.16

Swimmer-v4 28.48 ±

4.17

35.91 ±

5.61

48.55 ±

2.20

64.28 ±

22.67

44.87 ±

2.07

Walker2d-v4 450.75 ±

81.01

2509.91 ±

473.37

4350.40 ±

68.21

5275.59 ±

34.14

4853.45 ±

52.62

Total scores:

(excluding

HumanoidStandup-v4)

4480.55 ±

1026.75

26545.49

±

4671.67

33063.64

±

1888.74

35835.94

±

921.25

32869.84

±

541.83

61

Figure 3-56 Best scores of on-policy learning methods in each environment

Figure 3-57 Best scores of on-policy learning methods in each environment, with standard

deviations as confidence bounds

-2000

0

2000

4000

6000

8000

10000
Ant-v4

HalfCheetah-v4

Hopper-v4

Humanoid-v4

InvertedDoublePendulum-
v4

InvertedPendulum-v4

Pusher-v4

Reacher-v4

Swimmer-v4

Walker2d-v4

Best scores on-policy (each environment)

REINFORCE A2C NPG TRPO PPO

-2000

0

2000

4000

6000

8000

10000

12000

Best scores on-policy with std. dev. (each environment)

REINFORCE A2C NPG TRPO PPO

62

Figure 3-58 Best scores of on-policy learning methods in total (all environments), with

standard deviations as confidence bounds

We train on-policy learning methods for 3M timesteps in each environment. Best

scores were achieved by TRPO, then NPG, then PPO, then A2C and finally

REINFORCE. Actually, TRPO, NPG and PPO are all high performing and deliver

very similar best scores. The lowest standard deviations were achieved by PPO, then

TRPO, then NPG, then A2C and finally REINFORCE. The lower the standard

deviation, the less variance and more accurate the methods are. Actually, PPO and

TRPO deliver similar standard deviations, with NPG a close third.

The difference of best scores between PPO and NPG is very small and PPO is

more accurate than NPG. When accuracy is important, we can expect PPO to be a

better choice than NPG in most cases. On the downside, we show in subsequent

graphs that PPO is 3 times slower than NPG.

0

5000

10000

15000

20000

25000

30000

35000

40000

Total

Best scores on-policy with std. dev. (total)

REINFORCE A2C NPG TRPO PPO

63

Off-policy learning methods

Table 3-4 Best scores achieved by off-policy learning methods in MuJoCo experiments

 DDPG TD3 SAC REDQ

Ant-v4 986.55 ±

1.43

2548.25 ±

38.28

6256.40 ±

110.89

6405.20 ±

75.33

HalfCheetah-v4 12441.85

± 134.25

11335.22

± 169.44

13071.48 ±

146.27

13314.53 ±

161.15

Hopper-v4 3134.90 ±

21.06

3380.07 ±

74.12

3493.66 ±

4.21

3512.44 ±

3.39

Humanoid-v4 201.05 ±

4.12

5254.40 ±

22.15

5487.84 ±

24.51

5601.18 ±

18.28

HumanoidStandup-v4 76912.81

± 1190.52

83283.39

± 55.78

156740.09

± 10.37

131165.58

± 66.21

InvertedDoublePendulum-

v4

9348.58 ±

1.19

9359.86 ±

0.09

9359.87 ±

0.09

9359.96 ±

0.03

InvertedPendulum-v4 1000.00 ±

0.00

1000.00 ±

0.00

1000.00 ±

0.00

1000.00 ±

0.00

Pusher-v4 -23.94 ±

2.55

-22.38 ±

1.58

-20.69 ±

1.61

-21.42 ±

2.05

Reacher-v4 -3.11 ±

1.51

-2.78 ±

1.57

-2.63 ±

1.63

-2.56 ±

1.64

Swimmer-v4 163.47 ±

1.32

64.20 ±

3.37

45.89 ±

2.14

46.89 ±

1.70

Walker2d-v4 1581.38 ±

879.84

3458.46 ±

16.18

4584.96 ±

20.26

5275.41 ±

29.25

Total scores:

(excluding

HumanoidStandup-v4)

28830.73

± 1047.27

36375.3 ±

326.78

43276.78 ±

311.61

44491.63 ±

292.82

64

Figure 3-59 Best scores of off-policy learning methods in each environment

Figure 3-60 Best scores of off-policy learning methods in each environment, with standard

deviations as confidence bounds

-2000
0

2000
4000
6000
8000

10000
12000
14000

Ant-v4

HalfCheetah-v4

Hopper-v4

Humanoid-v4

InvertedDoublePendulum-
v4

InvertedPendulum-v4

Pusher-v4

Reacher-v4

Swimmer-v4

Walker2d-v4

Best scores off-policy (each environment)

DDPG TD3 SAC REDQ

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Best scores off-policy (each environment)

DDPG TD3 SAC REDQ

65

Figure 3-61 Best scores of off-policy learning methods in total (all environments), with

standard deviations as confidence bounds

We train off-policy learning methods for 1M timesteps in each environment. Best

scores were achieved by REDQ, then SAC, then TD3 and finally DDPG. Actually,

REDQ and SAC are both high performing and deliver very similar best scores. The

lowest standard deviations were achieved by REDQ, then SAC, then TD3 and finally

DDPG. The lower the standard deviation, the less variance and more accurate the

methods are. Actually, REDQ and SAC deliver similar standard deviations, with TD3

a close third.

Compared to on-policy learning methods, off-policy learning methods achieve

better scores with lower standard deviation. We conclude that off-policy learning

methods have better accuracy and lower variance than on-policy learning methods.

Furthermore, off-policy learning methods are able to surpass the scores of on-policy

learning methods within less training timesteps, which means they have better sample

efficiency.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Total

Best scores off-policy (total)

DDPG TD3 SAC REDQ

66

3.6.13 Running times

On-policy learning methods

Table 3-5 Running times for on-policy learning methods in MuJoCo experiments

Running time (h:mm:ss)
REINFO

RCE
A2C NPG TRPO PPO

Ant-v4 0:13:20 0:22:30 0:20:59 0:20:55 1:07:36

HalfCheetah-v4 0:12:26 0:18:27 0:17:15 0:17:11 1:05:03

Hopper-v4 0:07:20 0:18:26 0:17:44 0:18:02 1:03:06

Humanoid-v4 0:08:32 0:22:23 0:22:07 0:22:05 1:07:37

HumanoidStandup-v4 0:16:44 0:25:04 0:29:26 0:28:07 1:19:32

InvertedDoublePendulum-

v4
0:06:07 0:17:21 0:17:31 0:17:41 1:04:02

InvertedPendulum-v4 0:09:08 0:14:26 0:16:47 0:17:13 1:02:22

Pusher-v4 0:09:45 0:15:35 0:13:54 0:17:45 1:09:01

Reacher-v4 0:06:02 0:14:01 0:12:29 0:12:43 0:58:12

Swimmer-v4 0:11:52 0:20:46 0:19:12 0:19:24 1:07:40

Walker2d-v4 0:07:48 0:18:21 0:17:48 0:18:17 1:04:57

Average 0:09:55 0:18:51 0:18:39 0:19:02 1:06:17

Total 1:49:03 3:27:20 3:25:11 3:29:22 12:09:07

67

Figure 3-62 Running times of on-policy learning methods in each environment

In running time, we take into consideration both training time and testing time.

Notice that length of an episode does not influence running time. In each epoch, we

train for a fixed amount of timesteps, which are later saved in an experience replay

buffer. If episodes are short, that means we will sample more episodes in an epoch.

On-policy learning methods take the same time to execute through all

environments. This is expected, given that we train each on-policy learning method

for the same number of timesteps (3M timesteps) in each environment. Furthermore,

each environment runs on the same MuJoCo platform, hence they all have the same

refresh frequency. Neural networks for the actor and critic are similar in all methods

and require approximately the same amount of time to train.

In total over all environments, PPO took longest to train with 12:09:07, followed

by TRPO with 3:29:22, A2C with 3:27:20, NPG with 3:25:11 and finally

REINFORCE with 1:49:03.

0

1000

2000

3000

4000

5000
Ant-v4

HalfCheetah-v4

Hopper-v4

Humanoid-v4

HumanoidStandup-v4

InvertedDoublePendulum-
v4

InvertedPendulum-v4

Pusher-v4

Reacher-v4

Swimmer-v4

Walker2d-v4

Running times on-policy (each environment)

REINFORCE A2C NPG TRPO PPO

68

Off-policy learning methods

Table 3-6 Running times for off-policy learning methods in MuJoCo experiments

Running time (h:mm:ss) DDPG TD3 SAC REDQ

Ant-v4 2:31:51 2:54:48 4:53:48 3:57:05

HalfCheetah-v4 2:25:55 2:44:12 4:43:20 4:04:11

Hopper-v4 2:23:21 2:43:19 4:42:37 4:04:41

Humanoid-v4 3:04:00 0:21:39 5:39:44 4:09:10

HumanoidStandup-v4 3:54:52 4:21:57 6:44:36 5:24:34

InvertedDoublePendulum-

v4
2:31:43 2:53:04 4:52:37 4:07:57

InvertedPendulum-v4 2:28:20 2:49:49 4:49:22 4:08:49

Pusher-v4 3:06:16 3:31:35 5:44:29 4:55:44

Reacher-v4 2:18:38 2:38:16 4:33:30 3:55:00

Swimmer-v4 2:27:37 2:48:07 4:48:09 3:52:32

Walker2d-v4 2:24:40 2:43:20 4:48:05 3:56:15

Average 2:41:34 2:46:22 5:07:18 4:14:11

Total 1d 5:37:12 1d 6:30:05 2d 8:20:18 1d 22:35:57

69

Figure 3-63 Running times of off-policy learning methods in each environment

In running time, we take into consideration both training time and testing time.

Notice that length of an episode does not influence running time. In each epoch, we

train for a fixed amount of timesteps, which are later saved in an experience replay

buffer. If episodes are short, that means we will sample more episodes in an epoch.

Off-policy learning methods take the same time to execute through all

environments. This is expected, given that we train each on-policy learning method

for the same number of timesteps (1M timesteps) in each environment. Furthermore,

each environment runs on the same MuJoCo platform, hence they all have the same

refresh frequency. Neural networks for the actor and critic are similar in all methods

and require approximately the same amount of time to train.

In total over all environments, SAC took longest to train with 2d 8:20:18,

followed by REDQ with 1d 22:35:57, TD3 with 1d 6:30:05 and finally DDPG with

1d 5:37:12. As we can see, off-policy learning methods take considerably more time

to execute than on-policy learning methods.

0

5000

10000

15000

20000

25000
Ant-v4

HalfCheetah-v4

Hopper-v4

Humanoid-v4

HumanoidStandup-v4

InvertedDoublePendulum-
v4

InvertedPendulum-v4

Pusher-v4

Reacher-v4

Swimmer-v4

Walker2d-v4

Running times off-policy (each environment)

DDPG TD3 SAC REDQ

70

3.6.14 Speed of training

On-policy learning methods

Table 3-7 Speed of training for on-policy learning methods in MuJoCo experiments

Speed of

training

REINFOR

CE

A2C NPG TRPO PPO

Ant-v4 6353.34

step/s

2902.25

step/s

3248.03

step/s

3237.90

step/s

823.21

step/s

HalfCheeta

h-v4

7224.49

step/s

3629.41

step/s

4053.47

step/s

4066.65

step/s

849.23

step/s

Hopper-v4 7875.17

step/s

3141.04

step/s

3640.36

step/s

3625.83

step/s

863.48

step/s

Humanoid-

v4

6482.98

step/s

2662.57

step/s

2668.36

step/s

2641.95

step/s

770.13

step/s

Humanoid

Standup-v4

5736.29

step/s

2663.10

step/s

2178.34

step/s

2311.14

step/s

700.39

step/s

InvertedDo

ublePendul

um-v4

9156.07

step/s

3442.99

step/s

3798.12

step/s

3744.96

step/s

846.51

step/s

InvertedPe

ndulum-v4

10606.20

step/s

3534.57

step/s

4044.53

step/s

3900.47

step/s

854.99

step/s

Pusher-v4 5782.97

step/s

3308.72

step/s

3807.38

step/s

2980.63

step/s

748.11

step/s

Reacher-v4 8898.79

step/s

3626.81

step/s

4179.37

step/s

4099.40

step/s

883.28

step/s

Swimmer-

v4

8092.04

step/s

3171.26

step/s

3603.20

step/s

3553.75

step/s

819.67

step/s

Walker2d-

v4

8238.03

step/s

3219.25

step/s

3632.49

step/s

3623.19

step/s

844.42

step/s

Average 7676.94

step/s

3209.27

step/s

3532.15

step/s

3435.08

step/s

818.49

step/s

71

Figure 3-64 Speed of training of on-policy learning methods in each environment

Speed of training is similar, although not the same as running time. In running

time, we take into consideration both training time and testing time. In speed of

training, we are concerned only with training and not testing. Notice that length of an

episode does not influence running time. In each epoch, we train for a fixed amount

of timesteps, which are later saved in an experience replay buffer. If episodes are

short, that means we will sample more episodes in an epoch.

On-policy learning methods have almost the same training speed through all

environments. This is expected, given that we train each on-policy learning method

for the same number of timesteps (3M timesteps) in each environment. Furthermore,

each environment runs on the same MuJoCo platform, hence they all have the same

refresh frequency. Neural networks for the actor and critic are similar in all methods

and require approximately the same amount of time to train.

On average, the fastest on-policy learning method was REINFORCE with 7676

step/s, followed by NPG with 3532 step/s, TRPO with 3435 step/s, A2C with 3209

step/s and finally PPO with 818 step/s.

0

2000

4000

6000

8000

10000

12000
Ant-v4

HalfCheetah-v4

Hopper-v4

Humanoid-v4

HumanoidStandup-v4

InvertedDoublePendulum-
v4

InvertedPendulum-v4

Pusher-v4

Reacher-v4

Swimmer-v4

Walker2d-v4

Speed of training on-policy (each environment)

REINFORCE A2C NPG TRPO PPO

72

Off-policy learning methods

Table 3-8 Speed of training for off-policy learning methods in MuJoCo experiments

Speed of

training

DDPG TD3 SAC REDQ

Ant-v4 114.08 step/s 99.67 step/s 58.97 step/s 73.66 step/s

HalfCheetah-

v4

119.12 step/s 105.35 step/s 60.98 step/s 71.20 step/s

Hopper-v4 119.21 step/s 105.32 step/s 60.85 step/s 70.81 step/s

Humanoid-v4 90.76 step/s 79.34 step/s 50.33 step/s 69.03 step/s

HumanoidSta

ndup-v4

73.92 step/s 66.05 step/s 42.54 step/s 53.47 step/s

InvertedDoubl

ePendulum-v4

114.28 step/s 99.69 step/s 58.92 step/s 70.03 step/s

InvertedPendu

lum-v4

116.23 step/s 101.29 step/s 59.54 step/s 69.67 step/s

Pusher-v4 89.97 step/s 79.18 step/s 48.60 step/s 56.66 step/s

Reacher-v4 120.49 step/s 105.51 step/s 61.05 step/s 71.08 step/s

Swimmer-v4 118.20 step/s 103.25 step/s 60.04 step/s 74.93 step/s

Walker2d-v4 118.10 step/s 104.88 step/s 59.69 step/s 73.43 step/s

Average 108.58 step/s 95.42 step/s 56.51 step/s 68.55 step/s

73

Figure 3-65 Speed of training of off-policy learning methods in each environment

Speed of training is similar, although not the same as running time. In running

time, we take into consideration both training time and testing time. In speed of

training, we are concerned only with training and not testing. Notice that length of an

episode does not influence running time. In each epoch, we train for a fixed amount

of timesteps, which are later saved in an experience replay buffer. If episodes are

short, that means we will sample more episodes in an epoch.

Off-policy learning methods take the same time to execute through all

environments. This is expected, given that we train each on-policy learning method

for the same number of timesteps (1M timesteps) in each environment. Furthermore,

each environment runs on the same MuJoCo platform, hence they all have the same

refresh frequency. Neural networks for the actor and critic are similar in all methods

and require approximately the same amount of time to train.

On average, the fastest off-policy learning method was DDPG with 108 step/s,

followed by TD3 with 95 step/s, REDQ with 68 step/s and finally SAC with 56 step/s.

0

20

40

60

80

100

120

140
Ant-v4

HalfCheetah-v4

Hopper-v4

Humanoid-v4

HumanoidStandup-v4

InvertedDoublePendulum-
v4

InvertedPendulum-v4

Pusher-v4

Reacher-v4

Swimmer-v4

Walker2d-v4

Speed of training off-policy (each environment)

DDPG TD3 SAC REDQ

74

3.7 Summary

Off-policy learning methods significantly outperform on-policy learning

methods in all environments. They require less timesteps to converge to an optimal

policy, hence are the most sample efficient and achieve much higher scores. Each

method compared to the other methods takes proportionally the same time in each

environment. The reason for that is that all 11 environments we experimented with

have the same refresh frequency, given that they run on the MuJoCo platform.

A drawback of on-policy learning methods is that they use a lot more

computational power compared to off-policy learning methods. The reason is that

they try to help the gradient descent towards the steepest direction by calculating a

Hessian matrix or a similar, partial form of a Hessian. Such calculations need a lot of

computational resources.

A drawback of off-policy learning methods is that they take longer to train

compared to on-policy learning methods. Most importantly, this has to do with the

implementation details. Another reason is that in off-policy learning methods, in one

epoch we sample less timesteps of experience before a gradient update. This means

that during training, we do gradient updates more frequently than in on-policy

learning methods, which slows down training.

Best scores for on-policy learning methods were achieved by TRPO, then NPG,

then PPO, then A2C and finally REINFORCE. Actually, TRPO, NPG and PPO are

high performing and deliver very similar best scores. The lowest standard deviations

were achieved by PPO, then TRPO, then NPG, then A2C and finally REINFORCE.

The lower the standard deviation, the less variance and more accurate the methods

are. Actually, PPO and TRPO deliver similar standard deviations, with NPG a close

third.

Best scores for off-policy learning methods were delivered by REDQ, then SAC,

then TD3 and finally DDPG. Actually, REDQ and SAC are both high performing and

deliver very similar best scores. The lowest standard deviations were achieved by

REDQ, then SAC, then TD3 and finally DDPG. The lower the standard deviation,

the less variance and more accurate the methods are. Actually, REDQ and SAC

deliver similar standard deviations, with TD3 a close third.

75

Let’s discuss total running time. For on-policy learning methods, in total over all

environments, PPO took longest to train with 12:09:07, followed by TRPO with

3:29:22, A2C with 3:27:20, NPG with 3:25:11 and finally REINFORCE with

1:49:03. For off-policy learning methods, in total over all environments, SAC took

longest to train with 2d 8:20:18, followed by REDQ with 1d 22:35:57, TD3 with 1d

6:30:05 and finally DDPG with 1d 5:37:12. As we can see, off-policy learning

methods take considerably more time to execute than on-policy learning methods.

Let’s discuss average speed of training. For on-policy learning methods, on

average over all environments, the fastest on-policy learning method was

REINFORCE with 7676 step/s, followed by NPG with 3532 step/s, TRPO with 3435

step/s, A2C with 3209 step/s and finally PPO with 818 step/s. For off-policy learning

methods, on average over all environments, the fastest was DDPG with 108 step/s,

followed by TD3 with 95 step/s, REDQ with 68 step/s and finally SAC with 56 step/s.

76

CHAPTER 4

 OFF-POLICY LEARNING IN ROBOTICS

SIMULATIONS

4.1 Introduction

Robotics simulations are a very important tool for training robotic systems on

particular tasks. Robotic simulations require a lot of training samples. Off-policy

learning methods are the most sample efficient methods in deep RL, hence are one of

the most capable for solving robotics simulations.

A weakness of on-policy learning methods is calculating expectations only under

the current, known trajectory of interest. Each time we have a new policy, we need to

use new samples. With increasing task complexity, this becomes expensive. The

number of gradient steps and samples per step needed to learn an effective policy

increases [16]. Moreover, training a neural network changes 𝜃 only by a little, but the

computational overhead for that change is large. These arguments emphasize the need

for sample efficient off-policy learning methods.

We use off-policy learning methods together with Hindsight Experience Replay

buffer. HER can learn with extremely sparse rewards. It also performs better with

sparse rewards than with dense rewards. Robotics tasks usually have sparse reward

structures, so using HER is mandatory.

In this chapter, I present the results of training off-policy learning methods with

HER in Fetch mobile manipulator, a 7-DoF robotic arm with a two-fingered parallel

gripper attached to it.

77

4.2 Software components

This experiment requires all software components from the previous chapter:

o MuJoCo

o Tianshou

o Gymnasium

o Jupyter Lab

o Tensorboard

The following components are also necessary.

Gymnasium-Robotics

Gymnasium-Robotics is a collection of robotics simulation environments based

on Gymnasium. Originally, it was called OpenAI Gym [37]. The robotic

manipulation tasks are more difficult than continuous control problems available in

Gymnasium. It provides simulations for real-life robots, each with a different degree

of freedom (DoF). The physics engine for Gymnasium-Robotics is MuJoCo.

4.3 Fetch mobile manipulator

Fetch mobile manipulator [38] is a 7-DoF robotic arm with a two-fingered

parallel gripper attached to it. The robot is controlled by small displacements of the

gripper in Cartesian coordinates and the inverse kinematics are computed internally

by the MuJoCo framework.

The control frequency of the robot is 𝑓 = 25 𝐻𝑧. This is achieved by applying

the same action in 20 subsequent simulator step (with a time step of dt = 0.002 s)

before returning the control to the robot. The tasks in Fetch mobile manipulator are

continuing, which means that the robot has to maintain the puck in the target position

for an indefinite period of time. Fetch can be trained to execute the following tasks.

78

Reach

Task: Move the end effector of the

manipulator to a randomly selected position

in the workspace.

Action Space: Action space is a vector

of size 4. It represents the Cartesian

displacement dx, dy, and dz of the end

effector.

Push

Task: Move a block with the help of the

manipulator to a randomly selected target

position in the workspace by pushing with its

gripper. The gripper is locked in a closed

configuration in order to perform the push

task.

Action Space: Action space is a vector

of size 4. It represents the Cartesian

displacement dx, dy, and dz of the end

effector.

Figure 4-1 Reach task in Fetch mobile

manipulator

Figure 4-2 Push task in Fetch mobile

manipulator

79

Pick and place

Task: Move a block with the help of the

manipulator to a randomly selected target

position in the workspace in mid-air by

picking and placing with its gripper. The

gripper can be opened or closed in order to

perform the grasping operation of pick and

place.

Action Space: Action space is a vector

of size 4. It represents the Cartesian

displacement dx, dy, and dz of the end

effector.

Slide

Task: Hit a puck with the help of the

manipulator in order to slide it until it reaches

a randomly selected target position in a long

and slippery workspace. The workspace has a

low friction coefficient, which makes it

slipper for the puck to slide and reach the

target position. The target position is outside

of the robot’s workspace. The gripper is

locked in a closed configuration. The puck

doesn’t need to be grasped.

Action space: Action space is a vector

of size 4. It represents the Cartesian displacement dx, dy, and dz of the end effector.

Figure 4-3 Pick and Place task in Fetch

mobile manipulator

Figure 4-4 Slide task in Fetch mobile

manipulator

80

4.4 Hardware

To speed up training, we trained on a machine with GPU acceleration. GPU

acceleration substantially speeds up training, because of hardware-level

parallelization and faster I/O rates.

AMD Ryzen Threadripper 3970X

o Base speed: 3.70 GHz

o 32 Cores and 64 Logical processors

o L1 cache: 2.0 MB, L2 cache: 16.0 MB, L3 cache: 128 MB

NVIDIA RTX A6000

o Shared GPU memory: 64 GB

o NVIDIA Ampere Architecture Based CUDA Cores, Second-Generation RT

Cores, Third-Generation Tensor Cores

o 38.7 TFLOPs of FP32 performance

4.5 Methodology

In this chapter, the methodology follows the general principles from [39]. We

solve tasks Reach, Push and Pick and Place with the help of off-policy learning

methods. We were not able to solve task Slide, which is also the most complicated

task. Each episode for all tasks has a length of 50 timesteps. Each timestep the agent

takes as a feedback the value −1 from the environment, if it has not reached the asked

destination. That being said, it is clear that the final reward for an episode is within

[−50,0]. We solve Reach with the help of off-policy learning methods: DDPG, SAC,

TD-3 and REDQ.

For task Reach, we train for 10 epochs with 5000 steps per epoch, for a total of

50000 timesteps. Hindsight Experience Replay buffer size is kept at 100000. The

discount factor gamma 𝛾 of future rewards is kept at 0.98. Both actor and critic

networks are two-layer neural networks with sizes [256,256]. For SAC and TD-3,

81

two identic critic networks are used. We train the actor and critic networks with

gradient descent using Adam optimizer. The learning rate 𝛼 is kept at 10−3 for the

actor and 3 ∗ 10−3 for the critic.

For task Push, we train for 300 epochs with 5000 steps per epoch, for a total of

1.5 million timesteps. Hindsight Experience Replay buffer size is kept at 100000.

The discount factor gamma 𝛾 of future rewards is kept at 0.98. Both actor and critic

networks are three-layer neural networks with sizes [256,256,256]. For SAC and

TD-3, two identic critic networks are used. We train the actor and critic networks

with gradient descent using Adam optimizer. The learning rate 𝛼 is kept at 10−4 for

the actor and 3 ∗ 10−4 for the critic.

For task Pick and Place, we train for 600 epochs with 5000 steps per epoch, for

a total of 3 million timesteps. Hindsight Experience Replay buffer size is kept at

100000. The discount factor gamma 𝛾 of future rewards is kept at 0.98. Both actor

and critic networks are three-layer neural networks with sizes [256,256,256]. For

SAC and TD-3, two identic critic networks are used. We train the actor and critic

networks with gradient descent using Adam optimizer. The learning rate 𝛼 is kept at

10−5 for the actor and 3 ∗ 10−5 for the critic.

For task Slide, we train for 900 epochs with 5000 steps per epoch, for a total of

4.5 million timesteps. Hindsight Experience Replay buffer size is kept at 50, equal to

the length of a training episode. The discount factor gamma 𝛾 of future rewards is

kept at 0.98. Both actor and critic networks are three-layer neural networks with sizes

[256,256,256]. For SAC and TD-3, two identic critic networks are used. We train

the actor and critic networks with gradient descent using Adam optimizer. The

learning rate 𝛼 is kept at 10−6 for the actor and 3 ∗ 10−6 for the critic.

Loss curves for tasks Reach, Push and Pick and Place are shown in the appendix.

Notice that we were not able to solve task Slide with any off-policy learning method,

hence we restrain ourselves from showing results.

82

4.5.1 Hindsight Experience Replay Buffer

Hindsight Experience Replay buffer (HER) [40] is a form of implicit curriculum.

The goals used for replay naturally shift from ones which are simple to achieve even

by a random agent, to more difficult ones. First, HER experiences some episode

𝑠0, 𝑠1, 𝑠2…𝑠𝑛. Next, it stores in the replay buffer every transition 𝑠𝑡 ≠ 𝑠𝑡+1, not only

with the original goal used for this episode, but also with a subset of other goals.

Finally, we replay each trajectory with an arbitrary goal. HER only works with an

off-policy RL algorithm.

The set of additional goals used for replay has to be chosen. We could choose no

additional goals, hence replay each trajectory with the goal 𝑚(𝑠𝑇), which is achieved

in the final state of the episode. If we were to choose additional goals, we

experimentally compare different types and quantities of goals for replay. In all cases,

we also replay each trajectory with the original goal pursued in the episode.

HER does not require having any control over the distribution of initial states.

Furthermore, HER can learn with extremely sparse rewards. It also performs better

with sparse rewards than with dense rewards.

83

4.6 Experimental results

4.6.1 FetchReach-v3

Off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 4-5 Mean rewards (testing) during

timesteps

Figure 4-6 Std. deviation of rewards

(testing) during timesteps

4.6.2 FetchPush-v2

Off-policy learning methods

 TD3 REDQ

Figure 4-7 Mean rewards (testing) during

timesteps

Figure 4-8 Std. deviation of rewards

(testing) during timesteps

84

4.6.3 FetchPickAndPlace-v2

Off-policy learning methods

 REDQ

Figure 4-9 Mean rewards (testing) during

timesteps

Figure 4-10 Std. deviation of rewards

(testing) during timesteps

4.6.4 Best scores

Off-policy learning methods

Table 4-1 Best scores achieved by off-policy learning methods in Fetch Mobile

Maninpulator

 DDPG TD3 SAC REDQ

FetchReach-v3 -1.20 ± 0.87 -1.30 ± 0.64 -1.80 ± 0.98 -1.50 ± 1.20

FetchPush-v2 Diverged -7.00 ± 4.36 Diverged -6.20 ± 3.66

FetchPickAndPlace-

v2

Diverged Diverged Diverged -6.80 ± 5.38

FetchSlide-v2 Diverged Diverged Diverged Diverged

85

Figure 4-11 Best scores of off-policy learning methods in each task in Fetch mobile

manipulator

Figure 4-12 Best scores of off-policy learning methods in each task in Fetch mobile

manipulator, with standard deviations as confidence bounds (values close to 0 have learned

the task, values close to -50 have not learned the task)

-50

-40

-30

-20

-10

0
FetchReach-v3

FetchPush-v2

FetchPickAndPlace-v2

FetchSlide-v2

Best scores off-policy (each task)

DDPG TD3 SAC REDQ

-60

-50

-40

-30

-20

-10

0

FetchReach-v3 FetchPush-v2 FetchPickAndPlace-v2 FetchSlide-v2

Best scores off-policy (each task)

DDPG TD3 SAC REDQ

86

4.7 Summary

Off-policy learning methods are very sample efficient, a crucial criteria for

solving robotics tasks in physics-based simulations. Moreover, Hindsight Experience

Replay buffer is a form of implicit curriculum, where the goals used for replay

naturally shift from ones which are simple to more difficult ones. HER can learn with

extremely sparse rewards. It also performs better with sparse rewards than with dense

rewards. It is to be noted that the rewards from Fetch mobile manipulator are sparse

rewards, hence using HER is mandatory. Furthermore, HER works only with off-

policy learning methods, not with on-policy learning methods, which emphasizes the

need for off-policy learning methods for solving robotics tasks.

Let’s discuss best scores and their standard deviations. The lower the standard

deviation of scores delivered by a method, the more accurate those methods are, the

lower the variance they have. Reach task is the easiest task from Fetch mobile

manipulator. We were able to solve Reach with all off-policy learning methods.

DDPG achieved a score of -1.20 ± 0.87, TD3 a score of -1.30 ± 0.64, SAC a score of

-1.80 ± 0.98 and REDQ a score of -1.50 ± 1.20. Push task is more complicated than

Reach. We were able to solve Push task with TD3 and REDQ. TD3 achieved a score

of -7.00 ± 4.36 and REDQ achieved a score of -6.20 ± 3.66. Pick and Place is more

complicated than Push. We were able to solve Pick and Place with REDQ. REDQ

achieved a score of -6.80 ± 5.38. Finally, Slide is the most complicated task from

Fetch mobile manipulator. Being the most complicated task, we were not able to solve

it with any off-policy learning method.

In more complicated tasks, best scores decrease and standard deviations increase.

Essentially, accuracy drops with more complicated tasks, although slightly. In Fetch

mobile manipulator, accuracy drops slightly as we increase the complexity of tasks.

87

 CONCLUSIONS

In this thesis, we show that in physics-based simulation, robots or other

hypothetical agents can be controlled to perform amazing tasks. On the downside,

real world applications are often unkind to simulation-derived control policies [1].

This is also known as the simulation-to-reality gap. Nevertheless, up-to-date there are

no better alternatives to physics-based simulations. We could say that physics-based

simulations are “doomed to succeed”, because trial-and-error approaches in the real

world can be expensive, dangerous or sometimes impossible. A prime example is

testing a Mars rover. Striving to steadily improve the simulation-to-reality transfer

rate is a worthwhile endeavor. In order to derive better control policies in simulation

that can be transferred in real world applications, we could increase the fidelity of the

simulation.

To replace or augment physics-based simulations, statistical learning techniques

and data driven simulations have been proposed. Through statistical learning, we

could construct oracles that predict the next system state given its current one. This

effectively bypasses simulation-specific hurdles such as model generation and

calibration. Through systematic dimensional reduction, data-driven simulation could

be used to methodically reduce model complexity. However, such approaches for

highly nonlinear and non-smooth systems are in their infancy.

In our experiments, we test the performance of 9 on-policy and off-policy Deep

Reinforcement Learning algorithms in various physics-based simulations with

MuJoCo. Off-policy learning methods are significantly more accurate, sample

efficient and have less variance than on-policy learning methods. On the downside,

off-policy learning methods take longer to execute than on-policy learning methods.

Best scores for on-policy learning methods were achieved by TRPO, then NPG,

then PPO, then A2C and finally REINFORCE. Actually, TRPO, NPG and PPO are

high performing and deliver very similar best scores. The lowest standard deviations

were achieved by PPO, then TRPO, then NPG, then A2C and finally REINFORCE.

The lower the standard deviation, the less variance and more accurate the methods

are. Actually, PPO and TRPO deliver similar standard deviations, with NPG a close

third.

88

Best scores for off-policy learning methods were delivered by REDQ, then SAC,

then TD3 and finally DDPG. Actually, REDQ and SAC are both high performing and

deliver very similar best scores. The lowest standard deviations were achieved by

REDQ, then SAC, then TD3 and finally DDPG. The lower the standard deviation,

the less variance and more accurate the methods are. Actually, REDQ and SAC

deliver similar standard deviations, with TD3 a close third.

Let’s discuss average speed of training. We trained in a machine with CPU

@3.70 GHz and GPU acceleration of 38.7 TFLOPs. The actual value for the speed

of training is specific to the hardware we are using. Nevertheless, we expect the

rankings and ratios of the speed of training between different methods to remain the

same under a different set of hardware. For on-policy learning methods, on average

over all environments, the fastest on-policy learning method was REINFORCE with

7676 step/s, followed by NPG with 3532 step/s, TRPO with 3435 step/s, A2C with

3209 step/s and finally PPO with 818 step/s. For off-policy learning methods, on

average over all environments, the fastest was DDPG with 108 step/s, followed by

TD3 with 95 step/s, REDQ with 68 step/s and finally SAC with 56 step/s.

Finally, in chapter 4 we test the performance of off-policy learning methods in

robotics simulations with Fetch mobile manipulator [38], a 7-DoF robotic arm with a

two-fingered parallel gripper attached to it. Fetch exists and is used in real-world

scenarios. Fetch can be trained to execute four different tasks: Reach, Push, Pick and

Place and Slide. We make use of Hindsight Experience Replay buffer (HER) [40], a

form of implicit curriculum, where the goals used for replay naturally shift from ones

which are simple to achieve even by a random agent, to more difficult ones. Reach

task was solved by DDPG, TD3, SAC and REDQ. Push task was solved by TD3 and

REDQ. Pick and Place was solved only by REDQ. Slide is the most complicated task,

we were not able to solve it with any off-policy learning method.

89

 BIBLIOGRAPHY

[1] K. Liu and D. Negrut, “The Role of Physics-Based Simulators in

Robotics,” in Annual Review of Control, Robotics, and Autonomous

Systems, 2021.

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

Pearson, 2020.

[3] M. van Otterlo and M. Wiering, “Reinforcement Learning and Markov

Decision Processes,” in Reinforcement learning: State-of-the-art, Springer,

2012, pp. 3-42.

[4] Y. Mansour and S. Singh, “On the Complexity of Policy Iteration,” 23

January 2013.

[5] J. A. Boyan and A. W. Moore, “Generalization in reinforcement

learning: Safely approximating the value function,” 1998.

[6] N. Metropolis and S. Ulam, “The monte carlo method,” 1949.

[7] G. Tesauro, “Temporal Difference Learning and TD-Gammon,” ACM,

1995.

[8] G. Rummery and M. Niranjan, “On-line Q-Learning using

connectionist systems”.

[9] C. J. Watkins and P. Dayan, “Q-Learning,” Kluwer Academic

Publishers, 1992.

[10] H. Hasselt, “Double Q-learning,” in Advances in Neural Information

Processing Systems 23, 2010.

[11] M. Roderick, J. MacGlashan and S. Tellex, “Implementing the Deep

Q-Network,” 20 November 2017.

90

[12] H. v. Hasselt, A. Guez and D. Silver, “Deep Reinforcement Learning

with Double Q-Learning,” DeepMind, 2 March 2016.

[13] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M.

Riedmiller, “Deterministic Policy Gradient Algorithms,” in Proceedings of

the 31st International Conference on Machine Learning, 2014.

[14] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for

Connectionist Reinforcement Learning,” in The Springer International

Series in Engineering and Computer Science, 1992.

[15] S. M. Kakade, “A Natural Policy Gradient,” in Advances in Neural

Information Processing Systems 14, 2001.

[16] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, “Soft Actor-Critic:

Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor,” in Proceedings of the 35th International Conference on

Machine Learning.

[17] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons and J. Kautz,

“Reinforcement Learning through Asynchronous Advantage Actor-Critic

on a GPU,” 2016.

[18] J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz, “Trust

Region Policy Optimization,” in Proceedings of the 32nd International

Conference on Machine Learning, 2015.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov,

“Proximal Policy Optimization Algorithms,” July 2017.

[20] S. Mayer, T. Classen and C. Endisch, “Modular production control

using deep reinforcement learning: proximal policy optimization,” in

Journal of Intelligent Manufacturing, May 2021.

91

[21] P. T. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.

Silver and D. Wierstra, “Continuous control with deep reinforcement

learning,” in International Conference on Learning Representations, 2016.

[22] A. Kumar, N. Paul and S. N. Omkar, “Bipedal Walking Robot using

Deep Deterministic Policy Gradient,” in IEEE Symposium Series on

Computational Intelligence(SSCI), 2018.

[23] S. Dankwa and W. Zheng, “Twin-Delayed DDPG: A Deep

Reinforcement Learning Technique to Model a Continuous Movement of

an Intelligent Robot Agent,” in Proceedings of the 3rd International

Conference on Vision, Image and Signal Processing, August 2019.

[24] X. Chen, C. Wang, Z. Zhou and K. Ross, “Randomized Ensembled

Double Q-Learning: Learning Fast Without a Model,” in International

Conference on Learning Representations, 2021.

[25] Y. Li, Reinforcement learning applications, arXiv, 2019.

[26] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato and P. Wang,

“Applications of Deep Reinforcement Learning in Communications and

Networking: A Survey,” in IEEE Communications Surveys & Tutorials,

2019.

[27] S. Sicular, J. Hare and K. Brant, “Hype Cycle for Artificial

Intelligence,” Gartner Inc, 25 July 2019.

[28] E. Todorov, T. Erez and Y. Tassa, “MuJoCo: A physics engine for

model-based control,” in International Workshop on Intelligent Robots and

Systems, 2012.

[29] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H.

Su and J. Zhu, “Tianshou: A highly modularized deep reinforcement

learning library,” in Journal of Machine Learning Research 23, 2021.

92

[30] B. M. Randles, I. V. Pasquetto, M. S. Golshan and C. L. Borgman,

“Using the Jupyter Notebook as a Tool for Open Science: An Empirical

Study,” 16 April 2018.

[31] J. Schulman, P. Moritz, S. Levine, M. Jordan and P. Abbeel, “High-

Dimensional Continuous Control Using Generalized Advantage

Estimation,” June 2015.

[32] P. Wawrzyński, “A Cat-Like Robot Real-Time Learning to Run,” in

Adaptive and Natural Computing Algorithms, 2009.

[33] T. Erez, Y. Tassa and E. Todorov, “Infinite-horizon model predictive

control for periodic tasks with contacts,” in Robotics: Science and systems

VII, 2012.

[34] Y. Tassa, T. Erez and E. Todorov, “Synthesis and stabilization of

complex behaviors through online trajectory optimization,” in

International Workshop on Intelligent Robots and Systems (IROS) , 2012.

[35] A. G. Barto, R. S. Sutton and C. W. Anderson, “Neuronlike adaptive

elements that can solve difficult learning control problems,” in

Transactions on Systems, Man, and Cybernetics, 1983.

[36] R. Coulom, “Reinforcement Learning Using Neural Networks, with

Applications to Motor Control,” 2002.

[37] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.

Tang and W. Zaremba, “Openai gym,” 2016.

[38] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew and B. Baker,

“Multi-Goal Reinforcement Learning: Challenging Robotics

Environments and Request for Research,” February 2018.

93

[39] A. Rzayev and V. T. Aghaei, “Off-Policy Deep Reinforcement

Learning Algorithms for Handling Various Robotic Manipulator Tasks,”

arXiv.

[40] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P.

Welinder, B. McGrew, J. Tobin, P. Abbeel and W. Zaremba, “Hindsight

Experience Replay,” in Advances in Neural Information Processing

Systems, 2017.

94

 APPENDIX

Chapter 3: Losses from experimental results

95

Ant-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-1 Actor loss during timesteps

(training)

Figure 7-2 Critic loss during timesteps

(training)

Figure 7-3 Critic 1 loss during timesteps

(training)

Figure 7-4 Critic 2 loss during timesteps

(training)

Figure 7-5 REDQ critics ensemble loss

during timesteps (training)

96

HalfCheetah-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-6 Actor loss during timesteps

(training)

Figure 7-7 Critic loss during timesteps

(training)

Figure 7-8 Critic 1 loss during timesteps

(training)

Figure 7-9 Critic 2 loss during timesteps

(training)

Figure 7-10 REDQ critics ensemble loss

during timesteps (training)

97

Hopper-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-11 Actor loss during timesteps

(training)

Figure 7-12 Critic loss during timesteps

(training)

Figure 7-13 Critic 1 loss during timesteps

(training)

Figure 7-14 Critic 2 loss during timesteps

(training)

Figure 7-15 REDQ critics ensemble loss

during timesteps (training)

98

HumanoidStandup-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-16 Actor loss during timesteps

(training)

Figure 7-17 Critic loss during timesteps

(training)

Figure 7-18 Critic 1 loss during timesteps

(training)

Figure 7-19 Critic 2 loss during timesteps

(training)

Figure 7-20 REDQ critics ensemble loss

during timesteps (training)

99

Humanoid-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-21 Actor loss during timesteps

(training)

Figure 7-22 Critic loss during timesteps

(training)

Figure 7-23 Critic 1 loss during timesteps

(training)

Figure 7-24 Critic 2 loss during timesteps

(training)

Figure 7-25 REDQ critics ensemble loss

during timesteps (training)

100

InvertedDoublePendulum-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-26 Actor loss during timesteps

(training)

Figure 7-27 Critic loss during timesteps

(training)

Figure 7-28 Critic 1 loss during timesteps

(training)

Figure 7-29 Critic 2 loss during timesteps

(training)

Figure 7-30 REDQ critics ensemble loss

during timesteps (training)

101

InvertedPendulum-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-31 Actor loss during timesteps

(training)

Figure 7-32 Critic loss during timesteps

(training)

Figure 7-33 Critic 1 loss during timesteps

(training)

Figure 7-34 Critic 2 loss during timesteps

(training)

Figure 7-35 REDQ critics ensemble loss

during timesteps (training)

102

Pusher-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-36 Actor loss during timesteps

(training)

Figure 7-37 Critic loss during timesteps

(training)

Figure 7-38 Critic 1 loss during timesteps

(training)

Figure 7-39 Critic 2 loss during timesteps

(training)

Figure 7-40 REDQ critics ensemble loss

during timesteps (training)

103

Reacher-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-41 Actor loss during timesteps

(training)

Figure 7-42 Critic loss during timesteps

(training)

Figure 7-43 Critic 1 loss during timesteps

(training)

Figure 7-44 Critic 2 loss during timesteps

(training)

Figure 7-45 REDQ critics ensemble loss

during timesteps (training)

104

Swimmer-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-46 Actor loss during timesteps

(training)

Figure 7-47 Critic loss during timesteps

(training)

Figure 7-48 Critic 1 loss during timesteps

(training)

Figure 7-49 Critic 2 loss during timesteps

(training)

Figure 7-50 REDQ critics ensemble loss

during timesteps (training)

105

Walker2d-v4

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-51 Actor loss during timesteps

(training)

Figure 7-52 Critic loss during timesteps

(training)

Figure 7-53 Critic 1 loss during timesteps

(training)

Figure 7-54 Critic 2 loss during timesteps

(training)

Figure 7-55 REDQ critics ensemble loss

during timesteps (training)

106

Chapter 4: Losses from experimental results

107

FetchReach-v3

Losses of off-policy learning methods

 DDPG TD3 SAC REDQ

Figure 7-56 Actor loss during timesteps

(training)

Figure 7-57 Critic loss during timesteps

(training)

Figure 7-58 Critic 1 loss during timesteps

(training)

Figure 7-59 Critic 2 loss during timesteps

(training)

Figure 7-60 REDQ critics ensemble loss

during timesteps (training)

108

FetchPush-v2

Losses of off-policy learning methods

 TD3 REDQ

Figure 7-61 Actor loss during timesteps

(training)

Figure 7-62 Critic 1 loss during timesteps

(training)

Figure 7-63 Critic 2 loss during timesteps

(training)

Figure 7-64 REDQ critics ensemble loss

during timesteps (training)

109

FetchPickAndPlace-v2

Losses of off-policy learning methods

 REDQ

Figure 7-65 Actor loss during timesteps

(training)

Figure 7-66 REDQ critics ensemble loss

during timesteps (training)

	Abstract
	Abstrakt
	Acknowledgements
	Table of Contents
	List of Abbreviations
	List of Notations
	1 Reinforcement Learning
	1.1 Introduction
	1.2 Definition of Reinforcement Learning
	1.3 Bellman backup operators
	1.4 Terminology
	1.5 Dynamic Programming methods
	1.5.1 Policy Iteration
	1.5.2 Value Iteration

	1.6 Monte Carlo methods
	1.7 Temporal Difference learning methods
	1.7.1 TD-0
	1.7.2 SARSA

	1.8 Q-Learning methods
	1.8.1 Q-Learning
	1.8.2 Double Q-Learning

	2 Deep Reinforcement Learning
	2.1 Introduction
	2.2 Definition of Deep Reinforcement Learning
	2.3 Types of Deep Reinforcement Learning methods
	2.4 Value function methods
	2.4.1 Deep Q-Network (DQN)
	2.4.2 Double Deep Q-Network (DDQN)

	2.5 Policy Gradient methods
	2.5.1 Policy Gradient Theorem
	2.5.2 REINFORCE
	2.5.3 What are Policy Gradients actually doing?
	2.5.4 Improving Policy Gradient
	2.5.5 Natural Policy Gradient (NPG)

	2.6 Actor-Critic methods
	2.7 On-policy Actor-Critic methods
	2.7.1 Advantage Actor-Critic (A2C)
	2.7.2 Trust Region Policy Optimization (TRPO)
	2.7.3 Proximal Policy Optimization (PPO)

	2.8 Off-policy Actor-Critic methods
	2.8.1 Deep Deterministic Policy Gradient (DDPG)
	2.8.2 Twin-Delayed DDPG (TD3)
	2.8.3 Soft Actor-Critic (SAC)
	2.8.4 Randomized Ensembled Double Q-Learning (REDQ)

	2.9 Successful applications

	3 Deep Reinforcement Learning in physics-based simulations
	3.1 Introduction
	3.2 Software components
	3.3 MuJoCo environments
	3.4 Hardware
	3.5 Methodology
	3.6 Experimental results
	3.6.1 Ant-v4
	3.6.2 HalfCheetah-v4
	3.6.3 Hopper-v4
	3.6.4 HumanoidStandup-v4
	3.6.5 Humanoid-v4
	3.6.6 InvertedDoublePendulum-v4
	3.6.7 InvertedPendulum-v4
	3.6.8 Pusher-v4
	3.6.9 Reacher-v4
	3.6.10 Swimmer-v4
	3.6.11 Walker2d-v4
	3.6.12 Best scores
	3.6.13 Running times
	3.6.14 Speed of training

	3.7 Summary

	4 Off-policy learning in robotics simulations
	4.1 Introduction
	4.2 Software components
	4.3 Fetch mobile manipulator
	4.4 Hardware
	4.5 Methodology
	4.5.1 Hindsight Experience Replay Buffer

	4.6 Experimental results
	4.6.1 FetchReach-v3
	4.6.2 FetchPush-v2
	4.6.3 FetchPickAndPlace-v2
	4.6.4 Best scores

	4.7 Summary

	5 Conclusions
	6 Bibliography
	7 Appendix
	Chapter 3: Losses from experimental results
	Chapter 4: Losses from experimental results

