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ABSTRACT 

 

DEEP REINFORCEMENT LEARNING IN PHYSICS-BASED 

SIMULATIONS 

 

Duma, Devid 

Master of Science, Department of Computer Engineering 

Supervisor: Dr. Arban Uka 

 

In neuroscience, reinforcement learning is an important concept for the learning 

process of all organisms. Tunicata, a marine invertebrate animal, has during larval 

stage a primitive brain and eyes, swims around and learns to find the best rock to 

attach itself into. In the adult stage it digests its brain, emphasizing that the point of 

having a brain is to make decisions and take intelligent actions.  

In computer science, reinforcement learning (RL) is a mathematical framework 

based on Markov Decision Processes, concerned with building rational agents that 

act so as to achieve the best expected outcome, whilst interacting with an environment 

without an explicit teacher. Deep reinforcement learning (Deep RL) augments the 

foundational work in RL with neural networks to solve more complicated tasks, like 

games, physics-based simulations and robotics. 

In robotics, physics-based simulations are crucial for training real-life robots. 

Simulations have seen adoption accelerated by the rapid growth in computational 

power over the last three decades [1]. Robots are very complicated systems, training 

them in the real world can be challenging, since execution and feedback is slow. 

Physics-based simulation allows sampling experience millions times faster than in 

the real world, making it possible to train very complicated robots. 

In the first chapter of this thesis, I give a brief introduction on RL theoretical 

fundamentals. In the second chapter, I introduce the theoretical background behind 

deep RL methods. In the third chapter, I evaluate the performance of deep RL 

methods in physics-based simulations with MuJoCo, an excellent engine for 

advanced physics-based simulations. In the fourth chapter, I research the application 



iv 

of off-policy learning methods in robotics simulations. I evaluate the performance of 

off-policy learning methods in Fetch mobile manipulator, a 7-DoF robotic arm with 

a two-fingered parallel gripper. Finally, I draw concluding remarks. 

 

Keywords: deep reinforcement learning, physics-based simulations, robotics 

simulations  
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ABSTRAKT 

 

TË MËSUARIT PËRFORCUES I THELLË NË SIMULIMET E 

BAZUARA NË FIZIKË 

 

Duma, Devid 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Dr. Arban Uka 

 

Në neuroshkencë, të mësuarit përforcues është një koncept i rëndësishëm për 

procesin e të mësuarit të të gjithë organizmave. Tunikata, një kafshë jovertebrore 

detare, ka një tru dhe sy primitiv gjatë fazës së larvës, noton përreth dhe mëson të 

gjejë shkëmbin më të mirë për t'u lidhur. Kur rritet ajo e konsumon trurin e vet, çka 

thekson se qëllimi i të pasurit tru është të marrësh vendime dhe të ndërmarrësh 

veprime inteligjente. 

Në shkencën kompjuterike, të mësuarit përforcues (RL) është një kornizë 

matematikore e bazuar në Proceset e Vendimit Markov, që ka të bëjë me ndërtimin e 

agjentëve racionalë që veprojnë në mënyrë që të arrijnë rezultatin më të mirë në 

pritshmëri, ndërkohë që ndërveprojnë me një mjedis, pa një mësues të dedikuar. Të 

mësuarit përforcues i thellë (Deep RL) shton mbi punën themelore në RL rrjetet 

neuronale për të zgjidhur detyra më të ndërlikuara, si lojërat, simulimet e bazuara në 

fizikë dhe simulimet robotike. 

Në robotikë, simulimet e bazuara në fizikë janë thelbësore për trajnimin e 

robotëve në jetën reale. Simulimet kanë parë adoptimin e përshpejtuar nga rritja e 

shpejtë e fuqisë llogaritëse të sistemeve kompjuterike gjatë tre dekadave të fundit [1]. 

Robotët janë sisteme shumë të komplikuara, trajnimi i tyre në botën reale mund të 

jetë sfidues, pasi ekzekutimi dhe reagimet janë të ngadalta. Simulimi i bazuar në 

fizikë lejon mbledhjen e përvojës miliona herë më shpejt se në botën reale, duke bërë 

të mundur trajnimin e robotëve shumë të komplikuar. 
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Në kapitullin e parë të kësaj teze, unë bëj një hyrje të shkurtër mbi bazat teorike 

të të mësuarit përforcues (RL). Në kapitullin e dytë, unë prezantoj sfondin teorik 

prapa metodave të të mësuarit përforcues të thellë (Deep RL). Në kapitullin e tretë, 

unë vlerësoj performancën e metodave të të mësuarit përforcues të thellë në simulimet 

e bazuara në fizikë me MuJoCo, një projekt motor i shkëlqyer për simulime të 

avancuara të bazuara në fizikë. Në kapitullin e katërt, unë hulumtoj zbatimin e 

metodave të të mësuarit off-policy në simulimet e robotikës. Unë vlerësoj 

performancën e metodave off-policy në manipuluesin e lëvizshëm robotik Fetch, një 

krah robotik 7-DoF me një kapëse me dy gishta paralele. Së fundi, unë nxjerr vërejtjet 

përmbyllëse. 

 

Fjalë kyçe: të mësuarit përforcues i thellë, simulime të bazuara në fizikë, 

simulime robotike  
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CHAPTER 1 

 REINFORCEMENT LEARNING 

 

1.1 Introduction 

 

In the domain of artificial intelligence, two of its pioneers Stuart Russell and 

Peter Norvig propose an interesting taxonomy for the approaches taken when 

studying AI in their famous book “Artificial Intelligence: A Modern Approach” [2]. 

According to the authors, we can classify artificial intelligence algorithms into one of 

the following: thinking humanly, thinking rationally, acting humanly and acting 

rationally. 

Thinking Humanly 

Cognitive science 

Thinking Rationally 

Mathematical logic 

Acting Humanly 

Turing test 

Acting Rationally 

Intelligent agents 

The most successful approach in building Artificial Intelligence agents has 

proven to be acting rationally. Reinforcement learning follows exactly this acting 

rationally approach. 

Reinforcement learning stands besides supervised learning and unsupervised 

learning as one of three machine learning paradigms. In reinforcement learning there 

is no supervisor like in supervised learning, only a reward signal as feedback in each 

state after executing an action. Moreover, the data is sequential instead of independent 

and identically distributed. Agent’s actions affect the subsequent data it receives. 
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1.2 Definition of Reinforcement Learning 

 

Reinforcement Learning (RL) is a mathematical framework based on Markov 

Decision Processes [3]. It is concerned with building rational agents that act so as to 

achieve the best expected outcome, whilst interacting with an environment without 

an explicit instructor. 

 

Figure 1-1 Reinforcement Learning loop 

 

Markov Decision Process 

Markov Decision Processes are formally defined with the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾): 

o 𝑆 : A finite state space. 

o 𝐴 : A finite set of actions, which are available from each state 𝑠. 

o 𝑃 : A transition probability model that specifies 𝑃(𝑠’|𝑠, 𝑎). 

o 𝑅 : A reward function that maps a state-action pair to rewards (real numbers), 

i.e. 𝑅 ∶  𝑆 × 𝐴 →  ℝ. 

o 𝛾 : Discount factor 𝛾𝜖[0; 1]. 
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Markov Property 

Markov Decision Processes possess the Markov Property. A stochastic process 

has the Markov Property, if and only if: 

𝑃(𝑠𝑡+1 | 𝑠0, 𝑠1, 𝑠2… 𝑠𝑡) = 𝑃(𝑠𝑡+1 | 𝑠𝑡)  ∀ 𝑡 ∈ ℕ 

In other words, expectations over future states are dependent only on the current 

state, not on past states. For this reason, RL algorithms are memoryless regarding the 

past. 

 

Return 

The agent’s objective in an RL algorithm is to maximize the expected returns 𝐺𝑡, 

i.e. future cumulative reward. 

𝐺𝑡 =∑𝛾𝑖𝑅𝑖
𝑖=𝑡

 

The discount factor 𝛾 takes values in the range [0,1]. When 𝛾 = 1, we value all 

future rewards in all future states equally. When 0 < 𝛾 < 1, we value immediate 

future rewards more than future rewards from very far in the future. 

 

Value function 

Value functions specify the expected value of future cumulative rewards. 

o State value function 𝑉𝑡
𝜋 ∶ (𝑠) → 𝔼[𝐺𝑡] specifies the expected value of future 

cumulative rewards, starting from state 𝑠 in timestep 𝑡, then following policy 

𝜋. 

o State-action value function 𝑄𝑡
𝜋 ∶ (𝑠, 𝑎) → 𝔼[𝐺𝑡] specifies the expected value 

of future cumulative rewards, starting from state 𝑠 and action 𝑎 in timestep 𝑡, 

then following policy 𝜋. 

This is different from the return 𝐺𝑡, which specifies the real value of future 

cumulative rewards. Analytically, we calculate the expectation bootstrapping with 

the Bellman backup operator.  
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Policy 

Policy 𝜋 determines the best action 𝑎 to execute in a given state 𝑠. The action 

that delivers the maximal value function is chosen. 

𝜋 ∶ 𝑠 → 𝑉𝜋(𝑠) 

𝜋 ∶ 𝑠 → 𝑄𝜋(𝑠, 𝑎) 

The objective of an RL agent is to choose a policy which maximizes the value 

function, i.e. the expected returns. 

A fundamental theorem in RL states that, given any stationary policy 𝜋, we can 

generate a new deterministic stationary policy 𝜋′ that is no worse than the existing 

policy. In other words, we can make step-by-step improvements to a current policy 

𝜋. 

The policy in an RL algorithm is implemented as a lookup table. 

 

Causality 

Policy π�̅� at timestep 𝑡̅ cannot affect rewards from previous timesteps, i.e. 

reward 𝑅𝑡 at timestep 𝑡 when 𝑡 < 𝑡̅. 

 

1.3 Bellman backup operators 

 

Suppose we are given an MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) and a policy 𝜋, which can be 

deterministic or stochastic. Let’s assume an infinite horizon, stationary rewards 𝑅, 

stationary transition probabilities 𝑃 and a stationary policy 𝜋. 

 

Let’s derive a formula for 𝑄𝑡
𝜋(𝑠, 𝑎): 
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𝑄π(𝑠, 𝑎) = 𝑄0
π(𝑠, 𝑎) = 𝔼[𝐺0|𝑠0 = 𝑠, 𝑎0 = 𝑎] = 𝔼 [∑γ𝑖𝑅𝑖|𝑠0 = 𝑠, 𝑎0 = 𝑎

∞

𝑖=0

]

= 𝔼[𝑅0|𝑠0 = 𝑠, 𝑎0 = 𝑎] +∑γ𝑖𝔼[𝑅𝑖|𝑠0 = 𝑠, 𝑎0 = 𝑎]

∞

𝑖=1

=
(𝑎)
↔ 𝑅(𝑠, 𝑎) +∑γ𝑖 (∑𝑃(𝑠1 = 𝑠’|𝑠0 = 𝑠, 𝑎0 = 𝑎)𝔼[𝑅𝑖|𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝑠1 = 𝑠’]

𝑠′𝜖𝑆

)

∞

𝑖=1

=
(𝑏)
↔ 𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑠′|𝑠, 𝑎) (∑γ𝑖−1𝔼[𝑟𝑖|𝑠1 = 𝑠

′]

∞

𝑖=1

)

𝑠’∈𝑆

=
(𝑐)
↔ 𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)

𝑠’∈𝑆

 

Eq. 1-1 

Remarks: (a) is due to the law of total expectation, (b) follows from the Markov 

Property, (c) follows from linearity of expectation. 

 

Moreover: 

𝑅π(𝑠) = ∑π(𝑎|𝑠)𝑅(𝑠, 𝑎)

𝑎∈𝐴

 

𝑃𝜋(𝑠′|𝑠) = ∑𝜋(𝑎|𝑠)𝑃(𝑠′|𝑠, 𝑎)

𝑎∈𝐴

 

𝑉π(𝑠) = 𝜋(𝑎|𝑠)𝑄π(𝑠, 𝑎) = 𝑚𝑎𝑥
𝑎′∈𝐴

[𝑄𝑡
π(𝑠, 𝑎′)] 

 

Calculating 𝑉π(𝑠) = 𝜋(𝑎|𝑠)𝑄π(𝑠, 𝑎) yields: 

𝑉π(𝑠) = 𝑅π(𝑠) + 𝛾∑ 𝑃π(𝑠′|𝑠)𝑉π(𝑠′)

𝑠′∈𝑆

 

Eq. 1-2 

 

Calculating 𝑉π(𝑠) = 𝑚𝑎𝑥
𝑎′∈𝐴

[𝑄𝑡
π(𝑠, 𝑎′)] yields: 
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𝑉π(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

[𝑅π(𝑠) + γ∑ 𝑃π(𝑠′|𝑠)𝑉π(𝑠′)

𝑠′∈𝑆

] 

Eq. 1-3 

 

Similar to the formulas we derived in Eq. 1-1, Eq. 1-2 and Eq. 1-3 we define 

Bellman backup operators: 

 

Bellman expectation backup operator 

(𝐵π𝑈)(𝑠) = 𝑅π(𝑠) + 𝛾∑ 𝑃π(𝑠′|𝑠)𝑈(𝑠′),

𝑠′∈𝑆

  ∀𝑠 ∈ 𝑆 

 

Bellman optimality backup operator 

(𝐵∗𝑈)(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

[𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)

𝑠′∈𝑆

],   ∀𝑠 ∈ 𝑆 

 

Both operators are contraction operators. Applying them iteratively guarantees 

convergence of RL methods towards a single value, a global optimum. Finally, 

Bellman backup operators have been studied in-depth and contain useful 

mathematical properties. 
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1.4 Terminology 

 

Model-based vs model-free 

Model-based methods require full knowledge of all states and transition 

dynamics of the environment. We can either build a model of the environment from 

first principles, or we can learn a model of the environment by performing 

experiments. Using first principles method, we might result in models that are not 

accurate, hence the policy learned might be suboptimal. Learning a model from 

experiments is preferred. Important measures for the efficiency of the models are 

memory requirements and scalability. 

Model-free methods do not require full knowledge of all states and transition 

dynamics of the environment. They scale better to larger applications. Model-free 

methods are either value function based or policy search. Value function based 

methods try to learn a value function, then infer an optimal policy from it. Policy 

search methods directly search in the space of the policy parameters to find an optimal 

policy. 

 

On-policy vs off-policy 

On-policy learning methods attempt to evaluate or improve the policy that is used 

to make decisions and generate the data. 

Off-policy learning methods evaluate or improve a policy different from that 

used to generate the data. The policy being learned about is called the target policy, 

whereas the policy used to sample experience is called the behavior policy. 
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1.5 Dynamic Programming methods 

DP methods are model-based and on-policy. 

 

1.5.1 Policy Iteration 

Policy Iteration [4] searches over a policy space, by iteratively improving on an 

existing policy, until that policy converges to a global optimum. Iteratively improving 

on a stationary policy 𝜋 is possible, because of this theorem: 

Theorem: Given any stationary policy 𝜋, we can generate a new deterministic 

stationary policy that is no worse than the existing policy. 

Policy Iteration is comprised of Policy Evaluation and Policy Improvement. 

Policy Evaluation calculates value function for a stationary policy 𝜋, with the help of 

Bellman expectation backup operator. In Policy Improvement, given policy 𝜋, we 

generate a new, improved policy 𝜋′, with the help of Bellman optimality backup 

operator. 

Policy Iteration repeatedly calls Policy Evaluation and Policy Improvement until 

the policy stops changing, i.e. the algorithm converges and returns an optimal policy. 

algorithm POLICY EVALUATION (𝑀, π, ϵ): 

 Define 𝑅π(𝑠) = ∑ π(𝑎|𝑠)𝑅(𝑠, 𝑎)𝑎∈𝐴 , ∀𝑠 ∈ 𝑆 

 Define 𝑃π(𝑠′|𝑠) = ∑ π(𝑎|𝑠)𝑃(𝑠′|𝑠, 𝑎)𝑎∈𝐴 , ∀𝑠, 𝑠′ ∈ 𝑆 

 Initialize 𝑉′(𝑠) ← 0, 𝑉(𝑠) ← ∞, ∀𝑠 ∈ 𝑆 

 while ‖𝑉 − 𝑉′‖∞ > 𝜖 do: 

  𝑉 ← 𝑉′ 

  𝑉′(𝑠) = 𝑅π(𝑠) + 𝛾 ∑ 𝑃π(𝑠′|𝑠)𝑉(𝑠′)𝑠′∈𝑆  

return 𝑉′(𝑠), ∀𝑠 ∈ 𝑆 

Algorithm 1 Policy Evaluation algorithm as presented in the literature 
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algorithm POLICY IMPROVEMENT (𝑀, 𝑉𝜋): 

 π̂ ← 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴

 [𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉π(𝑠′)𝑠′∈𝑆 ] , ∀𝑠 ∈ 𝑆 

 return π̂(𝑠), ∀𝑠 ∈ 𝑆 

Algorithm 2 Policy Improvement algorithm as presented in the literature 

 

algorithm POLICY ITERATION (𝑀, ϵ): 

 Initialize 𝜋 ← randomly choose a policy 𝜋 ∈ Π 

 while true do: 

  𝑉𝜋 ← POLICY EVALUATION (𝑀, π, ϵ) 

  𝜋∗ ← POLICY IMPROVEMENT (𝑀, 𝑉𝜋) 

  if π∗(𝑠) = 𝜋(𝑠) then 

   break 

  else 

   𝜋 ← 𝜋∗  

 𝑉∗ ← 𝑉𝜋 

 return 𝑉∗(𝑠), π∗(𝑠), ∀𝑠 ∈ 𝑆 

Algorithm 3 Policy Iteration algorithm as presented in the literature 

 

1.5.2 Value Iteration 

Value Iteration [5] searches over a value function space, by applying the Bellman 

optimality backup operator iteratively, until an optimal policy is found. 

Value Iteration is guaranteed to converge towards a global optimum. 
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algorithm VALUE ITERATION (𝑀, ϵ): 

 Initialize 𝑉′(𝑠) ← 0, 𝑉(𝑠) ← ∞ 

 while ‖𝑉 − 𝑉′‖∞ > 𝜖 do: 

  𝑉 ← 𝑉′ 

  𝑉′(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

 [𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)𝑠′∈𝑆 ] , ∀𝑠 ∈ 𝑆 

 V∗ ← 𝑉,   ∀𝑠 ∈ 𝑆 

 𝜋∗ ← 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴

 [𝑅(𝑠, 𝑎) + γ∑ 𝑃(𝑠′|𝑠, 𝑎)V∗(𝑠′)𝑠′∈𝑆 ] , ∀𝑠 ∈ 𝑆 

 return 𝑉∗(𝑠), π∗(𝑠), ∀𝑠 ∈ 𝑆 

Algorithm 4 Value Iteration algorithm as presented in the literature 

 

1.6 Monte Carlo methods 

Monte Carlo on-policy evaluation [6] uses the Monte Carlo computational 

method. In Monte Carlo, we first sample an entire episode, then update the 𝑉-value 

or 𝑄-value. 

Monte Carlo methods are model-free and on-policy. Compared to dynamic 

programming methods introduced previously, Monte Carlo methods being model-

free do not require full knowledge of all states and transition dynamics of the 

environment, hence scale better to larger applications. Even though Monte Carlo is 

model-free, it is analytically guaranteed to converge to a global optimum. Moreover, 

Monte Carlo methods are agnostic to the Markov Decision Process setting, hence can 

be applied to a very wide range of problems. 

Monte Carlo on-policy evaluation can be implemented in three versions: 

o First visit Monte Carlo: If the current state 𝑠 is visited for the first time, update 

𝑉(𝑠) or 𝑄(𝑠, 𝑎). 

o Every visit Monte Carlo: For every visit of state 𝑠, no matter if it is the first 

visit, update 𝑉(𝑠) or 𝑄(𝑠, 𝑎). 

o Incremental Monte Carlo: Introduces a learning rate 𝛼. 

Monte Carlo on-policy evaluation can either update 𝑉(𝑠) or 𝑄(𝑠, 𝑎), depending 

on the implementation.  
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algorithm MONTE CARLO EVALUATION (𝑀, 𝑠, 𝑡, 𝑁): 

 Initialize 𝑖 ← 0 

 Initialize 𝐺𝑡 ← 0 

 while 𝑖 ≠ 𝑁 do: 

  Sample an episode, starting from state 𝑠 and time 𝑡 

  Using sampled episode, calculate return 𝑔 ← ∑ γ𝑖−𝑡𝑟𝑖
𝐻−1
𝑖=𝑡  

  𝐺𝑡 ← 𝐺𝑡 + 𝑔 

  𝑖 ← 𝑖 + 1 

 Update rule for 𝑉(𝑠) or 𝑄(𝑠, 𝑎) 

 return 𝑉𝑡(𝑠) or 𝑄𝑡(𝑠, 𝑎) 

Algorithm 5 Monte Carlo Evaluation algorithm as presented in the literature 

 

Update rules for First Visit Monte Carlo: 

if first visit then 

𝑉𝑡(𝑠) ← 𝐺𝑡/𝑁(𝑠) 

if first visit then 

𝑄𝑡(𝑠, 𝑎) ← 𝐺𝑡/𝑁(𝑠, 𝑎) 

Update rules for Every Visit Monte Carlo: 

𝑉𝑡(𝑠) ← 𝐺𝑡/𝑁(𝑠) 𝑄𝑡(𝑠, 𝑎) ← 𝐺𝑡/𝑁(𝑠, 𝑎) 

Update rules for Incremental Monte Carlo: 

𝑉𝑡(𝑠) ← 𝑉𝑡(𝑠) + 𝛼[𝐺𝑡 − 𝑉𝑡(𝑠)] 𝑄𝑡(𝑠, 𝑎) ← 𝑄𝑡(𝑠, 𝑎) + 𝛼[𝐺𝑡 − 𝑄𝑡(𝑠, 𝑎)] 
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1.7 Temporal Difference learning methods 

Temporal Difference (TD) learning [7] bootstraps the value functions with 

Bellman backup operator while sampling. This is an improvement over Monte Carlo, 

which calculates value functions only after sampling an entire episode. For this 

reason, TD learning methods are a better choice than Monte Carlo methods in MDPs 

with very long episodes, or non-episodic domains. 

TD learning methods are model-free and on-policy. In TD learning, we bootstrap 

the next state's value estimate to get the current state's value estimate, so the estimate 

is biased by the estimated value of the next state. 

 

1.7.1 TD-0 

TD-0 calculates the TD target 𝑅 + 𝛾𝑉𝜋(𝑠𝑡+1) every step of the episode, hence 

bootstraps information while sampling.  

algorithm TD-0 (𝛼, 𝑛): 

 Initialize 𝑉π(𝑠) ← 0 

 while 𝑛 > 0 do: 

  Begin episode 𝐸 at state 𝑠 

  while 𝑛 > 0 and episode 𝐸 has not terminated do: 

   𝑎 ← action at state 𝑠 under policy 𝜋 

   Take action 𝑎 in 𝐸 and observe reward 𝑟, next state 𝑠’ 

   𝑉π(𝑠) ← 𝑉π(𝑠) + 𝛼(𝑅 + γ𝑉π(𝑠′) − 𝑉π(𝑠)) 

   𝑠 ← 𝑠′ 

 return 𝑉π 

Algorithm 6 TD-0 algorithm as presented in the literature 
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1.7.2 SARSA 

SARSA [8] calculates the TD target 𝑅𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1) every step of the 

episode, hence bootstrap the information while sampling. Essentially, SARSA is the 

same as TD-0, but instead of using 𝑉-values in its update rules like in TD-0, SARSA 

uses 𝑄-values in its update rule. 

algorithm SARSA (α𝑡 , 𝜖): 

 Initialize 𝑄(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 arbitrarily, except 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0 

 𝜋 ← 𝜖-greedy policy w.r.t. 𝑄 

 for each episode do: 

  Set state 𝑠1 as starting state 

  Choose action 𝑎1 from policy 𝜋(𝑠1) 

  while episode 𝐸 has not terminated do: 

   Take action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1 

   Choose action 𝑎𝑡+1 from policy 𝜋(𝑠𝑡+1) 

   𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + α𝑡[𝑟𝑡 + γ𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

   𝜋 ← 𝜖-greedy w.r.t. 𝑄 (policy improvement) 

   𝑡 ← 𝑡 + 1 

return 𝑄, 𝜋 

Algorithm 7 SARSA algorithm as presented in the literature 

 

1.8 Q-Learning methods 

Q-Learning [9] is an off-policy learning method for Temporal Difference style 

control. Q-Learning is similar to SARSA, but it bootstraps the 𝑄-value from the next 

state, by checking 𝑄-values of all possible actions, before actually choosing and 

executing that action. 

Q-Learning methods are model-free and off-policy.  
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1.8.1 Q-Learning 

algorithm Q-LEARNING (𝜖, 𝛼, γ): 

 Initialize 𝑄(𝑠, 𝑎), ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 arbitrarily, except 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0 

 𝜋 ← 𝜖-greedy policy w.r.t. 𝑄 

 for each episode do: 

  Set state 𝑠1 as starting state 

  𝑡 ← 1 

  while episode 𝐸 has not terminated do: 

   Choose action 𝑎𝑡 from policy 𝜋(𝑠𝑡) 

   Take action 𝑎𝑡 and observe reward 𝑟𝑡, next state 𝑠𝑡+1 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + γmax
a′
𝑄(𝑠𝑡+1, 𝑎

′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

   𝜋 ← 𝜖-greedy w.r.t. 𝑄 (policy improvement) 

   𝑡 ← 𝑡 + 1 

return 𝑄, 𝜋 

Algorithm 8 Q-Learning algorithm as presented in the literature 

 

Q-Learning introduces maximization bias. In other words, some optimistic bias 

is present towards some actions, making them better than their actual 𝑄-value. 

Depending on the problem, maximization bias can be beneficial or a drawback. 
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1.8.2 Double Q-Learning 

Double Q-Learning [10] is exactly the same as Q-Learning, with a modified 

update rule that prevents maximization bias. Double Q-Learning decouples the action 

selection from 𝑄-value evaluation, by using two independent, unbiased estimates of 

𝑄-values: 𝑄1 and 𝑄2. 𝑄1 is used to select the action yielding the maximal returns, 

whereas 𝑄2 is used to estimate the value of this maximum return. With 0.5 probability 

𝑄1 is updated and with 0.5 probability 𝑄2 is updated. 

algorithm DOUBLE Q-LEARNING (𝜖, 𝛼, γ): 

 Initialize 𝑄1(𝑠, 𝑎), 𝑄2(𝑠, 𝑎)  ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 

 𝜋 ← 𝜖-greedy policy w.r.t. 𝑄1 + 𝑄2 

 for each episode do: 

  Set state 𝑠1 as starting state 

  𝑡 ← 1 

  while episode 𝐸 has not terminated do: 

   Choose action 𝑎𝑡 from policy 𝜋(𝑠𝑡) 

   Take action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1 

if (with 0.5 probability) then 

 𝑄1(𝑠𝑡 , 𝑎𝑡) ← 𝑄1(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑄2 (𝑠𝑡+1, 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎′

 𝑄1(𝑠𝑡+1, 𝑎
′)) −

𝑄1(𝑠𝑡 , 𝑎𝑡)] 

   else  

 𝑄2(𝑠𝑡 , 𝑎𝑡) ← 𝑄2(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑄1 (𝑠𝑡+1, 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎′

 𝑄2(𝑠𝑡+1, 𝑎
′)) −

𝑄2(𝑠𝑡 , 𝑎𝑡)] 

   𝜋 ← 𝜖-greedy w.r.t. 𝑄1 + 𝑄2 (policy improvement) 

   𝑡 ← 𝑡 + 1 

return 𝑄1 + 𝑄2, 𝜋 

Algorithm 9 Double Q-Learning algorithm as presented in the literature 
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CHAPTER 2 

 DEEP REINFORCEMENT LEARNING 

 

2.1 Introduction 

 

Traditional RL saves 𝑄-values internally using a lookup table. It also 

approximates the 𝑄-value analytically with Bellman backup operators. This approach 

might not scale with very large state and action spaces. In other cases, we might prefer 

quickly learning good approximate value functions over exact value functions. Deep 

RL parameterizes the policy with weights 𝜃 in a neural network, serving as a function 

approximator for the 𝑄-value. Input features of the network are observations 𝑜𝑡 for 

state 𝑠𝑡 and rewards 𝑅𝑡, from some fixed size replay buffer.  

Other possible architectures for function approximators could be linear 

combinations, decision trees, nearest neighbors or Fourier or wavelet bases. 

Nevertheless, the most popular choice for weights 𝜃 are neural networks. 

Deep RL allows us to solve more complicated tasks, like physics-based 

simulations and robotics tasks. However, it is important to note that Deep RL methods 

are not guaranteed to converge. Research in Deep RL has high computational 

complexity and requires long computational time, in order to find the best 

hyperparameters that lead to convergence, i.e. solve a task. 
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2.2 Definition of Deep Reinforcement Learning 

 

Objective 

Deep reinforcement learning techniques can be framed as an optimization 

problem on parameters 𝜃, in order to find the optimal θ∗: 

θ∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
θ

𝔼τ~𝑝θ(τ) [∑𝑟(𝑠𝑡 , 𝑎𝑡)

𝑡

] 

We can use a variety of optimization techniques, like Stochastic Gradient 

Descent to optimize this objective. 

To be more concrete, let us define the term inside 𝑎𝑟𝑔𝑚𝑎𝑥
θ

 as a function 𝐽(θ): 

𝐽(θ) = 𝔼τ~πθ(τ)[𝑟(τ)] 

We could re-write function 𝐽(𝜃) as: 

𝐽(θ) = ∫πθ𝑟(τ)𝑑τ 

With this integral, we can easily take the gradient to perform gradient descent or 

ascent. Essentially, optimizing the new objective 𝐽(θ) with gradient descent or ascent 

is equivalent to taking the operator 𝑎𝑟𝑔𝑚𝑎𝑥
θ

, i.e. finding the optimal parameters 𝜃. 

 

Experience replay buffer 

Sampling trajectories 𝜏 from the environment consecutively, means that they will 

be temporally correlated. If we were to feed them to a neural network directly, it 

would lead to overfitting. Experience replay buffer keeps a fixed number of 

trajectories in the buffer 𝛽, sampled from different timesteps. The temporal 

correlation between the trajectories in the buffer is broken. Each training step of the 

policy, trajectories are chosen from the replay buffer at random.  
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2.3 Types of Deep Reinforcement Learning methods 

 

Value function based 

Value based methods estimate V-function or Q-function of the optimal policy. 

There is no explicit policy, but rather the policy is inferred from the value functions. 

 

Policy Gradient 

Policy Gradient methods directly differentiate the RL objective. 

∇θ𝐽(θ) = ∇θ 𝔼τ~𝑝θ(τ) [∑𝑅(𝑠𝑡 , 𝑎𝑡)

𝑡

] 

 

Actor-Critic 

Actor-Critic methods estimate value function or Q-function of the current policy, 

then use it to improve the policy. 

 

Model based 

Model based methods estimate the transition model and then use it for planning, 

with no explicit policy, as well as to improve a policy. As we saw in the previous 

chapter, model based methods are common in Reinforcement Learning. However, 

they are not common in Deep Reinforcement Learning. 
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2.4 Value function methods 

 

2.4.1 Deep Q-Network (DQN) 

Deep Q-Network (DQN) [11] is based on Q-Learning, but uses a neural network 

as a function approximator for the 𝑄-value. The network is trained by minimizing a 

loss function at every iteration 𝑖, given by: 

𝐿𝑖(θ𝑖) = 𝐸𝑠~ρπ(∙),𝑎~π(∙)[𝑅𝑖 − 𝑄(𝑠, 𝑎; θi)]
2 

𝑅𝑖 = 𝐸𝑠′~ϵ [𝑟𝑖 + γ 𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′, θ𝑖−1|𝑠, 𝑎)] 

R𝑖 is the target at iteration 𝑖, 𝜋(𝑠|𝑎) is the behavior policy, 𝜌𝜋(∙) is the 

distribution of states under policy 𝜋, and 𝜖 refers to the environment. 

To minimize the loss function, the gradient of the loss function is computed w.r.t. 

the weights: 

∇θ𝑖L(θ𝑖) = 𝐸𝑠~ρπ(∙),𝑎~π(∙),𝑠′~ϵ [(𝑟𝑖 + γ max
𝑎′

𝑄(𝑠′, 𝑎′; θ𝑖−1)

− 𝑄(𝑠, 𝑎; θ𝑖)) ∇θ𝑖𝑄(𝑠, 𝑎; θ𝑖)] 

Stochastic Gradient Descent is used to minimize the loss function. The behavior 

policy is an 𝜖 −greedy policy to ensure sufficient exploration. 

Deep Q-Networks make use of an experience replay buffer. 
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algorithm DEEP Q-NETWORK: 

Initialize replay memory 𝐷 

Initialize 𝑄-value with random weights 𝑤 

for each episode do: 

  Observe initial state 𝑠1 

  for t=1:T do: 

   Select action 𝑎𝑡 using Q (e.g. 𝜖 −greedy) 

   Take action 𝑎𝑡 

   Observe reward 𝑟𝑡 and new state 𝑠𝑡+1 

   Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in replay buffer 𝐷 

   Sample random transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝐷 

   for each transition do: 

    Calculate target 𝑅𝑖 like below: 

     if 𝑠𝑖+1 is terminal then 

      𝑅𝑖 = 𝑟𝑖 

     else 

      𝑅𝑖 = 𝑟𝑖 + γ𝑚𝑎𝑥
𝑎′

𝑄(𝑠𝑖+1, 𝑎
′; θ) 

    Train the Q network on (𝑅𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖; θ))
2
using SGD 

Algorithm 10 DQN algorithm as presented in the literature 

Like in Q-Learning, maximization bias is present. 

 

2.4.2 Double Deep Q-Network (DDQN) 

Double deep Q-networks (DDQN) [12] make use of a target network to stabilise 

training in Deep Q-Networks. The online network is used to evaluate the greedy 

policy and select an action to execute. The target network is used to calculate the new 

value function for the update. The update is the same as for DQN, but replacing the 

target with: 

𝑅𝑖 = 𝑟𝑖 + γmax
𝑎′
Q(𝑠𝑖+1;  argmax

𝑎
 𝑄(𝑠𝑖+1, 𝑎, θ);  θ

′) 

DDQN is shown to reduce bias and improve performance on the same set of 

problems that DQN is used. 
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2.5 Policy Gradient methods 

 

Policy Gradient methods [13] attempt to optimize the policy directly. This is 

different from 𝑄-value methods described before, which parameterize and optimize 

the 𝑄-value. 

Policies represent action probabilities. Parameterizing the policy directly means 

that we are estimating the probabilities of the agent to take the action at a specific 

state, instead of estimating a table of action-state-rewards. Policy Gradient methods 

train the policy with trajectories directly when they are sampled, then discard the 

trajectory. They don’t use replay buffers or similar techniques to store previous 

experiences. 

Unlike Q-Learning based algorithms, Policy Gradients are capable of 

functioning in continuous action spaces. Furthermore, Policy Gradients can be 

employed in scenarios where actions do not need to be executed in discrete steps, like 

pressing on-off switch. Instead actions are continuous, like a car’s steering wheel 

turn. 

 

2.5.1 Policy Gradient Theorem 

Let us derive a mathematical expression for directly calculating the derivate of 

the policy. This is done by directly differentiating the Deep RL objective: 

𝐽(θ) = 𝔼τ~πθ(τ)[𝑟(τ)] = ∫πθ(τ)𝑟(τ)𝑑τ 

Let us also recall a convenient identity: 

πθ(τ)∇θ𝑙𝑜𝑔πθ(τ) = πθ(τ)
∇θπθ(τ)

πθ(τ)
= ∇θπθ(τ) 

Using this identity, we can take the gradient of 𝐽(θ) in an elegant way: 

∇θ𝐽(θ) = ∫∇θπθ𝑟(τ)𝑑τ 

= ∫πθ(τ)∇θ𝑙𝑜𝑔πθ(τ)𝑟(τ)𝑑τ 

= 𝔼τ~πθ(τ)[∇θ𝑙𝑜𝑔πθ(τ)𝑟(τ)] 
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Recall that, by Bayes’ rule: 

πθ(τ) = 𝑝(𝑠1)∏πθ(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=1

 

Taking the 𝑙𝑜𝑔 on both sides, we get: 

𝑙𝑜𝑔 πθ(τ) = 𝑙𝑜𝑔 𝑝(𝑠1) +∑𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡) + 𝑙𝑜𝑔 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) 

We substitute into our original gradient: 

∇θ𝐽(θ) = 𝔼τ~πθ(τ) [∇θ(𝑙𝑜𝑔 𝑝(𝑠1) +∑𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)

+ 𝑙𝑜𝑔 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)) 𝑟(τ)]

= 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡))(∑𝑟(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=1

)] 

We cancel out 𝑙𝑜𝑔 𝑝(𝑠1) and 𝑙𝑜𝑔 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡), because we are taking the 

gradient w.r.t. 𝜃. Both these expressions do not depend on 𝜃. 
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2.5.2 REINFORCE 

We derived a mathematical expression for directly calculating the derivate of the 

policy, which involved an expectation. The above expression is foundational for 

Policy Gradient methods. However, in most cases we cannot easily obtain this 

expectation. With increasing complexity of problems and huge state and action 

spaces, the expectation will involve an intractable integral. 

As presented in the previous chapter, Monte Carlo methods are perfect for 

approximations. We take 𝑁 samples and average them out: 

∇θ𝐽(θ) ≅
1

𝑁
∑(∑∇θ

𝑇

𝑡=1

𝑙𝑜𝑔πθ(𝑎𝑖,𝑡|𝑠𝑖,𝑡) (∑𝑟(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)

𝑇

𝑡=1

))

𝑁

𝑖=1

 

where 𝑡 means timestep 𝑡 and 𝑖 means 𝑖-th rollout 

With the above gradient, we can do gradient descent on parameters 𝜃, by: 

𝜃 ← 𝜃 + 𝛼∇θ𝐽(θ) 

REINFORCE algorithm [14] makes use of these gradient derivations, with the 

additional Monte Carlo technique. It is the simplest Policy Gradient algorithm. 

 

algorithm REINFORCE: 

Require: base policy πθ(𝑎𝑡|𝑠𝑡), sample trajectories τ𝑖 

while true do: 

  Sample τ𝑖 from πθ(𝑎𝑡|𝑠𝑡) 

  ∇θ𝐽(θ) ≅
1

𝑁
 ∑ (∑ ∇θ𝑡 𝑙𝑜𝑔πθ(𝑎𝑖,𝑡|𝑠𝑖,𝑡)) (∑ 𝑟(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)𝑡 )𝑖  

  Improve policy by 𝜃 ← 𝜃 + 𝛼∇θ𝐽(θ) 

 return optimal trajectory from gradient ascent as τ𝑟𝑒𝑡𝑢𝑟𝑛 

Algorithm 11 REINFORCE algorithm as presented in the literature 

REINFORCE suffers from high variance.  
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2.5.3 What are Policy Gradients actually doing? 

Notice that the first item in the final expectation formula is similar to Maximum 

Likelihood Estimation: 

∇θ𝐽𝑀𝐿(θ) =
1

𝑁
∑∇θ𝑙𝑜𝑔 πθ(τ𝑖) 

That being said, the intuition behind the derived formula: 

∇θ𝐽(θ) ≅
1

𝑁
∑(∑∇θ

𝑇

𝑡=1

𝑙𝑜𝑔πθ(𝑎𝑖,𝑡|𝑠𝑖,𝑡) (∑𝑟(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)

𝑇

𝑡=1

))

𝑁

𝑖=1

 

 is that with Policy Gradient methods, we are trying to make: 

o good trajectories more likely 

o bad trajectories less likely 

 

Figure 2-1. Improving the likelihood of good trajectories with Policy Gradients 

 

2.5.4 Improving Policy Gradient 

 

Reward-to-go 

In the update rule derived in Policy Gradient Theorem, we can substitute 

∑ 𝑟(𝑠𝑡 , 𝑎𝑡)
𝑇
𝑡=1  with an approximation of 𝑄-function �̂�𝑖,𝑡, also called the “reward-to-

go”. �̂�𝑖,𝑡 can be parameterized by ∅ and we can improve it using gradient descent. 

We get a new update rule: 

∇θ𝐽(θ) ≅ 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)) �̂�𝑖,𝑡
∅ ] 
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Reward-to-go and similar techniques are the standard in more advanced methods, 

like Actor-Critic methods. 

 

Baselines 

The goal of Policy Gradient methods is to make good trajectories more likely 

and worse trajectories less likely. Nevertheless, this leads to high variance. To reduce 

variance, we could define a better goal: we make better than average trajectories 

more likely and worse than average trajectories less likely. We refer to these averages 

as baselines. 

 

Property of baselines: Subtracting a baseline from the gradient update formula 

is unbiased in expectation, hence we will converge towards the same optimum. 

∇θ𝐽(θ) = 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)) (𝑟(τ) − 𝑏)] 

A naïve baseline could be the average of all returns from all episodes: 

𝑏 =
1

𝑁
∑𝑟(τ)

𝑁

𝑖=1

 

Although not optimal, this baseline is practical in implementation and delivers 

very good results. This is the baseline that is mostly used. 

We could also find an optimal baseline analytically, by analyzing the variance of 

∇θ𝐽(θ) and setting its gradient to 0. 

𝑑𝑉𝑎𝑟

𝑑𝑏
=
𝑑

𝑑𝑏
𝔼[∇θ𝑙𝑜𝑔πθ(𝑎𝑡|𝑠𝑡)

2(𝑟(τ) − 𝑏)2] 

Finally, the optimal baseline which reduces variance is: 

𝑏 =
𝔼[∇θ𝑙𝑜𝑔πθ(τ)𝑟(τ)]

𝔼[∇θ𝑙𝑜𝑔πθ]
 

 

Advantage Function 
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Another possible term that could act as a baseline is the 𝑉-value function 𝑉(𝑠𝑡). 

In that case, we choose to subtract it from the reward-to-go. Intuitively, we are 

calculating how much better choosing action 𝑎𝑖,𝑡 in state 𝑠𝑖,𝑡 is to choosing the 

average action for that state. The update rule becomes: 

∇θ𝐽(θ) = 𝔼τ~πθ(τ) [(∑∇θ𝑙𝑜𝑔

𝑇

𝑡=1

πθ(𝑎𝑡|𝑠𝑡)) (𝑄(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡) − 𝑉(𝑠𝑖,𝑡))] 

The term �̂�𝑖,𝑡  ≔ 𝑄(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡) − 𝑉(𝑠𝑖,𝑡) is called the advantage function. 

 

Importance Sampling 

In importance sampling, we do not use sample trajectories 𝜏 from πθ(τ) in our 

calculations of 𝐽(𝜃) and updates to the parameters 𝜃, but instead we use trajectories 

from another πθ̂(τ), where πθ̂(τ) could be an old policy, or demonstrations from a 

person. Actually, Policy Gradient with Importance Sampling is off-policy. 

In expectation, it is proven analytically that using Importance Sampling, we 

converge towards the same optimum as without Importance Sampling. 

 

2.5.5 Natural Policy Gradient (NPG) 

In Natural Policy Gradient [15], the argument is that a more refined update rule 

than Gradient Descent is necessary, one that represents the steepest descent direction 

based on the underlying structure of the parameter space of 𝜃. Natural Policy Gradient 

introduces a new update rule called the Natural Gradient Descent. 

NGD calculates an Advantage function �̂�𝑡
π𝑘, similar to reward-to-go. 

Furthermore, a KL-divergence between the Hessian Matrix �̂�𝑘 and Fisher 

Information Matrix 𝐹(𝜃) is introduced. Hessian Matrix presents us the second-order 

derivative of 𝜋𝜃, which measures how much the policy 𝜋𝜃 changes. Finally, the KL-

divergence computes the difference between the policy before and after the update. 

The KL-divergence has the form: 

𝐷𝐾𝐿(πθ|πθ + ∇θ) =∑πθ(𝑥)𝑙𝑜𝑔

𝑥𝜖𝑋

(
πθ(𝑥)

πθ + ∇θ(𝑥)
) 
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The Fisher Matrix has the form: 

𝐹(θ) = 𝔼θ[∇θ𝑙𝑜𝑔πθ(𝑥)∇θ𝑙𝑜𝑔πθ(𝑥)
𝑇] 

algorithm NATURAL POLICY GRADIENT (NPG) : 

 Initialize policy parameters θ0 

for 𝑘 = 0:𝐾 do: 

  Collect set of trajectories 𝐷𝑘 on policy π𝑘 = 𝜋(θ𝑘) 

  Estimate advantages �̂�𝑡
π𝑘 using any advantage estimation algorithm 

  Form sample estimates for: 

o Policy gradient �̂�𝑘 (using advantage estimates) 

o KL-divergence Hessian / Fisher Information Matrix �̂�𝑘(𝜃) 

  Compute Natural Policy Gradient update: 

θ𝑘+1 = θ𝑘 +√
2𝛿

�̂�𝑘
𝑇�̂�𝑘

−1(𝜃)�̂�𝑘
�̂�𝑘
−1(𝜃)�̂�𝑘  

Algorithm 12 NPG algorithm (simplified) as presented in the literature 

There are downsides to NPG. NGD may misrepresent the actual distance 

between policies, causing step sizes to be too large. Inversing the Fisher matrix F is 

a costly operation of 𝑂(𝑁3) complexity. Fisher Information Matrix 𝐹 is a |𝜃| ⋅ |𝜃| 

matrix, which may take substantial memory to store. KL-divergence constraint might 

not be satisfied. Furthermore, policy improvement is not verified. All these issues are 

addressed by more advanced methods, like TRPO and PPO.  



 

28 

2.6 Actor-Critic methods 

 

Actor-Critic methods [13] build upon the Policy Gradient framework and 

augment it with learned 𝑉-value functions and 𝑄-functions. The methodology behind 

them is Policy Iteration, which alternates between policy evaluation and policy 

improvement [16]. In an Actor-Critic method, two key components are present, the 

actor and the critic. 

The actor’s parameters 𝜃 directly recommend the action that the agent should 

take. Actor updates its policy taking into account the critics output. Notice that the 

actor implements a Policy Gradient, for updating parameters 𝜃. The critic’s 

parameters ∅ estimate 𝑄-values to measure how good the choices made by the actor 

are. Critics rely on replay buffers. To address large-scale RL applications with 

continuous action spaces, the 𝑄-value function and policy are optimized jointly, 

because it is impractical to run either of these steps to convergence. 

Actor-Critic methods can either be on-policy or off-policy. On-policy training 

tends to improve stability, but suffers from high variance and results in poor sample 

efficiency [16]. Off-policy learning methods reduce variance and are more sample 

efficient. In off-policy learning methods, the actor needs 2 network parameters, one 

for the behavior policy used to sample experience and another for the target policy, 

the policy we update for learning. 
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2.7 On-policy Actor-Critic methods 

On-policy Actor-Critic methods are stable, but are high variance. They are not 

sample efficient, hence require a lot of training samples. 

 

2.7.1 Advantage Actor-Critic (A2C) 

Advantage Actor-Critic (A2C) is the synchronous version of Asynchronous 

Advantage Actor-Critic (A3C) [17]. A2C calculates the advantage function as a 

reward-to-go. First, A2C waits for each actor to finish its segment of experience 

before updating. Then, to calculate the value function it averages over all of the actors. 

This more effectively uses GPUs due to larger batch sizes.  

algorithm ADVANTAGE ACTOR-CRITIC: 

 Initialize parameters 𝑠, 𝜃, ∅ and learning rates αθ, α∅  

 while true do: 

  Take action 𝑎~πθ(𝑎|𝑠) and observe (𝑠, 𝑎, 𝑠′, 𝑟) 

  Update �̂�∅
π(𝑠) using target 𝑦 = 𝑟 + 𝛾�̂�∅

π(𝑠′) 

  Evaluate �̂�π(𝑠𝑖 , 𝑎𝑖) = 𝑅(𝑠𝑖 , 𝑎𝑖) + �̂�∅(𝑠𝑖
′) − �̂�∅(𝑠𝑖) 

  Calculate update ∇θ𝐽(θ) ≅ ∑ ∇θ𝑖 𝑙𝑜𝑔πθ(𝑎𝑖|𝑠𝑖)�̂�
π(𝑠𝑖 , 𝑎𝑖) 

  Improve policy by 𝜃 ← 𝜃 + 𝛼∇θ𝐽(θ) 

 return optimal policy from gradient ascent as π𝑟𝑒𝑡𝑢𝑟𝑛 

Algorithm 13 A2C algorithm as presented in the original paper 
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2.7.2 Trust Region Policy Optimization (TRPO) 

Trust Region Policy Optimization (TRPO) [18] improves over NPG, introducing 

three improvements. 

 

Conjugate gradient method 

In Natural Gradient Descent, computing the inverse Fisher matrix is time-

consuming, with 𝑂(𝑁3) time complexity and is often numerically unstable. Instead 

of calculating the entire inverse Fisher matrix and Hessian matrix, we approximate 

them with an iterative algorithm. 

Conjugate Gradient improves NGD by approximating the Fisher matrix and 

Hessian matrix iteratively. CG generally converges within |θ| steps. 

Line search 

In Natural Gradient Descent, the optimal step size given the constraint placed on 

KL-divergence may not be satisfied. Line search iteratively reduces the size of the 

update, until it does not violate the KL-divergence constraint. 

Natural policy presumes the divergence constraint is met, whereas line search 

performed in TRPO enforces it. Finally, the trust region shrinks, i.e. the region within 

we trust the update to actually improve the objective. 

algorithm LINE SEARCH FOR TRPO: 

 Compute proposed policy step θ𝑘+1 = θ𝑘 + α
𝑗√

2𝛿

�̂�𝑘
𝑇�̂�𝑘�̂�𝑘

�̂�𝑘 

 for 𝑗 = 0,1,2, … , 𝐿 do: 

  compute proposed update 𝜃 = 𝜃𝑘 + 𝛼
𝑗Δ𝑘 

  if 𝐿(𝜃) ≥ 0 and 𝐷𝐾𝐿(𝜃|𝜃𝑘) ≤ δ then 

   accept the update and set 𝜃𝑘+1 = 𝜃𝑘 + 𝛼
𝑗Δ𝑘 

   break 

Algorithm 14 Line Search for TRPO as presented in the literature 
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Improvement check 

Rather than presuming the update will improve the surrogate advantage ℒ(𝜃), 

we verify whether our update actually improves the policy before accepting it. We 

compute advantages based on the old policy, using importance sampling to adjust the 

probabilities.  

algorithm TRUST REGION POLICY OPTIMIZATION (TRPO): 

 Input: initial policy parameters θ0, initial value function parameters ∅0 

Hyperparameters: KL-divergence limit 𝛿, learning rate 𝛼, maximum number of 

backtracking steps 𝐾 

 for 𝑘 = 0:𝐾 do: 

  Collect trajectories 𝐷𝑘 = {τ𝑖}, by running policy π𝑘 = 𝜋(θ𝑘) in the 

environment 

  Compute rewards-to-go �̂�𝑡 

  Compute advantage estimates, �̂�𝑡 (using any method of advantage 

estimation) based on the current value function 𝑉∅𝑘. 

  Estimate policy gradient as: 

�̂�𝑘 =
1

|𝐷𝑘|
∑ ∑∇𝜃

𝑇

𝑡=0𝜏∈𝐷𝑘

𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡) |θ𝑘  �̂�𝑡 

  Use the conjugate gradient algorithm to compute: 

�̂�𝑘 ≅ �̂�𝑘
−1�̂�𝑘 

where �̂�𝑘 is the Hessian of the sample average KL-divergence. 

Update the policy by backtracking line search with: 

θ𝑘+1 = θ𝑘 + α
𝑗√

2𝛿

�̂�𝑘
𝑇�̂�𝑘�̂�𝑘

�̂�𝑘 

where 𝑗 ∈ {0,1,2…𝐾} is the smallest value which improves the sample loss 

and satisfies the sample KL-divergence constraint. 

Fit value function by regression on mean-squared error: 

∅𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
∅

1

|𝐷𝑘|𝑇
∑ ∑(𝑉∅(𝑠𝑡) − �̂�𝑡)

2
𝑇

𝑡=0τ∈𝐷𝑘

 

  typically via some gradient descent algorithm. 

Algorithm 15 TRPO algorithm as presented in the literature  
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2.7.3 Proximal Policy Optimization (PPO) 

Proximal Policy Optimization (PPO) [19] [20] is a state-of-the-art method in on-

policy actor-critic methods. PPO is similar to TRPO conceptually, although a lot 

easier to implement, as well as more accurate. It can be formulated in two versions, 

PPO with adaptive KL penalty, which is the version most similar to TRPO and PPO 

with clipped objective. 

 

PPO with adaptive KL penalty 

PPO reliably determines the scaling parameter β that allows meaningful updates, 

yet avoids excessive drifts. 

Δθ∗ = argmax
Δ𝜃

𝐿θ+Δθ(θ + Δθ) − β(𝐷𝐾𝐿(πθ|πθ+Δθ)) 

It is hard to determine a single value for β that works for multiple problem 

settings. PPO sets a ‘target divergence’ 𝛿, large enough to substantially alter the 

policy, but small enough for updates to be stable. 

After each update, PPO checks the size of the update. If the realized KL-

divergence exceeds the target divergence by more than 1.5δ, the next iteration we 

penalize divergence by doubling 𝛽. If KL-divergence is less than 0.75𝛿, the next 

iteration we expand the trust region by halving 𝛽.  
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algorithm PPO WITH ADAPTIVE KL PENALTY: 

 Input: policy parameters 𝜃0, initial KL penalty 𝛽0, target KL-divergence 𝛿 

 for 𝑘 = 0:𝐾 do: 

  Collect set of partial trajectories 𝐷𝑘 on policy 𝜋𝑘 = 𝜋(𝜃𝑘) 

  Estimate advantages �̂�𝑡
𝜋𝑘 using any advantage estimation algorithm 

  Compute policy update 

𝜃𝑘+1 = argmax
𝜃

𝐿𝜃𝑘(𝜃) − 𝛽𝑘�̅�𝐾𝐿(𝜃|𝜃𝑘) 

  by taking 𝐾 steps of minibatch SGD (via Adam) 

  if �̅�𝐾𝐿(𝜃𝑘+1|𝜃𝑘) ≥ 1.5𝛿 then 

𝛽𝑘+1 = 2𝛽𝑘 

  else if �̅�𝐾𝐿(𝜃𝑘+1|𝜃𝑘) ≤ 𝛿/1.5 then 

𝛽𝑘+1 = 𝛽𝑘/2 

Algorithm 16 PPO with adaptive KL penalty as presented in the literature 

 

PPO with clipped objective 

Instead of changing penalties over time, we restrict the range within which the 

policy can change. Advantages achieved by updates outside the clipping range are 

not used for updating purposes. We provide an incentive to stay relatively close to 

the existing policy. 

algorithm PPO WITH CLIPPED OBJECTIVE: 

 Initial policy parameters 𝜃0, clipping threshold 𝜖 

 for 𝑘 = 0,1,2…𝑁 do: 

  Collect set of partial trajectories 𝐷𝑘 on policy 𝜋𝑘 = 𝜋(𝜃𝑘) 

  Estimate advantages �̂�𝑡
𝜋𝑘 using any advantage estimation algorithm 

  Compute policy update 

𝜃𝑘+1 = argmax
𝜃

𝐿𝜃𝑘
𝐶𝐿𝐼𝑃(𝜃) 

  by taking K steps of minibatch SGD (via Adam), where 

𝐿𝜃𝑘
𝐶𝐿𝐼𝑃(𝜃) = 𝔼𝜏~𝜋𝑘 [∑[𝑚𝑖𝑛(𝑟𝑡(𝜃)�̂�𝑡

𝜋𝑘 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡
𝜋𝑘)]

𝑇

𝑡=0

] 

Algorithm 17 PPO with clipped objective as presented in the literature 
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2.8 Off-policy Actor-Critic methods 

Off-policy Actor-Critic methods reduce variance, hence are very sample 

efficient. 

 

2.8.1 Deep Deterministic Policy Gradient (DDPG) 

Deep Deterministic Policy Gradient (DDPG) [21] [22] is the first off-policy 

actor-critic to be introduced. DDPG is an off-policy algorithm and is trained with 

samples from a replay buffer to minimize correlations between samples. Moreover, 

it introduces one target critic 𝑄-network to give consistent targets during 

bootstrapping of 𝑄-values and improve stability. A key feature of DDPG is its 

simplicity: it requires only a straightforward actor-critic architecture [21]. 

Nevertheless, this simplicity makes it very sensitive to hyperparameter tuning. 

algorithm DEEP DETERMINISTIC POLICY GRADIENT (DDPG): 

Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃) and actor 𝜇(𝑠|∅) with weights 𝜃 

and ∅ 

Initialize target network 𝑄′ and μ′ with weights 𝜃′ ← 𝜃, ∅′ ← ∅ 

Initialize replay buffer 𝐷 

for 𝑡 = 1: 𝑇 do: 

  Take some action 𝑎𝑡 = 𝜇(𝑠𝑡|∅)  

Observe (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) and add it to 𝐷 

  Sample random mini-batch of N transitions (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖) from 𝐷 

  Select 𝑎𝑖+1 = μ
′(𝑠𝑖+1|∅

′) 

  Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑠𝑖+1, 𝑎𝑖+1|𝜃

′) using target networks 𝜃′ and ∅′ 

  Update critic by minimizing loss: 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃))

2

𝑖

 

  Update the actor policy using the sampled policy gradient: 

∇∅𝐽 ≅
1

𝑁
∑∇𝑎𝑄(𝑠, 𝑎|𝜃)|𝑠=𝑠𝑖,𝑎=μ(𝑠𝑖)∇∅μ(𝑠|∅)|𝑠𝑖
𝑖

 

  Update the target networks: 

∅′ ← ∅′ − 𝛼∑
𝑑𝑄∅′

𝑑∅′
𝑗

(𝑠𝑗 , 𝑎𝑗)(𝑄∅′(𝑠𝑗 , 𝑎𝑗) − 𝑦𝑗) 
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𝜃′ ← 𝜃′ + 𝛽∑
𝑑𝜇

𝑑𝜃′
𝑗

(𝑠𝑗)
𝑑𝑄∅′

𝑑𝑎
(𝑠𝑗 , 𝑎) 

Algorithm 18 DDPG algorithm as presented in the original paper 

 

2.8.2 Twin-Delayed DDPG (TD3) 

Twin-Delayed DDPG (TD3) [23] is essentially the same as DDPG. Instead of 

updating the policy in each timestep, TD3 updates it every 𝑑 timesteps. Using this 

simple technique, TD3 is more stable than DDPG and less sensitive to 

hyperparameter tuning. 

algorithm TWIN-DELAYED DDPG (TD3): 

 Initialize critic networks 𝑄θ1 , 𝑄θ2 and actor network π∅ with random 

parameters θ1, θ2, 𝜃 

 Initialize target networks θ1
′ ← θ1, θ2

′ ← θ2, ∅
′ ← ∅ 

 Initialize replay buffer 𝐷 

 for t=1:T do: 

  Select action 𝑎 with exploration noise 𝑎~π∅(𝑠) + 𝜖, 𝜖~𝜂(0, σ) and 

observe reward 𝑟 and new state 𝑠′ 

  Store transition tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from 𝐷 

  Sample mini-batch of 𝑁 transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝐷 

  Take new actions 𝑎𝑖+1 ← π∅(𝑠
′) + 𝜖, 𝜖~𝑐𝑙𝑖𝑝(𝜂(0, σ̅), −𝑐, 𝑐) 

  Set 𝑦 ← 𝑟 + 𝛾𝑚𝑖𝑛𝑗=1,2𝑄θ𝑗
′(𝑠𝑖+1, 𝑎𝑖+1) 

  Update critics: 

θ𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛
θ𝑗

1

𝑁
∑(𝑦 − 𝑄θ𝑖(𝑠, 𝑎))

2
 

  if t mod d then 

   Update ∅ by the deterministic policy gradient: 

∇θ𝐽(∅) =
1

𝑁
∑∇𝑎𝑄θ1(𝑠, 𝑎)|𝑎=π∅(s)∇∅π∅(s) 

   Update target networks: 

θ𝑖
′ ← 𝜏θ𝑖 + (1 − τ)θ𝑖

′ , 𝑖 ∈ {1,2} 

∅′ ← 𝜏∅ + (1 − τ)∅′ 

Algorithm 19 TD3 as presented in the original paper   
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2.8.3 Soft Actor-Critic (SAC) 

Soft Actor-Critic (SAC) [16] is based on the maximum entropy framework. The 

entropy appears in both the actor and critic. 

SAC introduces a stochastic policy, meant for both maximizing expected reward 

and maximizing entropy. This prevents premature convergence of the policy 

variance. Moreover, two critic 𝑄-networks are introduced, to mitigate positive bias 

in the policy improvement step, which is known to degrade performance of value 

based methods. The critics encourage exploration by increasing the 𝑄-value of 

regions of state space that lead to high entropy behaviour. SAC also makes use of two 

target critic 𝑉-networks to give consistent targets during bootstrapping of 𝑄-values 

and improve stability. 

algorithm SOFT ACTOR-CRITIC (SAC): 

 Input: initial parameters for policy 𝜃 and critic ∅1, ∅2 

 Initialize target weights for critic ∅̅1 ← ∅1, ∅̅2 ← ∅2 

 Initialize empty replay buffer 𝐷 

  for each iteration do: 

   for each environment step do: 

    Sample action from the policy 𝑎𝑡~πθ(𝑎𝑡|𝑠𝑡) 

    Observe new state 𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) 

    Store the tuple in the replay buffer 𝐷 ← 𝐷 ∪
(𝑠𝑡 , 𝑎𝑡 , 𝑟(𝑠𝑡 , 𝑎𝑡), 𝑠𝑡+1) 

   for each gradient step do: 

    Update the critic parameters ∅𝑖 ← ∅𝑖 − λ𝑄∇∅𝑖𝐽𝑄(∅𝑖),   𝑖 ∈

{1,2} 

    Update policy weights 𝜃 ← 𝜃 − λπ∇̂θ𝐽π(θ) 

    Update temperature 𝛼 ← 𝛼 − 𝜆∇̂α𝐽(α) 

    Update critic target weights ∅i̅ ← 𝜏∅i + (1 − τ)∅i̅,    𝑖 ∈ {1,2} 

Algorithm 20 SAC as presented in the original paper 
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2.8.4 Randomized Ensembled Double Q-Learning (REDQ) 

Randomized Ensembled Double Q-Learning [24] works in conjunction with an 

underlying off-policy algorithm. It is model-free. It is also very sample efficient, with 

an Update-To-Data: 𝐺 ≫ 1. 

REDQ uses an ensemble of 𝑁 𝑄-functions. This effectively reduces the variance 

in the 𝑄-function estimate. Each 𝑄-function is randomly and independently 

initialized, but updated with the same target. Furthermore, the target for the 𝑄-

function includes a minimization over a random subset 𝑀 of the 𝑁 𝑄-functions. This 

effectively reduces over-estimation bias. The size of the subset 𝑀 is kept fixed, and 

is referred to as the in-target minimization parameter. The default value 𝑀 = 2, 

hence the name Double Q-Learning. 

algorithm RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING (REDQ): 

 Initialize policy 𝜃, 𝑁 𝑄-functions ∅𝑖 , 𝑖 = 1…𝑁, empty replay buffer 𝐷. 

Set target parameters ∅𝑡𝑎𝑟𝑔,𝑖 ← ∅𝑖 , 𝑖 = 1…𝑁 

for each episode do: 

  Take action 𝑎𝑡~πθ(∙ |𝑠𝑡). Observe reward 𝑟𝑡, new state 𝑠𝑡+1. 

  Add data to buffer: 𝐷 ← 𝐷 ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)} 

  for G updates do: 

   Sample a mini-batch 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠′)} from 𝐷 

   Sample a set 𝜅 of 𝑀 distinct indices from {1,2, … , 𝑁} 

   Compute the 𝑄 target 𝑦 (same for all of the N Q-functions): 

𝑦 = 𝑟 + 𝛾 (𝑚𝑖𝑛
𝑖∈𝜅

𝑄∅𝑡𝑎𝑟𝑔,𝑖 (𝑠
′, �̅�′) − α 𝑙𝑜𝑔πθ(�̅�

′|𝑠′)) 

where �̅�′~πθ(∙ |𝑠
′) 

   for 𝑖 = 1…𝑁 do: 

    Update ∅𝑖 with gradient descent using: 

∇∅
1

|𝐵|
∑ (𝑄∅𝑖(𝑠, 𝑎) − 𝑦)

2

(𝑠,𝑎,𝑟,𝑠′)∈𝐵

 

    Update target networks with: 

∅𝑡𝑎𝑟𝑔,𝑖 ← 𝜌∅𝑡𝑎𝑟𝑔,𝑖 + (1 − ρ)∅𝑖 

  Update policy parameters 𝜃 with gradient ascent using: 
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∇θ
1

|𝐵|
∑(

1

𝑁
∑𝑄∅𝑖(𝑠, �̅�θ(𝑠))

𝑁

𝑖=1

− α 𝑙𝑜𝑔πθ(�̅�θ(𝑠)|𝑠))

𝑠∈𝐵

 

  where �̅�θ(𝑠)~πθ(∙ |𝑠) 

Algorithm 21 REDQ algorithm as presented in the original paper 

 

2.9 Successful applications 

Deep Reinforcement Learning methods have seen successful applications in 

many industry sectors [25], like recommender systems, computer systems, energy 

management, finance, healthcare, games, robotics and transportation. Furthermore, 

there have been successful applications in communications, networking and packet 

routing [26]. Deep RL methods are also used during training of advanced commercial 

neural network architectures, like ChatGPT. 

Finally, in a study by Gartner in 2019, Deep Reinforcement Learning was 

shortlisted among artificial intelligence disciplines that are expected to get a lot of 

hype in the next 5-10 years [27]. We can expect the field to grow and real-world 

applications to be numerous in the future. 
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CHAPTER 3 

 DEEP REINFORCEMENT LEARNING IN PHYSICS-

BASED SIMULATIONS 

 

3.1 Introduction 

 

Physics-based simulation provides a virtual world for predicting the outcome of 

real-world phenomena. Many physical systems in the real world are too complex to 

be investigated via analytical solutions. Through physics-based simulations, we can 

explore the response and performance of such systems [1]. In order to achieve a 1.7% 

risk of failure for its mission on Mars with the Curiosity rover, NASA simulated the 

“seven minutes of terror” millions of times. Moreover, an important milestone was 

achieved in helping computer-aided design in bioengineering and disease treatment. 

The life cycle of the world’s smallest free-living bacterium, Mycoplasma genitalium, 

was simulated. 

Over the last three decades, a rapid growth in computational power has 

accelerated the adoption of physics-based simulation as an important tool. For 

instance, nowadays a GPU card in 2023 has more than 100 billion transistors. By 

comparison, an Intel Pentium chip from 1993 had circa 3.1 million transistors. These 

transistors are organized either as processing units or as cache memories. Such 

architectures provide incredible amounts of compute power, up to trillions of 

arithmetic operations per second. Furthermore, they help keeping costs low. Physics-

based simulations in robotics use computationally intensive numerical operations, 

hence can benefit from these hardware advances. 

Acquiring robot interaction data through real world experiments requires careful 

organization. Such experiments can be challenging and risky to the robots and 

experimenters. Furthermore, the quantity of training data needed for the 

reinforcement learning algorithms is quite large, so acquiring this data in the real 

world is very time consuming. Through physics-based simulation we can generate 
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training data at low cost. It also allows us to gain experience with a wider range of 

scenarios and operate in a risk-free manner. 

Finally, we should note that physics-based simulations are not yet always 

effective. Many designs produced in simulation fail to deliver in the real world. This 

is also called the simulation-to-reality gap. Nevertheless, up-to-date there are no 

better alternatives to physics-based simulations in robotics for generating a lot of 

experience fast, in a risk-free manner while keeping costs low. 

 

3.2 Software components 

To train Deep Reinforcement Learning algorithms in physics-based simulations, 

we need the following software components. 

 

MuJoCo 

MuJoCo [28] stands for Multi-Joint dynamics with Contact. It provides a physics 

engine for running physics-based simulations. It is built with a focus on speed, 

accuracy and useful features to be used. Moreover, it can compute both forward and 

inverse dynamics. 

Tianshou 

Tianshou [29] is an elegant, modular framework for Deep RL, which facilitates 

research by being flexible and reliable for experimentation. Tianshou provides 20 

Deep RL implementations with support for online and offline training, with a unified 

interface. 

Gymnasium 

Gymnasium is a standard API for a diverse collection of reference environments, 

including physics-based simulation environments based on MuJoCo. Gymnasium 

interface is simple, pythonic, and capable of representing general RL problems.  
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Jupyter Lab 

JupyterLab is a web-based user interface that enables us to work with documents 

and activities such as Jupyter notebooks [30], text editors, terminals and custom 

components. JupyterLab is flexible, integrated and extensible. For communicating 

and performing interactive computing, Jupyter Notebooks are a community standard. 

Tensorboard 

TensorBoard helps the machine learning workflow by providing measurements 

and visualizations. It can track metrics like loss and accuracy, or it can visualize the 

model graph or project embeddings to a lower dimensional space. 

 

3.3 MuJoCo environments 

 

Ant 

Description: Ant [31] is a 3D robot, 

which consists of one free-rotational torso 

with four legs attached to it. Each leg has two 

links. 

Task: Coordinate the four legs to move 

in the forward (right) direction. This is 

achieved by applying torques on the eight 

hinges. The hinges connect the two links of 

each leg and the torso. 

Action Space: Action space is a vector 

of size 8, representing the torques applied at the hinge joints. 

 

  

Figure 3-1 Ant environment 
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Half Cheetah 

Description: Half Cheetah [32] is a 2-

dimensional robot which consists of 9 links, 

8 joints and 2 paws.  

Task: Apply a torque on the joints to 

make the cheetah run forward (right) as fast 

as possible.  

Details: The torso and head of the 

cheetah are fixed. The torque can only be 

applied on the 6 joints. The joints are over the 

front and back thighs connecting to the torso, 

over the shins connecting to the thighs and over the feet connecting to the shins. 

Action Space: Action space is a vector of size 6, representing the torques applied 

between links. 

 

Hopper 

Description: Hopper [33] is a two-

dimensional, one-legged figure. It consist of 

a torso at the top, a thigh in the middle, a leg 

in the bottom and a single foot on which the 

entire body rests. 

Task: Make hops that move in the 

forward (right) direction. Apply torques on 

the three hinges that connect the four body 

parts. 

Action Space: Action space is a vector 

of size 3, representing the torques applied between links. 

  

Figure 3-2 Half Cheetah environment 

Figure 3-3 Hopper environment 
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Humanoid 

 Description: 3D bipedal Humanoid 

robot [34] is designed to simulate a human. It 

has a torso (abdomen) with a pair of legs and 

arms. The legs each consist of two links and 

the arms (representing the knees and elbows 

respectively). 

Task: Walk forward as fast as possible 

without falling over. 

Action Space: Action space is a vector 

of size 17 with continuous values in [-1, 1], 

representing the torques applied at the hinge joints. 

 

Humanoid Standup 

Description: 3D bipedal robot [34] is 

designed to simulate a human. The 

environment starts with the humanoid laying 

on the ground. 

Task: Make the humanoid stand up. 

Then, keep it standing by applying torques on 

the various hinges. 

Action Space: Action space is a vector 

of size 17 with continuous values in [-1, 1], 

representing the torques applied at the hinge 

joints. 

 

 

  

Figure 3-4 Humanoid environment 

Figure 3-5 Humanoid Standup 

environment 
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Inverted Double Pendulum 

Description: Inverted Double 

Pendulum originates from [35] and it 

involves a cart. The cart can move linearly 

with a pole fixed on it. A second pole is 

fixed on the other end of the first one. This 

leaves the second pole as the only one with 

one free end. The cart can be pushed left or 

right. 

Task: Balance the second pole on top 

of the first pole, both on top of the cart. 

Apply continuous forces on the cart. 

Action Space: Action space is a continuous action in [-1, 1]. It represents the 

numerical force applied to the cart. Magnitude represents the amount of force and 

sign represents the direction. 

 

Inverted Pendulum 

Description: This environment 

originates from [35] and it involves a cart. 

The cart can move linearly, with a pole fixed 

on it at one end, having another end free. The 

cart can be pushed left or right. 

Task: Balance the pole on the top of the 

cart. Apply forces on the cart. 

Action Space: Action space is a 

continuous action in [-3, 3]. Action represents 

the numerical force applied to the cart. 

Magnitude represents the amount of force. 

The sign represents the direction. 

  

Figure 3-6 Inverted Double Pendulum 

environment 

Figure 3-7 Inverted Pendulum 

environment 
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Pusher 

Description: “Pusher” is a multi-jointed 

robot arm, very similar to that of a human. 

The robot consists of a shoulder, an elbow, a 

forearm and wrist joints. 

Task: Move a target cylinder, called 

object, to a goal position. Use the robot’s end 

effector, called fingertip. 

Action Space: Action space is a vector 

of size 7. It represents the torques applied at 

the hinge joints. 

 

 

Reacher 

 Description: Reacher is a two-jointed 

robot arm. 

Task: Move the robot’s end effector 

(called fingertip) close to a target that is 

spawned at a random position. 

Action Space: Action space is a vector 

of size 2, representing the torques applied at 

the hinge joints. 

 

  

Figure 3-8 Pusher environment 

Figure 3-9 Reacher environment 
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Swimmer 

 Description: Swimmer [36] consists of 

three or more links. The links are connected 

with rotor joints. Each rotor joint connect 

exactly two links to form a linear chain. The 

swimmer is suspended in a two dimensional 

pool. It always starts in the same position, 

with some deviation drawn from a uniform 

distribution. 

 Task: Move towards the right as fast as 

possible. Apply torque on the rotors and use 

the fluids friction. 

Action Space: Action space is a vector of size 2, representing the torques applied 

between links. 

 

Walker 

Description: Walker builds on Hopper 

[33], by adding another set of legs. This 

makes possible for the robot to walk forward 

instead of hop. There is a single torso at the 

top, with two legs splitting after the torso. 

Furthermore, there are two thighs in the 

middle below the torso. Two legs are in the 

bottom below the thighs. Finally, two feet are 

attached to the legs on which the entire body 

rests. 

Task: Coordinate feet, legs and thighs to move in the forward (right) direction. 

Apply torques on the six hinges, which connect the six body parts. 

Action Space: Action space is a vector of size 6. It represents the torques applied 

at the hinge joints.  

Figure 3-11 Walker environment 

Figure 3-10 Swimmer environment 
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3.4 Hardware 

To speed up training, we trained on a machine with GPU acceleration. GPU 

acceleration substantially speeds up training, because of hardware-level 

parallelization and faster I/O rates. 

 

AMD Ryzen Threadripper 3970X 

o Base speed: 3.70 GHz 

o 32 Cores and 64 Logical processors 

o L1 cache: 2.0 MB, L2 cache: 16.0 MB, L3 cache: 128 MB 

NVIDIA RTX A6000 

o Shared GPU memory: 64 GB 

o NVIDIA Ampere Architecture Based CUDA Cores, Second-Generation RT 

Cores, Third-Generation Tensor Cores 

o 38.7 TFLOPs of FP32 performance 

 

3.5 Methodology 

 

In this chapter, the methodology follows the general principles of the MuJoCo 

benchmark from Tianshou framework [29]. I benchmarked 5 on-policy learning 

methods and 4 off-policy learning methods in 11 out of 11 environments from the 

Gymnasium MuJoCo task suite provided by Gymnasium. Each algorithm keeps the 

same hyperparameters in all environments. 

On-policy learning methods are trained for 100 epochs with 30000 steps per 

epoch, for a total of 3 million timesteps. The discount factor gamma 𝛾 of future 

rewards is kept at 0.99 for all methods. We choose Adam optimizer as our gradient 

descent method for training actor and critic methods. Buffer size is kept at 4096. The 

policy is a two-layer neural network with size [64, 64]. 

Off-policy learning methods are trained for 200 epochs with 5000 steps per 

epoch, for a total of 1 million timesteps. The discount factor gamma 𝛾 of future 
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rewards is kept at 0.99 for all methods. We choose Adam optimizer as our gradient 

descent method for training actor and critic methods. Buffer size is kept at 1000000. 

Except for REINFORCE, which contains only one actor network, the actor and critic 

networks are a two-layer neural network with size [256, 256]. 

Learning rates for on-policy learning methods are presented below: 

Table 3-1 Learning rates for on-policy learning methods in MuJoCo experiments 

On-policy learning methods Learning rates 𝛼 (actor and critic) 

REINFORCE 10−3 (only actor) 

A2C 7 ∗ 10−4 

NPG 10−3 

PPO 3 ∗ 10−4 

TRPO 10−3 

Learning rates for off-policy learning methods are presented below: 

Table 3-2 Learning rates for off-policy learning methods in MuJoCo experiments 

Off-policy learning 

methods 

Learning rates 𝛼 (actor) Learning rates 𝛼 (critic) 

DDPG 10−3 10−3 

TD3 3 ∗ 10−4 3 ∗ 10−4 

SAC 10−3 10−3 

REDQ 10−3 10−3 

The choice of learning rate values is made in accordance with the original 

papers. 
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3.6 Experimental results 

 

3.6.1 Ant-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-12 Mean rewards (testing) during 

timesteps 

 

Figure 3-13 Std. deviation of rewards 

(testing) during timesteps 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-14 Mean rewards (testing) during 

timesteps 

 

Figure 3-15 Std. deviation of rewards 

(testing) during timesteps 
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3.6.2 HalfCheetah-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-16 Mean rewards (testing) during 

timesteps 

 

Figure 3-17 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-18 Mean rewards (testing) during 

timesteps 

 

Figure 3-19 Std. deviation of rewards 

(testing) during timesteps 
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3.6.3 Hopper-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-20 Mean rewards (testing) during 

timesteps 

 

Figure 3-21 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-22 Mean rewards (testing) during 

timesteps 

 

Figure 3-23 Std. deviation of rewards 

(testing) during timesteps 
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3.6.4 HumanoidStandup-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-24 Mean rewards (testing) during 

timesteps 

 

Figure 3-25 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-26 Mean rewards (testing) during 

timesteps 

 

Figure 3-27 Std. deviation of rewards 

(testing) during timesteps 
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3.6.5 Humanoid-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-28 Mean rewards (testing) during 

timesteps 

 

Figure 3-29 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-30 Mean rewards (testing) during 

timesteps 

 

Figure 3-31 Std. deviation of rewards 

(testing) during timesteps 
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3.6.6 InvertedDoublePendulum-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-32 Mean rewards (testing) during 

timesteps 

 

Figure 3-33 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-34 Mean rewards (testing) during 

timesteps 

 

Figure 3-35 Std. deviation of rewards 

(testing) during timesteps 
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3.6.7 InvertedPendulum-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-36 Mean rewards (testing) during 

timesteps 

 

Figure 3-37 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-38 Mean rewards (testing) during 

timesteps 

 

Figure 3-39 Std. deviation of rewards 

(testing) during timesteps 
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3.6.8 Pusher-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-40 Mean rewards (testing) during 

timesteps 

 

Figure 3-41 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-42 Mean rewards (testing) during 

timesteps 

 

Figure 3-43 Std. deviation of rewards 

(testing) during timesteps 
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3.6.9 Reacher-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-44 Mean rewards (testing) during 

timesteps 

 

Figure 3-45 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-46 Mean rewards (testing) during 

timesteps 

 

Figure 3-47 Std. deviation of rewards 

(testing) during timesteps 

  

   

   

   

   

  

                   

 

 

 

 

 

 

 

                   

   

   

   

   

   

   

                   

 

   

   

   

   

 

                   



 

58 

3.6.10 Swimmer-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-48 Mean rewards (testing) during 

timesteps 

 

Figure 3-49 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-50 Mean rewards (testing) during 

timesteps 

 

Figure 3-51 Std. deviation of rewards 

(testing) during timesteps 
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3.6.11 Walker2d-v4 

 

On-policy learning methods 

 REINFORC

E 

 A2C  NPG  PPO  TRP

O 

 

Figure 3-52 Mean rewards (testing) during 

timesteps 

 

Figure 3-53 Std. deviation of rewards 

(testing) during timesteps 

 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 3-54 Mean rewards (testing) during 

timesteps 

 

Figure 3-55 Std. deviation of rewards 

(testing) during timesteps 
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3.6.12 Best scores 

On-policy learning methods 

Table 3-3 Best scores achieved by on-policy learning methods in MuJoCo experiments 

 REINFO

RCE 

A2C NPG TRPO PPO 

Ant-v4 443.07 ± 

245.38 

5377.74 ± 

194.95 

4898.47 ± 

120.45 

5340.45 ± 

132.30 

4303.13 ± 

116.90 

HalfCheetah-v4 909.51 ± 

125.96 

1575.62 ± 

29.65 

5007.75 ± 

117.07 

5949.44 ± 

232.49 

8919.43 ± 

143.83 

Hopper-v4 377.14 ± 

65.59 

2485.17 ± 

449.64 

3169.62 ± 

323.34 

3366.23 ± 

4.74 

3368.42 ± 

13.95 

Humanoid-v4 484.12 ± 

109.99 

5688.02 ± 

485.07 

5256.30 ± 

1253.43 

5508.71 ± 

490.57 

1060.80 ± 

208.83 

HumanoidStandup-v4 92332.42 

± 

16033.78 

108764.1

4 ± 

3925.53 

54425.88 

± 

14916.48 

51864.43 

± 8294.39 

117003.2

9 ± 

29036.77 

InvertedDoublePendulu

m-v4 

879.02 ± 

387.30 

8429.23 ± 

2788.62 

9357.32 ± 

0.92 

9358.51 ± 

1.34 

9345.79 ± 

0.37 

InvertedPendulum-v4 1000.00 ± 

0.00 

486.10 ± 

240.95 

1000.00 ± 

0.00 

1000.00 ± 

0.00 

1000.00 ± 

0.00 

Pusher-v4 -77.75 ± 

5.64 

-38.17 ± 

2.49 

-21.63 ± 

1.65 

-23.96 ± 

1.55 

-22.99 ± 

2.10 

Reacher-v4 -13.79 ± 

1.71 

-4.04 ± 

1.32 

-3.14 ± 

1.47 

-3.31 ± 

1.45 

-3.06 ± 

1.16 

Swimmer-v4 28.48 ± 

4.17 

35.91 ± 

5.61 

48.55 ± 

2.20 

64.28 ± 

22.67 

44.87 ± 

2.07 

Walker2d-v4 450.75 ± 

81.01 

2509.91 ± 

473.37 

4350.40 ± 

68.21 

5275.59 ± 

34.14 

4853.45 ± 

52.62 

Total scores: 

(excluding 

HumanoidStandup-v4) 

4480.55 ± 

1026.75 

26545.49 

± 

4671.67 

33063.64 

± 

1888.74 

35835.94 

± 

921.25 

32869.84 

± 

541.83 
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Figure 3-56 Best scores of on-policy learning methods in each environment 

 

 

Figure 3-57 Best scores of on-policy learning methods in each environment, with standard 

deviations as confidence bounds 
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Figure 3-58 Best scores of on-policy learning methods in total (all environments), with 

standard deviations as confidence bounds 

 

We train on-policy learning methods for 3M timesteps in each environment. Best 

scores were achieved by TRPO, then NPG, then PPO, then A2C and finally 

REINFORCE. Actually, TRPO, NPG and PPO are all high performing and deliver 

very similar best scores. The lowest standard deviations were achieved by PPO, then 

TRPO, then NPG, then A2C and finally REINFORCE. The lower the standard 

deviation, the less variance and more accurate the methods are. Actually, PPO and 

TRPO deliver similar standard deviations, with NPG a close third. 

The difference of best scores between PPO and NPG is very small and PPO is 

more accurate than NPG. When accuracy is important, we can expect PPO to be a 

better choice than NPG in most cases. On the downside, we show in subsequent 

graphs that PPO is 3 times slower than NPG. 
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Off-policy learning methods 

Table 3-4 Best scores achieved by off-policy learning methods in MuJoCo experiments 

 DDPG TD3 SAC REDQ 

Ant-v4 986.55 ± 

1.43 

2548.25 ± 

38.28 

6256.40 ± 

110.89 

6405.20 ± 

75.33 

HalfCheetah-v4 12441.85 

± 134.25 

11335.22 

± 169.44 

13071.48 ± 

146.27 

13314.53 ± 

161.15 

Hopper-v4 3134.90 ± 

21.06 

3380.07 ± 

74.12 

3493.66 ± 

4.21 

3512.44 ± 

3.39 

Humanoid-v4 201.05 ± 

4.12 

5254.40 ± 

22.15 

5487.84 ± 

24.51 

5601.18 ± 

18.28 

HumanoidStandup-v4 76912.81 

± 1190.52 

83283.39 

± 55.78 

156740.09 

± 10.37 

131165.58 

± 66.21 

InvertedDoublePendulum-

v4 

9348.58 ± 

1.19 

9359.86 ± 

0.09 

9359.87 ± 

0.09 

9359.96 ± 

0.03 

InvertedPendulum-v4 1000.00 ± 

0.00 

1000.00 ± 

0.00 

1000.00 ± 

0.00 

1000.00 ± 

0.00 

Pusher-v4 -23.94 ± 

2.55 

-22.38 ± 

1.58 

-20.69 ± 

1.61 

-21.42 ± 

2.05 

Reacher-v4 -3.11 ± 

1.51 

-2.78 ± 

1.57 

-2.63 ± 

1.63 

-2.56 ± 

1.64 

Swimmer-v4 163.47 ± 

1.32 

64.20 ± 

3.37 

45.89 ± 

2.14 

46.89 ± 

1.70 

Walker2d-v4 1581.38 ± 

879.84 

3458.46 ± 

16.18 

4584.96 ± 

20.26 

5275.41 ± 

29.25 

Total scores: 

(excluding 

HumanoidStandup-v4) 

28830.73 

± 1047.27 

36375.3 ± 

326.78 

43276.78 ± 

311.61 

44491.63 ± 

292.82 
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Figure 3-59 Best scores of off-policy learning methods in each environment 

 

 

Figure 3-60 Best scores of off-policy learning methods in each environment, with standard 

deviations as confidence bounds 
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Figure 3-61 Best scores of off-policy learning methods in total (all environments), with 

standard deviations as confidence bounds 

 

We train off-policy learning methods for 1M timesteps in each environment. Best 

scores were achieved by REDQ, then SAC, then TD3 and finally DDPG. Actually, 

REDQ and SAC are both high performing and deliver very similar best scores. The 

lowest standard deviations were achieved by REDQ, then SAC, then TD3 and finally 

DDPG. The lower the standard deviation, the less variance and more accurate the 

methods are. Actually, REDQ and SAC deliver similar standard deviations, with TD3 

a close third. 

Compared to on-policy learning methods, off-policy learning methods achieve 

better scores with lower standard deviation. We conclude that off-policy learning 

methods have better accuracy and lower variance than on-policy learning methods. 

Furthermore, off-policy learning methods are able to surpass the scores of on-policy 

learning methods within less training timesteps, which means they have better sample 

efficiency. 
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3.6.13 Running times 

 

On-policy learning methods 

Table 3-5 Running times for on-policy learning methods in MuJoCo experiments 

Running time (h:mm:ss) 
REINFO

RCE 
A2C NPG TRPO PPO 

Ant-v4 0:13:20 0:22:30 0:20:59 0:20:55 1:07:36 

HalfCheetah-v4 0:12:26 0:18:27 0:17:15 0:17:11 1:05:03 

Hopper-v4 0:07:20 0:18:26 0:17:44 0:18:02 1:03:06 

Humanoid-v4 0:08:32 0:22:23 0:22:07 0:22:05 1:07:37 

HumanoidStandup-v4 0:16:44 0:25:04 0:29:26 0:28:07 1:19:32 

InvertedDoublePendulum-

v4 
0:06:07 0:17:21 0:17:31 0:17:41 1:04:02 

InvertedPendulum-v4 0:09:08 0:14:26 0:16:47 0:17:13 1:02:22 

Pusher-v4 0:09:45 0:15:35 0:13:54 0:17:45 1:09:01 

Reacher-v4 0:06:02 0:14:01 0:12:29 0:12:43 0:58:12 

Swimmer-v4 0:11:52 0:20:46 0:19:12 0:19:24 1:07:40 

Walker2d-v4 0:07:48 0:18:21 0:17:48 0:18:17 1:04:57 

Average 0:09:55 0:18:51 0:18:39 0:19:02 1:06:17 

Total 1:49:03 3:27:20 3:25:11 3:29:22 12:09:07 
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Figure 3-62 Running times of on-policy learning methods in each environment 

 

In running time, we take into consideration both training time and testing time. 

Notice that length of an episode does not influence running time. In each epoch, we 

train for a fixed amount of timesteps, which are later saved in an experience replay 

buffer. If episodes are short, that means we will sample more episodes in an epoch. 

On-policy learning methods take the same time to execute through all 

environments. This is expected, given that we train each on-policy learning method 

for the same number of timesteps (3M timesteps) in each environment. Furthermore, 

each environment runs on the same MuJoCo platform, hence they all have the same 

refresh frequency. Neural networks for the actor and critic are similar in all methods 

and require approximately the same amount of time to train. 

In total over all environments, PPO took longest to train with 12:09:07, followed 

by TRPO with 3:29:22, A2C with 3:27:20, NPG with 3:25:11 and finally 

REINFORCE with 1:49:03. 
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Off-policy learning methods 

Table 3-6 Running times for off-policy learning methods in MuJoCo experiments 

Running time (h:mm:ss)  DDPG TD3 SAC REDQ 

Ant-v4 2:31:51 2:54:48 4:53:48 3:57:05 

HalfCheetah-v4 2:25:55 2:44:12 4:43:20 4:04:11 

Hopper-v4 2:23:21 2:43:19 4:42:37 4:04:41 

Humanoid-v4 3:04:00 0:21:39 5:39:44 4:09:10 

HumanoidStandup-v4 3:54:52 4:21:57 6:44:36 5:24:34 

InvertedDoublePendulum-

v4 
2:31:43 2:53:04 4:52:37 4:07:57 

InvertedPendulum-v4 2:28:20 2:49:49 4:49:22 4:08:49 

Pusher-v4 3:06:16 3:31:35 5:44:29 4:55:44 

Reacher-v4 2:18:38 2:38:16 4:33:30 3:55:00 

Swimmer-v4 2:27:37 2:48:07 4:48:09 3:52:32 

Walker2d-v4 2:24:40 2:43:20 4:48:05 3:56:15 

Average 2:41:34 2:46:22 5:07:18 4:14:11 

Total 1d 5:37:12 1d 6:30:05 2d 8:20:18 1d 22:35:57 
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Figure 3-63 Running times of off-policy learning methods in each environment 

 

In running time, we take into consideration both training time and testing time. 

Notice that length of an episode does not influence running time. In each epoch, we 

train for a fixed amount of timesteps, which are later saved in an experience replay 

buffer. If episodes are short, that means we will sample more episodes in an epoch. 

Off-policy learning methods take the same time to execute through all 

environments. This is expected, given that we train each on-policy learning method 

for the same number of timesteps (1M timesteps) in each environment. Furthermore, 

each environment runs on the same MuJoCo platform, hence they all have the same 

refresh frequency. Neural networks for the actor and critic are similar in all methods 

and require approximately the same amount of time to train. 

In total over all environments, SAC took longest to train with 2d 8:20:18, 

followed by REDQ with 1d 22:35:57, TD3 with 1d 6:30:05 and finally DDPG with 

1d 5:37:12. As we can see, off-policy learning methods take considerably more time 

to execute than on-policy learning methods. 
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3.6.14 Speed of training 

 

On-policy learning methods 

Table 3-7 Speed of training for on-policy learning methods in MuJoCo experiments 

Speed of 

training 

REINFOR

CE 

A2C NPG TRPO PPO 

Ant-v4 6353.34 

step/s 

2902.25 

step/s 

3248.03 

step/s 

3237.90 

step/s 

823.21 

step/s 

HalfCheeta

h-v4 

7224.49 

step/s 

3629.41 

step/s 

4053.47 

step/s 

4066.65 

step/s 

849.23 

step/s 

Hopper-v4 7875.17 

step/s 

3141.04 

step/s 

3640.36 

step/s 

3625.83 

step/s 

863.48 

step/s 

Humanoid-

v4 

6482.98 

step/s 

2662.57 

step/s 

2668.36 

step/s 

2641.95 

step/s 

770.13 

step/s 

Humanoid

Standup-v4 

5736.29 

step/s 

2663.10 

step/s 

2178.34 

step/s 

2311.14 

step/s 

700.39 

step/s 

InvertedDo

ublePendul

um-v4 

9156.07 

step/s 

3442.99 

step/s 

3798.12 

step/s 

3744.96 

step/s 

846.51 

step/s 

InvertedPe

ndulum-v4 

10606.20 

step/s 

3534.57 

step/s 

4044.53 

step/s 

3900.47 

step/s 

854.99 

step/s 

Pusher-v4 5782.97 

step/s 

3308.72 

step/s 

3807.38 

step/s 

2980.63 

step/s 

748.11 

step/s 

Reacher-v4 8898.79 

step/s 

3626.81 

step/s 

4179.37 

step/s 

4099.40 

step/s 

883.28 

step/s 

Swimmer-

v4 

8092.04 

step/s 

3171.26 

step/s 

3603.20 

step/s 

3553.75 

step/s 

819.67 

step/s 

Walker2d-

v4 

8238.03 

step/s 

3219.25 

step/s 

3632.49 

step/s 

3623.19 

step/s 

844.42 

step/s 

Average 7676.94 

step/s 

3209.27 

step/s 

3532.15 

step/s 

3435.08 

step/s 

818.49 

step/s 
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Figure 3-64 Speed of training of on-policy learning methods in each environment 

 

Speed of training is similar, although not the same as running time. In running 

time, we take into consideration both training time and testing time. In speed of 

training, we are concerned only with training and not testing. Notice that length of an 

episode does not influence running time. In each epoch, we train for a fixed amount 

of timesteps, which are later saved in an experience replay buffer. If episodes are 

short, that means we will sample more episodes in an epoch. 

On-policy learning methods have almost the same training speed through all 

environments. This is expected, given that we train each on-policy learning method 

for the same number of timesteps (3M timesteps) in each environment. Furthermore, 

each environment runs on the same MuJoCo platform, hence they all have the same 

refresh frequency. Neural networks for the actor and critic are similar in all methods 

and require approximately the same amount of time to train. 

On average, the fastest on-policy learning method was REINFORCE with 7676 

step/s, followed by NPG with 3532 step/s, TRPO with 3435 step/s, A2C with 3209 

step/s and finally PPO with 818 step/s.  
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Off-policy learning methods 

Table 3-8 Speed of training for off-policy learning methods in MuJoCo experiments 

Speed of 

training 

DDPG TD3 SAC REDQ 

Ant-v4 114.08 step/s 99.67 step/s 58.97 step/s 73.66 step/s 

HalfCheetah-

v4 

119.12 step/s 105.35 step/s 60.98 step/s 71.20 step/s 

Hopper-v4 119.21 step/s 105.32 step/s 60.85 step/s 70.81 step/s 

Humanoid-v4 90.76 step/s 79.34 step/s 50.33 step/s 69.03 step/s 

HumanoidSta

ndup-v4 

73.92 step/s 66.05 step/s 42.54 step/s 53.47 step/s 

InvertedDoubl

ePendulum-v4 

114.28 step/s 99.69 step/s 58.92 step/s 70.03 step/s 

InvertedPendu

lum-v4 

116.23 step/s 101.29 step/s 59.54 step/s 69.67 step/s 

Pusher-v4 89.97 step/s 79.18 step/s 48.60 step/s 56.66 step/s 

Reacher-v4 120.49 step/s 105.51 step/s 61.05 step/s 71.08 step/s 

Swimmer-v4 118.20 step/s 103.25 step/s 60.04 step/s 74.93 step/s 

Walker2d-v4 118.10 step/s 104.88 step/s 59.69 step/s 73.43 step/s 

Average 108.58 step/s 95.42 step/s 56.51 step/s 68.55 step/s 
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Figure 3-65 Speed of training of off-policy learning methods in each environment 

 

Speed of training is similar, although not the same as running time. In running 

time, we take into consideration both training time and testing time. In speed of 

training, we are concerned only with training and not testing. Notice that length of an 

episode does not influence running time. In each epoch, we train for a fixed amount 

of timesteps, which are later saved in an experience replay buffer. If episodes are 

short, that means we will sample more episodes in an epoch. 

Off-policy learning methods take the same time to execute through all 

environments. This is expected, given that we train each on-policy learning method 

for the same number of timesteps (1M timesteps) in each environment. Furthermore, 

each environment runs on the same MuJoCo platform, hence they all have the same 

refresh frequency. Neural networks for the actor and critic are similar in all methods 

and require approximately the same amount of time to train. 

On average, the fastest off-policy learning method was DDPG with 108 step/s, 

followed by TD3 with 95 step/s, REDQ with 68 step/s and finally SAC with 56 step/s. 
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3.7 Summary 

 

Off-policy learning methods significantly outperform on-policy learning 

methods in all environments. They require less timesteps to converge to an optimal 

policy, hence are the most sample efficient and achieve much higher scores. Each 

method compared to the other methods takes proportionally the same time in each 

environment. The reason for that is that all 11 environments we experimented with 

have the same refresh frequency, given that they run on the MuJoCo platform. 

A drawback of on-policy learning methods is that they use a lot more 

computational power compared to off-policy learning methods. The reason is that 

they try to help the gradient descent towards the steepest direction by calculating a 

Hessian matrix or a similar, partial form of a Hessian. Such calculations need a lot of 

computational resources. 

A drawback of off-policy learning methods is that they take longer to train 

compared to on-policy learning methods. Most importantly, this has to do with the 

implementation details. Another reason is that in off-policy learning methods, in one 

epoch we sample less timesteps of experience before a gradient update. This means 

that during training, we do gradient updates more frequently than in on-policy 

learning methods, which slows down training. 

Best scores for on-policy learning methods were achieved by TRPO, then NPG, 

then PPO, then A2C and finally REINFORCE. Actually, TRPO, NPG and PPO are 

high performing and deliver very similar best scores. The lowest standard deviations 

were achieved by PPO, then TRPO, then NPG, then A2C and finally REINFORCE. 

The lower the standard deviation, the less variance and more accurate the methods 

are. Actually, PPO and TRPO deliver similar standard deviations, with NPG a close 

third. 

Best scores for off-policy learning methods were delivered by REDQ, then SAC, 

then TD3 and finally DDPG. Actually, REDQ and SAC are both high performing and 

deliver very similar best scores. The lowest standard deviations were achieved by 

REDQ, then SAC, then TD3 and finally DDPG. The lower the standard deviation, 

the less variance and more accurate the methods are. Actually, REDQ and SAC 

deliver similar standard deviations, with TD3 a close third. 
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Let’s discuss total running time. For on-policy learning methods, in total over all 

environments, PPO took longest to train with 12:09:07, followed by TRPO with 

3:29:22, A2C with 3:27:20, NPG with 3:25:11 and finally REINFORCE with 

1:49:03. For off-policy learning methods, in total over all environments, SAC took 

longest to train with 2d 8:20:18, followed by REDQ with 1d 22:35:57, TD3 with 1d 

6:30:05 and finally DDPG with 1d 5:37:12. As we can see, off-policy learning 

methods take considerably more time to execute than on-policy learning methods. 

Let’s discuss average speed of training. For on-policy learning methods, on 

average over all environments, the fastest on-policy learning method was 

REINFORCE with 7676 step/s, followed by NPG with 3532 step/s, TRPO with 3435 

step/s, A2C with 3209 step/s and finally PPO with 818 step/s. For off-policy learning 

methods, on average over all environments, the fastest was DDPG with 108 step/s, 

followed by TD3 with 95 step/s, REDQ with 68 step/s and finally SAC with 56 step/s. 
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CHAPTER 4 

 OFF-POLICY LEARNING IN ROBOTICS 

SIMULATIONS 

 

4.1 Introduction 

 

Robotics simulations are a very important tool for training robotic systems on 

particular tasks. Robotic simulations require a lot of training samples. Off-policy 

learning methods are the most sample efficient methods in deep RL, hence are one of 

the most capable for solving robotics simulations. 

A weakness of on-policy learning methods is calculating expectations only under 

the current, known trajectory of interest. Each time we have a new policy, we need to 

use new samples. With increasing task complexity, this becomes expensive. The 

number of gradient steps and samples per step needed to learn an effective policy 

increases [16]. Moreover, training a neural network changes 𝜃 only by a little, but the 

computational overhead for that change is large. These arguments emphasize the need 

for sample efficient off-policy learning methods. 

We use off-policy learning methods together with Hindsight Experience Replay 

buffer. HER can learn with extremely sparse rewards. It also performs better with 

sparse rewards than with dense rewards. Robotics tasks usually have sparse reward 

structures, so using HER is mandatory. 

In this chapter, I present the results of training off-policy learning methods with 

HER in Fetch mobile manipulator, a 7-DoF robotic arm with a two-fingered parallel 

gripper attached to it.  
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4.2 Software components 

This experiment requires all software components from the previous chapter: 

o MuJoCo 

o Tianshou 

o Gymnasium 

o Jupyter Lab 

o Tensorboard 

The following components are also necessary. 

 

Gymnasium-Robotics 

Gymnasium-Robotics is a collection of robotics simulation environments based 

on Gymnasium. Originally, it was called OpenAI Gym [37]. The robotic 

manipulation tasks are more difficult than continuous control problems available in 

Gymnasium. It provides simulations for real-life robots, each with a different degree 

of freedom (DoF). The physics engine for Gymnasium-Robotics is MuJoCo. 

 

4.3 Fetch mobile manipulator 

 

Fetch mobile manipulator [38] is a 7-DoF robotic arm with a two-fingered 

parallel gripper attached to it. The robot is controlled by small displacements of the 

gripper in Cartesian coordinates and the inverse kinematics are computed internally 

by the MuJoCo framework. 

The control frequency of the robot is 𝑓 = 25 𝐻𝑧. This is achieved by applying 

the same action in 20 subsequent simulator step (with a time step of dt = 0.002 s) 

before returning the control to the robot. The tasks in Fetch mobile manipulator are 

continuing, which means that the robot has to maintain the puck in the target position 

for an indefinite period of time. Fetch can be trained to execute the following tasks.  
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Reach 

Task: Move the end effector of the 

manipulator to a randomly selected position 

in the workspace. 

Action Space: Action space is a vector 

of size 4. It represents the Cartesian 

displacement dx, dy, and dz of the end 

effector. 

 

 

 

 

 

Push 

Task: Move a block with the help of the 

manipulator to a randomly selected target 

position in the workspace by pushing with its 

gripper. The gripper is locked in a closed 

configuration in order to perform the push 

task. 

Action Space: Action space is a vector 

of size 4. It represents the Cartesian 

displacement dx, dy, and dz of the end 

effector. 

  

Figure 4-1 Reach task in Fetch mobile 

manipulator 

Figure 4-2 Push task in Fetch mobile 

manipulator 
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Pick and place 

Task: Move a block with the help of the 

manipulator to a randomly selected target 

position in the workspace in mid-air by 

picking and placing with its gripper. The 

gripper can be opened or closed in order to 

perform the grasping operation of pick and 

place. 

Action Space: Action space is a vector 

of size 4. It represents the Cartesian 

displacement dx, dy, and dz of the end 

effector. 

 

 

 

Slide 

Task: Hit a puck with the help of the 

manipulator in order to slide it until it reaches 

a randomly selected target position in a long 

and slippery workspace. The workspace has a 

low friction coefficient, which makes it 

slipper for the puck to slide and reach the 

target position. The target position is outside 

of the robot’s workspace. The gripper is 

locked in a closed configuration. The puck 

doesn’t need to be grasped. 

Action space: Action space is a vector 

of size 4. It represents the Cartesian displacement dx, dy, and dz of the end effector.  

Figure 4-3 Pick and Place task in Fetch 

mobile manipulator 

Figure 4-4 Slide task in Fetch mobile 

manipulator 
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4.4 Hardware 

To speed up training, we trained on a machine with GPU acceleration. GPU 

acceleration substantially speeds up training, because of hardware-level 

parallelization and faster I/O rates. 

 

AMD Ryzen Threadripper 3970X 

o Base speed: 3.70 GHz 

o 32 Cores and 64 Logical processors 

o L1 cache: 2.0 MB, L2 cache: 16.0 MB, L3 cache: 128 MB 

NVIDIA RTX A6000 

o Shared GPU memory: 64 GB 

o NVIDIA Ampere Architecture Based CUDA Cores, Second-Generation RT 

Cores, Third-Generation Tensor Cores 

o 38.7 TFLOPs of FP32 performance 

 

4.5 Methodology 

 

In this chapter, the methodology follows the general principles from [39]. We 

solve tasks Reach, Push and Pick and Place with the help of off-policy learning 

methods. We were not able to solve task Slide, which is also the most complicated 

task. Each episode for all tasks has a length of 50 timesteps. Each timestep the agent 

takes as a feedback the value −1 from the environment, if it has not reached the asked 

destination. That being said, it is clear that the final reward for an episode is within 

[−50,0]. We solve Reach with the help of off-policy learning methods: DDPG, SAC, 

TD-3 and REDQ. 

For task Reach, we train for 10 epochs with 5000 steps per epoch, for a total of 

50000 timesteps. Hindsight Experience Replay buffer size is kept at 100000. The 

discount factor gamma 𝛾 of future rewards is kept at 0.98. Both actor and critic 

networks are two-layer neural networks with sizes [256,256]. For SAC and TD-3, 
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two identic critic networks are used. We train the actor and critic networks with 

gradient descent using Adam optimizer. The learning rate 𝛼 is kept at 10−3 for the 

actor and 3 ∗ 10−3 for the critic. 

For task Push, we train for 300 epochs with 5000 steps per epoch, for a total of 

1.5 million timesteps. Hindsight Experience Replay buffer size is kept at 100000. 

The discount factor gamma 𝛾 of future rewards is kept at 0.98. Both actor and critic 

networks are three-layer neural networks with sizes [256,256,256]. For SAC and 

TD-3, two identic critic networks are used. We train the actor and critic networks 

with gradient descent using Adam optimizer. The learning rate 𝛼 is kept at 10−4 for 

the actor and 3 ∗ 10−4 for the critic. 

For task Pick and Place, we train for 600 epochs with 5000 steps per epoch, for 

a total of 3 million timesteps. Hindsight Experience Replay buffer size is kept at 

100000. The discount factor gamma 𝛾 of future rewards is kept at 0.98. Both actor 

and critic networks are three-layer neural networks with sizes [256,256,256]. For 

SAC and TD-3, two identic critic networks are used. We train the actor and critic 

networks with gradient descent using Adam optimizer. The learning rate 𝛼 is kept at 

10−5 for the actor and 3 ∗ 10−5 for the critic. 

For task Slide, we train for 900 epochs with 5000 steps per epoch, for a total of 

4.5 million timesteps. Hindsight Experience Replay buffer size is kept at 50, equal to 

the length of a training episode. The discount factor gamma 𝛾 of future rewards is 

kept at 0.98. Both actor and critic networks are three-layer neural networks with sizes 

[256,256,256]. For SAC and TD-3, two identic critic networks are used. We train 

the actor and critic networks with gradient descent using Adam optimizer. The 

learning rate 𝛼 is kept at 10−6 for the actor and 3 ∗ 10−6 for the critic. 

Loss curves for tasks Reach, Push and Pick and Place are shown in the appendix. 

Notice that we were not able to solve task Slide with any off-policy learning method, 

hence we restrain ourselves from showing results. 
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4.5.1 Hindsight Experience Replay Buffer 

 

Hindsight Experience Replay buffer (HER) [40] is a form of implicit curriculum. 

The goals used for replay naturally shift from ones which are simple to achieve even 

by a random agent, to more difficult ones. First, HER experiences some episode 

𝑠0, 𝑠1, 𝑠2…𝑠𝑛. Next, it stores in the replay buffer every transition 𝑠𝑡 ≠ 𝑠𝑡+1, not only 

with the original goal used for this episode, but also with a subset of other goals. 

Finally, we replay each trajectory with an arbitrary goal. HER only works with an 

off-policy RL algorithm. 

The set of additional goals used for replay has to be chosen. We could choose no 

additional goals, hence replay each trajectory with the goal 𝑚(𝑠𝑇), which is achieved 

in the final state of the episode. If we were to choose additional goals, we 

experimentally compare different types and quantities of goals for replay. In all cases, 

we also replay each trajectory with the original goal pursued in the episode. 

HER does not require having any control over the distribution of initial states. 

Furthermore, HER can learn with extremely sparse rewards. It also performs better 

with sparse rewards than with dense rewards. 
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4.6 Experimental results 

 

4.6.1 FetchReach-v3 

Off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 4-5 Mean rewards (testing) during 

timesteps 

 

Figure 4-6 Std. deviation of rewards 

(testing) during timesteps 

4.6.2 FetchPush-v2 

Off-policy learning methods 

 TD3  REDQ     

 

Figure 4-7 Mean rewards (testing) during 

timesteps 

 

Figure 4-8 Std. deviation of rewards 

(testing) during timesteps 
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4.6.3 FetchPickAndPlace-v2 

 

Off-policy learning methods 

 REDQ       

 

Figure 4-9 Mean rewards (testing) during 

timesteps 

 

Figure 4-10 Std. deviation of rewards 

(testing) during timesteps 

 

4.6.4 Best scores 

 

Off-policy learning methods 

Table 4-1 Best scores achieved by off-policy learning methods in Fetch Mobile 

Maninpulator 

 DDPG TD3 SAC REDQ 

FetchReach-v3 -1.20 ± 0.87 -1.30 ± 0.64 -1.80 ± 0.98 -1.50 ± 1.20 

FetchPush-v2 Diverged -7.00 ± 4.36 Diverged -6.20 ± 3.66 

FetchPickAndPlace-

v2 

Diverged Diverged Diverged -6.80 ± 5.38 

FetchSlide-v2 Diverged Diverged Diverged Diverged 
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Figure 4-11 Best scores of off-policy learning methods in each task in Fetch mobile 

manipulator 

 

 

Figure 4-12 Best scores of off-policy learning methods in each task in Fetch mobile 

manipulator, with standard deviations as confidence bounds (values close to 0 have learned 

the task, values close to -50 have not learned the task)  
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4.7 Summary 

 

Off-policy learning methods are very sample efficient, a crucial criteria for 

solving robotics tasks in physics-based simulations. Moreover, Hindsight Experience 

Replay buffer is a form of implicit curriculum, where the goals used for replay 

naturally shift from ones which are simple to more difficult ones. HER can learn with 

extremely sparse rewards. It also performs better with sparse rewards than with dense 

rewards. It is to be noted that the rewards from Fetch mobile manipulator are sparse 

rewards, hence using HER is mandatory. Furthermore, HER works only with off-

policy learning methods, not with on-policy learning methods, which emphasizes the 

need for off-policy learning methods for solving robotics tasks. 

Let’s discuss best scores and their standard deviations. The lower the standard 

deviation of scores delivered by a method, the more accurate those methods are, the 

lower the variance they have. Reach task is the easiest task from Fetch mobile 

manipulator. We were able to solve Reach with all off-policy learning methods. 

DDPG achieved a score of -1.20 ± 0.87, TD3 a score of -1.30 ± 0.64, SAC a score of 

-1.80 ± 0.98 and REDQ a score of -1.50 ± 1.20. Push task is more complicated than 

Reach. We were able to solve Push task with TD3 and REDQ. TD3 achieved a score 

of -7.00 ± 4.36 and REDQ achieved a score of -6.20 ± 3.66. Pick and Place is more 

complicated than Push. We were able to solve Pick and Place with REDQ. REDQ 

achieved a score of -6.80 ± 5.38. Finally, Slide is the most complicated task from 

Fetch mobile manipulator. Being the most complicated task, we were not able to solve 

it with any off-policy learning method. 

In more complicated tasks, best scores decrease and standard deviations increase. 

Essentially, accuracy drops with more complicated tasks, although slightly. In Fetch 

mobile manipulator, accuracy drops slightly as we increase the complexity of tasks. 
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 CONCLUSIONS 

 

In this thesis, we show that in physics-based simulation, robots or other 

hypothetical agents can be controlled to perform amazing tasks. On the downside, 

real world applications are often unkind to simulation-derived control policies [1]. 

This is also known as the simulation-to-reality gap. Nevertheless, up-to-date there are 

no better alternatives to physics-based simulations. We could say that physics-based 

simulations are “doomed to succeed”, because trial-and-error approaches in the real 

world can be expensive, dangerous or sometimes impossible. A prime example is 

testing a Mars rover. Striving to steadily improve the simulation-to-reality transfer 

rate is a worthwhile endeavor. In order to derive better control policies in simulation 

that can be transferred in real world applications, we could increase the fidelity of the 

simulation. 

To replace or augment physics-based simulations, statistical learning techniques 

and data driven simulations have been proposed. Through statistical learning, we 

could construct oracles that predict the next system state given its current one. This 

effectively bypasses simulation-specific hurdles such as model generation and 

calibration. Through systematic dimensional reduction, data-driven simulation could 

be used to methodically reduce model complexity. However, such approaches for 

highly nonlinear and non-smooth systems are in their infancy. 

In our experiments, we test the performance of 9 on-policy and off-policy Deep 

Reinforcement Learning algorithms in various physics-based simulations with 

MuJoCo. Off-policy learning methods are significantly more accurate, sample 

efficient and have less variance than on-policy learning methods. On the downside, 

off-policy learning methods take longer to execute than on-policy learning methods. 

Best scores for on-policy learning methods were achieved by TRPO, then NPG, 

then PPO, then A2C and finally REINFORCE. Actually, TRPO, NPG and PPO are 

high performing and deliver very similar best scores. The lowest standard deviations 

were achieved by PPO, then TRPO, then NPG, then A2C and finally REINFORCE. 

The lower the standard deviation, the less variance and more accurate the methods 

are. Actually, PPO and TRPO deliver similar standard deviations, with NPG a close 

third. 
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Best scores for off-policy learning methods were delivered by REDQ, then SAC, 

then TD3 and finally DDPG. Actually, REDQ and SAC are both high performing and 

deliver very similar best scores. The lowest standard deviations were achieved by 

REDQ, then SAC, then TD3 and finally DDPG. The lower the standard deviation, 

the less variance and more accurate the methods are. Actually, REDQ and SAC 

deliver similar standard deviations, with TD3 a close third. 

Let’s discuss average speed of training. We trained in a machine with CPU 

@3.70 GHz and GPU acceleration of 38.7 TFLOPs. The actual value for the speed 

of training is specific to the hardware we are using. Nevertheless, we expect the 

rankings and ratios of the speed of training between different methods to remain the 

same under a different set of hardware. For on-policy learning methods, on average 

over all environments, the fastest on-policy learning method was REINFORCE with 

7676 step/s, followed by NPG with 3532 step/s, TRPO with 3435 step/s, A2C with 

3209 step/s and finally PPO with 818 step/s. For off-policy learning methods, on 

average over all environments, the fastest was DDPG with 108 step/s, followed by 

TD3 with 95 step/s, REDQ with 68 step/s and finally SAC with 56 step/s. 

Finally, in chapter 4 we test the performance of off-policy learning methods in 

robotics simulations with Fetch mobile manipulator [38], a 7-DoF robotic arm with a 

two-fingered parallel gripper attached to it. Fetch exists and is used in real-world 

scenarios. Fetch can be trained to execute four different tasks: Reach, Push, Pick and 

Place and Slide. We make use of Hindsight Experience Replay buffer (HER) [40], a 

form of implicit curriculum, where the goals used for replay naturally shift from ones 

which are simple to achieve even by a random agent, to more difficult ones. Reach 

task was solved by DDPG, TD3, SAC and REDQ. Push task was solved by TD3 and 

REDQ. Pick and Place was solved only by REDQ. Slide is the most complicated task, 

we were not able to solve it with any off-policy learning method. 
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 APPENDIX 

 

Chapter 3: Losses from experimental results 
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Ant-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-1 Actor loss during timesteps 

(training) 

 

Figure 7-2 Critic loss during timesteps 

(training) 

 

Figure 7-3 Critic 1 loss during timesteps 

(training) 

 

Figure 7-4 Critic 2 loss during timesteps 

(training) 

 

Figure 7-5 REDQ critics ensemble loss 

during timesteps (training) 
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HalfCheetah-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-6 Actor loss during timesteps 

(training) 

 

Figure 7-7 Critic loss during timesteps 

(training) 

 

Figure 7-8 Critic 1 loss during timesteps 

(training) 

 

Figure 7-9 Critic 2 loss during timesteps 

(training) 

 

Figure 7-10 REDQ critics ensemble loss 

during timesteps (training) 
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Hopper-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-11 Actor loss during timesteps 

(training) 

 

Figure 7-12 Critic loss during timesteps 

(training) 

 

Figure 7-13 Critic 1 loss during timesteps 

(training) 

 

Figure 7-14 Critic 2 loss during timesteps 

(training) 

 

Figure 7-15 REDQ critics ensemble loss 

during timesteps (training) 
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HumanoidStandup-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-16 Actor loss during timesteps 

(training) 

 

Figure 7-17 Critic loss during timesteps 

(training) 

 

Figure 7-18 Critic 1 loss during timesteps 

(training) 

 

Figure 7-19 Critic 2 loss during timesteps 

(training) 

 

Figure 7-20 REDQ critics ensemble loss 

during timesteps (training) 
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Humanoid-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-21 Actor loss during timesteps 

(training) 

 

Figure 7-22 Critic loss during timesteps 

(training) 

 

Figure 7-23 Critic 1 loss during timesteps 

(training) 

 

Figure 7-24 Critic 2 loss during timesteps 

(training) 

 

Figure 7-25 REDQ critics ensemble loss 

during timesteps (training) 
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InvertedDoublePendulum-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-26 Actor loss during timesteps 

(training) 

 

Figure 7-27 Critic loss during timesteps 

(training) 

 

Figure 7-28 Critic 1 loss during timesteps 

(training) 

 

Figure 7-29 Critic 2 loss during timesteps 

(training) 

 

Figure 7-30 REDQ critics ensemble loss 

during timesteps (training) 
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InvertedPendulum-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-31 Actor loss during timesteps 

(training) 

 

Figure 7-32 Critic loss during timesteps 

(training) 

 

Figure 7-33 Critic 1 loss during timesteps 

(training) 

 

Figure 7-34 Critic 2 loss during timesteps 

(training) 

 

Figure 7-35 REDQ critics ensemble loss 

during timesteps (training) 
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Pusher-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-36 Actor loss during timesteps 

(training) 

 

Figure 7-37 Critic loss during timesteps 

(training) 

 

Figure 7-38 Critic 1 loss during timesteps 

(training) 

 

Figure 7-39 Critic 2 loss during timesteps 

(training) 

 

Figure 7-40 REDQ critics ensemble loss 

during timesteps (training) 
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Reacher-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-41 Actor loss during timesteps 

(training) 

 

Figure 7-42 Critic loss during timesteps 

(training) 

 

Figure 7-43 Critic 1 loss during timesteps 

(training) 

 

Figure 7-44 Critic 2 loss during timesteps 

(training) 

 

Figure 7-45 REDQ critics ensemble loss 

during timesteps (training) 

 

  

 

 

 

  

  

                   

    

    

     

     

    

     

     

                   

    

     

     

     

                   

    

     

     

     

                   

    

    

     

     

    

     

                   



 

104 

Swimmer-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-46 Actor loss during timesteps 

(training) 

 

Figure 7-47 Critic loss during timesteps 

(training) 

 

Figure 7-48 Critic 1 loss during timesteps 

(training) 

 

Figure 7-49 Critic 2 loss during timesteps 

(training) 

 

Figure 7-50 REDQ critics ensemble loss 

during timesteps (training) 
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Walker2d-v4 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-51 Actor loss during timesteps 

(training) 

 

Figure 7-52 Critic loss during timesteps 

(training) 

 

Figure 7-53 Critic 1 loss during timesteps 

(training) 

 

Figure 7-54 Critic 2 loss during timesteps 

(training) 

 

Figure 7-55 REDQ critics ensemble loss 

during timesteps (training) 
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Chapter 4: Losses from experimental results 
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FetchReach-v3 

 

Losses of off-policy learning methods 

 DDPG  TD3  SAC  REDQ 

 

Figure 7-56 Actor loss during timesteps 

(training) 

 

Figure 7-57 Critic loss during timesteps 

(training) 

 

Figure 7-58 Critic 1 loss during timesteps 

(training) 

 

Figure 7-59 Critic 2 loss during timesteps 

(training) 

 

Figure 7-60 REDQ critics ensemble loss 

during timesteps (training) 
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FetchPush-v2 

 

Losses of off-policy learning methods 

 TD3  REDQ     

 

Figure 7-61 Actor loss during timesteps 

(training) 

 

Figure 7-62 Critic 1 loss during timesteps 

(training) 

 

Figure 7-63 Critic 2 loss during timesteps 

(training) 

 

Figure 7-64 REDQ critics ensemble loss 

during timesteps (training) 
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FetchPickAndPlace-v2 

 

Losses of off-policy learning methods 

 REDQ       

 

Figure 7-65 Actor loss during timesteps 

(training) 

 

Figure 7-66 REDQ critics ensemble loss 

during timesteps (training) 
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