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ABSTRACT 

 

COMPARISON OF DEEP LEARNING ALGORITHMS FOR 

LEUKEMIA CANCER CELL CLASSIFICATION 

 

Bushi, Gerta 

M.Sc., Department of Computer Engineering 

Supervisor: Prof. Dr. Bekir Karlık 

 

         Leukemia is a cancer-related disease which causes the death of individuals 

worldwide, regardless of age and gender. It affects the blood and bone marrow, thus 

leading to the abnormal production of immature white blood cells. Some of the factors 

that might contribute to leukemia’s development might be related to genetics, radiation 

or chemical exposure, infections, or immune system disorders.  A reliable and fast 

diagnosis of leukemia is crucial for a successful treatment to ensure high survival rates 

and low number of deaths.  

         Nowadays, blood tests are widely used for diagnosing leukemia. Patients 

undergo a complete blood count (CBC) to evaluate the count of blood cells present. In 

cases of leukemia, CBC reveals abnormal count of white blood cells (WBC), red blood 

cells (RBC) and platelets. Additionally, these blood cells are examined under a 

microscope. Based on the results, immature or abnormal-looking white blood cells 

may indicate leukemia. However, this type of diagnosis is often slow, time-consuming 

and less accurate, mainly because under microscopes, the shape of leukemic cells 

might seem similar to the shape of normal white cells, therefore making the diagnosis 

prone to errors.  

         Therefore, in this thesis, we will focus on the deep learning algorithms which 

have shown promising results in diagnosing leukemia cells. Some of these algorithms 

include Convolutional Neural Networks (CNNs), which in the context of leukemia 

cells diagnosis, can be trained to classify images of blood smears into normal blood 
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cells or leukemic blood cells. The second algorithm includes Optimized Deep 

Recurrent Neural Networks (ODRNNs), which can be used to analyze time-series data 

such as videos of cell movements or changes in cell morphology over time. The last 

algorithm is Transfer Learning, which is applied by fine-tuning a pre-trained neural 

network on a dataset of leukemia cells. This approach helps improve the performance 

of the model, especially when limited labelled data are available for training.  

Keywords: Leukemia, White Blood Cells, Diagnosis, Deep Learning Algorithms, 

Convolutional Neural Networks, Optimized Deep Recurrent Neural Networks, 

Transfer Learning. 
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ABSTRAKT 

 

KRAHASIMI I ALGORITMEVE TË DEEP LEARNING PËR 

KLASIFIKIMIN E QELIZAVE TË KANCERIT TË LEUÇEMISË  

 

Bushi, Gerta 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Prof. Dr. Bekir Karlık 

 

Leucemia është një sëmundje e lidhur me kancerin e cila shkakton vdekjen e 

individëve në mbarë botën, pa marrë parasysh moshën dhe gjininë. Ndikon në gjak dhe 

palcën e kockave, duke çuar kështu në prodhimin anormal të qelizave të bardha të 

papjekura të gjakut. Disa nga faktorët që mund të kontribuojnë në zhvillimin e 

leuçemisë mund të lidhen me gjenetikën, rrezatimin ose ekspozimin kimik, infeksionet 

ose çrregullimet e sistemit imunitar. Një diagnozë e besueshme dhe e shpejtë e 

leuçemisë është vendimtare për një trajtim të suksesshëm për të siguruar norma të larta 

mbijetese dhe numër të ulët vdekjesh. 

Në ditët e sotme, analizat e gjakut përdoren gjerësisht për diagnostikimin e 

leuçemisë. Pacientët i nënshtrohen një numërimi të plotë të gjakut (CBC) për të 

vlerësuar numërimin e qelizave të gjakut të pranishme. Në rastet e leuçemisë, CBC 

zbulon numërimin anormal të qelizave të bardha të gjakut (WBC), rruazave të kuqe të 

gjakut (RBC) dhe pllakëzave. Përveç kësaj, këto qeliza të gjakut shqyrtohen nën 

mikroskop. Në bazë të rezultateve, qelizat e bardha të gjakut të papjekura ose me pamje 

anormale mund të tregojnë leuçemi. Megjithatë, kjo lloj diagnoze është shpesh e 

ngadalshme, kryesisht sepse nën mikroskop, forma e qelizave leukemike mund të 

duket e ngjashme me formën e qelizave normale të bardha, duke e bërë diagnozën të 

prirur ndaj gabimeve. 

Prandaj, në këtë tezë, ne do të përqendrohemi në algoritmet të cilat kanë treguar 

rezultate premtuese në diagnostikimin e qelizave të leucemisë. Disa nga këto algoritme 
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përfshijnë Convolutional Neural Networks (CNNs), të cilat në kontekstin e diagnozës 

së qelizave të leucemisë, mund të trajnohen për të klasifikuar imazhet e gjakut në 

qelizat normale ose qelizat leukemike të gjakut. Algoritmi i dytë përfshin Optimized 

Deep Recurrent Neural Networks (ODRNNs), të cilat mund të përdoren për të 

analizuar të dhënat e serive kohore si videot e lëvizjeve të qelizave ose ndryshimet në 

morfologjinë qelizore me kalimin e kohës. Algoritmi i fundit është Transfer Learning, 

i cili aplikohet duke rregulluar një rrjet neuronal të para-trajnuar në një grup të dhënash 

të qelizave të leuçemisë. Kjo metodë ndihmon në përmirësimin e performancës së 

modelit, veçanërisht kur të dhënat e etiketuara janë në dispozicion për trajnim. 

Fjalët kyçe: Leucemia, Qelizat e Bardha të Gjakut, Diagnoza, Algoritmet Deep 

Learning, Rrjetet Neurale Convolutional, Optimized Deep Recurrent 

Neural Networks, Transfer Learning 

 



vii 

 

ACKNOWLEDGEMENTS  

 

         I would like to express my deepest gratitude to those who have supported and 

guided me throughout the course of my master's thesis. Their encouragement, patience, 

and expertise were invaluable in helping me complete this significant milestone. 

         First and foremost, I would like to extend my sincere thanks to my supervisor, 

Prof. Dr. Bekir Karlik. Your insightful guidance, constructive feedback, and 

unwavering support were instrumental in the successful completion of this thesis. Your 

expertise and dedication to my academic growth provided a solid foundation for this 

research. Thank you for always being available to review drafts and offer your wisdom. 

Your mentorship has profoundly impacted my academic journey, and I am grateful for 

your commitment to my success. 

         I am also deeply thankful to my family. To my parents, thank you for your 

unconditional love, encouragement, and sacrifices. Your belief in my abilities and your 

constant support have been my pillars of strength throughout this journey. Thank you 

for your understanding, patience, and emotional support during the challenging times. 

Your encouragement and faith in me have been a source of motivation and comfort. 

         Completing this thesis would not have been possible without the collective 

support and encouragement from my supervisor, family, and friends. Thank you all for 

your unwavering support and for believing in me.



viii 

 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................ iii 

ABSTRAKT ................................................................................................................. v 

ACKNOWLEDGEMENTS ....................................................................................... vii 

TABLE OF CONTENTS .......................................................................................... viii 

LIST OF TABLES ...................................................................................................... xi 

LIST OF FIGURES ................................................................................................... xii 

CHAPTER 1 ................................................................................................................ 1 

INTRODUCTION ....................................................................................................... 1 

      1.1 Significance of the study .................................................................................. 3 

      1.2 Research Objectives ......................................................................................... 3 

      1.3 Research Questions .......................................................................................... 4 

      1.4 Theoretical Framework .................................................................................... 4 

CHAPTER 2 ................................................................................................................ 6 

LITERATURE REVIEW............................................................................................. 6 

      2.1 Leukemia Cancer Cell Classification Techniques ........................................... 7 

      2.2 Overview of Deep Learning Algorithms for Medical Images Classification .. 8 

      2.3 Application of Deep Learning in Leukemia Detection .................................... 9 

      2.4 Performance Evaluation Metrics of Deep Learning Algorithms for Leukemia 

Detection .................................................................................................................... 10 

      2.5 Datasets and Benchmarks for Leukemia Detection ....................................... 11 

      2.6 Comparative analysis of ODRNNs, CNNs, and transfer learning algorithms for 

leukemia detection ..................................................................................................... 12 



ix 

      2.7 Identification of Challenges, Gaps and Areas for Future Research ............... 13 

CHAPTER 3 .............................................................................................................. 14 

OVERVIEW OF CNN, TRANSFER LEARNING AND ODRNN .......................... 14 

ALGORITHMS ......................................................................................................... 14 

      3.1 Overview of Convolutional Neural Networks ............................................... 15 

      3.2 Convolutional Neural Networks for Leukemia Classification ....................... 18 

      3.3 Dataset and Tools ........................................................................................... 19 

      3.4 Data Preprocessing ......................................................................................... 19 

      3.5 Processing Stage ............................................................................................ 21 

      3.6 Results ............................................................................................................ 22 

      3.7 Discussion ...................................................................................................... 25 

      3.8 Overview of Transfer Learning ...................................................................... 26 

      3.9 Transfer Learning for Leukemia Classification ............................................. 29 

      3.10 Dataset .......................................................................................................... 32 

      3.11 Implementation and Experiments ................................................................ 33 

      3.12 Discussion .................................................................................................... 35 

      3.13 Overview of Optimized Deep Recurrent Neural Networks ......................... 35 

      3.14 Optimized Deep Recurrent Neural Networks for Leukemia Classification . 36 

      3.15 Dataset .......................................................................................................... 37 

      3.16 Image Preprocessing .................................................................................... 38 

      3.17 DRNN Model Architecture .......................................................................... 39 

      3.18 Results and Discussion ................................................................................. 40 

CHAPTER 4 .............................................................................................................. 43 

METHODOLOGY ..................................................................................................... 43 

CHAPTER 5 .............................................................................................................. 46 



x 

RESULTS AND DISCUSSIONS .............................................................................. 46 

      5.1 Results ............................................................................................................ 46 

      5.2 CNN Model Image Distribution .................................................................... 47 

      5.3 Basic CNN Model Performance .................................................................... 47 

      5.4 Transfer Learning Model Evaluation ............................................................. 48 

      5.5 ODRNN Model Performance Metrics ........................................................... 50 

CHAPTER 6 .............................................................................................................. 51 

CONCLUSIONS ........................................................................................................ 51 

      6.1 Conclusions .................................................................................................... 51 

      6.2 Future Recommendations .............................................................................. 53 

 

 

 

  



xi 

LIST OF TABLES 

 

Table 1: Performance Metrics for both classification models ................................... 34 

Table 2: Graphical representation of performance metrics results for both models .. 34 

Table 3: Statistical measurements of ODRNN model for classifying four leukemia 

subtypes ...................................................................................................................... 42 

Table 4: Image Percentage Distribution for Basic CNN Model ................................ 47 

Table 5: Model performance for Basic CNN Model ................................................. 47 

Table 6: Model Evaluation for Transfer Learning ..................................................... 48 

Table 7: Graphical representation of performance metrics results for both models for 

Transfer Learning ....................................................................................................... 49 

Table 8: Performance metrics for ODRNN Model .................................................... 50 

Table 9: Comparison table of Basic CNN, Transfer Learning and ODRNN Models 53 

 

 

 

 

 

 

 

 



xii 

LIST OF FIGURES 

 

Figure 1 : Types of blood cells. From left to right: red blood cell, white blood cell, 

platelets. ....................................................................................................................... 1 

Figure 2: Convolutional Neural Networks architecture ............................................. 15 

Figure 3: Architecture of CNNs ................................................................................. 18 

Figure 4: (a) original image, (b) image resized by 256*256 which has been filtered by 

median and sharpen filters ......................................................................................... 20 

Figure 5:  (a) original image and (b) augmented image ............................................. 21 

Figure 6: Basic CNN Model diagram ........................................................................ 22 

Figure 7: Validation accuracy and train accuracy for Basic CNN Model ................. 23 

Figure 8: Confusion Matrix for Basic CNN Model ................................................... 24 

Figure 9: Values of precision, recall, f1 score and support for our CNN model ....... 25 

Figure 10: Transfer Learning Overview .................................................................... 27 

Figure 11:  Freezed and Trainable Layers.................................................................. 28 

Figure 12: Diagram of the first classification model ................................................. 30 

Figure 13: Data Augmentation images specifying original, translated, reflected, and 

rotated images ............................................................................................................ 31 

Figure 14: Diagram of the second classification model ............................................. 32 

Figure 15: Samples of the dataset of healthy and unhealthy cells ............................. 32 

Figure 16: Overview of the methodology .................................................................. 37 



xiii 

Figure 17: Blood cell images, after applying median filter (on the left), after converting 

from RGB to HSV (on the right) ............................................................................... 38 

Figure 18: Blood cell image after thresholding.......................................................... 39 

Figure 19: DRNN-based system architecture ............................................................ 40 

 

  



1 

CHAPTER 1 

INTRODUCTION 

 

         Leukemia is a cancer type which is caused by the abnormal production of white 

blood cells. The human body consists of three types of cells: red blood cells, white 

blood cells and platelets, as it is shown below on Figure 1. Red blood cells, also known 

as erythrocytes, play a crucial role in the supply of oxygen from the heart to all tissues 

and make up half of the total blood volume in our body. Instead, white blood cells, 

also known as leukocytes, play an essential role in the immune system by defending 

our body from pathogens, infections, bacteria and viruses. Platelets, on the other hand, 

also known as thrombocytes, play a crucial role in blood clotting. When blood vessels 

are damaged, platelets come in handy by sealing the vessel and preventing blood loss.  

 

            

Figure 1 : Types of blood cells. From left to right: red blood cell, white blood cell, 

platelets. 

 

         The correct categorization of white blood cells is essential in diagnosing the 

disease and determining the nature of it, as in our case, leukemia. In a normal human 

body of a healthy individual, the growth of white blood cells happens due to the body’s 

requirement, but in a patient of leukemia, white blood cells are formed and grown 

abnormally and are not effective.  

         Due to having a dark purple color, leukemic cells are easy to get identified, but 

the diagnosis and further processing is quite difficult due to the variations in patterns 

and texture. For this reason, several deep learning algorithms have been developed to 
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make a correct assessment and diagnosis of leukemia and accurately differentiate 

between healthy cells and leukemic cells. With the evolution of computer vision and 

deep learning algorithms, several challenges have been solved in terms of image 

analysis, due to having employed automated feature engineering. Convolutional 

Neural Networks (CNNs) is one of the most used networks in computer vision tasks. 

They possess great power in self-learning and are used most heavily on image analysis 

tasks. Different from other methods, CNNs require only an image as input and they 

are able to do the classification on their own, based on their self-learning capabilities 

and training. However, in order for CNNs to be trained and provide accurate 

classifications, they need enough input sample data, which in some cases might be 

inadequate and insufficient. In this case, transfer learning comes into scene to exploit 

the potential of CNNs in classification.  

 

         For leukemia diagnosis, past studies have suggested that CNN architectures with 

many layers and depth levels can accurately perform leukemia detection. Moreover, it 

has also been stated that deep learning algorithms that have employed transfer learning 

are most widely used in leukemia detection and are proven to be of a high accuracy 

rate. Leveraging Convolutional Neural Networks (CNNs), Optimized Deep Recurrent 

Neural Networks (ODRNNs), and Transfer Learning, we can pave the way for a more 

accurate classification of blood cells and leukemia cancer diagnosis. CNNs are potent 

for classifying images of blood smears, thus differentiating and distinguishing between 

normal and leukemic blood cells. RNNs, alternatively, are potent in analyzing time-

series data, deciphering behaviors and morphological changes captured in videos. As 

a complement to these two methods, Transfer Learning aims to exploit them by 

applying fine-tuning, especially in scenarios where labeled datasets are scarce. 

         In this thesis, we aim to make a comparison between the deep learning 

algorithms, CNNs, ODRNNs, and TL for an accurate identification of leukemia cells. 

By comparing the principles and methodologies of these algorithms, we aim to set the 

stage towards a more reliable and dependable framework for leukemia diagnosis.  
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1.1 Significance of the study 

 

         This research aims to enhance the accuracy of leukemia diagnosis by tackling 

deep learning algorithms, particularly Convolutional Neural Networks (CNNs), 

Optimized Deep Recurrent Neural Networks (ODRNNs), and Transfer Learning. By 

overcoming the limitations of manual microscopic examination, these algorithms have 

the capacity to reduce errors, and accurately predict the diagnosis. The insights 

gathered from this research have the potential to significantly impact healthcare, by 

accurately diagnosing leukemia in time and thus achieving a better quality of life for 

leukemia patients worldwide. 

 

1.2 Research Objectives 

         To diagnose leukemia cells from blood smear images, the research objectives of 

this study are designed to compare and assess the effectiveness of Convolutional 

Neural Networks (CNNs), Optimized Deep Recurrent Neural Networks (ODRNNs), 

and Transfer Learning algorithms. The study tries to identify the advantages and 

disadvantages, strengths, and limitations of each technique through a comprehensive 

evaluation of algorithmic resilience across different scenarios and an examination of 

important performance indicators.  

The research objectives of this study are as follows: 

1. Evaluate the performance metrics, including accuracy and computational 

efficiency of the algorithms in diagnosing leukemia cells from blood smear 

images. 

2. Compare the robustness of the algorithms across diverse datasets, including 

variations in sample sizes, leukemia cell morphologies and image qualities, to 

evaluate their applicability in real world.  

3. Investigate the underlying features utilized for leukemia cell classification and 

the interpretability of the model predictions generated by CNNs, ODRNNs, and 

Transfer Learning algorithms.  
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1.3 Research Questions 

         The purpose of these research questions is to provide a better understanding of 

the differences between CNNs, ODRNNs and Transfer Learning algorithms. In order 

to examine the effectiveness and suitability of deep learning algorithms for leukemia 

detection, this study will embark on a comprehensive investigation. 

1. In terms of efficiency, accuracy, and features utilized, how do Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (ODRNNs), and Transfer 

Learning methods compare when it comes to recognizing leukemia cells from 

blood smear images? 

2. What factors contribute to the variability in performance and applicability of 

CNNs, ODRNNs, and Transfer Learning algorithms across image qualities, 

sample sizes, datasets, and leukemia cell morphologies, and how can these 

insights inform their utilization into clinical practice for leukemia diagnosis? 

 

1.4 Theoretical Framework 

         This study's theoretical approach, which applies deep learning algorithms to 

leukemia detection, is based on several important advances in cancer, medical 

imaging, and artificial intelligence. Deep learning's theoretical foundations are based 

on concepts from neural network theory and machine learning. The main building 

blocks of this framework comprise Transfer Learning methods, Optimized Deep 

Recurrent Neural Networks (ODRNNs), and Convolutional Neural Networks (CNNs), 

each of which provides capabilities and methods for pattern recognition and image 

classification tasks. Furthermore, concepts from medical imaging are incorporated into 

the theoretical framework, specifically in regards to the interpretation of blood smear 

images for leukemia diagnosis. This includes understanding the morphological 

features of normal and abnormal blood cells. 

Building on this theoretical foundation, computer vision research concerns help us 

comprehend the image processing and feature extraction methods used by deep 

learning algorithms. The analysis of blood smear images relies heavily on concepts 
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like image segmentation, edge detection, and feature representation, which enable the 

algorithms to detect small differences between leukemic and normal cells. To further 

clarify how deep learning algorithms make assessments and recognize important 

features in the input data, theories pertaining to model interpretation and explainability 

are integrated into the framework. This framework aims to clarify the details of how 

deep learning algorithms receive and interpret medical images, increasing trust in their 

diagnostic abilities. 

 

 

 

 

 

 

 

  



6 

 

CHAPTER 2 

LITERATURE REVIEW 

  

         Leukemia is a blood and bone marrow cancer that presents a significant 

challenge for modern healthcare due to its variety of appearances, each with unique 

clinical presentations and prognoses. Its importance in healthcare is derived from its 

frequency as well as its complexity and severity of its effects. Leukemia is one of the 

most prevalent cancers in both adults and children, and it has a substantial impact on 

people's lives, families, and healthcare systems across the globe. In order to effectively 

manage and treat leukemia, early detection is essential since prompt action can greatly 

enhance patient outcomes and raise the chance of a successful recovery. Because 

leukemia is an aggressive illness with a high potential for rapid progression, the ability 

to detect the presence of cancer cells at an early stage is crucial. 

         Being identified early lowers the risk of complications and increases overall 

survival rates by allowing healthcare providers to rapidly undertake appropriate 

treatment measures. Under these circumstances, the use of cutting-edge technology 

like deep learning algorithms to the field of medical picture analysis has great potential 

to improve the effectiveness and precision of leukemia detection. Artificial 

intelligence's subset of deep learning has become a potent tool in the medical 

profession, especially for medical imaging. Deep learning algorithms can help doctors 

detect, diagnose, and characterize a variety of diseases, including leukemia, by using 

sophisticated neural networks to extract valuable information from massive amounts 

of medical picture data. 

         Deep learning algorithms can help identify abnormal cell morphology and 

patterns indicative of leukemia by analyzing digital images from medical examinations 

such as bone marrow, blood smears, and imaging scans. Furthermore, these algorithms' 

capacity to pick up new information and learn from large datasets could improve 

diagnostic speed and accuracy, which would ultimately benefit patients. Deep 

learning's potential in medical image analysis is still being explored by researchers, 
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but incorporating these cutting-edge tools into clinical practice opens up new 

possibilities for improving leukemia patients' prognosis and quality of care via early 

diagnosis and treatment. 

2.1 Leukemia Cancer Cell Classification Techniques 

        In recent decades, leukemia cancer cell classification techniques have evolved 

significantly, moving from manual methods to automated approaches. One major 

factor contributing to this progress has been the development of deep learning 

algorithms. Historically, flow cytometry and manual microscopy were the traditional 

approaches for leukemia cell classification. Manual microscopy is the process by 

which skilled pathologists or laboratory staff visually inspect stained blood smears or 

bone marrow aspirates under a microscope. Despite being widely utilized for decades, 

this approach is subjective by nature and prone to variability among observers because 

it depends on the expertise, skills and personal judgment of the interpreter. Contrarily, 

flow cytometry uses fluorescently labeled antibodies to detect leukemia cells due to 

their surface markers.  

         Traditional methods for detecting leukemia cells are still in use, although they 

have several drawbacks. Their subjectivity is one of the main disadvantages, as it may 

result in inconsistent findings and possible errors in diagnosis. Moreover, accurate 

performance and interpretation of the tests require competent workers, as manual 

microscopy and flow cytometry are demanding and time-consuming procedures. 

Furthermore, these methods could not be sensitive or precise enough, especially when 

we are dealing with early stages of the disease or insufficient sample sizes.  

        Recently, a rise in demand has been seen in using automated techniques, such as 

deep learning algorithms, to detect leukemia automatically and correctly. Deep 

learning algorithms are a branch of artificial intelligence that draw inspiration from the 

architecture and operations of the human brain. These algorithms have proven to be 

highly effective in deciphering complex datasets. Through the training of deep neural 

networks on vast amounts of labeled data, scientists are able to create models that can 

accurately and efficiently identify leukemia cells automatically. 
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         Deep learning's use into leukemia cell identification has enormous potential to 

address the drawbacks of traditional techniques. Digital images of blood and bone 

marrow samples can teach deep learning algorithms complex patterns and features, 

allowing for automated leukemia cell analysis. Furthermore, as opposed to traditional 

techniques, these algorithms might potentially increase the precision of results, 

minimize response times, and improve diagnostic accuracy. 

2.2 Overview of Deep Learning Algorithms for Medical Images Classification 

         As deep learning algorithms can automatically extract complex patterns and 

characteristics from massive amounts of data, they have become highly effective tools 

in many fields, including medical image analysis. Optimized Deep Recurrent neural 

networks (ODRNNs), convolutional neural networks (CNNs), and transfer learning 

models are some of the most popular deep learning algorithms.  Each has particular 

advantages for evaluating medical images along with rendering tasks including disease 

diagnosis and image classification simpler. 

         Tasks involving time-series data are ideally suited for Optimized Deep Recurrent 

Neural Networks (ODRNNs), a class of neural networks specifically created to handle 

sequential data. The capacity of recurrent connections to preserve memories of 

previous inputs gives ODRNNs the ability to identify temporal dependencies in the 

data. ODRNNs have been effectively used in a variety of healthcare applications, such 

as medical signal processing, where sequential data is essential for diagnosis (Lipton 

et al., 2015). For the analysis of dynamic medical data, involving patient health 

metrics, ODRNNs are especially well-suited due to their natural temporal modeling 

skills. 

         Convolutional neural networks (CNNs), on the other hand, are specialized 

architectures built to handle data that resemble grids, like images. CNNs can 

understand the spatial patterns and structures present in the data by automatically 

extracting hierarchical features from input photos through the use of convolutional 

layers. CNNs have proven to be remarkably efficient in image analysis tasks, such as 

segmenting and classifying medical images. CNNs have demonstrated encouraging 
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outcomes in a variety of medical imaging modalities, including computed tomography 

(CT) and magnetic resonance imaging (MRI) (Sistaninejhad et al., 2023). 

         Another important deep learning topic that has attracted a lot of interest in 

medical image classification challenges is transfer learning. Utilizing information 

from one task or area to enhance learning and performance on a related but distinct 

area is known as transfer learning. Transfer learning helps researchers make greater 

generalization and performance with less labeled data by optimizing pre-trained 

models on a target dataset. Transfer learning has been successfully used in a variety of 

medical imaging tasks, including as lung nodule recognition in chest radiographs and 

retinal lesion segmentation in fundus images, as noted by Tajbakhsh et al. (2016).  

2.3 Application of Deep Learning in Leukemia Detection 

         The effectiveness of Optimized Deep Recurrent Neural Networks (ODRNNs) in 

leukemia cell detection has been examined in a number of research. For instance, 

Logeswari et al.'s (2024) investigation assessed how well ODRNNs performed 

sequential data analysis from peripheral blood smears in order to identify leukemia 

cells. Through the utilization of ODRNNs' temporal modeling capabilities, the 

researchers were able to obtain encouraging outcomes in precisely identifying 

abnormal cell morphology linked to leukemia.  

         Convolutional neural networks (CNNs) have also been extensively used in 

addition to ODRNNs for the identification of leukemia cells in images. In order to 

create an automated method for the detection and categorization of leukemia cells in 

microscopic pictures of blood smears, Tran et al. (2018) carried out research. The 

researchers were able to obtain great accuracy in distinguishing between normal and 

abnormal cells by training CNNs on a huge dataset of annotated photos. This would 

enable early diagnosis and therapy.   

         Additionally, by utilizing information from previously trained networks, transfer 

learning techniques have been used to increase the accuracy of leukemia detection 

models. In this regard, Loey et al. (2020) investigated the application of transfer 

learning to leukemia detection tasks in medical picture classification. Compared to 
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training from scratch, the researchers' method of fine-tuning pre-trained CNN models 

on leukemia-specific datasets resulted in notable gains in classification accuracy.  

2.4 Performance Evaluation Metrics of Deep Learning Algorithms for 

Leukemia Detection 

         When evaluating the efficacy and dependability of deep learning models, 

performance evaluation measures are essential, especially when dealing with tasks like 

leukemia cell detection in medical image analysis. Metrics that are frequently used to 

assess a model's performance quantitatively include accuracy, precision, recall, and 

F1-score. As a general indicator of the correctness of the model, accuracy is defined 

as the percentage of correctly classified instances relative to the total number of 

instances. Contrarily, precision measures how many true positive predictions there are 

out of all positive predictions, demonstrating how well the model avoids false 

positives. Recall, also referred to as sensitivity, expresses how well the model can 

identify all relevant situations by calculating the percentage of genuine positive 

predictions among all actual positive instances. A balanced indicator of a model's 

performance, the F1-score, which is the mean of precision and recall, is especially 

helpful in situations where class distributions are unbalanced (Terven et al., 2023). 

         Performance metrics like sensitivity and specificity are particularly significant 

with regard to leukemia cell detection. The percentage of true positive predictions 

among all actual positive instances is known as sensitivity, or true positive rate, and it 

indicates how well the model can identify leukemia cells. Contrarily, specificity 

indicates how well the model is able to exclude out non-leukemia cells by calculating 

the percentage of true negative predictions among all actual instances. In order to 

accurately identify both positive and negative cases and reduce false positives and false 

negatives, leukemia detection requires striking a balance between sensitivity and 

specificity (Terven et al., 2023). 

         While performance evaluation metrics have been made accessible, there are a 

number of obstacles and factors to take into account when evaluating a model's 

performance in medical image analysis jobs. One issue that causes discrepancies in 

reported performance among studies is the absence of consistent benchmark datasets 
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and evaluation methodologies (Maier-Hein et al., 2018). Furthermore, to guarantee 

trustworthy performance in real-world scenarios, the robustness and generalization of 

deep learning models across various imaging modalities and patient populations need 

to be rigorously assessed (Maier-Hein et al., 2018). 

2.5 Datasets and Benchmarks for Leukemia Detection 

         Standardized data for training, validating, and testing algorithms can be obtained 

by researchers through publicly available datasets. These datasets for the diagnosis of 

leukemia are useful tools for scientists who want to assess deep learning algorithms. 

The Blood Cell Image Dataset (BCID) is one example of a dataset that includes 

microscopic images of blood smears that were taken using several imaging modalities 

(Kather et al., 2019). The BCID dataset offers a comprehensive resource for leukemia 

detection studies, with annotated images of normal and abnormal leukocytes among 

other blood cell types.  

         An essential component of evaluating the effectiveness and performance of deep 

learning models for leukemia diagnosis is benchmark studies, which serve to contrast 

various algorithms using standardized datasets. For instance, Liu et al. (2019) carried 

out a benchmark study to assess how well several deep learning architectures — such 

as recurrent neural networks (RNNs) and convolutional neural networks (CNNs) — 

performed on the ALL-IDB dataset. The study assessed the algorithms according to 

criteria including specificity, sensitivity, and accuracy; this revealed important insights 

into the advantages and disadvantages of various leukemia detection techniques. 

Similar to this, (Kather et al., 2019) revealed how pre-trained models are useful in 

enhancing classification accuracy by conducting a benchmark study to examine the 

performance of transfer learning models on the BCID dataset. 

         Deep learning research in leukemia diagnosis must take dataset selection and 

preprocessing into account. To guarantee representative and trustworthy training data, 

researchers should take into consideration several aspects when choosing datasets, 

including data variety, sample size, and annotation quality. Deep learning models' 

resilience and generalization can only be improved by performing preprocessing 

operations such image normalization, augmentation, and noise removal. Wang et al. 
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(2022), for instance, stressed the value of preprocessing methods such color 

normalization and contrast enhancement in images in enhancing the effectiveness of 

deep learning models for leukemia diagnosis. 

2.6 Comparative analysis of ODRNNs, CNNs, and transfer learning algorithms 

for leukemia detection 

         In order to provide insights to a reliable diagnosis of leukemia, Optimized Deep 

Recurrent Neural Networks (ODRNNs), Convolutional Neural Networks (CNNs), and 

Transfer Learning algorithms are compared. This comparison sheds light on the 

advantages, disadvantages, and possible uses of each technique, thus helping 

researchers and healthcare providers choose the best algorithms for leukemia detection 

tasks. 

         Numerous studies focused on leukemia detection have assessed and contrasted 

ODRNNs, CNNs, and transfer learning algorithms. Kim et al. (2022) utilized a dataset 

of leukemia cell images to compare how well ODRNNs, CNNs, and transfer learning 

models performed. The study discovered that whereas transfer learning models 

produced outcomes that were equivalent with less training time, CNNs 

surpassed ODRNNs in terms of accuracy and speed of computation. 

         The benefits and drawbacks of each strategy in terms of accuracy, computational 

efficiency, and interpretability differ based on the specifics of the assigned task and 

dataset. ODRNNs are ideally suited for tasks involving time-series data or sequences 

of different lengths since they are adept at processing sequential data and 

understanding temporal dependencies (Liu et al., 2019). Nevertheless, during training, 

ODRNNs may experience vanishing issues, which restricts their capacity to identify 

long-term dependencies in sequential data (Pascanu et al., 2013). Conversely, CNNs 

are exceptionally proficient at removing spatial features from images, thereby making 

it possible to analyze medical images precisely and quickly (Ronneberger et al., 2015). 

CNNs may, however, have difficulties capturing temporal information and may need 

an excessive amount of labeled data in order to be properly trained. 
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2.7 Identification of Challenges, Gaps and Areas for Future Research 

         Two major obstacles to using deep learning for leukemia detection are the lack 

of available data and the interpretability of the models. Ineffective model training and 

evaluation are caused by limited access to annotated datasets, particularly for rare 

leukemia subtypes, which may result in overfitting or poor performance (Liu et al., 

2019). Furthermore, interpretability issues with deep learning models pose a serious 

challenge in healthcare situations where clear decision-making is crucial. To overcome 

these obstacles, cooperative efforts are needed to create interpretable deep learning 

models suited to leukemia detection requirements and to collect extensive annotated 

datasets. Improving model robustness and dependability in clinical applications 

requires integrating domain expertise and knowledge. 

         Advancement in the field of comparative analysis of deep learning techniques 

for leukemia diagnosis requires the identification of research gaps and areas for future 

research. The creation of hybrid models, which combine the advantages of ODRNNs, 

CNNs, and transfer learning techniques to produce better performance and 

generalization, is one topic of future research. Studies on the interpretability and 

explainability of deep learning models for leukemia diagnosis are also necessary 

because these models' capacity to produce results that can be understood is a 

prerequisite for clinical acceptability and confidence (Lundberg et al., 2018). 

Additionally, investigating the integration of multi-modal data sources, including 

clinical factors and genetic data, may improve the precision and dependability of 

leukemia detection algorithms.  
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CHAPTER 3 

OVERVIEW OF CNN, TRANSFER LEARNING AND ODRNN  

ALGORITHMS 

 

         Leukemia diagnosis requires blood tests and bone marrow biopsies, which 

require manual labor and are time consuming. Therefore, the creation of an automated 

technology for the identification of white blood cell cancer is necessary. a 

classification model based on deep learning techniques and convolutional neural 

networks is presented in this work. The C_NMC_2019 cancer cell dataset, which 

consists of segments of white blood cells extracted from microscopic blood smear 

images, was used to train and assess this model. The model provides a satisfactory 

accuracy of 87% for testing and 91% for training. 

         According to the Mayo Foundation for Medical Education and Research, cancer 

is the second leading cause of mortality (MFMER). As the global population grows, 

so does the number of cancer-related deaths. Early cancer diagnosis is necessary to 

lower the death toll. The challenge is that a significant number of people fail to exhibit 

the early signs and symptoms of leukemia. Aspiration of the bone marrow and blood 

tests that reveal abnormal White Blood Cell counts are the medical procedures used to 

classify leukemia. The analysis of these tests is required, and it takes time considering 

the physicians must examine each blood sample separately. When prompt detection is 

crucial, this process needs to be enhanced. As a result, an automated method for 

leukemia detection is essential. Leukemia detection models could be constructed using 

image processing techniques provided by deep learning packages such as Keras. With 

the help of this approach, the disease should be identified promptly and without the 

limitations of visual assessments. 
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3.1 Overview of Convolutional Neural Networks 

         The most popular deep learning model for classifying images is the 

Convolutional Neural Network model. As seen in Figure 2, a CNN model typically 

encompasses three main layers: the Input layer, Hidden layers, and Fully Connected 

layers. The Convolutional Neural Network is comprised of four parts: Convolutional 

Layers, Rectified Linear Unit (ReLu), Pooling layers, Fully connected layers. 

 

Figure 2: Convolutional Neural Networks architecture 

 

         Convolutional Layer is CNN's initial building block. Convolution, as the name 

implies, is the primary mathematical operation carried out; it involves applying a 

sliding window function to a matrix of pixels that represents a single image. Either 

kernel or filter refers to the sliding function that is applied to the matrix; the terms can 

be used interchangeably. In the convolutional layers of a CNN, the weights are 

represented by learnable filters or kernels. Each filter is a small matrix of weights that 

is convolved with the input data to extract features. During training, the network learns 

the values of these filter weights through backpropagation, adjusting them to minimize 

the difference between the predicted and actual outputs. Several equal-sized filters are 

applied in the convolution layer, and each filter is utilized to identify a certain pattern 

from the image, including the edges, curves and shapes. 
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          Putting it simply, we employ tiny grids (also known as filters or kernels) that 

travel across the image in the convolution layer. Every tiny grid functions as a tiny 

magnifying glass, searching the image for particular patterns such as curves, shapes, 

or lines. It makes a new grid as it travels across the image to show where it located 

these patterns. For instance, different filters may perform better at identifying curves 

than straight lines, and vice versa. The CNN is able to obtain a clear understanding of 

all the various patterns that comprise the image by employing multiple filters.  

         For training CNN, backpropagation algorithm is employed. Convolutional neural 

networks (CNNs) employ backpropagation as a crucial training procedure to learn 

from data and gradually enhance their performance. The following is a thorough 

explanation of backpropagation's operation in CNN training: 

1) Forward Pass: Input data, such images, are fed into the CNN during this 

phase.The network's input data flows through a number of layers, including 

pooling layers, convolutional layers, and activation functions as ReLU. For the 

purpose of the task at hand, like as object detection or image classification, each 

layer modifies the input data in a way that makes it increasingly more 

informative. 

2) Loss Calculation: Following the forward pass, the network's output is examined 

against the ground truth labels. To measure the discrepancy between the actual 

labels and the predicted output, a loss function is computed, which in the case 

of classification tasks, the most commonly used is cross-entropy loss function. 

Backpropagation aims to reduce this loss function, which will increase the 

network's prediction accuracy. 

3) Backpropagation: This technique entails calculating the gradients of the loss 

function in relation to the network's parameters. Gradients are calculated layer 

by layer using the calculus chain rule, starting at the output layer and working 

backward through the network. The gradients at each layer show the 

corresponding contribution of each parameter to the network's overall 

inaccuracy. The network's parameters are then updated using these gradients in 

a way that minimizes the loss function. Optimization algorithms such as 

stochastic gradient descent (SGD) are commonly used for this. One significant 
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hyperparameter that influences the convergence and stability of the training 

process is the learning rate, which controls the magnitude of the parameter 

updates. 

4) Iterative Optimization: Throughout several epochs, the backpropagation 

procedure is done repeatedly until it progresses through the full dataset. The 

network takes batches of training data, computes gradients, and applies 

optimization methods to change parameters at the end of each epoch. By 

modifying its parameters to minimize the loss function, the network gains the 

ability to anticipate outcomes more accurately over time. Training doesn't cease 

until a predetermined threshold is reached, such as finishing a validation set 

with a suitable performance level or completing a maximum number of epochs. 

         Backpropagation is a crucial algorithm for CNN training since it enables the 

network to learn from data by repeatedly modifying its parameters in order to reduce 

the discrepancy between expected and actual outputs. The forward pass, loss 

computation, and backward pass allow CNNs to perform better on a variety of tasks, 

such as image classification and object detection. 

         Following every convolution operation, a ReLU activation function is 

performed. By teaching the network non-linear correlations between the image's 

features, this function strengthens the network's ability to recognize various patterns. 

The ReLU activation function is expressed as follows: f(x)=max(0,x). If input x is 

positive, it returns the input x; if not, it returns zero. When the input to a neuron is 

positive, ReLu keeps the output unchanged, otherwise when the input to a neuron is 

negative, ReLu sets the output to zero.  

         Pooling layer aims to extract the most important features from the complex 

matrix. This is accomplished by using a few aggregation processes, which decrease 

the feature map's (convoluted matrix) dimension and, as a result, the amount of 

memory needed for network training. The most common aggregation functions that 

can be applied are: 

a) Max pooling, which is the maximum value of the feature map, 

b) Sum pooling corresponds to the sum of all the values of the feature map, 
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c) Average pooling is the average of all the values. 

         In the fully connected layers of a CNN, each neuron is connected to every 

neuron in the previous layer. The strength of the connections and the way information 

spreads throughout the network are determined by the weights associated with these 

links. In order to recognize intricate relationships in the data and produce precise 

predictions, the network must learn the values of these weights during training. 

 

Figure 3: Architecture of CNNs 

 

3.2 Convolutional Neural Networks for Leukemia Classification 

         Using Convolutional Neural Networks (CNNs) for leukemia classification is a 

breakthrough in medical diagnostics. CNNs are exceptionally effective at extracting 

characteristics from large, complicated image data, which makes them useful for tasks 

as identifying between several leukemia cell types. CNNs can be trained to precisely 

classify cells into distinct leukemia subtypes by utilizing big datasets of labeled 

leukemia images. This can help clinicians with diagnosis and treatment planning. 

CNNs can extract hierarchical representations of leukemia cells by utilizing many 

layers of convolutions, activation functions, pooling, and fully linked layers. This 

allows them to capture complex patterns and structures that may indicate distinct 

subtypes. CNN-based leukemia classification systems have the potential to improve 

patient outcomes, increase diagnostic accuracy, and deepen our understanding of the 

disease with additional developments in CNN structures, optimization algorithms, and 

data augmentation approaches. The research literature on the previous section shows 

that there is a scope for development of a novel classifier for Leukemia detection. In 

this part, we report on a novel approach to early blood leukemia diagnosis using deep 
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neural networks, specifically CNN, using microscopic blood smear images. 

 

3.3 Dataset and Tools  

         The dataset includes 150 normal photos and 480 cancer images total in this 630-

image collection. Images are retrieved online and are available in ASH Image Bank 

Hematology, ALL IDB, Atlas of Hematology, Atlas of Blood Smear Analysis. 

3.4 Data Preprocessing 

1) Remove duplicates 

The dataset was gathered from a variety of sources, and it was discovered that 

there were some repeats, that some images had watermarks, and that some 

images contained the logos of websites. In all, roughly 43 images were excluded 

from the dataset, making it 587 images in total. 

2) Image resizing 

A scaling strategy was used to make all of the photos in the dataset 256 x 256 

pixels in order to shorten the training time because the dataset has a diverse size 

distribution, and it was necessary to make all of the images in the dataset have 

the same size for training the CNN model.  

3) Image filtering 

Prior to the processing phase, images must be cleaned up of noise and have their 

line patterns improved. This can be done by using a median filter (3 x3) and also 

by sharpening the image (3 x3). 
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Figure 4: (a) original image, (b) image resized by 256*256 which has been filtered by 

median and sharpen filters 

4) Data Augmentation 

Using image data augmentation, one can create generating modified copies of 

the dataset's images in order to expand a training dataset. Deep-learning neural 

network models may be trained on more data to increase their ability to fit 

models and generalize what they have learned to new images. Moreover, 

variations of the images can be produced using augmentation techniques. The 

Keras deep learning neural network framework can fit models by adding image 

data through the ImageDataGenerator class. There are numerous varieties of 

augmentation methods, including the following:  

a) Flipping 

Reversing the rows or columns of pixels in a vertical or horizontal flip is 

referred to as an image flip. 

b) Horizontal and Vertical Shift 

When an image is shifted, all of its pixels are moved in a single direction—

for example, vertically or horizontally—while maintaining the same 

image dimensions. This results in some pixels being clipped off the image, 

and there will be a section where new pixel values must be specified. 

c) Random Zoom Augmentation 
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A zoom augmentation increases the image's size and adds new pixel values 

or interpolates existing ones around it. 

d) Shearing 

In order to create a picture without any padding or black space, shearing 

will automatically clip the appropriate portion from the sheared image. 

e) Interpolation 

Interpolation is a method for generating new data points within the range 

of a discrete set of existing data points. The easiest method of interpolation 

is nearest neighbor interpolation. This approach just finds the "nearest" 

neighboring pixel and assumes its intensity value, as opposed to 

calculating an average value using some sort of weighting criterion or 

producing an intermediate value based on complex procedures.  

Additionally, an augmented image is shown with the sample image in 

Figure 5. 

 

Figure 5:  (a) original image and (b) augmented image 

 

3.5 Processing Stage 

         Following augmentation procedures, our data are transformed into 1480 normal 

images and 1550 cancer images. The data is split into three data sets—a training set 

(60%), a validation set (20%), and a test set (20%) in order to fit the data to the models.     
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Training the model to be able to classify the images is the next step. Accuracy and test 

accuracy are our optimal parameters. The model used for classifying leukemia cells is 

BasicCNN Model. The input images for this model have a resolution of 128 x 128 

pixels and are color (RGB) images. Three convolutional layers with max pooling 

layers make up this structure. Every convolutional layer is followed by a rectified 

linear unit (ReLu). Fully connected layers are employed trained for two categories 

classification using the sigmoid activation function, a constant filter size (3x3), the 

number of filters (128), and the stride of ones (equal 1). After 17 epochs,  the obtained 

accuracy is 90.99% and test accuracy is 80.91%, when classifying the data set into 

leukemia cells or normal cells. 

 

Figure 6: Basic CNN Model diagram 

3.6 Results 

         In total for this experiment, 3030 photos were used of which 60% (1818 images) 

were used for training, 20% (606 images) for validation, and the remaining 20% (606 

images) for model testing. In order to evaluate the performance of the model, we have 

a look at the statistically measured parameters. 

1) Accuracy 

After 17 epochs, the train accuracy for the Basic CNN model is 90.99%; as Fig. 

7 illustrates, our leukemia classifier is performing exceptionally well in terms of 

cell classification. Figure 3.6 illustrates that the validation accuracy of the Basic 

CNN Model approaches 85% after 17 epochs. For new data, thus, we anticipate 

that our model will function with approximately 85% accuracy. 
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Figure 7: Validation accuracy and train accuracy for Basic CNN Model 

 

2) Confusion Matrix 

A confusion matrix compiles the expected results of a classification problem. 

For each class, the count values indicate the proportion of precise and imprecise 

forecasts. This is an excellent solution for presenting results in M-class 

classification problems because it is possible to show the relationships between 

the classifier outputs and the actual ones. According to Fig. 8, for the basic CNN 

model, there are 372 leukemia images that are predicted to be leukemia, 8 

leukemia images that are predicted to be normal, 269 normal images that are 

predicted to be normal, and 51 normal images that are predicted to be leukemia. 

These accuracy levels indicate that this model performs very well when it comes 

to leukemia prediction, but poorly at predicting normal images.  
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Figure 8: Confusion Matrix for Basic CNN Model 

 

3) Precision 

Precision is a performance metric that measures the percentage of positive 

identifications that were in fact accurate. The ratio of true positives to the total 

of true positives and false positives is how it is defined. As illustrated in Fig. 9, 

the precision of our Basic CNN model is average. 

4) Recall 

It is calculated by dividing the entire number of relevant samples—that is, all 

samples that ought to have had a positive label—by the total number of reliable 

positive results. As illustrated in Figure 9, in class 1, the first CNN model has a 

poor precision but a high recall. This indicates that there are many false positives 

but that the majority of positive examples are appropriately identified (low FN). 

However, in class 0, low recall and high precision indicate that we miss a large 

number of positive cases (high FN), but those we anticipate to be positive are in 

fact positive (low FP). 

5) F1 Score 
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The F1 score is the harmonic mean of recall and accuracy. The range of the F1 

score is [0, 1]. It indicates the classifier's accuracy (the number of instances it 

properly classifies) and how robust it is (a significant number of instances are 

recognized by it). As shown in Figure 9, the F1 Score of our model appears to 

be average, that means, it averagely identifies instances correctly.  

6) Support 

The number of samples that accurately reflect the response within that category 

is known as support. It offers details on the exact counts of every class in the test 

data.  

 

Figure 9: Values of precision, recall, f1 score and support for our CNN model 

 

3.7 Discussion 

         Leukemia attacks the body's blood-forming tissues, such as the bone marrow and 

lymphatic system. We use CNN's power to deploy the CNN Basic Model that classifies 

blood smears into normal and abnormal categories in order to provide the patient with 

the most effective treatment possible. Our dataset needed to be larger in order to be 

used with Deep Learning, so data augmentation is employed to solve this issue; this 

worked well for us because the 260 photos in our data before augmentation had been 

increased to 3030 images after augmentation. The model is trained using CNN, and 

our optimal parameters were accuracy and validation accuracy. Basic CNN Model is 

comprised of three convolutional layers. We have not received very good predictions 

from this model and the outcomes were not very accurate, due to the low number of 
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convolutional layers. However, the technology successfully identifies leukemia early, 

and processes data quickly by showing results in less than 30 seconds.  

The following components comprised the detection system's design: 

a) The acquisition component, which is made up of a digital camera placed above 

the microscope's eyepiece;  

b) A pre-trained CNN model in charge of the classification system; 

c) A graphical user interface that shows the image that was taken from the camera 

and the categorization results. 

 

3.8 Overview of Transfer Learning 

         Transfer learning is a technique that involves using a model that has been trained 

on one task as the foundation for a model on a different task. When there is little data 

available for the second task or when the tasks are very similar to each other, this can 

be beneficial. The model can learn more quickly and efficiently on the second task by 

starting with the learnt features from the first task. Because the model will have already 

learnt general features that will probably be helpful in the second task, this can also 

assist prevent overfitting. 

How Transfer Learning works? Here is a general overview: 

1) Pre-trained Model: Begin with a model that has already undergone extensive 

training on an extensive dataset for a particular task. This model has been trained 

on large datasets on a regular basis, and it has found common features and 

patterns that apply to many comparable tasks. 

2) Base Model: The pre-trained model is referred to as the base model. It consists 

of layers that have learned hierarchical feature representations by using the input 

data. 

3) Transfer Layers: Locate a set of layers in the pre-trained model that capture 

general data pertinent to both the new and past tasks. These layers are usually 
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found near the top of the network since they are prone to learning low-level 

information. 

4) Fine-tuning: The process of retraining the selected layers utilizing the dataset 

from the new challenge. The aim of fine-tuning method is to preserve the pre-

training knowledge while allowing the model to adjust its parameters to better 

meet the requirements of the current assignment. 

 

Figure 10: Transfer Learning Overview 

         The essence of transfer learning is that learning low-level features for task A 

helps with learning the model for task B. In the modern era, it is rare to find individuals 

training an entire convolutional neural network from scratch. Instead, it is typical to 

take a pre-trained model and apply its features to a new task.  When working with 

Transfer Learning, we come across a term which is the freezing of layers. When a 

layer—which could be a CNN layer, hidden layer, block of layers, or any subset of all 

layers—cannot be trained, it is said to be fixed. Therefore, throughout training, the 

freeze layer weights won't be updated. Non-frozen layers adhere to standard training 

practices. We choose a pre-trained model as our basis model when applying transfer 

learning to the problem at hand. Using the pre-trained model's knowledge can now be 

done in two different ways. One approach is to freeze a few layers of the pre-trained 

model and then subsequently train the other layers on our new dataset for the new task. 

The second method involves creating a new model and then using some of the features 

extracted from the pre-trained model's layers to use them in the new model. In both 

scenarios, we attempt to train the remaining portion of the model after removing some 

of the learnt features. This ensures that the single feature that might be the same in 

both tasks is removed from the pre-trained model, and the remaining features are then 

trained to fit the new dataset. 
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Figure 11:  Freezed and Trainable Layers 

 

         In this case, a question can arise as to how we decide which layers require 

training and which require freezing. The simple answer is that you need to freeze layers 

more in order to inherit more characteristics from a pre-trained model. For example, if 

we have a pre-trained model that identifies some types of flowers and we need to detect 

some new creatures or species, in such case, we will have a new dataset with the new 

species that contains much features that are similar to the pre-trained model. Therefore, 

since the features between two models are quite similar, in order to utilize the most of 

its expertise in a new model, we freeze fewer layers. Now let's look at an alternative 

scenario: let's say we have a pre-trained model that can identify individuals in photos. 

If we want to use that knowledge to identify cars, however, the dataset in this scenario 

is completely different, so it is not a good idea to freeze a lot of layers because doing 

so will produce high-level features like eyes, lips, head, and noses that are useless for 

the new dataset of cars detection. Therefore, we train the entire model on a new dataset 

and just replicate low-level characteristics from the base model. 

         The backpropagation technique is a key mechanism in transfer learning which 

enables you to make use of the knowledge that pre-trained models have to offer to 

improve performance on an intended task. Initially, a huge dataset like ImageNet is 

used as the source task for a pre-trained model, which is used for image classification. 
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In order to reduce the error between the model's predictions and the ground truth labels, 

backpropagation adjusts the model's parameters during training. Backpropagation is 

frequently used to adjust and fine-tune the pre-trained model's parameters before 

deploying that knowledge to a target task. In this case, the backpropagation technique 

is used once more, but at a lower learning rate. This enables the model to preserve the 

knowledge it acquired from the source task while adjusting its parameters to the 

specifics of the target task. Transfer learning using backpropagation is a useful strategy 

when labeled data is scarce because it makes use of the features that were acquired and 

learned during pre-training, greatly reducing the quantity of labeled data needed for 

training on the target task. Furthermore, backpropagation enables the pre-trained 

model to be selectively frozen or fine-tuned at individual layers, providing flexibility 

in modifying the model architecture to fit the requirements of the target task and 

dataset. 

3.9 Transfer Learning for Leukemia Classification 

         In place of more cumbersome traditional methods, this section suggests two 

automated classification models based on blood microscopic images that use transfer 

learning to identify leukemia. The first model pre-processes images of blood 

microscopic images and then a pre-trained deep convolutional neural network called 

AlexNet extracts features and classifies them using a variety of well-known classifiers. 

In the second model, AlexNet is optimized for both feature extraction and 

classification following the pre-processing of the images. Based on the tests that were 

run on a dataset consisting of 2,820 photos, we will notice that the second model 

outperforms the first due to its 100% classification accuracy. For both models, transfer 

learning was used, using pre-trained models. The time and effort required to create and 

train these networks from scratch is cut down by transfer learning. Transfer learning 

is applied in two ways. The first technique is using the values of the net's final fully 

connected layer (FC) to extract features from the input photos prior to employing 

another classifier. The second technique entails removing the high-level layers from 

the network to change its structure, which is a concept known as network fine-tuning. 

         The first classification model consists of three activities, which are feature 

extraction, classification, and image pre-processing, as illustrated in Figure 12. Pre-
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processing involves a number of tasks, including scaling the images to fixed sizes, 

doing data augmentation to make up for the absence of huge datasets, and transforming 

blood images into a red-green-blue (RGB) model. Feature extraction involves taking 

each image and extracting a collection of features using a pre-trained AlexNet so that 

it may be used in classification to distinguish between photos of healthy and unhealthy 

cells. Many popular classifiers are used in the classification, including SVMs, K-

NNs, linear discriminants and decision trees.  

 

Figure 12: Diagram of the first classification model 

         In the image preprocessing step, the blood microscopic images are first 

transformed into RGB before a variety of processes are applied. After then, their 

dimensions are set to 227 x 227. Finally, since deep neural networks need large 

datasets to complete their training and testing phases, data augmentation is done to 

offset the lack of a large dataset. Three operations make up data augmentation: 

translation, reflection, and rotation. The images are translated by shifting them along 

the X and Y axes, with a random selection of values that are contained within the 

interval [15–25]. The images are mirrored along the vertical axis during the reflection 

process. Lastly, a random rotation angle of values bounded by the interval [25–125] is 

used to rotate the images right or left during the rotation procedure. Figure 13 provides 

examples of data augmentation on columns (a-d) which specify: original, translated, 

reflected, and rotated images. 



31 

 

 

Figure 13: Data Augmentation images specifying original, translated, reflected, and 

rotated images 

         The feature extraction step is implemented with the help of AlexNet. In addition 

to three fully connected layers and five convolutional layers (which should be trained), 

AlexNet also has max-pooling layers. Several techniques are used in AlexNet to 

alleviate the overfitting issue, such as data augmentation and the dropout approach, 

which sets the output of hidden neurons to zero with a probability of 0.5. The first two 

fully connected layers experience dropout. Features are extracted from our initial 

model by calculating the values of the last fully linked layers with the feature vector 

length equal to 4,096.  

         The feature vectors from the previous stage were divided into two classes: 

healthy and unhealthy, using a variety of classifiers. Decision Trees with max-split of 

20, Linear Discriminants, Support Vector Machines with various kernel functions, and 

K-NN with Euclidian distance k = 1 were among the classifiers employed. 

         The second classification model consists of image preprocessing step and 

feature extraction & classification step, as illustrated in Fig. 14 below. For this model, 

preprocessing step is done precisely the same as in the first model, whereas AlexNet 

is employed for feature extraction and classification of microscopic blood cell images.  
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AlexNet’s architecture is adjusted to fit our task at hand. The final three layers of the 

original AlexNet—the final fully linked, SoftMax, and output layers—were frozen and 

swapped out for three more layers that were more appropriate for our 

classification task and then the next step was to train the network using the 

gathered images. 

 

Figure 14: Diagram of the second classification model 

 

3.10 Dataset 

         Our dataset is made up of 564 blood microscopic images (282 healthy and 282 

leukemic). Figure 15 displays samples from the original dataset. Healthy samples are 

in the first row, and leukemic samples are in the second row. Using an optical 

laboratory microscope and a camera, samples were photographed, and the resulting 

photos were taken for use as a suitable dataset during the learning process. Following 

data augmentation, 2820 photos were obtained. 

 

Figure 15: Samples of the dataset of healthy and unhealthy cells 
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3.11 Implementation and Experiments 

         The models were implemented using MATLAB. In order to evaluate their 

performance, we have listed performance metrics including Accuracy, Precision, 

Recall, Specificity.  

Precision = TP/(TP + FP) 

Recall = TP/(TP + FN) 

Accuracy = (TP + TN)/(TP + TN + FP + FN) 

Specificity = TN/(TN + FP) 

FN stands for false negative, FP for false positive, TN for true negative, and TP for 

true positive. The classifiers for the first and second models were assessed using a 10-

fold cross-validation method. Setting k = 1 and a maximum of 30 iterations were used 

to implement the K-NN classifier. The SVM classifier was employed with kernel 

functions that were cubic, linear, and Gaussian. The dataset was split into 80% training 

data and 20% test data for the second model holdout. During training, the learning rate 

was set to 1 × 10−4, the number of epochs to six, and the batch size to five. The 

NVIDIA GE FORCE 920M 4 GDDRAM graphics processing unit was used for all of 

the trials. The results for both models are shown in Figure 16.  
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Table 1: Performance Metrics for both classification models 

As we can see from the table above, the classifier which outperformed with the best 

results is SVM-Cubic with the highest values in all performance metrics. LD and K-

NN followed with very good and similar results, and the worst performer is DT. If we 

look at the second model results, as illustrated in Figure 16, which employed AlexNet, 

outperforms the first model by scoring higher in all performance metrics. The results 

for both models are shown in the Figure 17 below: 

 

Table 2: Graphical representation of performance metrics results for both models 
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3.12 Discussion 

         Transfer learning is used in both models. In the first model, additional well-

known classifiers like DT, LD, SVM, and K-NN are used for classification, while a 

pre-trained CNN called AlexNet is used to extract the distinguishing characteristics. 

Experiments showed that the SVM classifier was superior with highest results in 

performance metrics. AlexNet is utilized by the second model for both feature 

extraction and classification. This model's experiments proved that it was far superior 

to the first model in all the performance metrics.  

3.13 Overview of Optimized Deep Recurrent Neural Networks 

         Optimized Deep Recurrent Neural Networks, or ODRNNs, are a major 

development in the field of neural network-based sequential data processing. 

ODRNNs are excellent for predicting patterns in historical data, natural language 

sequences, and other sequential data formats because they make use of deep learning 

concepts. ODRNNs are created with optimized architectures, which allows for more 

effective training and prediction than typical recurrent neural networks (RNNs). 

ODRNNs are highly beneficial in a variety of uses, including speech recognition, 

language modeling, and time-series forecasting, due to how they can efficiently 

capture complex temporal relationships through refined parameter optimization 

techniques and innovative network architectures. Moreover, ODRNNs provide 

improved scalability and flexibility, facilitating easy integration with a variety of data 

formats and network setups. Through sophisticated architectural components, 

ODRNNs are capable of adaptably concentrating on appropriate data while effectively 

allocating computational resources.  

         ODRNNs are known for their deep and recurrent architecture, which makes it 

easier to understand complex temporal dependencies in sequential data. An ODRNN 

is fundamentally made up of several recurrent layers, each of which has recurrent units 

that keep track of hidden states in order to record temporal data throughout time steps. 

Because of the connections between these recurrent units, information can move both 

inside and between layers. ODRNN architectures also frequently include optimized 

design choices, including long short-term memory (LSTM) cells or gated recurrent 
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units (GRUs), to address common problems like the vanishing gradient problem and 

facilitate more efficient learning of long-range dependencies. Moreover, ODRNNs 

have the potential to incorporate attention mechanisms, allowing input elements to be 

dynamically weighted according to how relevant they are to the situation at hand.  

         ODRNNs are trained using the backpropagation algorithm, which allows them 

to learn from data and gradually increase their predicting abilities. Backpropagation in 

ODRNNs works by iteratively modifying the network's parameters in order to reduce 

the difference between the desired target values/predictions and the model's 

predictions. The first step in this process is to send input data into the network, which 

then generates predictions and compares them to the ground truth. The resulting 

erroneous is then propagated backward across the network, layer by layer, and its 

gradient with respect to each parameter is calculated using the chain rule of calculus. 

Backpropagation through time, or BPTT, is particularly used in ODRNNs to manage 

the temporal dependencies present in sequential data. By gradually unrolling the 

network, BPTT permits errors to spread/propagated over several time steps. ODRNNs 

continually modify their parameters to increase their predicted accuracy through this 

iterative process of forward propagation and backward error propagation, eventually 

convergent towards the most accurate outcomes for the tasks at hand. 

3.14 Optimized Deep Recurrent Neural Networks for Leukemia Classification 

         By analyzing microscopic images of blood samples, optimized deep recurrent 

neural network (ODRNN) is used to identify leukemia sickness. The recommended 

technique for leukemia diagnosis uses deep recurrent neural networks (DRNNs). The 

red deer optimization algorithm (RDOA) is then applied in order to optimize the 

weight collected by the DRNN. Three publicly available leukemia blood sample 

datasets, AML, ALL_IDB1, and ALL_IDB2, are used to assess the ODRNN model 

for leukemia classification. This section of the paper evaluates the efficacy of the 

suggested model for identification and classification of leukemia using performance 

metrics such as specificity, recall, accuracy, precision, and F1-score. 

         The first step is to obtain the free dataset from the publicly accessible datasets 

online. After obtaining the dataset, the next step is to handle missing values and apply 
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a median filter to pre-process the images of blood cells to smooth them and reduce the 

noise. Following the pre-processing of the images, the suggested model ODRNN for 

leukemia classification needs to be created. For the creation of the model, several 

factors need to be taken into account, such as the number of layers, units for each layer, 

and activation function.. To improve training efficiency, ODRNN presented 

an optimization technique based on RDO, which is used to optimize the above-

mentioned parameters and enhance classification accuracy. Lastly, evaluation metrics 

have been used to evaluate these models, including precision, accuracy, specificity, 

recall and F1-score. A summary of the procedure is given below on Figure 18: 

 

Figure 16: Overview of the methodology 

 

3.15 Dataset 

         The used datasets for this model include C_NMC_2019, acute myeloid leukemia 

(AML), and the acute lymphoblastic leukemia—ALL database. C_NMC_2019 dataset 

is comprised of 15,114 ALL images of 450x450 pixels, from 118 patients. The dataset 

includes all leukemia’s subtypes such as healthy, early, pre and pro. The images in the 

datasets are captured with a Zeiss camera. The AML dataset contains 10,000 images 

of sizes 64x64 pixels that are gathered from patient’s blood smears on AML dataset.  
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3.16 Image Preprocessing  

         To improve the quality of the original image and facilitate the processing of the 

subsequent techniques, pre-processing step is necessary. The median filtering 

technique will be applied to rectify the white blood tumor cells in order to enhance the 

image. A distinct module in OpenCV is dedicated to image enhancement through the 

use of median filtering. Following the median filtering process, blood cell images have 

a smoother appearance, as shown in Figure 3.18. After the first processing, the results 

will be transformed from RGB to HSV. HSV defines the shades in terms of hue, 

values, color, and saturation. One benefit of HSV is that it has shades that are similar 

to how the human eye perceives them. Colors are created by blending primary colors 

from several categories, like RGB. Fig. 19 displays the color conversion results of the 

RGB to HSV conversion. When converting RGB to HSV color space, the blood cell 

image undergoes significant modifications. 

 

Figure 17: Blood cell images, after applying median filter (on the left), after 

converting from RGB to HSV (on the right) 

   

         Make use of the (Th) threshold value to eliminate things from the background. 

A pixel value in an image is exchanged with a MAX value of 255 (white) when it 

surpasses the threshold value of 0. The pixel value is replaced with 0 (black) if the 

shade of grey pixel count is less than the threshold.  In this investigation, the threshold 

value was computed using a slider, and OpenCV's "in range" function was used to 

identify the lowest and highest values. The original data will be hidden in accordance 
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with the pattern after it has been obtained. The thresholding results are shown in Figure 

20. After the thresholding process, white disease objects have been added to the 

previously red blood cell-only image, depicting illness cells. 

 

Figure 18: Blood cell image after thresholding 

 

3.17 DRNN Model Architecture 

         In DRNN the output from a previous phase is used as the input for the current 

phase. Neural networks simulate how neurons function when recognizing patterns. If 

the feed-forward network is a direct cycle, it is referred to as DRNN. Three levels are 

used by the DRNN: input, hidden and output, as illustrated in Figure 21. The buried 

layer is the main component of the DRNN that stores data about the received signal. 

RNN is frequently referred to as DRNN due to the large number of hidden layers it 

has, which vary depending on the issue specification. The problem specification 

determines the number of hidden layers that the DRNN integrates, adding to the 

network's complexity. The labelled datasets used to train the DRNN model contain 

data points that are assigned to distinct leukemia subtypes. The model gains the ability 

to link particular sequence patterns to related subtypes during training. The accuracy 

of the model is determined by analyzing its performance on a different test dataset 

after it has been successfully trained. The following are benefits of classifying 

leukemia using DRNNs: 

A) High accuracy: can classify data with a high degree of accuracy, frequently 

outperforming more conventional machine learning techniques; 
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B) Feature extraction: By locating important features in the data which facilitate 

classification, DRNNs can provide important biological insights into disease 

processes. 

C) Long-term dependencies: DRNNs may identify long-term relationships within 

sequences, providing researchers a more thorough comprehension of the data 

being studied. 

 

 

Figure 19: DRNN-based system architecture 

 

3.18 Results and Discussion 

         The researchers assess the suggested identification and classification model 

using statistical measures linked to diseases, including specificity, recall, accuracy, 

precision, and F1-score. The TP (true positive), FP (false positive), TN (true negative), 

and FN (false negative) rates are used to represent positive classifications. The recall 

of a certain category of leukaemia subtype, conversely, reflects its level of 

predictability. There is agreement between the predicted and actual subtypes of 

leukaemia. While precision is the percentage of correctly classified positive leukaemia 

subtype predictions, the recall and accuracy measurements translate to the F1-score. 

Additional performance measures must be evaluated in order to put the model to the 

test. These measures are as following: 
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A) Accuracy: which specifies the total number of samples that are correctly 

predicted by the trained model out of all predictions made. It is calculated by 

dividing the sum of true positives (TP) and true negatives (TN), with the sum of 

true positives (TP), true negatives (TN), false positives (FP) and false negatives 

(FN).  

B) Precision: which is the ratio of all properly predicted samples to the total number 

of samples classified as positive (either correctly or incorrectly). It is calculated 

by dividing true positives (TP) with the sum of true positives (TP) and false 

positives (FP).  

C) Specificity: the ability of the model to predict a true negative for every available 

category. It is calculated by dividing true negatives (TN) by the sum of true 

negatives (TN) and false positives (FP).  

D) Recall: the ratio of correctly categorized positive samples to the total number of 

positive samples. The recall assesses how well the model can identify positive 

samples. The more positive samples are identified, the higher the recall is. It is 

calculated by dividing true positives (TP) with the sum of true positives (TP) and 

false negatives (FN).  

E) F1-Score: an alternative evaluation statistic which elaborates on a model's 

performance within a class, as opposed to evaluating the model's overall 

performance as done by accuracy. A weighted average of recall and precision can 

be used to interpret the F1 score, which has a maximum value of 1 and a minimum 

value of 0. It can be calculated as follows: 2 x Precision x Recall / Precision + 

Recall.  

         Four leukemia subtypes—ALL, CLL, AML, and CML—are classified using 

blood smear images by the ODRNN model. The models is evaluated using 

performance metrics such as accuracy, specificity, precision, recall, and F1-score. The 

standard dataset referenced in the dataset section was used to calculate 

the statistical metrics for all types of leukemia. Figure 22 demonstrates that for ALL, 

CLL, CML, AML, and healthy persons, the ODRNN is 100% correct. ODRNN 

predicts CLL with 99.91% accuracy. On the other hand, the F1-score, recall, and 

accuracy are all 0.99%. In contrast to ODRNN's CML accuracy of 98.96%, AML 

accuracy is 98.99% with a precision of 0.99%, recall of 1.0%, and F1-score of 1.0%. 
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ODRNN predicts the recall, F1-score, accuracy, and precision for healthy and ALL 

with 100%. 

 

Table 3: Statistical measurements of ODRNN model for classifying four leukemia 

subtypes 
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CHAPTER 4 

METHODOLOGY 

 

         For Convolutional Neural Networks model, during the first stage of 

preprocessing the data, duplicate images were found and removed, which led to the 

removal of about forty-three images from the dataset, leaving 587 images across 

different sources. Next, in order to expedite training time, a scaling technique was used 

to ensure a uniform size of 256 x 256 pixels across all images, taking into account the 

dataset's heterogeneous size distribution and the requirement for uniformity when 

training a CNN model. In addition, images were filtered before processing in order to 

remove noise and improve line patterns. This was accomplished using a 3 x 3 median 

filter and image sharpening.  

         The dataset was then supplemented using data augmentation techniques, which 

increased the size of the training dataset and improved the generalization capacity of 

the CNN model. This required creating altered copies of the images using the 

ImageDataGenerator class in the Keras deep learning neural network framework. 

Various augmentation techniques were used, including flipping, shifting horizontally 

and vertically, random zooming, shearing, and interpolation. Moving on to the 

processing phase, the supplemented data was divided into training (60%), validation 

(20%), and test (20%) sets. It included 1550 cancer images and 1480 normal images.  

         The BasicCNN Model, which featured RGB color format and a resolution of 128 

× 128 pixels for input images, was used to classify leukemia cells. This model 

architecture included fully connected layers trained for binary classification using the 

sigmoid activation function, a fixed filter size (3x3), 128 filters, and a stride of 1. It 

also included three convolutional layers with corresponding max pooling layers, each 

followed by a rectified linear unit (ReLu). After 17 epochs, the model was able to 

identify between leukemia and normal cells in the dataset with an accuracy of 90.99% 

and an 84.97% validation accuracy. 
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         For Transfer Learning model, two classification algorithms are demonstrated to 

differentiate leukemia from healthy tissue in microscopic images. For both models, 

transfer learning was used, using pre-trained deep neural networks. The time and effort 

required to create and train these networks from scratch are eliminated by transfer 

learning. Transfer learning can be applied in two ways, which we have used as two 

approaches in our investigation. Using the values of the net's final fully connected 

layer (FC) to extract features from the input photos is the first approach. A different 

classifier thereafter is used to classify the images. The second technique entails 

removing the high-level layers from the network in order to alter its structure. We call 

this procedure "network fine-tuning".  

         The three primary steps of the first classification model are feature extraction, 

classification, and image pre-processing. Pre-processing involves a number of tasks, 

including scaling the images to fixed sizes, executing data augmentation to 

compensate for the absence of huge datasets, and converting blood images into a red-

green-blue (RGB) model. Feature extraction involves taking each image and extracting 

a collection of features using a pre-trained AlexNet to ensure it may be used in 

classification to distinguish between images that are healthy and those that are 

impacted by leukemia. Many popular classifiers are used in the classification, 

including SVMs, linear discriminants (LDs), decision trees (DTs), and K-NNs. The 

pre-processing of the images and the subsequent feature extraction and classification 

are the only two processes in the second classification model. AlexNet is used in this 

work for both feature extraction and classification of blood microscopic images. 

         For Optimized Deep Recurrent Neural Networks model, the first step was to 

obtain the free dataset from the publicly accessible datasets available online specific 

to leukemia classification tasks. After acquiring the dataset, the next step would be 

to preprocess the data by applying a median filter to smooth the data and remove the 

image noise. The next step would be to define the model architecture for ODRNN. 

This involves specifying the number of layers in the model, the units for each layer 

and activation functions. The suggested model ODRNN for leukemia classification 

needs to be created after pre-processing. A previously trained ODRNN model was 

utilized by our classification model. Lastly, few evaluation metrics including 
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accuracy, precision, specificity, recall, F1 Score have been used to evaluate our model 

on a test set. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1 Results 

         With regards to CNN model, a total of 3030 images were employed in the CNN 

experiment; of those, 60% (1818 images) were used for training, 20% (606 images) 

for validation, and the remaining 20% (606 images) were used for testing the model. 

We examine the statistically measured parameters to gain insight into how successfully 

the model performs. The Basic CNN model's train accuracy is 90.99% after 17 epochs, 

and its validation accuracy is getting close to 85% after 17 epochs. Therefore, we 

expect our model to perform at about 85% accuracy for new data. However, after 

testing the model’s performance on new data, we found out that the test accuracy is 

80.91%. Confusion matrix is used for evaluating our model’s performance, which is a 

list of anticipated outcomes for a classification task. The count numbers show the 

percentage of accurate and inaccurate projections for each class. Because it is feasible 

to display the relationships between the classifier outputs and the real ones, this is a 

great way to present findings in M-class classification issues. In our model there are 

372 leukemia photos expected to be leukemia, 8 leukemia images predicted to be 

normal, 269 normal images predicted to be normal, and 51 normal images predicted 

to be leukemia for the basic CNN model. These accuracy levels show that this 

algorithm performs poorly in the task of predicting normal images but performs 

exceptionally well at predicting leukemia. A performance statistic called precision was 

employed as a metric, which calculates the proportion of positive identifications that 

were actually accurate. It is defined as the ratio of genuine positives to the sum of true 

positives and false positives. Our Basic CNN model has average precision. Recall is 

another metric used, which is computed by dividing the total number of trustworthy 

positive results by the total number of relevant samples, or all samples that should have 

had a positive label. In class 1, the first CNN model has a good recall but a poor 

precision. This suggests that while there are a lot of false positives, most positive 
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examples are correctly identified (low FN). The F1 Score and Support are the final 

metrics employed. The harmonic mean of recall and accuracy is known as the F1 score. 

The F1 score ranges from 0 to 1. It shows how robust the classifier is (a large number 

of cases are identified by it) and how accurate it is (the number of instances it correctly 

classifies). Our model's F1 Score seems to be average, indicating that it properly 

recognizes instances on average. Support is the quantity of samples that fairly 

represent the response in that category. It provides information on the precise numbers 

of each class in the test data. 

5.2 CNN Model Image Distribution 

Data Type Number of Images Percentage 

Training 1818 60% 

Validation 606 20% 

Testing 606 20% 

Total 3030 100% 

Table 4: Image Percentage Distribution for Basic CNN Model 

 

5.3 Basic CNN Model Performance 

Metric Value 

Train Accuracy 90.99% 

Validation Accuracy ~85% 

Test Accuracy ~81% 

Table 5: Model performance for Basic CNN Model 

         With regards to Transfer Learning models, using 10-fold cross-validation, the 

classifiers for the first and second models were evaluated. The K-NN classifier was 

implemented with a maximum of 30 iterations and a setting of k = 1. Three different 

kernel functions were used with the SVM classifier: cubic, linear, and Gaussian. For 
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the second model holdout, the dataset was divided into 80% training data and 20% test 

data. During the training process, the batch size was set to five, the number of epochs 

to six, and the learning rate to 1 × 10−4. For every trial, an NVIDIA GE FORCE 920M 

4 GDDRAM graphics processor unit was utilized. SVM-Cubic had the highest values 

across all performance criteria, it is the classifier that performed best and produced the 

best results. LD and K-NN yielded excellent and comparable outcomes, but DT 

performed poorly. By scoring higher on all performance criteria, the second model, 

which used AlexNet, performs far superior to the first. In both models, transfer 

learning is implemented. In the first model, a pre-trained CNN known as AlexNet is 

utilized to extract the distinguishing features, and additional popular classifiers such 

as DT, LD, SVM, and K-NN are employed for classification. The SVM classifier 

outperformed the others in the experiments, achieving the highest performance 

metrics. The second model uses AlexNet for both feature extraction and classification. 

Experiments with this model demonstrated that it was far superior to the first model in 

all the performance metrics.  

5.4 Transfer Learning Model Evaluation 

Classifier Cross-Validation Kernel Function 

(if applicable) 
 

Performance 

Summary 
 

K-NN 10-fold N/A Excellent 

outcomes 
 

SVM-Cubic 10-fold Cubic Best performance 

overall 
 

SVM-Linear 10-fold Linear Good 

performance 
 

SVM-Gaussian 10-fold Gaussian Good 

performance 
 

LD 10-fold N/A Excellent 

outcomes 
 

DT 10-fold N/A Poor performance 

Table 6: Model Evaluation for Transfer Learning 
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Table 7: Graphical representation of performance metrics results for both models for 

Transfer Learning 

         With regards to ODRNN model, based on images of blood smears, the proposed 

ODRNN model classifies four leukemia subtypes: ALL, CLL, AML, and CML. 

Performance metrics including as accuracy, F1-score, precision, and recall are 

employed to evaluate the model. Using the standard dataset described in the dataset 

description section, the F1-score, accuracy, precision, recall, and specificity for all 

types of leukemia were obtained. We can see that the model has achieved 100%% 

accuracy for classifying ALL leukemia cells and healthy cells. It has achieved 98.99% 

accuracy in classifying AML leukemia cells, 99.91% accuracy in classifying CLL 

leukemia cells, and 98.96% accuracy in classifying CML leukemia cells. As we can 

see, the model has made most correct predictions for ALL leukemia subtype and 

healthy cells. Regarding F1 Score metric, the model has obtained highest values of 

100% for ALL, CLL, CML, and healthy cells, with AML score being 99%. Regarding 

specificity metric, the model has outperformed on detecting ALL, CML, healthy cells 

with 100% score, leaving behind AML and CLL with 98% and 99%, respectively. 

Regarding Recall metric, the model has achieved highest scores on ALL, CML and 

healthy cells with 100%, followed by AML and CLL, both 99%. Lastly for precision 

metric, the model has outperformed on ALL and healthy cells with 100% score, 

followed by CLL and CML with 99% and AML with 98%.  
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5.5 ODRNN Model Performance Metrics 

Leukemia 

Subtype 

Accuracy 
 

F1-Score 
 

Precision 
 

Recall 
 

Specificity 
 

ALL 100% 
 

100% 100% 100% 100% 

AML 98.99% 
 

99% 98% 99% 98% 

CLL 99.91% 
 

100% 99% 99% 99% 

CML 98.96% 
 

100% 99% 100% 100% 

Healthy 

Cells 

100% 
 

100% 100% 100% 100% 

Table 8: Performance metrics for ODRNN Model 

Our findings are derived from an extensive review of existing literature. Additionally, 

we have conducted a thorough analysis using performance metrics, comparing the 

principles and efficacy of various algorithms in leukemia detection. Furthermore, we 

have compiled significant comparative data in tabular form for comprehensive 

evaluation. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Conclusions         

          A cancer known as leukemia attacks the body's blood-forming tissues, such as 

the bone marrow and lymphatic system. Early diagnosis is crucial for the patient to 

receive the best treatment, so we use CNN's power to classify blood smears into normal 

and pathological using Basic CNN model. We looked into the use of deep CNNs in 

this system. By utilizing convolutional neural network classification methods and 

microscopic images of blood samples, a pre-trained model was deployed that could 

identify and categorize the samples into normal and abnormal categories. Deep 

learning, which looks at all of the features in tiny images rather than just focusing on 

changing a few key attributes as a classifier input, was used to build the system. In 

order to verify the precision and dependability of the system, the pretrained model is 

ran on a substantially expanded dataset. Since our dataset was not acquired under the 

same conditions and it was gathered from multiple sources, it required a larger size for 

usage with DL. To solve this issue, data augmentation is employed, and it performed 

effectively for us because the 260 images in our data before augmentation were 

increased to 3030 images after augmentation. Three convolutional layers with max 

pooling layers make up the Basic CNN model. It had an accuracy of 90% and a 

validation accuracy of 84.97%. Because of its limited layers, it performed poorly with 

our dataset. Three pieces made up the detection system's design: 

1) The acquisition component, which is made up of a digital camera mounted 

above the microscope's eyepiece; 

2) A CNN model that has been trained in advance and is in control of the 

classification system; 

3) A graphical user interface that shows the categorization results and the image 

that was taken from the camera. 
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         Leukemia treatment can be greatly aided by early detection. Two classification 

models that differentiate between blood microscopic images with and without 

leukemia were presented in the second part of our comparison section, which is about 

Transfer Learning. Transfer learning is used in both models. In the first model, 

additional well-known classifiers like DT, LD, SVM, and K-NN are used for 

classification, while a pre-trained CNN called AlexNet is used to extract the 

discriminant characteristics. Experiments showed that the SVM classifier was 

superior. AlexNet is utilized by the second model for both feature extraction and 

classification. This model's experiments demonstrated that it was more effective than 

the first model in a number of performance criteria. 

         Four leukemia types—AML, ALL, CLL, and CML—can be classified from 

blood smear pictures using the suggested ODRNN model in our third part of the 

comparison chapter. The diagnosis of leukemia is established utilizing the ODRNN 

model. It suggested a novel DL methodology known as ODRNN to identify leukemia 

through microscopic analysis of blood sample images. The suggested method for 

diagnosing leukemia uses ODRNN and then applies the RDOA to adjust the weights 

that ODRNN has learned. The roaring rates of deer serve as the basis for the RDOA 

optimization process. Three publicly available leukemia blood sample datasets, AML, 

ALL_IDB1, and ALL_IDB2, gathered from UCI Repository, are used to evaluate the 

suggested model. Overall, by utilizing the strength of deep learning and effective 

optimization to extract significant features and patterns from complicated medical 

data, the ODRNN presents a viable method for leukemia image detection. This could 

facilitate early detection, increase the accuracy of diagnoses, and eventually improve 

patient outcomes. Although the ODRNN offers a novel method for identifying 

leukemia images, it doesn't come without drawbacks. The possible complexity brought 

about by the hybridization of DRNN and the RDOA optimization procedure is one 

significant disadvantage. The complex interactions among these elements could result 

in higher processing requirements, which would make the model heavy on resources 

and difficult to use in situations requiring real-time deployment. Furthermore, the 

model's performance is closely linked to the optimization procedure based on deer 

roaring rate behavior, which adds another level of complexity to the dependency on 

the red deer optimization technique. Due to its complexity, the model may be more 
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difficult to read and comprehend the individual contributions of each component, 

which could restrict its applicability in clinical settings. 

Model            Key Features                    Pros                                   Cons      Train  Acc.   Test Acc. 
 

Basic CNN 
Three convolutional layers 

with max pooling 

Simple 

architecture, fast 

training 

Limited layers, 

less effective on 

diverse datasets 

90% 80.91% 

 

Transfer 

Learning 

AlexNet for feature 

extraction, SVM for 

classification (Model 1); 

AlexNet for both feature 

extraction and classification 

(Model 2) 

Improved feature 

extraction, robust 

performance 

Dependent on pre-

trained models, 

computationally 

intensive 

98.7% 

Model 1: 

Higher with 

SVM, Model 

2: Superior 

overall 

Model 1: 

Varies, 

Model 2: 

Superior 

overall 

 

ODRNN 

Deep learning with Red 

Deer Optimization 

Algorithm 

High accuracy, 

effective 

optimization 

High complexity, 

resource-intensive 

High (specific 

value not 

provided) 

High 

(specific 

value not 

provided) 
 

 

Table 9: Comparison table of Basic CNN, Transfer Learning and ODRNN Models 

6.2 Future Recommendations 

         To lessen overfitting and enhance generalization in CNNs, the amount of the 

dataset can be increased by means of data augmentation, synthetic data generation, or 

cooperative data sharing among institutions. To further improve model robustness, 

consider utilizing approaches like batch normalization, dropout, and ensemble 

procedures.  

         Choosing pre-trained models more closely aligned with the medical imaging 

domain can enhance the adaptability and usefulness of features for Transfer Learning 

models. Performance can be optimized while lowering the likelihood of overfitting by 

fine-tuning these models using a hybrid technique that blends transfer learning with a 

modest quantity of domain-specific data.  

         Complexity and training time for ODRNNs can be decreased by streamlining the 

model architecture and concentrating on hybrid strategies that combine CNNs for 

feature extraction with RNNs for sequential data. Better generalization can be ensured 
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by avoiding overfitting and making use of strategies like early stopping and cross-

validation. Furthermore, the resource-intensive aspect of these models can be 

addressed by utilizing cloud-based solutions and investing in computational resources, 

allowing for more feasible and scalable implementations in clinical settings. 
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