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ABSTRACT 

 MORPHOLOGIC ANALYSIS OF BRAIN TUMOR TO PERFORM 

SURVIVAL PREDICTION WITH A FOCUS ON ECCENTRICITY 

WITH SINGULAR VALUE DECOMPOSITION 

 

Nako, Megi 

M.Sc., Department of Computer Engineering 

Supervisor: Assoc Prof Dr. Arban Uka 

 

Advancments in imaging field have evolved enough to make the detection of 

tumor task more accurate through 3D MRI but at the same time more time consuming 

and complex for medical experts. Therefore, the need for a computational logic unit 

which never fails, process the information fast and never gets tired arises. This thesis 

will cover a whole mechanism of brain tumor severity determination starting from 

segmentation process till evaluation of eccentricity and volume. Segmentation step is 

performed with a 3D U-net whith some tweaked hyperparameters such as dropout 

values and learning rates to achieve better performance for the segmented parts. The 

accuracy of segmentation is reported to be 99%. Eccentricity and volume are measured 

over the segmented region. Estimation of eccentricity is calculated based on the energy 

values from the decomposition of segmented tumor in SVD where the sigma, or the 

energy matrix holds the values of which their ratio combined gives the eccentricity 

value.  The dataset is part of the BRATS challenge 2020. 

 

Keywords: Brain Tumor, U-net, segmentation, eccentricity, volume, SVD, severity, 

degree 
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ABSTRAKT 

 

ANALIZA MORFOLOGJIKE E TUMORIT TE TRURIT DUKE 

PERFORMUAR PARASHIKIMIN E MBIJETESES ME NJE FOKUS 

NE EVALUIMIN E EKSENTRICITETIT ME DEKOMPOZIMIN E 

VLERES SINGULARE   

 

Nako, Megi 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Assoc Prof Dr. Arban Uka 

 

Avancimet ne fushen e imazherise kane evoluar majftueshem per te bere 

detektimin e tumorit me te sakte nepermjet MRI ne formatin 3D por, ne te njejten kohe 

dhe me shume komplekse dhe kohe konsumuese per analizat qe ekspertet e mjeksise 

kryejne me sy te lire. Ndaj, nevoja per nje njesi llogaritese e cila nuk lodhet, proceson 

informacionin ne nje menyre shume te shpejte dhe eficente, rritet dita dites. Kjo teze 

do te mbuloje te gjithe mekanizmin qe percakton severitetin e tumorit duke nisur nga 

procesi i segmentimit deri ne matjen e eksecintretit dhe volumit. Procesi i pare, ai i 

segmentimit eshte kryer me ane te nje rrjeti U-net 3D me disa parametra te ndryshuara 

si per shembull vlerat e dropout, normat e mesimit per secalin nga algoritmat e 

perdorur te aktivizimit per te arritur nje performance me te mire me modelin e 

segmentimit. Saktesia e segmentimit raportohet te jete 99%. Eksentriciteti dhe volume 

jane matur ne baze pjeses se segmentuar. LLogaritja e eksentricitetit eshte kryer ne 

baze te llogjikes se matrices se energjive gjate singular value decomposition (SVD). 

Matrica energjitke, sigma, mban vlera, reporti i te cilave kombinuar jep eksentricitetin. 

Dataseti i perdorur eshte pjese e sfides BRATS 2020. 

 

Fjalët kyçe: Tumori i trurit, U-net, segmentizim, eksentricitet, volume, SVD, severitet
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CHAPTER 1 

INTRODUCTION 

   

1.1 Brain Tumor segmentation and classification challange 

1.1.1 Understanding the need to automate brain tumor classification process 

The brain is responsible to regulate and maintain in the proper functioning state 

all other parts of the human body. Each part of the brain is makes it possible for a 

particular organ to function the way that it functions. Starting from cognitive 

functions, which make the humans seperable from other life forms, to hormonal 

productions which help the body regulate vital functions.  

Brain Tumor is the growth of abnormal brain cells in different regions. This 

unneseccary mass growing on the brain makes the normal cells of that region to have 

a hard time processing the information or sometimes due to mutation of connections 

to become unable to perform the vital task assigned to that unit. Depending where 

the malicious mass is developing, different process of the brain could be affected by 

a brain tumor. 

Brain, itself, is a soft tissue, as well as the tumor, so this makes the detection 

process a little harder while performed on a limited data range. [1] This is based on 

the fact that trying to detect a tumor on a 2D image will not be totally accurate since 

the tumor can appear on different layers of the brain. Considering the fact that this 

detection will be performed or evaluated by a human, makes this more time 

consuming and human error prone as a task. Therefore, the need to develop methods 

which capture 3D data from brain tissue with different technologies or filter contrast 

ratios, arises.  3D MRI has been already developed and will be introduced on the 

next section since we are going to work with this type of dataset. [8] 
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Detecting on a 3D structure the malicious tissues of brain through human eyes 

becomes an even more consuming time and very error prone. This happens because 

the medical person can be tired and inaccurately percept the good or malicious cells 

in the brain, especially when the tumorial mass is very small. [10] Early detection of 

brain tumor increases the chances of survival for the individual suffering from this 

disease. 

Creating a computational process which is able to detect very accurately the 

tumorial mass and classify its severity based on 3D MRI datasets will overcome all 

the challenges that appear on the basic process performed by humans on brain tumor 

detection. This process will be divided into two main steps which are: the 

segmentation of the tumorial volume, the classification of the tumor sverity based 

on the eccentricity, volume and position. 

    

   Figure 1. Brain Tumor Segmentation 
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1.1.2 Screening of Brain Tumor 

Brain tumor imaging plays a crucial role in the diagnosis, treatment planning, 

and monitoring of patients with neurological disorders. Various imaging techniques, 

including Magnetic Resonance Imaging (MRI) [4], Computed Tomography (CT) [5], 

and Positron Emission Tomography (PET) [6], are employed to visualize and 

characterize brain tumors. In recent years, the integration of three-dimensional (3D) 

imaging has significantly enhanced the accuracy and precision of brain tumor 

assessments. 

 

 

1.1.2.1 Magnetic Resonance Imaging (MRI) 

MRI is a non-invasive imaging technique that utilizes magnetic fields and radio 

waves to generate detailed images of the brain. It is particularly valuable for soft tissue 

differentiation and is widely used in brain tumor imaging. The introduction of 3D MRI 

techniques, such as volumetric imaging and 3D reconstructions, has provided 

enhanced spatial resolution and improved anatomical visualization. Advanced MRI 

sequences, including T1-weighted, T2-weighted, and contrast-enhanced imaging, 

contribute to a comprehensive assessment of tumor morphology and surrounding 

structures. [3] 
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1.1.2.2 Computed Tomography (CT) 

CT imaging utilizes X-rays to create cross-sectional images of the brain. While 

CT is not as sensitive as MRI for soft tissue differentiation, it excels in detecting 

calcifications and bone involvement. The incorporation of 3D CT imaging has 

improved spatial resolution, allowing for a more detailed assessment of tumor location 

and size. Contrast-enhanced CT scans provide valuable information about 

vascularization within the tumor. [4] 

 

 

    Figure 2. CT scan of brain 
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1.1.2.3 Positron Emission Tomography (PET) 

PET imaging involves the injection of a radioactive tracer that emits positrons, 

which are detected by a PET scanner. This technique provides functional information 

about metabolic activity in the brain. When combined with 3D imaging, PET allows 

for precise localization and characterization of brain tumors based on their metabolic 

activity. PET-MRI and PET-CT fusion imaging further enhance the diagnostic 

capabilities by combining anatomical and functional information. [5] 

 

Figure 3. PET brain scan 

The integration of 3D imaging techniques, such as volumetric reconstructions, 

has significantly improved the accuracy and diagnostic capabilities of brain tumor 

imaging using MRI, CT, and PET. These advancements contribute to a more 

comprehensive understanding of tumor characteristics and aid in treatment planning 

for better patient outcomes. Ongoing research continues to refine these imaging 
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modalities, providing clinicians with increasingly sophisticated tools for the 

management of brain tumors. 

1.1.3 Brain Tumor Segmentation  

Brain Tumor Segmentation is the task performed by a machine with the 

purpose of differentiating between the healthy brain tissue and tumor tissue. 

This is considered to be the most important step because it extracts all the 

features of the tumor part which are then needed to be calculated and analysed 

for different processes. Without segmentation process it is not possible to 

classify the type of tumor or either perform the survival prediction. A good 

segmentation ensures also better results for other processes. 

We can deal with two types of datasets regarding the MRI: 

- 3d datasets – one brain image has 3 dimensions and might be segmented 

with a 3d model such as 3d unet [27]. Basically, this segemtns the full 

volume of the brain. 

 

 

Figure 4. 3d Segmented Brain tumor [27] 
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- 2d dataset – one brain image is divided into different slices and a 2d model 

segments the parts. [27] 

 

Figure 5.2d Segmented Slice Brain Tumor [27] 

 

1.1.4 Brain Tumor Classification  

Brain Tumor Classification, on the other hand, deals with the task of classifying 

the tumor regarding its severity into classes such as belign or malignant.[21]. A tumor 

is considered benign if it is slow growing and does not damage too much the tissues 

which are nearby. Malignant tumor is considered when the tumor is very aggressive 

and is spreading very fast from one place to another. Other type of classification might 

deal with determination if the tumor is spreading or not based on the eccentricity. A 

large ratio of eccentricity means the tumor is spreading faster and is more dangerous. 

There exists also another type of classification which divdeds the tumor based on three 

classes which are meningioma, glioma and pituitary.  The last classification I 

mentioned is used more widly.  

Meningioma – is a type of tumor that forms from the membranes that are found 

around the brain and spinal cord. Usually, this type of tumor is slow growing. 

  



8 

 

 

Glioma – This tumor is formed from the supporting brain cells, which are named glial 

cells. The tumor is named after the glial cells. Depending on the stage of the tumor, it 

can be both benign and malignant. 

Pituitary – This tumor is named because of its location. It is found at the base of the 

brain, and can start to grow from the pituitary gland which is responsible for producing 

hormones and regulating critical body functions. 

 

 

Figure 6. Types of tumors [28] 

 

Even though in my thesis I won’t be focused on the classification, I am just providing 

a general overview of all the tasks that can be performed for brain tumor.  
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1.1.5 Brain Tumor Survival Prediction 

Dealing with brain tumor datasets there is another task that we can perform. Brain 

tumor survival prediction [26] means that after we develop, train and test a good model 

whith different machine learning technique, we can predict the lifespan of a patient 

with that specific brain tumor. In some other cases with the model developed it is 

possible to determine if a patient is going to live healthy with just some medication or 

if the tumor cannot be contained and the future of the patient will not be very long 

unfortunately. 

 

 

 

Figure 7. Brain Tumor Survival Prediction pipeline [29] 
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1.2 Thesis Objective 

 

The main objective of this thesis is to create a complete automated process, 

starting from data preprocessing, segmentation and survival prediction of brain tumor 

based on its eccentricity and volume as a hypothesis and comparing the results with 

the already survival prediction machine learning results. Other objectives include the 

definition of a golden ratio of hyperparameters for segmentation process and the 

calculation of eccentricity for 3D regions by using the idea of Single Value 

Decomposition (SVD) where the sigma decomposed matrix has information about the 

energy levels of the segmented tumor. If the eccentricity of the tumor is high, the ratio 

between the energy levels of different values of the sigma matrix will also be high. 

Therefore, it is safe to deduce logically that SVD can be a good way to measure the 

eccentricity of a volumetric part. Without experimenting, the logical deduction does 

not come to life so later on we will review the experiments.  

This is a hypothesis of this thesis which we are trying to defend.  

1- Sigma matrix created from the singular value decomposition can be used to 

measure the eccentricity. 

2- Eccentricity ratio can be a good indicator for tumor severity. 

3- Analysis through eccentricty ratio combined with the volume measurement 

of the segmented brain tumor can predict the survival of a patient with a 

brain tumor.  
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1.3 Scope of works 

 

The dataset that this thesis will be experimenting on is BraTS 2020 dataset which 

includes training and validation data in order to test the trained system until now. It is 

a 3D MRI dataset where there are around 370 brain tumor patients evaluated for this 

challenge. The data comes in 4 different formats, FLAIR, T1, T1C, T2. Since the most 

informative layers are FLAIR, T1C and T2, [9] we combined the information of those 

layers into one multidimensional matrix in order to reduce the computational 

complexity. The mask for all the brain tumor were provided for the testing data. 

The scope of this thesis includes the brain tumor segmentation with U-net network 

with different hyperparameters in order to try to achieve a state of art. The accurate 

segmentation is very important for the whole process since the calculation of volume 

and eccentricity are made based upon the segmented area.  

Brain tumor severity classification based on eccentricity and volume will be calculated 

with the introduced hypothesis of calculating the Singular Value Decomposition sigma 

matrix will provide information about the energy levels of the volumetric segemented 

part ratio of which will give us the eccentricity. 

The next step after we get some results of the eccentricity will be to see if there can 

exist a coorelation between the survival prediction and results from eccentricity and 

volume. 
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1.4 Organization of the thesis 

This thesis is divided in 5 chapters. The organization is done as follows: 

In Chapter 1 we are dealing with the problem statement, thesis objective and 

scope of works.  

Chapter 2, includes the literature reviw starting from the segemtation process 

until the different approaches for brain tumor classification.  

Chapter 3, consists of the methodology followed in this study explained in an 

easy to understand and straight forward way with explanation in detail of all the 

experiment trials.  

In Chapter 4, will be shown all the results of the experiments done by following 

the methodology explained in the previous chapter.   

Chapter 5, conclusions and recommendations for further research are stated.  
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CHAPTER 2 

LITERATURE REVIEW   

2.1 Introduction   

Brain tumor segmentation from MRI 3D dataset has become a very well-known 

challenge since 2012 when the first brats dataset started and since then every year a 

new challenge is posted which selects the best results. Up until 2015 there was no 3d 

data so even though this literature review is information about predecessor challenges 

of 2015 they are just an informative view on how much the science has been developed 

since then. Also, across all papers it was noticeable that the use of neural networks and 

deep learning techniques started to be used mostly in 2017 and later on. [15] 

The difficulty to segment brain tumors comes from the fact that the brain tissue is 

very soft and has a large volume while the tumor can be anywhere on the brain and 

have different and unpredictable shapes and sizes. At this complexity level we can also 

add that the data captured for the dataset are in 4 different formats so there is the need 

to combine the information coming from all the formats, so we can call this a 

multimodal segmentation. [13] 

Brats challenge ensures that all the data have their own masks. [17] The process 

of labeling the dataset is very hard and time consuming since it requires the labeling 

to be done on 3d volume. The results were mainly compared with dice score/ loss and 

accuracy over two most important regions which are the core of the tumor and the 

overall tumor area. The best result, even though on 2d data, was around 0.65 for the 

whole tumor for dice score. [18] Comparing this incredible result with 3d challenges 

reduces the efficacy of this dice score to the best it can perform on around 0.7 as 

reported by many papers with their chosen cnn or unet mostly.  
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All the papers had experimented a lot with different networks and hyperparameters 

but they all seem to have converged on the usage of neural networks, specifically u-

NET or CNN or modified versions of those algorithms. The two most used learning 

algorithms were SDG and Adam. The best learning rate for Adam was around 0.0001 

and for sdg around 0.4. Anyway, here is a summary of the information that I could 

find and read for 3d MRI brain tumor segmentation. [22] 

Performing the segmentation is a very challenging task especially on 3D data but 

it has to have a higher purpose. In our case, the topic is how can we determine the 

eccentricity and the volume of the tumor itself from the segmented area and if those 

measurements are relevant to the determination of the type of the tumor such as 

malignant or benign. There are not many studies that suggest that the eccentricity or 

volume of the tumor has a big indication for this type of tumor classification but rather 

its placement on the brain. [24] Even though it is never claimed that the volume or 

eccentricity are non relevant to tumor classification therefore it seems a good study 

topic. [23] 

2.2 BRATS dataset challenge 

BRATS dataset challenge is a yearly challenge where a new dataset of brain tumor 

together with some survival data is uploaded on the official MICCAI page [30]. This 

challenge has brought many advancements in the field of brain tumor segmentation, 

classification and survival prediction due to all participants of this challenge being 

very competitive of who is building the better model. All the experiments done were 

documented and only some of them resulted to be the most successful ones. As 

mentioned also in the introduction, the BRATS dataset had only 2D datas up until 2015 

and after that time it provided to all challangers also a 3D dataset. All of the images 

are taken from MRI scans and only some of them are artificially generated.  
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Model Description 

Dice 

Score 

(HGG) 

Dice 

Score 

(LGG) 

Sensitivity Accuracy Source 

3D U-Net 

Fully convolutional 

network with 3D 

convolutions 

0.85 0.75 0.87 0.98 [31] 

V-Net 
3D convolutional network 

with residual connections 
0.82 0.70 0.85 0.90 [32] 

DeepMedic 

3D convolutional neural 

network with multiple 

pathways 

0.80 0.72 0.83 0.88 [33] 

SegAN 
Generative adversarial 

network for segmentation 
0.78 0.68 0.81 0.86 [34] 

Attention 

U-Net 

U-Net variant with attention 

mechanisms 
0.84 0.74 0.86 0.91 [35] 

nnU-Net 

Self-configuring method for 

biomedical image 

segmentation 

0.89 0.78 0.90 0.93 [31] 

No New-

Net 
Self-configuring nnU-Net 0.89 0.79 0.91 0.94 [31] 

3D-ESPNet 
Efficient neural network for 

semantic segmentation 
0.77 0.66 0.79 0.85 [36] 

Cascaded 

Anisotropic 

Network 

Network using anisotropic 

convolutions 
0.83 0.73 0.85 0.90 [37] 

Mixed-

Scale 

DenseNet 

Dense network with mixed-

scale convolutions 
0.81 0.69 0.82 0.88 [38] 

Table 1. 3D Segmentation comparison on different models 
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Table 2. 2D Segmentation models comparisons 

Model Description 

Dice 

Score 

(HGG) 

Dice 

Score 

(LGG) 

Sensitivity Specificity Source 

U-Net 

Fully convolutional 

network with 

encoder-decoder 

structure 

0.79 0.69 0.82 0.88 
Ronneberger et 

al., 2015 

SegNet 

Encoder-decoder 

architecture with 

pooling indices 

0.75 0.65 0.78 0.85 
Badrinarayanan 

et al., 2017 

FCN 

Fully convolutional 

network for end-to-

end training 

0.72 0.62 0.75 0.83 
Long et al., 

2015 

DeepLabv3 

Atrous spatial 

pyramid pooling in 

CNN 

0.77 0.67 0.80 0.87 
Chen et al., 

2017 

PSPNet 
Pyramid Scene 

Parsing Network 
0.76 0.66 0.79 0.86 

Zhao et al., 

2017 

Attention 

U-Net 

U-Net variant with 

attention 

mechanisms 

0.81 0.71 0.84 0.89 
Oktay et al., 

2018 

ResUNet 
U-Net with residual 

connections 
0.80 0.70 0.83 0.88 

Zhang et al., 

2018 

DenseNet 

Convolutional 

network with dense 

blocks 

0.78 0.68 0.81 0.86 
Huang et al., 

2017 

SegAN 

(2D) 

Generative 

adversarial network 

for segmentation 

0.74 0.64 0.77 0.84 
Xue et al., 

2018 
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Metrics of the tables are explained on this section: 

Dice Score HGG – the dice score metric which measures the similarity of two samples 

based on a high-grade glioma which are very aggressive (malignant) brain tumor type 

Dice Score LGG – is the dice score metric which measures the similarity of two 

samples based on the low-grade glioma for tumors which are less aggressive (maybe 

begnin) 

The formula to measure the dice score is: 

 

 

Where A represents the predicted output of the model, basically the segmented part of 

the brain tumor and B the mask or the ground truth for the segmentation. 

Sensitivity – can also be better known as recall or the rate of the true positive values 

 

Specificity – true negatives rate which is measured with the formula below 
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2.3 Brain tumor segmentation difficulties 

Segmenting the brain tumor is a very difficult task due to the soft structure of the brain 

itself and the fact that the tumor is really similar while it is spreading in the brain, 

therefore feature extraction is very hard without having any harsh details which we 

can select in an easier way. On this section we will elaborate a little bit more explicitly 

most of the elements that make this task more difficult than other tasks.  

First of them is heterogeneity of the tumor which means that a tumor can be in different 

parts of the brain, in different shapes and textures. Since we are dealing with a high 

variety of tumors the task migh become extreamly difficult. 

Since the tumor can be very heterogenous, one type of MRI is not enough, therefore 

different types of MRI images have been captures such as FLAIR, T1, T2, T1C. All 

these modals need to be combined in order to provide enough information to the model 

which is segmenting the brain. 

Natural tumors can be very small and this brings a class imbalance which can be fixed 

later on the coding process. This happens due to the fact that the background class will 

have more data and it will produce a class imbalance since it is comparingly very large 

to the parts of the tumor. 

Providing the ground truth is also a very time-consuming task especially for the 3d 

datasets. This can bring many inconsistencies in the segmentation which can lead in 

poor results. 

One of the last points we would like to mention on this thesis is that the brain has a 

very complex structure such as tissue, cavities, edemas and therefore it is very tricky 

for the model to predicit for example if the white region belongs to a tumor or to a 

healthy brain cell, 
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2.4 Eccentricity and Volume measurment 

Measuring eccentricity and volume in 3D segmented MRI images of brain tumors 

is a vital aspect of medical image analysis. Eccentricity, indicating the elongation or 

asymmetry of tumor shapes, provides insights into their irregularities. Simultaneously, 

volume quantifies the spatial extent of tumors in three dimensions. In the context of 

MRI segmentation, advanced algorithms identify and delineate tumor regions, 

allowing for the extraction of eccentricity and volume metrics. Integrating these 

measures enhances the characterization of brain tumors, aiding in accurate diagnosis 

and treatment planning for healthcare professionals working with MRI-derived data. 

[25] 

2.4.1 Eccentricity 

Eccentricity is a measurement which usually refers and shows how much of an 

ellipsioid or elongenated is a specific shape. In the perfect illustrating example, 

consider if we have a perfect circle. All the points in this circle have the same distance 

to reach the center (we are refering to the circle as just a line and not a surface) 

therefore we can say that the eccentricity of this perfect circle is 0. Now we want to 

streach this perfect circle on one or two sides. Supose, we have elongated the circle 

into an ellipse which now means that not all the points have the same distance from 

the center therefore the eccentricity value goes nearly to one. 

 

Figure 8. Eccentricity visualization 
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2.4.1.1 Eccentricity related to brain tumor 

Since now we are familiar with the term of eccentricity, we can rasie the question, 

can we actually correlate the brain tumor shape to see its severity or even for survival 

prediction with its eccentricity. According to some researches made specifically on the 

reference [39] it is said that adding information about the shape and the volume of the 

tumor improves much the process of prediction of survival or even the classification. 

Eccentricity regarding the medical field of the tumors, measures if the tumor is spread 

out into the organ or contained. If the eccentricity value is low, it will mean that the 

tumor is contained and if it is high the tumor will be more aggressive and spread out. 

The last sentence is just a hypothesis which will be thrown here just to relate to 

eccentricity and why we are explaining it. 

 

2.4.1.2 Eccentricity formula 

 

Figure 9. Eccentricity for different possible curvatures 
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Conic 

Section 
Equation Eccentricity 

Linear 

eccentricity 

Circle  0 0 

Ellipse 

 

  

Parabola  1 Undefined(∞) 

Hyperbola 

 

  

Table 3. Eccentricity formula for different shapes 

 

As it can be seen from the table, eccentricity could be a good measurement but doesn’t 

have an exact formula especially when we are dealing with images, no matter if they 

are 2d or 3d. Therefore, it is safe to ask could there be any other type of measurement 

tool that can allow us to find the eccentricity ratio. 
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2.4.1.3 SVD 

 

SVD stands for singular value decomposition and is a linear algebra method which 

can decompose a matrix into three parts. Each of those three parts represent a 

characteristic of the original matrix. They are calculated based on the eigen values of 

the matrix. V and D parameters define the rotation and angle of the shape axis in the 

space. Meanwhile the parameter S is the one that can be more interesting to us. The S 

matrix is a sorted diagonal matrix which can give information about the energy 

distribution of the matrix we are decomposing.  

 

Figure 10. Singular value decomposition representation. 

Ideally and theoretically when all elements of the matrix are equally distributed, 

the elements of the S matrix should be equal and the energy level of the first element 

should be 1/n (where n is the number of diagonal entries). On the contrary if the shape 

is not eccentric it means that the ratio of the first element compared to the sum of all 

other elements should be another value than what it takes to be eccentric. 
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2.4.1.2 Sigma Matrix – point of interest 

  

According to different mathematical and computer studies it is proven that the 

sigma matrix which is calculated by the singular value decomposition has information 

about the energetic values of an object. [40] There are different experiments to prove 

this even practically. Sigma matrix can be used for noise reduction on image 

processing process by basically eliminating all the small value matrix entries and 

reconstructing the first matrix whith the cleaned sigma matrix. This operation resulted 

in a noise reduced image. [41]  

 

Figure 11. Example of a sigma matrix of a picture 

 

Figure 12. Example of the small values removed from sigma to denoise the picture 

  



24 

 

 Sigma matrix can also be used in the dimensionality reduction in machine 

learning when we are dealing with too many parameters. If we cannot determine which 

features are better, we can apply the singular value operation and get the sigma matrix. 

We can clean this sigma just like in the case of image denoising and then use only the 

features which are really meaningful for that model. 

2.4.1.4 Sigma Matrix Relation with brain tumor 

By the examples on the previous sections, we saw that sigma matrix holds the 

information about the most concentrated with information regions therefore we can 

deduce that if we put a slice of a segmented brain tumor under the singular value 

decomposition operation, it will produce a sigma matrix which will have information 

and high values only if a big information or energy is occurring there. Saying this, the 

ratio of the sigma values will give if the tumor is spreaded out on the slice or is 

contained. 

2.4.1.5 Measuring the tumor volume: 

Figure 13. Volume determination by voxels 

Measuring tumor volume in 3D MRI images of brain tumors can be 

accomplished through various methods, including voxel counting, bounding box 

calculation, and integration of pixel intensity within the segmented region. Advanced 

techniques involve 3D surface mesh integration, Delaunay triangulation, and level-set 

methods for more accurate volume estimations. Additionally, deep learning-based  
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segmentation using convolutional neural networks offers automated and precise 

measurements of tumor volumes directly from 3D MRI data. The choice of method 

depends on factors such as desired precision, computational efficiency, and the nature 

of the segmented tumors, often leading researchers to employ a combination of these 

approaches for comprehensive volume assessment. [23] 

2.5 Traditional Approaches and Transition to 3D 

Early efforts in brain tumor segmentation mainly relied on two-dimensional 

(2D) techniques, which had limitations in capturing the complete spatial extent of 

tumors. The shift to 3D models, exemplified by Anderson et al. (2016), marked a 

significant change. By incorporating volumetric information, 3D models showed 

improved sensitivity to tumor morphology and enhanced segmentation accuracy. The 

adoption of 3D models led to a notable increase in segmentation accuracy, with the 

Dice coefficient improving from 0.65 to 0.78 compared to traditional 2D methods. 

2.4 Volumetric Convolutional Neural Networks (V-ConvNets) 

The rise of deep learning architectures has expanded into the 3D domain, 

leading to the development of Volumetric Convolutional Neural Networks (V-

ConvNets). Research by Zhang and Wu (2018) demonstrated the effectiveness of 3D 

CNNs in capturing intricate spatial features, resulting in superior segmentation 

accuracy. The use of V-ConvNets showed significant improvement, achieving a Dice 

coefficient of 0.85, highlighting the ability of 3D CNNs to capture complex spatial 

patterns within brain tumors. 

2.5 Multimodal 3D Fusion 

Multimodal imaging is commonly used in brain tumor diagnosis, and 

integrating 3D models with multimodal MRI data has gained significant attention. Li 

et al. (2020) explored combining 3D models with T1-weighted, T2-weighted, and 

FLAIR images, achieving a more comprehensive understanding of tumor 

characteristics. The fusion of 3D information across these modalities resulted in a 
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substantial improvement in segmentation accuracy, with a reported Dice coefficient of 

0.81 compared to 0.74 when using individual modalities. 

2.6 Graph-Based Approaches 

Graph-based models, like graph neural networks (GNNs), have become a new 

method for 3D brain tumor segmentation. Smith and Johnson (2021) showed how 

GNNs can capture spatial relationships between voxels, which improved segmentation 

accuracy in the BraTS 2020 challenge. The use of GNNs in a 3D context demonstrated 

strong performance, achieving a Dice coefficient of 0.79 in the BraTS 2020 challenge, 

surpassing traditional methods. 

2.7 U-Net Architectures for 3D Segmentation: 

The U-Net architecture, recognized for its encoder-decoder structure, has been 

widely used for 3D brain tumor segmentation. Research by Ronneberger et al. (2015) 

introduced the U-Net design, highlighting its capability to capture contextual 

information and intricate spatial features in 3D volumes. In the BraTS 2016 challenge, 

the use of 3D U-Net architectures showed significant improvements, achieving a Dice 

coefficient of 0.88. This result emphasized the effectiveness of U-Net in capturing fine 

details and irregular shapes of tumors in 3D MRI scans. This is said to be the model 

architecture up until now. 

 

2.8 CNNs for 3D Brain Tumor Segmentation 

Convolutional Neural Networks (CNNs) have been used for 3D brain tumor 

segmentation, demonstrating their ability to adapt to volumetric data. Chen et al. 

(2018) presented a 3D CNN designed for automated brain tumor segmentation, which 

utilizes volumetric patches to capture spatial relationships. In the BraTS 2017 

challenge, this CNN architecture showed strong performance, achieving a Dice 

coefficient of 0.85. This result underscored the robustness of CNNs in managing 

different tumor types and capturing complex spatial patterns. 
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Table 4. Results comparison between different model for segmentation performance 
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2.9 Survival Prediction 

 Survival prediction in brain tumor is a task which referres to the process of 

segmenting and after that of being able to predict the time that a patient with a specific 

tumor has to live or even just being able to tell if this patient is going to live or not. 

 As mentioned above, the prediction is made based on the segmented image 

therefore we need to have a perfect and non errornes segmented tissue to predict the 

survival. Since the segmentation was explored previously, I will not go in details here 

and just skip to explaining some prediction models. 

The pipeline is very simple just as shown on the picture below: 

 

 

 

Figure 14. Piple for survival prediction 

Feature extraction 

 

Figure 15. Features which are extracted [44] 

 

Feature 

extraction 

Feature 

selection 

Survival 

Days 

Regressor 
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One network example that will also be used on the experiments part of this thesis will 

also be the network shown below: 

 

Figure 16. Survival Prediction network 

As we can see, this network has all the pipeline stages that we need to perform the task 

of the brain tumor survival prediction. Firstly, it gathers the information from all 

picture modals such as flair, t1, t2, and t1c. Then as we can see it goes into some 

convolution steps and at the end it concatenates the age input from the ground truth 

data and at the end it predicts the days. 

The reported accuracy using this model on an experimented paper and github was 

reported to be around 55%. [45]  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Brain Tumor Segmentation 

 3.1.1 Data Preprocessing 

 

 The BraTS 2020 dataset contains 4 format of data which are FLAIR, T1, T1C, 

T2 and the mask which serves as a ground truth for training the model. The most useful 

information, the images where the features are most prominent and dominant resulted 

to be only FLAIR, T1C, T2 so we dicarded the information we get from T1 due to its 

low information provided. This helps also with the reduction of computation 

complexity. 

Figure 17. BRATS 2020 Dataset visualization 
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A combination of FLAIR, T1C, T2 into a multimatrix was used in order to 

combine the whole information from all the layers in the same time. By combining the 

data formats (can be usually found with the term modals) we create a multimodal 

structure which has feature from 3 different sources.  

 

  

Figure 18. The datas to be used 

This multimatrix then is cropped in the format 128 x 128 x128 and comverted 

from a nii file to a numpy array which will make the computational easier. A min-max 

scaler was used to scale those images while cropping them to the desired format. We 

also used a Standard scaler (usually found by the name of Z-score scaler) just for the 

sake of performance. 

3.1.2 Network 

 The network we used was a 3D U-net network. On this network we tried to 

tweek the parameters such as the pooling technique from Max Pooling to Average 
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Pooling and the activation function even though the one who worked better was Max 

Pooling technique and relu function. The dropout values were also changed in order to 

experiment and see which produces the best result. 

 

Figure 19. The network model we are using 

3.1.3 Hyperparameters 

 To conduct the best training, we tried different batch sizes ranging from 2 – 16. 

It is advised that for large datasets, especially the 3D datasets, to have a smaller batch 

size since the computational complexity is very high and the accuracy of accuracy, 

loss and iou score is better measured when the batch size is smaller.  

 The learning rate and learning function are a big indicator on the segmentation 

process. This thesis will exploit two learning rates for our model. Adam learning rate 

with different parameters in range from 0.01 to 0.00001 and SDG learning algorithm 

with parameters ranging from 0.1 to 0.6. 

 Activation layer for inner nodes of the network we tried and most commonly 

we kept the Relu and for activation function of the outer layer we used a sigmoid 

function. 

3.1.4 Visualization 

 In order to visualize our resuls for the segmentation process we ploted the 

original image divided on random slices together with the corresponding mask and 

segmentation. For each brain tumor segmentation there are 128 layers which are 
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impossible to compare one by one, therefore we created gif imgaes and small vidoes 

in order to compare all the slices and the segmented data in the same time one by one. 

Figure 20. Example of segmented result 

Figure 21. Generated gifs to compare all layers of mask and prediction 

3.2 Shape Parameters Measurment 

3.2.1 Volume measurement 

 The process of measuring the volume of the segmented 3D segmented brain 

tumor can be divided into simple steps such as: 
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1 – Voxel counting: Calculate the volume by counting the number of voxels 

within the segmented tumor region. Each voxel represents a three-dimensional 

pixel in the dataset. 

2 – Finding the ratio between a voxel and a real-life tumor: Convert voxel count 

to physical units (e.g., cubic millimeters or cubic centimeters) by multiplying 

the voxel count by the volume of each voxel. The voxel dimensions are usually 

available in the DICOM header or can be determined from the acquisition 

parameters. 

Example calculation: 

If the voxel dimensions are 1 mm x 1 mm x 1 mm, and the segmented region 

contains 5000 voxels, the tumor volume would be 5000 mm^3 

3.2.2 Surface Area 

Marching Cubes Algorithm 

Surface area parameter is calculated based on the 3D segmented brain tumor. 

The method of calculation is marching cube algorithm. This algorithm iterating every 

voxel of the image and creats a cube for every voxel and its 7 adjacent neighbours. 

This means that the cubes will intersect each other. here are 256 possible ways (or 

configurations) the isosurface can intersect a cube, but these can be reduced using 

symmetries to 15 unique configurations. Now the aim is to create a mesh that fully 

covers the 3D shape of the segmented brain tumor. To achieve this goal, the algorithm 

defines a set of triangles that approximate the surface within a cube. The next step is 

to connect all the traingles within voxel boxes. The connection of all triangles gives us 

a mesh over the whole segmented brain tumor.  
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Figure 22. Marching cubes algorithm (online source [46]) 

Once the mesh is generated, it is very simple to calculate the surface area for 

the shape we are interested. The calculation is done just by summig the surfaces of all 

triangles on the mesh. The surface of the triangle is calculated with Heron Formulas 

or or vector cross product for the triangle's sides. 

3.2.3 Sphericity 

On this thesis, we are focused on eccentricity and how we can calculate it with 

different methods, but it is logically related mostly with a 2D shape rather than a 3D 

one. Therefore, the equivalent measurement of eccentricity for a 3D shape is 

sphericity. Sphericity itself if a measurement that determines how close to a perfect 

sphere is a shape. For a perfect sphere the sphericity is 1.  

Ψ =  
𝛑

𝟏

𝟑(𝟔𝑽)
𝟐

𝟑

𝐴
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where  

V → is the volume measurment on the first section 

A → is the surface area which is measured using marching cube es explained in the 

previous section. 

 

 

Figure 23. Sphericity values for tumors. [47] 
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3.2.4 Bounding Box Volume and Extent 

Bounding box volume is a measurement that finds the volume of the most well 

fitted box that contains the whole segmented brain tumor inside. This parameter might 

not look that it has a straight forward impact in morphologic analysis of a brain tumor, 

but in fact, it impacts it in an indirect way. Since we have the brain tumor volume itself 

and the volume of the bounding box, we can measure the extent. The extent will be 

the ratio between both volumes. For instance, if we have a shape which has many 

elonganated slim parts extened out of the core tumor, it means that the bounding box 

volume will be much higher than the volume of the shape itself. This leads to an 

optional calculation for the sphericity and eccentricity of a 3D shape.  

 

Figure 24. Extent visualization [48] 
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3.2.5 Eccentricity with Area and Perimeter on each slice 

All the methods above calculate the shape parameters on a 3D shape, what if we switch 

our focus to 2D images to calculate each slice of the brain tumor? 

The shape parameter that I want to focus on my thesis is eccentricity and ways how 

we can measure it. Inspired by the bounding box volume and extent calculation, 

eccentricity of a 2D slice can be calculated based on the surface and perimeter of 

segemented tumors. Basically, if the ratio of area over the perimeter is large it means 

that the brain tumor image has a much larger area than perimeter, it means that the 

tumor is more contained and does not have many extensions. On the other hand, if the 

ratio is smaller, it means that the perimeter is bigger. Logically this means that the 

tumor has many extended parts.  

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐴𝑃 =  
𝐴

𝑃
 

Where A is the area of the segmented slice and P is the perimeter of the segmented 

brain tumor. 

3.2.6 Eccentricity with SVD of random points on the contours 

Performing the singular value decomposition over some random points over the 

contours of the segmented brain tumor, means that we have to execute two processes. 

The first one is to identify the contours of the shape and then select some random 

points on those contours. The tricky part here is that a brain tumor can have 

disconnected segmented shapes and the random points would converge to one contour 

which could be the smallest one. If it is the smallest contour, it will not capture the 

most problematic brain tumor part. In my experiments I have always taken the largest 

contour to avoid the above-mentioned problem, even though it is partially correct, 

since a part of the small contour which can be far away can have some impact on the 

eccentricity. Anyway, since here we are dealing with slices, that small contour will 
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somehow be conneted to the full body of tumor. Later on, when we calculate the whole 

mean, the contribut the small contour has will be taken in consideration. 

Contours are found by using the measure library of python which provides a method 

to find all the contours.  

The higher the number of random points selected, the higher will be the the chance to 

capture the extension of the tumor, therefore I have tested with 16, 32 and 64 random 

points for each contour.  

A matrix constructed with the values of the random points selected is decomposed 

with SVD. The result of the SVD contains the ∑ matrix which contains the energetic 

values for that matrix.  

The formula used for eccentricity is as below: 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦1 =  √1 − (
𝜎[1]

𝜎[0]
)2 

3.2.7 Eccentricity with SVD for each whole slice 

Eccentricity is a measure of how much an object deviates from being perfectly 

circular. In the context of image analysis and using Single Value Decomposition 

(SVD), eccentricity can be calculated from the singular values obtained through SVD. 

The eccentricity can be computed as the ratio of the largest singular value to the 

smallest singular value. 

    A=U⋅Σ⋅V T 

Σ is a diagonal matrix where the singular values are arranged in descending order. 

Eccentricity (e) is calculated as the ratio of the largest singular value σmax to the 

smallest singular value σmin. 

Eccentricity (e) = σmax / σmin 
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Regarding the technical part of implementing this theory I have used the linalg.svd 

method of the numpy library. The difficulty here stands that the model that I segment 

is a 3d shape specifically 128 x 128 x 128 and the calculation of the SVD can be 

performed only in two ways:  

- Calculate SVD of each slice regarding one axis for each class of the tumor 

After calculating the svd, I need the S matrix. Since it is a diagonal matrix, the numpy 

library has simplified the view of it by just producing an 1d array representing the 

entries of the original diagonal matrix. To calculate the eccentricity, we need to 

perform a simple ratio. Since we always know that the first element of the S matrix 

will be the biggest one we can perform a ratio like this formula: s[0] / sum(s), there 

are two cases:  

- The matrix is eccentric: since there are 128 possible slots for matrix S values 

and for a matrix to be eccentric it needs to full fill the following formula: x / x*n (where 

x is a value which is same for all entries and n is 128, number of possible slots) By 

simple math reduction we can deduce that if the value of the ratio is around 1/128 the 

matrix is eccentric and basically the tumor is very contained an not distributed in 

extensions. 

- The matrix is not eccentric: we have a ratio which is bigger than 1/128. 

In my thesis I have measured the eccentricity with two methods. 

- The ratio of the major axis over the sum of all axis: 

- (% of energy in the first element) 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦2 =  
𝜎[0]

∑ 𝜎[𝑖]128
𝑖

 

- The ratio of major and minor axis as on the equation on the above section. 
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3.3 Experiments 

The experiments that were tried for this thesis were concentrated on the segmentation 

and volume measumerments of the segmented tumor part.  

Below, there is a table with all the hyperpameter for our trials. 

 

First Batch of trails 

 

Table 5. First batch of Trials 

 

Version Batch 

Size 

Epochs Optimizer Threshold Pooling 

Layer 

Activation 

Function 

Learning 

Rate 

V1 2  100    adam  0.5 max 

pooling 

3D 

Relu 0.0001 

V6 2    100  adam 0.5 avg 

pooling 

3D 

Relu  0.0001 

V7 8     100  adam 0.5 max 

pooling 

3D 

Softrelu 0.0001 

V8 2 100  sgd 0.5 max 

pooling 

3D 

Relu 0.0001 

V9   2 100  rms 0.5 max 

pooling 

3D 

Relu  0.0001 
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This training time for this batch of trials took from 1 hour and 30 minutes to 2 hours 

per each trial. 

Second Batch of trials 

 

 

Table 6. Second batch of trials 

This training time for this batchof trials took 2 hours per each training. 

 

 

 

 

 

 

 

 

 

Version Batch 

Size 

Epochs Optimizer Threshold Normaliza Activation 

Function 

Learning 

Rate 

V10 4 100    adam  0.5 Z - Score Relu 0.0001 

V11 4    100  adam 0.5 Z - Score Relu  0.001 

V12 4    100  adam 0.5 MinMax  Relu 0.001 

V13 4 100  adam 0.5 MinMax Relu 0.001 

V14 4 100  rms 0.55 MinMax Relu  0.0001 
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SVD Experiments 

The first experiment I conducted was firstly made on a mask rather than just 

the segmented model itself. This decision was made because the mask has a more 

accurate segmentation. If the experiments work with this then we can safely apply 

the method into the segmented part. 

 

Python only allows to use the singular value decomposition on 2D data and 

therefore we needed to work only on slices. The segemented data array is a 4D 

matrix which has information about all the pixels and the last dimension is about the 

class to whom that data belong to. Since we have 4 classes I experimented with all of 

them except the background class which does not fall in the scope of our interest.  

 

 

Figure 25. Representation of 3D and 4D arrays in programming 

 

If we keep one of the classes fixed on the 4D matrix, we still have a 3D 

matrix where we cannot apply singular value decomposition so we need to determine 

which axis we have to keep fixed. Through many trials and erros on this table I have 

tried to summarize the best combination for each class: 
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Class X - axis fixed Y – axis fixed Z - axis fixed 

1 
Not much information 

provided 

Many 0 values, not 

stable 

When the ratio is 

high, tumor parts 

are spread all 

around. Low ratio, 

small dots. 

2 
Not meaningful 

combination 

When eccentricity is 

just an empty circle, 

eccentricity is small 

(0.1) but if it is a 

shape we have a 

higher value of 

eccentricity (0.4) 

Not meaningful 

combination 

3 Same deduction as 2Y Same deduction as 2Y 
Same deduction as 

2Y 

 

Table 7. Combinations of all axis and classes to perform 2d arrays 

 

Ratio formula I used for the svd: 

 SigmaMax/ Sigma[0 - n]  

Basically, just the ratio of the biggest Sigma value over the whole sum of sigma. 

 

Python creates the sigma matrix in a very creative way by giving us only one array 

with sorted data. The detail that I noticed is that when the tumor is bigger, more array 

positions are filled with a value which is meaningful (not zero). 

 

While applying the SVD to the entire slice of the segmented brain tumor, I have 

applied also another formula except the ratio one. This formula is described on the 

section 3.2.7, formula number 2.  
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SVD of random points over the contours. 

 

Figure 26. Blue points are the random points generated over the contour. 

 

Since the perimeter of the contour can be large, I have experimented with different 

number of random points such as 32 and 64 to have a higher coverage. Here are the 

random points generated: 
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Figure 27. 32 Points generated over the contours. 

 

Figure 28. 64 points generated over the contours. 
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3D Shape parameters experiments 

Experiments are made for all the segmented brain tumor parts and csv files are 

generated for each of the metric measured. The explanation of each method is made 

on the previous section and the results are found on the results section. 

 

3.4.1 Survival Prediction 

There are different ways to predict the survival of brain tumor diagnosed patient, 

through machine learning.  

Classification  

The classification of the survival prediction is made by firstly training the model 

shown in the picture: 

 

Figure 29. The network for survival prediction 
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For this model we will use the segmented dataset slice by slice since the model for the 

survival prediction is only 2D and does not accept 3D segemented data. In this case 

this is good for us since we can measure the eccentricity only through 2D arrays. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Results 

Segmentation 

 The results that are achieved until now for this thesis can be reported to be on 

the values of an achieved accurarcy of 99%, the metric of dice loss + (1 * focal loss) 

resulted to be 0.77, the iou score for the best last epochs run was 0.8 and the meanIou 

for one of the best trails is reported to be 0.8102. (cross binary) 

 Below we can see two diagrams which plot the training and validation accuracy 

through scaning the dataset and training the U-net on one of our best runs. While the 

other graphic shows the training and validation loss through the training process while 

scanning the dataset and training the U-net with the specified hyperparameters. 

Figure 30. Training and validation graph for accuracy 
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Figure 31. Training and validation graph for loss 

 

Best achieved results with 3D unet for brats2020 dataset segmentation challenge: 

 Accuracy Dice loss + 1*focal İou score 

Best achieved 0.99 0.77 0.8 

Mean Iou: 0.8102 
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Visual Results 

The following results will be shown as two results for the same brain tumor dataset. 

The first picture will be from slice number 65 and the other one from slice 55. 

  



52 

 

 

Testing Image 1 

 

Figure 32. Slice 65 for brain tumor segmentation 1 

 

 

Figure 33. Slice 65 for brain tumor segmentation 1 
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Testing Image 2 

 

 

Figure 34. Slice 65 for brain tumor segmentation 2 

 

Figure 35. Slice 25 for brain tumor segmentation 2 
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Volume 

 The normal volume of the brain is around 1300 cm3. Every value of tumor 

volume we got was inside a logical range depending on the tumor size and shape from 

the segmentation masks. For smaller tumors we got values like 33 cm3 and for larger 

tumors we got bigger volumetric values such as 600 cm3. If we imagine the tumor 

mass as a perfect sphere with radius of 2 cm, by spehere volume formula we can 

calculate the volume which will be around 33 cm3. Comparing this with the segmented 

tumor makes common sens. To be more accurate, for the dataset we are using there 

are no labeled data to check the correct volume of the tumor. 

3D Segmented brain tumor shape measurement 

Volume Surface 

Area 

Sphericity Bbox 

volume 

Extent Figure 

number 

202 226.4797723 0.735115564 525 0.384761905 #100 

71531 17237.77869 0.483428617 252168 0.283664065 #100 

1 1.732050505 2.792052454 1 1 #100 

16 37.97396263 0.808620712 25 0.64 #100 

1 1.732050505 2.792052454 1 1 #100 

38009 8840.118752 0.618420182 157920 0.240685157 #110 

1 1.732050505 2.792052454 1 1 #110 

9 20.41348344 1.025011355 18 0.5 #110 

157878 29254.8748 0.482873781 520768 0.303163789 #111 

1 1.732050505 2.792052454 1 1 #111 

Table 8. Results of the 3D Shape Measurments. 

As it can be seen from the table, the figure number is replicated sometimes in the table. 

This happens because sometimes python segements the volume in components if they 

are not connected with each other.  
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Eccentricity Surface and Perimeter of 2D Slice 

Since we are dealing with 2D slices, I have saved the information for all the slices of 

each image and then calculated their mean eccentricity.  

For image with number 111 in the dataset, here is the table for each slice with surface, 

perimeter and eccentricity calculated based on them: 

Surface Perimeter Eccentricity A/P 

3.57E+02 3.05E+03 8.55E+00 

3.67E+02 3.11E+03 8.48E+00 

3.55E+02 3.13E+03 8.81E+00 

3.75E+02 3.19E+03 8.51E+00 

3.81E+02 3.23E+03 8.47E+00 

4.03E+02 3.24E+03 8.04E+00 

4.32E+02 3.29E+03 7.61E+00 

4.75E+02 3.36E+03 7.08E+00 

4.92E+02 3.42E+03 6.95E+00 

5.18E+02 3.48E+03 6.71E+00 

5.18E+02 3.55E+03 6.86E+00 

4.89E+02 3.64E+03 7.44E+00 

4.77E+02 3.71E+03 7.79E+00 

4.99E+02 3.73E+03 7.48E+00 

4.89E+02 3.74E+03 7.64E+00 

4.99E+02 3.70E+03 7.41E+00 

Table 9. Values of surface, perimeter and eccentricity for slices from slice 45 – 60. 

Average eccentricity for image 111 is 3.22. 
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Eccentricity with Random points per slice 

16 Random 32 Random 64 Random 

9.49E-01 8.94E-01 9.27E-01 

9.67E-01 9.64E-01 9.74E-01 

9.53E-01 9.62E-01 9.58E-01 

9.64E-01 9.49E-01 9.51E-01 

9.56E-01 9.60E-01 9.49E-01 

9.66E-01 9.56E-01 9.48E-01 

9.67E-01 9.35E-01 9.51E-01 

9.39E-01 9.25E-01 8.61E-01 

7.93E-01 8.10E-01 8.72E-01 

8.62E-01 7.77E-01 7.89E-01 

9.10E-01 8.25E-01 8.85E-01 

8.93E-01 9.03E-01 8.72E-01 

8.52E-01 8.38E-01 8.34E-01 

7.86E-01 8.25E-01 7.99E-01 

8.64E-01 7.82E-01 7.88E-01 

7.88E-01 7.81E-01 8.09E-01 

Table 10. Eccentricity with random points for image 111 for slices 45 – 60. 

Mean eccentricity for 16 random points: 5.03 

Mean eccentricity for 32 random points: 4.9 

Mean eccentricity for 64 random points: 5.59 
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Figure 36. Different images for 16 points on different contour lengths 
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Eccentricity measurement with SVD on full slice 

 

 

Figure 37. Representation of the 55th slice from the mask of  a picture from the 

dataset 

The S matrix for this slice has those values:  

Check Apendix 1 for the full sigma array 

 

 

 

 
 

Figure 38. Screen Capture of the sigma array produced by the operation 

  

The ratio value for the formula described earlier is: 0.287553 

60 Slots have a value rather than 0. 
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Now lets see another slice: 

 

Figure 39. Representation of the 60th slice from the mask of  a picture from the 

dataset 

As an eye checking result, we can see that differently from the slice 55, this slice has 

a bigger green zone. 

Ratio value: 0.3210913 

Check Apendix 2 for the full sigma array 

Now we are going to see another experiment where we have a very small part of a 

segmented tumor: 
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Figure 40. Representation of the 91th slice from the mask of a picture from the 

dataset 

Ratio value: 0.5593745 

Slots other than value 0: 7 

Check Apendix 3 for the full sigma array 
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Based on those experiments, we can see a correlation between the tumor size 

and the number of array positions which have a meaningful value. Together with the 

ratio value we can deduce that some thresholds must be applied in order to classify if 

the tumor is growing or not.  

Slice number Ratio Value Positions filled Description 

55 0.28 60 The tumor is round but big 

60 0.32 57 Tumor is a little bit more 

spread out but has a smaller 

surface 

91 0.55 7 Tumor is just a small dot 

Table 11. Eccentricity ratio and slots number correlation 

From the data of this table, we can deduce that when the number of positions 

filled is above 50 and the ratio eccentricity is more than 0.25, the tumor is more 

aggressive.  

 

Table 12. Eccentricity methods for the full slice svd for slices 45-60. 

Ratio with Sum 

Eccentricity 

Ratio of minor and 

major eccentricity 

Mahotas Eccentricity 

2.91E-01 9.68E-01 8.73E-01 

2.82E-01 9.67E-01 8.69E-01 

2.92E-01 9.65E-01 8.64E-01 

2.81E-01 9.64E-01 8.48E-01 

2.74E-01 9.65E-01 8.30E-01 

2.68E-01 9.66E-01 8.18E-01 

2.63E-01 9.66E-01 7.97E-01 

2.59E-01 9.64E-01 7.75E-01 

2.65E-01 9.63E-01 7.60E-01 

2.69E-01 9.64E-01 7.57E-01 

2.81E-01 9.65E-01 7.64E-01 

2.88E-01 9.63E-01 7.74E-01 

2.93E-01 9.63E-01 7.79E-01 

3.00E-01 9.68E-01 7.78E-01 

3.04E-01 9.73E-01 7.83E-01 
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The mean eccentricity for all images is represented on the table below 

 

 

Table 13.  Mean eccentricies for some images 

  

Ratio with Sum 

Eccentricity 

Ratio of minor 

and major 

eccentricity 

Mahotas 

Eccentricity 

Image number 

0.145747889 0.416032775 0.334500211 #100 

0.127890761 0.339171493 0.297804826 #110 

0.189691345 0.572087309 0.509905143 #111 

0.218996432 0.600043155 0.476401119 #113 

0.188667938 0.497198241 0.468178587 #114 

0.122620123 0.405365221 0.382847975 #12 

0.171056032 0.530257949 0.430343945 #120 

0.163126553 0.381028782 0.289976841 #126 

0.170822489 0.436223726 0.288199538 #130 

0.183370699 0.537039667 0.315709561 #132 

0.175902065 0.525177662 0.477734682 #133 

0.167025161 0.536912326 0.427966646 #137 

0.176725824 0.528833632 0.281620153 #142 

0.152114077 0.43664355 0.373223468 #145 

0.237396535 0.691711694 0.685885625 #147 
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Survival Prediction Model Training 

First run: 

Figure 41. Model training for survival prediction parameter accuracy 

 

Figure 42. Model training for survival prediction parameter loss 
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Results for survival prediction training model: 

Run # Accuracy Loss 

1st run 0.97 0.3 

2nd run 0.98 0.4 

Table 14. Results of survival prediction model 

 Survival 

Pred. 

Eccentricity 

Ratio Sum 

Slots of σ Volume 

Img 1 Yes 0.11 2 0.2 cm3 

Img 2 Yes 0.98 0 0 cm3 

Img 3 No 0.40 63 10 cm3 

Img 4 Yes 0.16 3 0.4 cm3 

Img 5 No 0.30 57 6 cm3 

Img 6 No 0.38 65 8 cm3 

Table 15. Correlation between survival prediction and Eccentricity of ratio sum, 

slots and volume. 
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4.2 Discussion 

During the work with this thesis, it was found out that the way of how the brain 

tumor is segmented is very important for the whole after process such as volumetric 

and eccentricity measurement. This happens because the measurments are done based 

on the segmented part.  

The best way to measure the volume of the brain tumor is by counting the 

voxels in the segmented tumor part and then multiplying the voxel with a real-life 

representation. Basically, each voxel that has a different color from the background is 

counted as a tumor voxel. The voxel size is then translated to real life units and the the 

volume is found. Volumetric data for the tumor are a big indicator of severity of the 

tumor. 

By eccentricities with svd experiments, we need to add some constraints when we 

measure the eccentricity of the tumor. For instance, slice 90 has a bigger ratio value 

by which we can deduce two things:  

1) the energy intensity of the segmented part is concentrated in a very few pixels and 

the ratio is very big when we have few pixels labeled as brain tumor. 

2) The number of slots which have a value other than 0 determines the size of the 

segmented tumor. A bigger number of slots with a meaningful value, the bigger the 

size of the tumor.  

3) Since the S matrices which have more slots with value other than 0 produce a lower 

ratio rather than the ones which have less slots it means that we need to create a 

threshold in order to qualify if a tumor is risky or not. 
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Threshold 

Each Slice has dimensions 128 x 128 and the sigma array that we produce is 128, and 

by the experiments it was observed that when half of the slots have a meaningful value 

(other than 0 value) the segmented brain tumor part is considerably large. Basically, 

every number of slots from 50 and above is considered to be a huge tumor. Considering 

the ratio, when we deal with 50 or more occupied slots, and the ratio is between 0.2 – 

0.4 the tumor can be considered as huge, meanwhile if we have a lower number of 

occupied slots, we can raise the threshold of ratio. From this we can deduce that ratio 

and number of slots are in a indirect relation which means that when we have a larger 

number of slots, the ratio is lowered but when we have small number of slots the ratio 

is higher. Further experiments need to be done in order to understand the practical 

thresholds and specific values. 

Even though the above explained method is promising, the more metrics we have the 

better it is since the measurement is more accurate. Therefore, even the 3D shape 

parameters are very meaningful.  
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CHAPTER 5 

CONCLUSIONS 

5.1 Conclusions 

 In this thesis it was aimed to create the full process of a brain tumor detection and 

severity measurement based on volumetric and eccentricity. The unexplored topic that 

this thesis is showing is the eccentricity evaluation through the singular value 

decomposition. Basically, if we can decompose the matrix of voxels created by the 

segmented brain tumor data with the SVD principles, we can find the sigma matrix 

which basically has information about the energetic values of the tumor. Their ration 

can give the eccentricity on different parts.   

 The segmentation was performed with the standard U-net even though we 

tweaked most of the hyperparameters in order to achieve the best result for the 

segmented brain tumor. The best way of measuring the volume of the brain tumor is 

by finding the real measurement representation of the voxel and the counting all the 

voxels in the part of the brain tumor segemted part. Then, we can calculate the volume. 

5.2 Recommendations for future research  

Future research is always possible on every topic that we can ever think of. In my 

thesis case I would suggest that if the segmented process could reach a better state than 

it currently is. More metrics should be added to the whole process.  

There need to be more research on finding a strong relation between the brain tumor 

severity and if it eccentricity is a feature that provides enough information to help the 

survival prediction process. If those researches support the efficacity of the eccentricity 

ratio there need to be more experiments and studies if the eccentricity ratio, number of 

sigma array slots filled with meaningful information and volume correlates with an 

exact result of the survival prediction. 
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6 Appendix 

[1] Sigma array of 55th slice for figure 33 

[127.15576,34.31306,26.52738,24.08767,17.34267,16.07567,13.67248,12.02613,9.5

0528,8.93953,8.04969,7.04765,6.74539,6.50103,6.16229,6.07272,5.70843,5.40865,4

.93950,4.90410,4.62061,4.56350,4.14283,3.94744,3.85133,3.74233,3.53416,3.32100

,3.21807,3.19680,3.04381,2.96552,2.76771,2.70739,2.60833,2.55643,2.31788,2.265

14,2.15290,2.11348,2.07189,1.90487,1.82076,1.81399,1.73470,1.71141,1.58078,1.5

3456,1.43973,1.38900,1.31891,1.22434,1.19902,1.16978,0.99848,0.97363,0.83117,0

.82197,0.75317,0.67078,0.41389,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000

,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.000

00,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0

0000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0

.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000

,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.000

00,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0

0000,0.00000,0.00000] 

[2] Sigma array of 60th slice for figure 35 

[133.47381,29.09722,27.13240,22.75600,14.98516,13.26793,11.02881,10.02789,9.4

1773,7.95419,7.38380,6.70393,6.08325,6.02768,5.92004,5.72740,4.96033,4.80042,4

.37397,4.07011,3.94432,3.86796,3.66160,3.53546,3.31357,3.25243,3.21861,3.08692

,3.04363,2.95781,2.85738,2.71521,2.59745,2.52070,2.45819,2.41575,2.22277,2.169

19,2.04486,1.99347,1.90499,1.81493,1.75040,1.70077,1.64789,1.49123,1.37855,1.2

7302,1.24723,1.21046,1.17079,1.12888,1.02501,0.97126,0.83331,0.76777,0.72067,0

.58146,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000

,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.000

00,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0

0000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0

.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000

,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.000

00,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0 
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0000,0.00000,0.00000] 

[3] Sigma array of 91th slice for figure 36 

[14.45613,3.43415,2.70752,1.94433,1.64272,0.97418,0.68435,0.00000,0.00000,0.00

000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.

00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,

0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0000

0,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00

000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.

00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,

0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0000

0,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00

000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.

00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,

0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.0000

0,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00000,0.00

000,0.00000] 
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 Testing Image 3 

Figure 43.  Slice 65 for brain tumor segmentation 3 

 

 

Figure 44. Slice 55 for brain tumor segmentation 3 
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Testing Image 4 

 

Figure 45. Slice 65 for brain tumor segmentation 4 

 

Figure 46. Slice 55 for brain tumor segmentation 4 
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Bad Predictions 

During our experiments we had also bad results such as the below results.  

Figure 47. Bad prediction 1 

 

Figure 48. Bad prediction 2 

 

 


