
ANALOG GENERATOR FOR A DRIVER OF A BOOST DC-DC CONVERTER

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

ANDI GJINI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

NOVEMBER, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Analog Generator for a driver

of a boost DC-DC converter” and that in our opinion it is fully adequate, in scope

and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Arban Uka

Head of Department

 Date: November, 21, 2024

Examining Committee Members:

Prof. Dr. Gëzim Karapici (Computer Engineering) ________________

Dr. Florenc Skuka (Computer Engineering) ________________

Dr. Shkëlqim Hajrulla (Computer Engineering) ________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name Surname: Andi Gjini

Signature: ______________

iii

ABSTRACT

ANALOG GENERATOR FOR A DRIVER OF A BOOST DC-DC

CONVERTER

Gjini, Andi

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Gëzim Karapici

This thesis explores the automation of analog circuit design, focusing on the driver of

a boost DC-DC converter. It develops methodologies for automating schematic and

layout design using tools like ANAGEN, WiCked, and Qgen. By transitioning from

traditional manual methods to reusable, parameterized analog generators, the proposed

approach significantly reduces design time and enhances scalability. The

implementation demonstrates the effectiveness of automated optimization and layout

strategies in meeting stringent design requirements, offering a practical solution for

advancing analog design automation.

Keywords: Anagen, WiCked, Qgen, Python, Schematic Generator, Layout Generator

iv

ABSTRAKT

GJENERATOR ANALOG PER NJE DREJTUES TE NJE

KONVERTERI NXITES DC-DC

Gjini, Andi

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Prof. Dr. Gëzim Karapici

Kjo tezë eksploron automatizimin e dizajnit të qarkut analog, duke u fokusuar në

drejtuesin e një konverteri nxitës DC-DC. Ai zhvillon metodologji për automatizimin

e dizajnit skematik dhe të paraqitjes duke përdorur mjete si ANAGEN, WiCked dhe

Qgen. Duke kaluar nga metodat tradicionale manuale te gjeneratorët analogë të

ripërdorshëm, të parametrizuar, qasja e propozuar redukton ndjeshëm kohën e

projektimit dhe rrit shkallëzueshmërinë. Zbatimi demonstron efektivitetin e

optimizimit të automatizuar dhe strategjive të paraqitjes në përmbushjen e kërkesave

të rrepta të projektimit, duke ofruar një zgjidhje praktike për avancimin e automatizimit

të dizajnit analog.

Fjalët kyçe: Anagen, WiCked, Python, Schematic Generator, Layout Generator

v

ACKNOWLEDGEMENTS

Thanks to my professor, colleagues and whoever supported me.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ABSTRAKT .. iv

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ... viii

INTRODUCTION .. 1

1.1 ANAGEN ... 5

1.2 WiCked.. 13

1.3 Qgen ... 17

1.3.1 Layout generator structure .. 18

SCHEMATIC GENERATOR.. 22

2.1 Test case presentation... 22

2.2 Driver ... 23

2.2.1 Methodoloy ... 32

LAYOUT GENERATOR .. 45

3.1 Analog layout strategies ... 45

3.2 Driver Layout template .. 46

3.3 Qgen: Layout creation .. 50

RESULTS... 63

4.1 Schematic Generator flow .. 63

4.1.1 Pre-Layout Verification .. 66

vii

4.2 WiCked Optimisation .. 70

4.2.1 Wicked Flow ... 81

4.2.2 Verification Result .. 89

4.3 Layout generator: Driver ... 91

4.3.1 Post-layout verification ... 92

 CONCLUSION……………………………………………………………………94

viii

LIST OF TABLES

Table 4.1 Specifications in typical conditions………………………………………70

Table 4.2. Tables for measurements specifications……………………………...80-81

Table 4.3. Tables for timing performances improvement…………………………..90

ix

List of Figures

Figure 1: Estimated hardware design .. 2

Figure 2: ANAGEN .. 5

Figure 3: Anagen Framework ... 8

Figure 4: ANAGEN Framework simplified .. 9

Figure 5: Anagen Workflow ... 10

Figure 6: WiCked Tasks .. 15

Figure 7: Constraint Editor .. 15

Figure 8: WiCked GUI .. 16

Figure 9: Qgen transistor matrix ... 18

Figure 10: Qgen transistor matrix GUI ... 18

Figure 11: Qgen project structure.. 19

Figure 12: Test case presantation .. 22

Figure 13: Internal driver structure ... 23

Figure 14: Driver topology .. 24

Figure 15: Driver topology with the stages highlighted .. 25

Figure 16: Inverter single stage ... 27

Figure 17: Driver stages .. 28

Figure 18: Pmoses as switches .. 29

x

Figure 19: Simplified version .. 30

Figure 20: Asymmetrical sizing .. 31

Figure 21: First stage dimension ... 32

Figure 22: First stage characteristic .. 33

Figure 23: Input capacitance measure ... 33

Figure 24: Input current absorbed ... 34

Figure 25: Configuration for output capacitance calculation .. 34

Figure 26: Output current absorbed .. 35

Figure 27: Workflow ... 36

Figure 28: Slicing floorplan template and binary tree... 46

Figure 29: Circuitry around the Driver ... 47

Figure 30: Template .. 48

Figure 31: Binary tree description of the template .. 48

Figure 32: Routing channel example .. 49

Figure 33: Modules implemented by Qgen ... 50

Figure 34: Tree description ... 51

Figure 35: Import and connectivity editor... 51

Figure 36: Template with modules and tracks .. 52

Figure 37: Hierarchical tree description .. 52

xi

Figure 38: Driver generator GUI ... 54

Figure 39: Final Layout ... 62

Figure 40: Starting the program .. 63

Figure 42: Requirement check .. 65

Figure 43: Asymmetrical sizing option ... 65

Figure 44: Asymmetrical sizing result .. 65

Figure 45: Main measurements – typical conditions .. 68

Figure 46: Main measurements – corner conditions ... 69

Figure 47: Main measurements – montecarlo conditions ... 69

Figure 48: Worst case table ... 85

Figure 49: Delay on and off measures in WiCked .. 86

Figure 50: Fall and rise measures in WiCked ... 86

Figure 51: Current leakage measure in WiCked ... 87

Figure 52: Area and current dynamic measure in WiCked ... 87

Figure 53: Legend for the WiCked graphs .. 87

Figure 54: WiCked table summary ... 88

Figure 55: Final sizing... 88

Figure 56: Main measurements with WiCked sizing – typical conditions 89

Figure 57: Main measurements with WiCked sizing – corner conditions 89

xii

Figure 58: Main measurements with WiCked sizing – Montecarlo conditions 90

Figure 59: Final Layoutafter WiCked sizing... 91

Figure 60: Main measurements with WiCked sizing – Typical conditions – Post layout

Verification.. 92

Figure 61: Main measurements with WiCked sizing – Corner conditions – Post Layout

Verification.. 92

Figure 62: Main measurements with WiCked sizing – Montecarlo conditions – Post

Layout Verification ... 93

xiii

Listings

1.1 Commands to start a Qgen project…………………………………………… 20

2.1 List of the devices to be sized………………………………………………... 37

2.2 Initial condition method……………………………………………………… 38

2.3 Trade off sizing for the driver………………………………………………... 40

2.4 Asymmetrical sizing method for the driver………………………………...... 43

3.1 Layout Generator code……………………………………………………….. 55

4.1 Verify method to launch Avenue…………………………………………….. 67

4.2 Driver function for optimization……………………………………………... 71

4.3 Code for user interaction with WiCked.……………………………………... 82

4.4 Method that sizes the driver according WiCked values……………………... 83

1

CHAPTER 1

INTRODUCTION

Nowadays the semiconductor industry has to respond to an ever-growing market for

integrated circuits (ICs). The creation of increasingly complex chips, as predicted by

Moore’s law, and the increase in demand in every sector are the main challenges the

microelectronics industry has to face. The exponential growth in chip complexity means

a complicated and slow design process on the one hand and high costs and long time-to-

market on the other.

The main objective for companies is to respond to the growth in demand of quality and

efficient products, while keeping low time-to-market and costs.

If we take a detailed look at the chip manufacturing process, one factor that can cause

delays is the presence of errors during the design phase, which then leads to delays that

inevitably increase the cost of the design. In fact, finding of an error leads not only to the

malfunctioning of the chip, but also to redesign and verify all the circuit characteristics,

leading to a delayed production beginnings.

2

We can better understand the design cycle and the important steps that make it up, by looking

at the pie chart below.

Figure 1: Estimated hardware design

As can be seen in Figure 1, the dominant part of the design cycle is verification, so if it is

done carefully, costs and time can be minimised. In this phase all the necessary tests must be

performed, involving the worst-case circuit working condition, varying several variables

affecting the circuit, taking into account an ageing factor, etc., before the component is

manufactured. To better understand why the verification is critical, it is necessary to know what

the general workflow for the complete process is:

• Simulate the chosen design under typical conditions to ensure that all the specifications

are met.

• Simulate again, but in corner conditions, i.e. varying temperature and voltage/current

supplies between their minimum and maximum values, also taking into account process

variation.

• Simulate again, but including the statistical distribution for process and devices parameters

(mismatch).

• Draw the layout and get a netlist which includes parasitic resistances and capacitances

introduced by the layout design.

3

• Perform point 1 to 3 using the extracted view got at point 4 instead of the schematic view.

In case of fails during one of these steps, a modification of the design is needed and all the

verification cycle need to start from the beginning too. Only when all the tests are passed, through

potentially a large number of iterations and loops, it is possible to move on to the fabrication

phase and it is easy to see that the more complex the circuit, the more time this verification step

requires. It is clear that by reducing the time needed for these expensive steps, the total cost of

the design cycle will be reduced and a faster process will also get along with the always

decreasing time-to-market request.

It must also be emphasised that both a digital and an analogue part can be found in a chip. As

seen from the pie-chart, the analogue design is another important slice to consider in the process

and also it represents the bottleneck of the design phase and contributes to the slowing down of

the design process. Indeed, if for the digital part there are already advanced tools for design

automation and verification, the same cannot be said for the analogue part.

The challenge is to develop something similar to what is already existing for the digital part,

without forgetting the peculiarity and characteristics of the analog nature.

The use of specific computer-aided design (CAD) methodologies and tools are required to

achieve an efficient result; in this sense, reuse-based design practices are regarded as a promising

solution.

Therefore, in order to achieve low time-to-market and reduce costs for companies and at the

same time automate the design process of analogue parts, like digital ones, automatic design

tools and methodologies were adopted at Infineon, guaranteeing top-quality results.

4

This thesis proposes and develops an approach to schematic and layout design, through the

use of framework and tools, such as Anagen, Wicked and H-Qgen. The aim is to move from a

traditional method, in which the focus was on the design of individual instances that could not

be reused and were created specifically to meet certain specifications, to a design that focuses on

the creation of instance generators, called analog generators.

Thanks to these generators, starting from a specific topology it is possible to obtain IP blocks

dimensioned according to the specifications provided as input. In the case that the design

specifications have to be modified, the re-design takes place very quickly when compared with

the time required by the traditional methodology.

It can therefore be stated that analog generators captures the designer methodology and aim to

speed up the design process and at the same time to be an assistance tool, capable of providing

blocks reliably sized according to the specifications.

Generators must be designed for both schematic and layout, starting with the chosen topology.

The following paragraphs present the tools that have enabled the realisation of such a generator.

5

1.1 ANAGEN

ANAGEN is a hierarchical design framework written in Python: the aim is to automate the design

of analogue blocks in analog mixed circuits through the realisation of generators that are

independent of process and technology [1].

Started with open source Python framework BAG (Barkley Analog Generator) which is a

modular collection of scripts helping in design automation from Berkeley Wireless Research

Center, Infineon has decided to develop its own specific flow: ANAGEN. It is more than a

framework, it is a collection of tools/APIs to do design automation in an Infineon environment

whose objective is to enable users to create, use and test process portable analog generators. The

ANAGEN program enables a combined usage of algorithmic design optimization (gm/ID,

Wicked), different layout generator engines (Berkeley xBase, Infineon Qgen) together with

traditional design, verification flows and tools within the Infineon Camino design flow.

Figure 2: ANAGEN

6

As can be seen in the Figure 2, the subflow aims at bundling all tools necessary for

generator development. The designer can create a template of a schematic and write a script

which encapsulates the sizing process for the devices of the circuit, also known as the

methodology, in a parametrized way. This creates a win-win situation in that designers and

layouters can focus on essential tasks and spend less time on standard tasks, even if custom

analog designers have been very resistant to this style of automation. The reasons are

different, starting with the resistance to learning coding to the difficulty of analogue design

as it changes in each circuit. The main difficulties encountered with this change in design

methodology with ANAGEN are as follows:

• The complexity of geometric constraints: Analog layouts require precise matching

and symmetry, and layout engineers use clever techniques based on human intuition

and expertise. To match this, algorithmic methods must cover a large search space,

and this has been infeasible in the past

• The absence of unifying performance metrics: unlike digital designs, which are

characterized by power, performance, and area (PPA), the performance

specifications of analog circuits are different for each class of circuits

• The wide variety of circuit classes and topologies: there is no equivalent for the

relatively compact standard cell libraries used for digital design, and even basic

analog building blocks can be constructed in a large variety of ways.

As mentioned earlier, ANAGEN follows a programmatic approach, i.e. it does not

deliver instances, but rather captures designer’s best approaches in generators, in such a

way as to overcome all the difficulties exposed.

The generators focus on schematic, layout and verification, implementing the concept of

reusability combined with automation. Productivity gains come from parametrization,

incremental extension and process portability. With all these features, the impact of ANAGEN

in the design process is more than positive, speeding up key steps.

7

Through the creation of a reference library of designs, with a simple selection of the concept

concerned and readjustment to the new work, a great deal of time is saved, as well as costs;

however, everything must be well organised and well documented.

As it is easy to understand, the design methodology allows for the preservation of the modus

operandi, rather than a specific product.

Finally, optimisation algorithms, obtained through a mix of the field of expertise and knowledge-

based optimisation methods, can solve complex but definite problems. ANAGEN is written in

Python using the object-oriented programming (OOP) model, organizing the software design

around data or objects, instead of functions and logic. This approach also reflects the concept of

reuse, since it embeds a hierarchical structure, making the reuse of the code itself easier through

objects with relationship like parent-child.

ANAGEN provides in details:

• ANAGEN server, which contains already created generators that can be installed from

Cadence-Virtuoso directly.

• ANAGEN technology setups, which allow the definition of a device flavor1

• Python API2, which is very powerful and user-friendly, and also provides lots of functional

packages and classes for the generators

• Python Wrapper, which makes it possible to run simulations in Cadence-Virtuoso

• Example Generators: There are many open-source templates and examples

8

The framework structure can be seen in the Figure 3.

Figure 3: Anagen Framework

The starting point to create a generator is the topology of the circuit, which will not be

alterated or manipulated, but it remains fixed.

9

As already mentioned, this framework provides the implementation of various functions such as

dimensioning, schematic implementation, layout and verification: as can be seen from Figure

1.3, the Python generator, which is the actual user input, provides the various instance generators

together with the verifications, which in turn communicate with the Cadence design

environment, i.e. Virtuoso. Generator are written in Python and these scripts communicate

directly with the users Virtuoso instance, thanks to low-level ANAGEN libraries via SKILL

commands, while the generated instances are available immediately in Cadence-Virtuoso for

debugging and tuning.

In the ANAGEN version, the blocks highlighted in pink in Figure1.3 constitute the upgrades

made from the previous version. Of particular interest is the Wicked optimization block, which

makes it possible to optimize the schematic implemented by the generator (more details in the

next paragraph).

A simplified version of the framework structure is presented in Figure 4.

Figure 4: ANAGEN Framework simplified

As can be seen in this simplified version of anagen illustrated in Figure1.4, the main blocks

of the framework are those who permit the coding of generators, specifically: schematic

generator, layout generator and testbench generator.

10

Therefore ANAGEN provides all the tools needed to develop a generator of a circuit topology

specified as input. However, attention must be paid to the flow to be followed to create a

generator. The complete flow is presented in Figure 5.

Figure 5: Anagen Workflow

11

It is important to visualize the flow that has to be followed in order to produce a reliable

generator, while noticing that verification and optimization can also be included in the schematic

generator itself. If something is not good enough at the schematic verification then it is not

possible to proceed with the layout and an optimization step is needed to achieve a performing

circuit.

The flow embeds the design approach to be adopted at programming level, which consists on

four important parts. The initial setup phase in which:

• Create a template of the intended circuit

• Parametrize properties (transistor length and width, capacitors and resistors size)

• Create a verification setup

Then it proceeds with the second phase of initial sizing:

• Translate the system requirements into circuit requirements

• Perform initial sizing with the gm/ID methodology or other suited methogology,

implementing the schematic generator

After that, the third phase regards the optimiser:

• Define optimization objectives and constraints

• Run the optimizer on the constrained sizing problem

• Typical run times are in the order of minutes / few hours

After the phase concerning the design and optimisation of the schematic is finished, the last phase

proceeds with the layout:

• Execute a layout generator

• Run design rule check and perform parasitic extraction

12

• Run final verification, and IP release

If problems are found in the verification phase, the layout phase is repeated, otherwise the

optimisation with the initially identified constraints is carried out also for the final part.

So as one can guess this process is iterative, each time a specification is not met, the flow has to

go back to the schematic or layout generator and change some parameters according to the script,

as a designer would do by hand. Once the topology has been selected and the relative schematic

has been produced with devices belonging to ANAGEN, therefore of possible manipulation

through Python code, it is possible to start a project with a Python template inside the integrated

development environment IDE. This file.py contains the class generator in which all the coding

strategy for the sizing of the schematic is written. Instead, for the coding of the layout generator,

it is necessary to refer to other javascript language files. For this thesis only the schematic sizing

has involved the use of ANAGEN, while the tool that has been used for the layout is Qgen, which

currently is independent of ANAGEN. So to summarise, the main objective remains the

development of generators that deliver quality results and reduce time-to-market. This can

partially be achieved through the coding of a methodology based on the experience and

knowledge of the designer, and also through optimization algorithms, either coded at the moment

or imported from existing optimization tools (e.g. MunEDA WiCked, pymoo etc.).

13

1.2 WiCked

WiCked is a tool that is part of a larger group of EDA solutions provided by the software

company MunEDA [2]. This is a software suite that adds more functionalities to existing

EDA design environments. The acronym EDA stands for Electronic Design Automation and

can be defined as the category of tools used for designing and manufacturing electronic

systems, from printed circuit boards to integrated circuits. The tool can be used for different

purposes, for instance the analysis and optimisation of the yield and performance of

analogue, mixed-signal and digital designs [3].

MunEDAs tools provide different skills for IP porting, re-sizing, re-targeting, analysis and

verification, modelling and even sizing and optimization for full-custom design in advanced

technologies.

WiCkeD helps the circuit designer to improve the efficiency, decrease the risk of failures

and increase the circuit quality, through the consideration of statistical variation effects of

modern process technologies.

Several tools and features of this environment are made available.

Here is a list of them:

• FEO - Feasibility Analysis and Optimization - Defines and analyses the circuit’s

functionality based on the electrical, layout, area and others constraints running

automatically netlist parametrization and optimizes and fulfills them automatically for

best functionality

• DNO - Deterministic Nominal Optimization - Sensitivity based circuit optimization

for nominal (typical) case and worst case operating corners

• GNO - Global Nominal Optimization - Statistical and stochastic circuit optimization

based on sampling and design-space exploration search algorithms

14

• YOP - Yield Optimization - Automated circuit yield and robustness optimization for

high sigma and performance margins

• REL - Reliability Option - includes and considers available reliability models and

constraints for enhanced aging, degradation, area and other reliability influence

factors

The tool can be configured and executed in script-based (batch mode) or fully GUI-

driven. Optimization is based on complete specifications and constraints are managed by the

tool itself, trying to satisfy all of them. It is proven in wide range of technologies from 350nm

CMOS down to 5nm FinFET advanced node PDK.

We can make a list of benefits which ranges from automatic performance tuning for all types

of analogue and mixed-signal circuits (amplifiers, transceivers, PLLs, oscillators, mixers,

data converters, filters and many more) to optimisation of performance, robustness and high-

sigma.

Consequently we can mark improvements in different fields such as performance, power,

area, delay, as well as parasitic effects and design time effort.

Since March 2021, WiCked has been used productively as a mathematical plug-in of

Infineon IP Factory to statistically characterise standard cell. The challenge is to achieve a

high accuracy by using various machine learning techniques, such as worst-case analysis,

interpolation, adaptive determination of interpolation points and many more. In order to

reduce the overall execution time, parallel processing and simulations are used.

Figure 6 shows the tasks that the optimizer is able to provide; for this thesis, circuit

optimisation at PVT corners is of interest.

15

Figure 6: WiCked Tasks

After selecting the task of interest, if the session is started in batch mode, the netlist for the

project of interest is selected manually, otherwise it will be selected automatically. In the

constraint editor window, one can set the optimiser according to interest case and

parameterise the parameters of interest and set acceptable ranges for them, set pvt corners

(process, voltage, temperature) combining them with acceptable temperature and power

ranges. Finally, in the section performance there are all the measurements to be made with

the type of analysis (dc, tran...) as well as the possibility of adding area measurement.

Figure 7: Constraint Editor

After setting up the optimiser, it can be launched. This opens the WiCked GUI as in

Figure 8, where the tools of interest can be used. For the thesis, three tools are used:

16

1. Simulation: in which a nominal simulation of the circuit is made and it is checked

whether the results obtained are those expected

2. Worst-case Operation & Corner: the circuit is simulated in such a way as to identify

which combination of corners (temperature, power supply, process...) leads the circuit

to the worst behaviour, in this way it can be seen how performance degrades as the

conditions of interest change

3. DNO - Deterministic Nominal Optimisation - the actual optimisation is carried out,

after setting performance bounds or specifying a minimisation; the tool varies the

parameters that were set in the previous phase and provides suitable values to be

inserted into the circuit for it to behave in the optimum way.

Figure 8: WiCked GUI

For this thesis the optimiser has been used, but not included in the ’automatic’ flow as this

phase is still in the development phase. The results obtained using WiCked will however be

presented in the following chapters.

17

1.3 Qgen

Infineon Technologies has developed an in-house layout module generator, called Qgen.

This tool is written in C++ using the Qt1 framework, whereas technologies setups and

generators, called from C++ interface, are written in JavaScript.

A first problem regards the integration of the use of JavaScript in the flow, since the

ANAGEN framework is written in Python, and therefore schematic generator and the layout

generator cannot be put in a complete automatic design loop.

Qgen is the chosen tool for this thesis work because it is able to deal with the used

technology and also for different reasons [4]:

• Reduce layout implementation time compared to the one made by hand.

• Fast exploration of instance and layout parameters.

• Qgen instances are OA figGroups (instances of PDK PCells2, Vias, shapes)

• Formally correct (e.g. no undesired shorts created).

• Layout XL compliant.

1 Qt is a widget toolkit for creating graphical user interfaces as well as cross-platform applications

2 A PCell is a parametrized cell which represents a part or a component of the circuit whose structure

is dependent on one or more parameters

18

Figure 9: Qgen transistor matrix

Figure 10: Qgen transistor matrix GUI

Figure 9 presents a possible result from the use of the Qgen tool through the use of a

graphic user interface (GUI). Instead Figure 10 presents the GUI itself with some of the

possible properties such as number of fingers, placement pattern, contacts position, routing,

guard ring and more, that can be selected for the generation of a transistor matrix module

with the relative layout view.

1.3.1 Layout generator structure

Thanks to the introduction of a hierarchical approach, it is possible for a designer to code a

generator by using as atomic cells the already existing generators inside the classical Qgen.

Precisely two steps need to be followed. Firstly, through the GUI in a layout XL view a

template of the generator has to be created. Secondly, it has to be imported in Qgen for the

19

creation of a Qgen project with the relative implementation files inside the VSCode IDE3.

It is important to highlight a useful feature of Qgen: it offers scripts to generate most of the

needed code for the user, hiding a lot of the procedural complexity present during the

process.

Through a graphical view of Qgen project’s structure, as presented in Figure 11, plus a

description of each file created inside the project itself, we can easily understand how it

works.

Figure 11: Qgen project structure

3 Visual Studio Code is an integrated development environment made by Microsoft for Windows,

Linux and macOS. Features include support for debugging, syntax highlighting, intelligent code

completion, snippets and code refactoring

20

The procedure starts with the connection, through a telnet session, to a JavaScript

(JS) terminal in which it is possible the creation of a project with two commands: the

selection of the technology and the actual constructor call

Listing 1.1: Commands to start a Qgen project

which automatically create the presented files following the hierarchical relations.

• Tech Files JS: these files are essential in order to make the generator work with the

correct rules of the chosen technology such as number of metal available, DRC

rules, particular layers and more.

• GeneratorFile JS: it is practically the core of the process which allows the creation

of the Qgen project itself with all the other files

• Instances JSON: it embeds all the properties of the basic generators which are part

of the imported layout view, and all this information is basically the one written in

the GUI

• Placement Template JS: it contains all the information about the figGroups

 created in the layout view, plus the relative position of the basic module generators

ordered in a graph structure

 • Parameter Template JS: this is where the designer has to code the relation between

the parameters that are considered relevant for the generator and the ones that are

present in the Instances JSON file.

Every time that there are some changes inside the Parameter Template JS or in the

Instances JS the remaining files are overwritten. Their functions are related to topics other

init tech_Name

P = new qproject("project_Name","create","importFromLayout")

21

than those on which this thesis is focused, so they will not be discussed. As far as the routing

is concerned, all the basic generators (e.g. transistor matrix) are routed individually at

module level through the Qgen GUI, as can be seen in Figure 1.10, while routing between

two different instances is made at higher hierarchical level thanks to a generator that

produces tracks. Qgen is able to connect the modules through nets name and relationships,

defined by the user, thanks to the track generator.

These concepts will be better explained in the dedicated layout section with the chosen

methodology. What a designer needs to know before starting coding a layout generator with

Qgen tool are the hierarchical structure and the one of the Qgen module generator itself.

22

CHAPTER 2

SCHEMATIC GENERATOR

This chapter presents the work done to code the driver schematic generator using the Anagen

framework. First, a description of the test case and the followed methodology for the design is

presented, as well as the various criteria that can be followed for the design of the driver. Along

the chapter parts of the implemented code are presented, to provide a complete overview of the

work performed.

2.1 Test case presentation

The test case of the thesis is the driver for a power switch of a dc-dc boost converter. The driver

should be able to interface the logic, that generates the pulses coherently with what has been set

by the control, with the power switch. The driver has to achieve the necessary capacity to drive

a very large mos, and thus a very capacitive load, while making the logic see a much smaller

load capacity, so as not to load it. The driver in the context just described must be able to achieve

optimum timing performances while maintaining low power consumption and area occupancy.

This block is designed for the single power mos of a boost, but this does not preclude it from

also being used for other converters, such as the buck dc-dc converter, by setting certain specs.

This feature remarks on the possibility of reuse through the development of generators.

The study object in question is presented in the Figure 12.

Figure 12: Test case presantation

23

In the following sections the driver block will be described in detail, analysed and the

methodology for the development of the relative generators will be explained through design

equations and the produced code.

2.2 Driver

As presented at the beginning of the chapter, the driver must be able to drive a high capacitive

load, as the load consists of a large power nmos. The power nmos performs the function of a

switch, so if a high signal is presented at the gate, it switches on, conversely if a low signal is

presented, it switches off. The simplest driver that respects these characteristics and can be

thought of is a CMOS inverter. In fact, it consists of two mos: a pmos which acts as a pull-up

and provides the high signal at the output, and a nmos which acts as a pull-down and thus

provides the low signal at the output.

However, the CMOS inverter alone would not be able to drive the high capacitive load, as there

would be a degradation in timing performance. In particular a single inverter large enough to

drive the power mos quickly would represent a considerable capacitive load for the logic driving

the driver and, conversely, an inverter small enough to not load the logic would not be able to

switch on the large power mos quickly enough. A cascade of inverters is therefore used to drive

each mos of a strong-enough inverter, in order to meet the specifications, according to Figure

13.

Figure 13: Internal driver structure

24

As can be seen in the Figure 13, there are two parts within the driver structure:

• the low-side part consisting of the driver cascade and the pull-down nmos

• the high-side part also consisting of a driver cascade and the pull-up pmos

It is useful to point out a typical problem that could occur with this configuration: cross-

conduction, i.e. the time interval in which both mos of the last stage are switched on, causing

a current draw from the power supply to ground and thus high consumption. The two driver

cascades must be able to coordinate and avoid this problem. In this thesis, I have dealt with

the design of the low-side part, which must be able to switch off the pull-down mos quickly

(i.e. guarantee fast propagation of the switch-off signal) to ensure that there is no cross

conduction at the moment when the pull-up pmos is switched on.

Now that this preamble on the driver structure has been made, it is clear that the starting

point of the design and analogue generator is the choice of topology, that is presented in

Figure 14.

Figure 14: Driver topology

In our case, as can be seen in Figure 14, the starting topology consists of a cascade of

CMOS inverters. Specifically, there are four inverter stages, which are highlighted below.

25

Figure 15: Driver topology with the stages highlighted

As can be note from Figure 15, if the first two stages consist of two simple CMOS

inverters, the same cannot be said for the third and fourth stages: in particular, it can be seen

that the pmos is not unique, but is split into two for both stages. The reason behind this split

and the presence of several pmos on top, along with the two current mirrors, is to allow the

circuit to be tested in various modes. In fact, when a driver is sized, in the final stages there

are large MOS and there could be a reliability issue, i.e. you have to ensure that they function

correctly and that there are no defects in the gate. Stress tests are done during production. In

practice, some additional design is used to induce stress and make leakages measurements.

We talk about Design for Stress DFS and Design for Testing DFT to indicate circuits that

are not used for normal functionality, but during test and stress modes. These modes will

not be dealt with in the thesis.

The idea in dimensioning a driver with this topology is to increase the size of each stage

with respect to the previous one in order to allow the driving of a high output capacity while

at the same time having good time performance.

26

There are various criteria for sizing a driver with this topology, which can be grouped

into three macro approaches [5]:

• Fixed Taper Factor

• Variable Taper Factor

• Mixed Fixed and Variable Taper

As can be guessed, this factor plays an important role in dimensioning. When we speak

of a fixed factor, there are various dimensioning criterion depending on whether we want to

optimise the number of stages, to minimise the overall signal delay or minimise switching

losses, or choose a dimensioning that is a trade-off between speed, occupied area and power

consumption.

For this thesis, it was decided to implement the trade-off solution, since the topology remains

fixed in the implementation of the schematic generator.

Due to this choice the taper factor alpha can vary in a range (3 : 6), while the number of

stages is given by the following formula:

 (2.1)

where Cout is the capacitance to be driven and CG is the input capacitance. Assuming one

inverter has to drive an identical inverter as in Figure 16, the delay is dependent on the time

constant, i.e. the product of its on-resistance with the total capacitance to be driven

connected to its output; furthermore, the delay between input and output of the single stage

is given by the time interval from when the input signal reaches 50% of its final value and

the output signal does likewise, as represented in the same Figure 16.

27

Figure 16: Inverter single stage

Assuming the capacitance to be driven is charged and the input signal transits from low

to high, then this means that the output capacitance is discharging according to the law:

 (2.2)

where Vs is the steady state voltage. Since we are concerned when the signal reaches half

its value, i.e. when Vc(t) is equal to V s/2, substituting what has been said into the equation

and solving it for t we obtain:

 tpd = ln(2) ∗ RonCG (2.3)

where Ron is the on resistance, CG is the input capacitance and finally tpd is the propagation

delay of a single stage. The same formula for the propagation delay can be reached assuming

that the capacitance is discharged and the input signal transits from low to high. Thus, both

resistance and the capacitance to drive play an important role in the formula. For the on

resistance we have the following theoretical characterization:

(2.4)

where VT is the threshold voltage, VGS is the gate source voltage, W and L width and

length respectively, and Kn is the process-dependent parameter. Assuming that the stage to

be driven is also an inverter, the capacity to be driven is proportional according to the

following

28

 CG ∝ W ∗ L ∗ Cox (2.5)

Now that there is a complete picture of the formulas, it is possible to extend the theory

to the entire driver and in particular in the implementation of the fixed taper factor with

trade-off solution.

The design criterion, that has been chosen, is to increase the size of each stage α times the

previous one (by varying width, number of finger and multiplicity) as illustrated in the

Figure 17.

Figure 17: Driver stages

In particular, following this implementation and observing that the on-resistance is

inversely proportional to the width, thus decreasing with alpha, while the capacitance being

directly proportional always with the width, increases with alpha, we have that the product

RC, from a theoretical point of view remains constant, thus the overall delay of this solution

is given by the following formula:

 tcascade = N ∗ α ∗ tpd = N ∗ α ∗ ln(2) ∗ RonCG (2.6)

where N is the number of stages, α is the tapered factor, Ron is the equivalent on resistance

of the first stage and CG is the input capacitance of the cascade in Figure 17.

Since in the case of the thesis the driver topology is fixed, so the number of stages is

four, it is straightforward to find the value of alpha to be used for dimensioning by inverting

the formula 2.1 and obtaining

(2.7)

29

However, a clarification must be made regarding the circuit sizing. Firstly, the topology

of the driver does not present the cascade of simple CMOS inverters, but rather, as already

noted, the third and fourth stages have the pmos split in two series device; moreover, in each

of these two stages, the two split pmos have gates connected via another pmos. These are

highlighted in the Figure 18 and acts as switches.

Figure 18: Pmoses as switches

The gate signal of P4 and P9 highlighted is always low, but the drain signal is subjected

to a time-varying signal that causes a change of states: in particular P4 and P9 can fully

switch off pmos P32_3 and P42_4, but not fully switch on them by bringing their gate to

ground. In fact, when the gates of P32_3 and P42_4 go down (following the signal at nodes

in2 and in3 respectively) to the threshold value of P4 and P9, these latter turn off and stop

dragging down the gates of P32_3 and P42_4. Furthermore, it must be taken into account

that P4 and P9 delay the switching on of P32_3 and P42 4 compared to P31_3 and P41_4,

as they transfer the signal with a delay due to their equivalent Ron. This behaviour leads to

30

an important variation in the intermediate performance of the driver, as a large on-resistance

of the switch leads to a slowing down of the switching on of the second pmos and thus to a

change in the overall on-resistance seen at the output with a consequent change in the delay

of the stage in question. Thus, both switches become an active part in the sizing of the driver.

The second point in question is the capacitance, which no longer varies in the same way,

i.e. it no longer increases with alpha. Let us assume that the two switches are short circuits

to facilitate comprehension as in the Figure 19.

Figure 19: Simplified version

 In order for the two pmos in series of the third and fourth stage to be equivalent to a

single pmos of size W/L from the Ron’s point of view, there are two choices: either double

the width of each, or halve the length of each. The first option is not chosen, as this would

imply an equivalent capacitance four times bigger, so the second option is chosen (keeping

the equivalent capacitance unchanged) and the length has been halved in relation to the

previous stages.

So far, we have seen the theory behind the implementation of the trade-off solution, but

by using a fixed factor combined with some other criterion, it is possible to improve certain

performances such as the case of asymetrical sizing, where a certain transition in the signal

31

propagation is speeded up. The idea behind the theory is to unbalance the MOS in the

inverter cascade, as shown in the Figure 20.

Figure 20: Asymmetrical sizing

As can be seen in Figure 20, in each stage of the cascade one mosfet is made stronger

than the one previously evaluate, while the other is made weaker, which translated into

sizing means making one mos larger and its complement smaller, keeping lenghts as they

were. With this design choice, one transition is faster, while the other is slower; for example,

if the pmos is sized larger and the corresponding nmos smaller, the high-to-low input

transition will propagate faster than the low-to-high.The reverse is also true.

The stages are unbalanced with this formula:

Wstrong,weak = W (1 + −
AF

100%
) (2.8)

where W is the width of the mos and AF is the asymmetric factor which is chosen in the

range (20 : 30)%. This percentage range is chosen because a too low value involves a risk

of not seeing any effect, while a too high percentage leads to speeding up a lot one transition,

but also to making the other particularly slow.

32

2.2.1 Methodoloy

It has been explained the theory behind driver dimensioning. Now the first step is to

characterise the driver, i.e. to obtain the necessary parameter measurements for

dimensioning required by theory, then develop a methodology leading to the coding of the

schematic generator.

The fundamental parameters for its dimensioning are firstly the dimensions of the first-stage

mosfet, which must then have a symmetrical characteristic, typical of an inverter. Secondly,

the driver input capacitance, dependent on the first stage, and the output load capacitance

must be determined. Finally, the equivalent onresistance of the mosfets must be estimated.

For the first stage, the dimensions of the virtuoso library inverters were taken into account

and tested whether the characteristic was symmetrical. In Figure 21 can be seen the choosen

sizes for the pmos and the nmos, while in Figure 22 the characteristic.

Figure 21: First stage dimension

33

Figure 22: First stage characteristic

The choice of the size of the first stage also determines the input capacity of the driver,

which must be calculated. In fact, the gate of the mosfet is essentially a capacitance and for

the transistor to turn on, a current must be supplied. Both the pmos and the nmos are

connected to the input node, and for the measurement of the capacitance it was decided to

vary the voltage signal from low to high, measuring the integral of the current, namely the

charge. The measurement configuration is presented in Figure 23.

Figure 23: Input capacitance measure

34

A change in input voltage leads to a change in input current, so the following formula is

used to calculate the input capacitance, with reference to Figure 24.

 (2.9)

where ∆V is the variation of the input voltage, and i(t) is the current integrated.

Figure 24: Input current absorbed

The measure obtained is Cin = 13,15fF. The same procedure was followed to calculate

the output capacitance, where in this case there is the pull-down switch as in the Figure 25.

Figure 25: Configuration for output capacitance calculation

35

Figure 26: Output current absorbed

The measure of output capacitance is Cout = 2,9pF. As a final point, the value of the on-

resistance must be characterized, which, as seen, it is a fundamental part of the theory. The

value is calculated by taking the formula 2.6 and solving it for Ron:

 (2.10)

At this point, a transient simulation of the circuit is performed, and the propagion delay

for both the low-to-high and high-to-low signals, which determine the on resistors for the

nmos and pmos respectively, is evaluated, and the following values are found: Ron,nmos =

4986Ω e Ron,pmos = 7842Ω. For the implementation of the code and as suggested by theory,

the mean value is taken:

 (2.11)

The parameters that determines the sizing of the driver are:

• Input capacitance CG

• Output capacitance Cout

• Number of stages N

• Equivalent on resistance Ron according to the target parameter which is total

delay

36

Now that the necessary values for the implementation of the generator have been

found, the workflow that was followed for the implementation of the code is presented in

Figure 27, while the devices that will be sized are reported in Listing 2.1 with the

ANAGEN properties that are currently available:

• Transistor: width, length, multiplicity, number of finger and intent.

Figure 27: Workflow

37

Listing 2.1: List of the devices to be sized

Unlike the old version of ANAGEN, where devices were mapped from the schematic

with a given name to a different name in ANAGEN environment, and then provided a

method in which all had to be declared, now with the final version of the framework, the

devices that are recognised by the technology are directly defined and present in the self

instance of the generating class, the heart of the python file.

{

**trans_specs("N1_1", "Driver_boost_ls", w = 0.92e-6, l=400n, multi

=1, nf=1, intent= "nana")

**trans_specs("N2_2", "Driver_boost_ls", w = 0.92e-6, l=400n, multi

=1, nf=1, intent= "nana")

**trans_specs("N3_3", "Driver_boost_ls", w = 0.92e-6, l=400n, multi

=1, nf=1, intent= "nana")

**trans_specs("N4_4", "Driver_boost_ls", w = 0.92e-6, l=400n, multi

=1, nf=1, intent= "nana")

**trans_specs("P1_1", "Driver_boost_ls", w = 2.84e-6, l=800n, multi

=1, nf=1, intent= "pana")

**trans_specs("P2_2", "Driver_boost_ls", w = 2.84e-6, l=800n, multi

=1, nf=1, intent= "pana")

**trans_specs("P31_3", "Driver_boost_ls", w = 2.84e-6, l=400n, multi=1, nf=1, intent= "pana")

**trans_specs("P32_3", "Driver_boost_ls", w = 2.84e-6, l=400n, multi=1, nf=1, intent= "pana")

**trans_specs("P41_4", "Driver_boost_ls", w = 2.84e-6, l=400n, multi=1, nf=1, intent= "pana")

**trans_specs("P42_4", "Driver_boost_ls", w = 2.84e-6, l=400n, multi=1, nf=1, intent= "pana")

**trans_specs("P9", "Driver_boost_ls", w = 2e-6, l=400n, multi=1, nf=1, intent= "pana")

}

38

So, knowing that to access the individual devices concerned, one only needs to

access the self instance, all that remains is to define the initial paremetres characterised

above, i.e. the sizing parms in Listing 2.2.

Listing 2.2: initial condition method

def get_default_specs(self)->dict:

""" Returns the default specifications of this

generator"""

 specs = super().get_default_specs()

 # Get the default specs

 specs["sizing_params"].update(# modify the specs

 {

 "c_in" : 13.15e-15,

"c_load" : 2.892e-12,

"resistance_on" : 6400,

"number_stages" : 4 #

Number of stages is fixed due to the

schematic

“tapered _factor” : 1, #

Value to calculate in order to meet the

specifications

“AF” : 20,

“high_level_params” :

 { “delay_max” : 1.5e-9 }

}

 }

) return specs #return the specs

39

We then implement the method that provides driver dimensioning following the trade-

off solution. As explained above, this consists of making each stage larger than the

previous one by a certain taper factor.

However, indiscriminately increasing the width of the mos or the multiplicity (e.g. by a

simple factor of 5, the multiplicity can achieve for the last stage a value of 125) leads to

problems in terms of layout, specifically the area occupied, as well as

significant parasitic effects.

In fact, having transistor models with a high W/L can lead to problems, as well as not

being electrically modelled well.

In addition, when the matching of several devices is relevant, a greater precision is got

by splitting each MOS in a certain number of devices in parallel and placing them

according to a particular layout structures.

Therefore, in the implementation of the method, a criterions is needed on how to

distribute the taper factor intelligently, so that it then helps when implementing the layout

generator. The criterion chosen to distribute the alpha factor is as follows.

Driver 2 Stage:

• width of the NMOS α times greater than the first stage

• width of the PMOS α times greater than the first stage

Driver 3 Stage:

 PMOS splitted in two PMOS, so the length of each is the half

• width and number of finger of the NMOS α times greater than the second

• width and number of finger of the PMOS α times greater than the second

40

Driver 4 Stage:

• Multeplicity of the NMOS α times greater than the third stage

• Multeplicity of the PMOS α times greater than the third stage

• Switch P9 is α times greater than the switch on the third stage

In listing 2.3 there is the implementation of the method that sizes the driver according

to the criterion explained.

Method to size the Driver following the trade off solution def

driver_tradeoff_sizing(self, specs):

Specification needed to design the driver c_in = float(specs["c_in"]) c_load =

float(specs["c_load"]) number_stages = float(specs["number_stages"]) r_on =

float(specs["resistance_on"]) target_delay =

float(specs["high_level_params"]["delay_max"])

Calculation to evaluate the number of stages capacitance_ratio =

c_load/c_in tapered_factor = pow(capacitance_ratio, 1/number_stages)

specs["tapered_factor"] = tapered_factor

Evaluation of a single propagation delay and the total delay with the starting

condition

tpd = 0.69 * r_on * c_in # ln(2)= 0.69 is needed for the calculation of the total

delay total_delay = number_stages * round(tapered_factor) * tpd

Requirements verification if total_delay

<= target_delay:

41

print("\n --------------- \u001b[36mSpecifications satisfied\u001b[0m -------------\n")

else:

 print("\n--------------- \u001b[31mSpecifications NOT satisfied\u001b[0m -------------

--\n")

Case of optimal solution that can be obtain, i.e. the tapter factor is a value +- 5% of Euler

numberm and number of stages coincide with 4, the fixed one

if number_stages == round(math.log(capacitance_ratio, tapered_factor)) and tapered_factor

> 2.58 and tapered_factor <

2.85:

print("\n\n\u001b[36m[INFO]\u001b[0m " + f"The the tapered reached a value

between +-5% of the Euler number, which is the best solution to minimise the overall delay.")

Sizing 2 by increasing the width through the tapered factor

self.sch_gen.set_ti_parameter("N2_2", "w", float(self.sch_gen.

instances["N1_1"]["parameters"]["w"]["value"]) * round(tapered_factor))

self.sch_gen.set_ti_parameter("P2_2", "w",

float(self.sch_gen.instances["P1_1"]["parameters"]["w"]["value"]) * round(tapered_factor))

Setting the width of the mosfets of 3 stage

self.sch_gen.set_ti_parameter("N3_3", "w",

float(self.sch_gen.instances["N2_2"]["parameters"]["w"]["value"])*

round(tapered_factor))

self.sch_gen.set_ti_parameter("N3_3", "nf", round(tapered_factor))

self.sch_gen.set_ti_parameter("P31_3", "w", float(self.sch_gen.

instances["P2_2"]["parameters"]["w"]["value"])*round(tapered_factor))

self.sch_gen.set_ti_parameter("P31_3", "l", float(self.sch_gen.

42

Listing 2.3: Trade off sizing for the driver

instances["P2_2"]["parameters"]["l"]["value"])/2)

self.sch_gen.set_ti_parameter("P32_3", "w", float(self.sch_gen.

instances["P2_2"]["parameters"]["w"]["value"])*round(tapered_factor))

self.sch_gen.set_ti_parameter("P32_3", "l", float(self.sch_gen.

instances["P2_2"]["parameters"]["l"]["value"])/2)

self.sch_gen.set_ti_parameter("P31_3", "nf", round(tapered_factor))

self.sch_gen.set_ti_parameter("P32_3", "nf", round(tapered_factor))

Setting the width of the mosfets of 4 stage

number_finger = round(tapered_factor)

self.sch_gen.set_ti_parameter("N4_4", "w", float(self.sch_gen.

instances["N2_2"]["parameters"]["w"]["value"]) * round(tapered_factor))

self.sch_gen.set_ti_parameter("N4_4", "multi", round(tapered_factor))

self.sch_gen.set_ti_parameter("N4_4", "nf", number_finger)

self.sch_gen.set_ti_parameter("P41_4", "w", float(self.sch_gen.

instances["P2_2"]["parameters"]["w"]["value"]) * round(tapered_factor))

self.sch_gen.set_ti_parameter("P41_4", "l", float(self.sch_gen.

43

In the method, in addition to sizing, there is a check whether the target delay

specification is met by the theoretical calculation; it also checks whether given the input

and calculation values, the condition is optimum from the point of view of the driver’s

propagation delay, i.e. when the increment factor coincides with e.

In addition to the implementation of the trade-off method, another method is made

available which, given the previous scaling, improves a user-specified transition

following the previously explained criterion, that is the asymmetrical sizing and it is

presented in listing 2.4.

Method to size the driver to speed up one transition def asymetrical_sizing(self,

high_low, low_high):

Calculation of the factor to get strong/weak mos

 AF = float(self.sizing_params["AF"]) sizing_factor_weak = 1 - AF/100

sizing_factor_strong = 1 + AF/100

Case to size for speeding up high to low transition

In this case, in the final stage the nmos should be stronger than pmos

Starting from this point, in an alternate way, the mosfets are sized

if high_low == 1 and low_high == 0:

Sizing the Nmos in alternate way

self.sch_gen.set_ti_parameter("N1_1", "w", round(float(self

.sch_gen.instances["N1_1"]["parameters"]["w"]["value"]) * sizing_factor_weak, 10))

self.sch_gen.set_ti_parameter("N2_2", "w", round(float(self

.sch_gen.instances["N2_2"]["parameters"]["w"]["value"]) * sizing_factor_strong, 10))

self.sch_gen.set_ti_parameter("N3_3", "w", round(float(self

44

Listing 2.4: asymmetrical sizing method for the driver

The results obtained from the code will be presented in chapter four, together with the

actual non-theoretical performance.

.sch_gen.instances["N3_3"]["parameters"]["w"]["value"]) * sizing_factor_weak, 10))

self.sch_gen.set_ti_parameter("N4_4", "w", round(float(self

.sch_gen.instances["N4_4"]["parameters"]["w"]["value"]) * sizing_factor_strong, 10))

Sizing the Pmos in alternate way

self.sch_gen.set_ti_parameter("P1_1", "w", round(float(self

.sch_gen.instances["P1_1"]["parameters"]["w"]["value"]) * sizing_factor_strong, 10))

self.sch_gen.set_ti_parameter("P2_2", "w", round(float(self

.sch_gen.instances["P2_2"]["parameters"]["w"]["value"]) * sizing_factor_weak, 10))

self.sch_gen.set_ti_parameter("P31_3", "w", round(float(

self.sch_gen.instances["P31_3"]["parameters"]["w"]["value"]) * sizing_factor_strong, 10))

self.sch_gen.set_ti_parameter("P32_3", "w", round(float(

self.sch_gen.instances["P32_3"]["parameters"]["w"]["value"]) * sizing_factor_strong, 10))

self.sch_gen.set_ti_parameter("P41_4", "w", round(float(

self.sch_gen.instances["P41_4"]["parameters"]["w"]["value"]) * sizing_factor_weak, 10))

self.sch_gen.set_ti_parameter("P42_4", "w", round(float(

self.sch_gen.instances["P42_4"]["parameters"]["w"]["value"]) * sizing_factor_weak, 10))

 return None

45

CHAPTER 3

LAYOUT GENERATOR

This chapter presents a briefly introduction of different approaches that can be followed for the

layout generator. Then it proceeds with the discussion of the template choose for the

implementation of the driver to end up with the use of Qgen, in order to get the generator of the

instance.

3.1 Analog layout strategies

The strategies to develop a layout generator are different, but two macro categories can be

distinguished according to the level of customization: full-custom or semicustom [6].

Full-custom allows a development with a great degree of freedom, leading to optimized

desired performance. However, high effort is required unlike the semicustom, in which the effort

decreases , but it leads to restrictions in development. The methods used to generate full-custom

layouts are of interest and can be divided into optimization-driven and knowledge-driven

semicustom [7].

Optimization-driven aims to automatically generate the layout through optimization

algorithms based on cost functions. The purpose is to reduce the specified cost, for example the

occupied area. The advantage of this approach is its generality, but on the other hand the

disadvantage is the difficulty of setting up a cost function; in particular the complexity of this

function is directly proportional to the problem and layout to be generated.

Knowledge-driven is an approach in which all the designer’s knowledge and expertise is

codified. It is not as complex as the other, since the placement is already thought as a starting

point. In this approach, layout rules or a predefined template can be followed during the

development. In this thesis, a carefully designed template was set up and followed.

46

3.2 Driver Layout template

The starting point to develop a layout generator is the template that must be identified. For this

thesis, the slicing floorplan was chosen for the template, as this particular structure allows the

implementation of layout optimization algorithms, for example the Stockmayer algorithm, but

which will not be discussed. However, the template chosen at the starting point allows future

users to implement algorithms for placement optimization.

 The slicing floorplan consists on arranging the blocks in such a way that the layout can be

described by a binary tree, i.e. the total area is recursively divided until the leafs are reached,

which represents the blocks, while the nodes have the information of how to group these leafs.

In particular every node have the information about the cut that has to be made in the layout area

to group blocks. For additional clarification of this structure, reference can be made to the Figure

28.

Figure 28: Slicing floorplan template and binary tree

The implementation of the slicing floorplan offers various advantages such as:

• It yields more compact layout instances

• Placement can be more easily specified by the relative positions of the layout tiles, since

the hierarchy of slicing structures is better defined.

• It also allows to evaluate more easily other characteristics of the circuit layout such as

routing

In this project driver sizing is of interest, hence the mosfets of the cascade stages.

47

However, in the starting topology, as can be seen in Figure 14, there are parts of the circuit that

are required for stress and leakage measurements and that go beyond the topics discussed, but

from a layout point of view they must be considered as they occupy an area. In particular the

parts outside the cascade of inverters are those highlighted in the Figure 29.

Figure 29: Circuitry around the Driver

Therefore, to make the template implementation clear and efficient, it was decided to group

the external circuitry together and form three macro blocks:

• The capacitance which is the input nmos with drain and source short

• Nmos mirrors, input logic gate and resistance

• Pmos for measurements

Each macro-block can be considered as a single block in the template. Having made these

preliminary considerations, the structure chosen to describe the layout is in Figure 30, where the

driver is highlighted.

48

Figure 30: Template

The structure allows for a binary a tree description represented in Figure 31.

Figure 31: Binary tree description of the template

49

The implementation of such a template, where the position of individual blocks is well

defined, allows the placement of traces used to connect adjacent and nonadjacent blocks. The

limitation with the current version of Qgen is that traces are only horizontal or vertical. An

example of a vertical trace and how it can connect blocks is presented in Figure 32.

Figure 32: Routing channel example

Note that the structure in Figure 30 is a simplification, used as a starting point to be followed

during the layout implementation.

In fact, the relative placement of the tracks has not been taken into account and macro-blocks

have been considered, instead of the actual small blocks which are mosfets. As will be seen in

the next section, the structure will become more complicated as Qgen itself implements its own

tree following the user-made grouping.

In fact, for the current state of the tool, the internal algorithm developed consists of

compacting the groups that the user creates, developing the placement tree. In this type of tree,

each node can have multiple children and holds the information on how to compact the groups

(vertically, horizontally or compact to lower left corner). However, other algorithms such as the

previously presented are under development and will be integrated into the tool.

50

3.3 Qgen: Layout creation

 The layout generator developed is the topology presented in Figure 14. As with the

schematic generator a starting point is required: the template identified and implemented

in layout xl view, available in the Cadence Virtuoso Design Environment, through the

use of the Qgen GUI. The chosen template is presented in Figure 30.

All individual modules of the schematic are generated and positioned according to

the template, so that they have a clearly defined position. The purpose of this approach

is due to Qgen, which has an internal algorithm that compacts the blocks, following the

relative positions through a graph structure.

In Figure 33 can be seen all individual modules that have been implemented through the

Qgen interface, following the template previously proposed.

Figure 33: Modules implemented by Qgen

Qgen offers an important function: local routing. In fact, mosfets that are compatible

in term of type and size (width or length) can be generated in a single block thanks to

the regular matrix generator provided by the GUI. In this way internal routing can be set

according to the user preferences. It can therefore be seen in Figure 33 that some of the

51

modules in the figure consist of several compatible mos and already have connections

where possible.

By assembling the modules according to the chosen template, Qgen provides a tree

description of the structure, presented in Figure 34. It can be seen that this description

is complete and that each individual module in Figure 33 is a leaf of the tree.

Figure 34: Tree description

The next step is to introduce the routing channels through a tracklines module

generator. Once the channels are placed it is possible to use the Qgen import and

connectivity editor presented in Figure 35 to construct again the hierarchical structure

presented in Figure 34, but this time including also the relative position of the tracks

inside the template. The new layout template is shown in Figure 36 while the new

hierarchical structure is presented in Figure 37.

Figure 35: Import and connectivity editor

52

Figure 36: Template with modules and tracks

Figure 37: Hierarchical tree description

The main role of the import and connectivity editor in Figure 35 is to associate

blocks-to-tracklines and tracklines-to-tracklines, in order to allow the built-in routing

algorithm to connect two modules if the same net name is presented in the connectivity

list of the modules themselves. This connectivity also assures that the tracklines are

going to stretch with the modules associated to them. The limit of this routing algorithm

is that it is not possible to connect two blocks directly without using a trackline and also

the routing lines can only be vertical or horizontal without the possibility of alternative

53

shapes. This means that some area will be wasted, but the result is a complete routed

layout which is DRC4 clean.

Once the template is completed, the layout is imported inside a Qgen project with

the commands presented in Listing 1.1, inside the VScode IDE through the telnet

session. After this last phase, Qgen automatically creates the files (JavaScript) needed

to develop the generator as already explained in the first chapter and in Figure 11.

Specifically, in the Parameter Template JS file relations have been coded to manipulate

the parameters of the template (width, length, number of finger etc...) and set the

generator GUI. In particular the top level parameters have been set as editable variables,

then functions which exploit parameters relations have been written in order to generate

the correct layout instances. In the layout generator in question, the top level parameters

made available to the user are:

• Nmos width of the first stage

• Pmos width of the first stage

• Tapered factor α

• Width for the switch P4

The four defined parameters are those that determine the sizing of the driver. In this

way, there is compatibility between the schematic generator and the layout generator.

4 Design rule checking: it is the verification of compliance with the design rules.

54

Then for the circuitry around the driver width finger, number of fingers and

multiplicity are made editable.

Thanks to the Parameter Template JS file it is possible to modify the declared

parameters when the Driver is selected from the list of Qgen generators, as can be seen

in Figure 38.

Figure 38: Driver generator GUI

The complete code of the layout generator is presented in Listing 3.1. At the

beginning of the code there are all the modules instantiated for the layout; next, the

top-level parameters and functions required are defined. Finally, there are sections in

which parts of the driver are sized according to the desired criterion.

55

var childToParentParameterDefinition = function(instancesFile,

Pd_to_Pc_MappingFile,Pc_DefsFile,Pd_File,Pd_DefsFile,

 parameterGraphFile,noGraph)

{

// Child instance: second_stage_nmos, generator:

 transistor_matrix

// Child instance: tr_driver_left_hor_M3, generator: tracklines

// Child instance: first_stage_pmos, generator: transistor_matrix // Child instance: first_stage_nmos,

generator: transistor_matrix

// Child instance: third_fourth_stage_nmos, generator:

 transistor_matrix

// Child instance: switch_p9, generator: transistor_matrix

// Child instance: second_stage_pmos, generator:

transistor_matrix

// Child instance: tr_driver_right_hor_M3, generator: tracklines

// Child instance: third_fourth_stage_pmos, generator:

transistor_matrix

// Child instance: switch_p4, generator: transistor_matrix // Child instance: big_pmos_clamp,

generator: transistor_matrix

// Child instance: small_pmos_clamps, generator:

transistor_matrix

// Child instance: tr_clamp_down_hor_M3, generator: tracklines

// Child instance: tr_driver_middle_ver_M2, generator: tracklines

// Child instance: tr_clamp_up_hor_M3, generator: tracklines

56

// Child instance: couple_first_mirror, generator: transistor_matrix

// Child instance: couple_second_mirror, generator: transistor_matrix

// Child instance: switch_first_mirror, generator: transistor_matrix

// Child instance: switch_second_mirror, generator: transistor_matrix

// Child instance: nmos_current_measure, generator:

transistor_matrix

// Child instance: tr_mirror_middle_hor_M3, generator: tracklines

// Child instance: tr_mirror_up_hor_M3, generator: tracklines

// Child instance: resistance_current_measure, generator:

ResistorStack

// Child instance: logic_gate, generator: cellInstance

// Child instance: tr_mirror_right_ver_M2, generator: tracklines

// Child instance: capacitance, generator: transistor_matrix

// Child instance: tr_cap_ver_M2, generator: tracklines

// Child instance: ground_bottom_hor_M3, generator: tracklines

// Child instance: tr_clamp_right_ver_M2, generator: tracklines // Child instance:

supply_top_hor_M3, generator: tracklines

 var childParameters = LGenerator.prototype.getChildParameters(instancesFile);

 var PD = new PDatabase(childParameters);

// Declare new parameters here

PD.stringParameter(’Qgen4Bag’, ’Qgen4BagName’, ’Qgen4Bag Name’, ’

DriverGeneratorLayout2opt0’);

57

//-----------------TOP LEVEL PARAMETER--------------------------

//Create a top-level parameter for the tapered factor obtain from schematic generator

// 4 = default value for the tapered factor

PD.integerParameter(’Design’, ’tapered_factor’,’Tapered factor alfa’ , 4);

// Create a top-level parameter for "third_fourth_stage_nmos" and

"third_fourth_stage_pmos"

// by editing "unitN" , "unitW"

// For a Transistor Matrix: "unitW" := "unitN" * "Wf"

// 03.68u = dafault valure for the finger width of the thirdfourth stage NMOS

// 11.36u = dafault valure for the finger width of the thirdfourth stage PMOS

PD.doubleParameter(’Design’, ’third_fourth_stage_Wf_nmos’,’Third fourth stage NMOS W_f’, 3.680);

PD.doubleParameter(’Design’, ’third_fourth_stage_Wf_pmos’,’Third fourth stage PMOS W_f’, 11.36);

// Create a top-level parameter for width first stage

PD.doubleParameter(’Design’, ’P4_width_switch’,’Switch P4 width’, 2);

// Create a top-level paramenter for input capacitance

PD.integerParameter(’Design’, ’input_capacitance_M’,’Input Capacitance molteplicity’, 8);

//-----------------FUNCTIONS--------------------------

// Define parameter relationships here

58

PD.childParameterOfInterest([’model’]); // The child models must typically be dealt with

// Function that updates the number of finger variable var __NF_function = function(N,alfa)

{ return (N*alfa); }

// Function that updates the width variable var W_function =

function(Wf,N)

{ return (Wf*N); }

// Two functions for the molteplicity of the last stage (3 and 4) of the Driver

// Multeplicity is equal to the taper factor var __calcPlacement_third_fourth_stage_NMOS =

function (M)

{

var P;

P = calcPlacementPattern(["N4_4","N3_3"],[M,1],"fill"); return (P)

}

var __calcPlacement_third_fourth_stage_PMOS = function (M)

{

var P;

 P = Array(M+1).join("P41_4*,") + "P31_3/" + Array(M+1).join("

 P42_4,") + "P32_3*" return (P)

}

// Function for the molteplicity of the capacitance var __calcPlacement_capacitance =

function(M)

59

{

var P = calcPlacementPattern(["N11"],[M],"fill"); return (P)

}

// -----------------DRIVER-NMOS----------------------------

// Set the width of the second stage nmos from the userspecified tapered factor alfa

// unitW = ["second_stage_nmos","unitW"]

// unitW = tapered_factor * first_stage_Width_nmos --> 0.92 is the width of the first_stage nmos

PD.setParameterFunctionMI(__W_function, ["second_stage_nmos","

unitW"],[["first_stage_nmos","unitW"],"tapered_factor"]);

// unitN = N --> With the function below I set the new number of finger specified by the user

PD.setParameterFunction(__NF_function, ["third_fourth_stage_nmos"

,"unitN"], "tapered_factor", [1]);

// Set the width for the third and fourth stage NMOS

// unitW = ["third_fourth_stage_nmos","unitW"]

// unitW = N*Wf = tapered_factor * third_fourth_stage_Wf_nmos

// Update the width finger according to the taper factor so in this way it match with the width of second

stage

PD.setParameterFunctionMI(__W_function, [’ third_fourth_stage_Wf_nmos’],

[["first_stage_nmos","unitW"],’ tapered_factor’]);

PD.setParameterFunctionMI(__W_function, ["third_fourth_stage_nmos

","unitW"],["third_fourth_stage_Wf_nmos","tapered_factor"]);

// Update the molteplicity of the last stage according to the tapered factor

60

PD.setParameterFunction(__calcPlacement_third_fourth_stage_NMOS,

["third_fourth_stage_nmos","Placement"] , ["tapered_factor"]);

// -----------------DRIVER-PMOS-------------------------------

// Set the width of the second stage pmos from the user-specified tapered factor alfa

// unitW = ["second_stage_pmos","unitW"]

// unitW = tapered_factor * first_stage_Width_pmos --> 2.84 is the width of the first_stage pmos

PD.setParameterFunctionMI(__W_function, ["second_stage_pmos","

unitW"],[["first_stage_pmos","unitW"],"tapered_factor"]);

// unitN = N --> With the function below I set the new number of finger specified by the user

PD.setParameterFunction(__NF_function, ["third_fourth_stage_pmos"

,"unitN"],"tapered_factor",[1]);

// Set the width for the third and fourth stage PMOS

// unitW = ["third_fourth_stage_pmos","unitW"]

// unitW = = N*Wf = tapered_factor * third_fourth_stage_Wf_pmos

// Update the width finger according to the taper factor so in this way it match with the width of second

stage

PD.setParameterFunctionMI(__NF_function, [’ third_fourth_stage_Wf_pmos’],

[["first_stage_pmos","unitW"],’ tapered_factor’]);

PD.setParameterFunctionMI(__W_function, ["third_fourth_stage_pmos

","unitW"],["third_fourth_stage_Wf_pmos","tapered_factor"]);

// Update the molteplicity of the last stage according to the tapered factor

PD.setParameterFunction(__calcPlacement_third_fourth_stage_PMOS,[

61

Listing 3.1: Layout Generator code

"third_fourth_stage_pmos","Placement"] , ["tapered_factor"]);

//-----------------Switch P9------------------------------

PD.setParameterFunctionMI(__W_function, ["switch_p9","unitW"],["

P4_width_switch","tapered_factor"]);

//-----------------Input Capacitance----------------------

// Update the molteplicity of the capacitance

PD.setParameterFunction(__calcPlacement_capacitance,["capacitance

","Placement"] , "input_capacitance_M");

// Plot the parameter dependency graph if (noGraph != true)

PD.plot(parameterGraphFile);

// Write the parent-to-child mapping function; return(

PD.parentToChildren(’DriverGeneratorLayout2opt’,

Pd_to_Pc_MappingFile, Pc_DefsFile, Pd_File, Pd_DefsFile));

}

62

After the layout has been instantiated, the connections that are not handled by Qgen in

the current state of the tool are completed by hand. In the present case, it is only the

connection of the logical port. Figure 39 shows the final result.

Figure 39: Final Layout

63

CHAPTER 4

RESULTS

This last chapter presents the results obtained from the schematic generator followed by the pre-

layout verification, with discussion of the results. The complete flow of schematic generator and

WiCked optimisation is presented. Finally, the result of the layout generator is introduced with

discussion of the post-layout verification.

4.1 Schematic Generator flow

This section presents the schematic generator flow and how it interacts with the user, right up to

the implementation of the instance. Then, the schematic was tested through simulations

performed with Avenue.

The schematic generator code allows to take the specification from an external JAMA file. The

specification for the code is the total delay from the input of the driver to the output. Nevertheless

other measures have been evaluated and they will be discussed in the following section.

In Figure 40 it is possible to see how the code interfaces with the user.

Figure 40: Starting the program

64

After deciding whether to take the specifications from Jama or to enter them manually, the

code also offers the possibility of changing the parameters that determine the sizing of the driver,

i.e. output capacitance, input capacitance, equivalent on-resistance and the size of the first stage.

This step emphasises key features of the code which are re-usability and portability.

In the next step the generator code offers the choice of trade-off-sizing. In case of affirmative

input, the code implements the criterion and sizes automatically the mosfets concerned for the

Driver. A summary of the changes made in the schematic is provided to the user, which is shown

in Figure 42.

Figure 41: Mosfets sizing summary after trade-off implementation

The code also checks whether the theoretical delay meets the required specification and

provides the growth value α used for the stages according to the circuit’s initial conditions. An

example of this result can be seen in Figure 42.

65

Figure 42: Requirement check

After the trade-off sizing, there is the possibility to decrease the time for a transition by

using the asymmetrical factor. This interface can be seen in Figure 43.

Figure 43: Asymmetrical sizing option

The code updates the values of the mosfets in the schematic according to the user

interaction. For example, it can speed up the low-to-high transition by an asymmetric factor

of 20% and the result is printed out as in Figure 44.

Figure 44: Asymmetrical sizing result

66

Asymmetrical sizing was implemented in the schematic generator to offer the user better

transition if they were of primary importance. However, in the following sections, only the

trade-off solution is analysed with discussion of the optimiser embedded in the flow.

4.1.1 Pre-Layout Verification

The schematic generator code instantiate a driver sized according to the implemented

criterion. It is now necessary to verify the performances of the circuit through the evaluation

of interested measures, that are:

• Delay on driver ls: is the measure for the delay of the on signal, i.e. the propagation

of the low-to-high transition

• Delay off driver ls: is the measure for the delay of the off signal, i.e. the propagation

of the high-to-low transition

• Rise lson: is the measure for the transition time (low to high) of the output node, better

known as the rise time

• Fall lson: is the measure for the transition time (high to low) of the output node, better

known as the fall time

• Curr cons vdd2v5: is the dynamic measure for the current consumption for devices

supplied with 2.5V (Driver)

• Curr cons vdd1v5: is the dynamic measure for the current consumption for devices

supplied with 1.5V

• Curr leak 0B: is the static measure of leakage current assuming a fixed low input

signal to the Driver

67

• Curr leak 1B: is the static measure of leakage current assuming a fixed high input

signal to the Driver

The simulation has been done using Avenue (Analog Verification Environment), which is

an Infineon in-house tool that provides an environment to verify or manage transistor level

simulation semicustom. Avenue allows to execute a verification plan related to the Driver

and create a report. The needed test is run in batch mode by calling the verify() method,

presented in Listing 4.1.

def verify():project_root = os.path.join(os.path.dirname(__file__), "../../ schematic/")

generator= Generator_DRIVER_LS_BOOST_DRIVER_LS_TAPERED_BUFFER(project_root)

specs = generator.get_default_specs() #generator.specs

results_path = os.path.join(os.path.dirname(__file__), "../ avenue/results/") ave_path =

os.path.join(os.path.dirname(__file__), "../avenue/")

os.makedirs(results_path, exist_ok=True) log.info(f"[INFO] Verification results are at: {results_path}")

log.info(f"[INFO] Generating testbench and netlisting")

save_path = os.path.join(os.path.dirname(__file__), "../results/spt9u/") netlist_path =

os.path.join(os.path.dirname(__file__), "../ netlist/")

if os.path.exists(netlist_path + "tb_driver.nd.tit"):

 os.remove(netlist_path + "tb_driver.nd.tit")

 print("[INFO] A previous version of the netlist was present and has been erased")

options = ’{"view": "schematic","netlist_dest": "’ + netlist_path + "tb_driver.nd.tit"+ ’"}’

os.system("anagen_layver create netlist --lib " + generator.lib+ " --cell " + generator.cell + "

--output " + "runATC.cfg" + "--options " + "’" + options + "’")

68

Listing 4.1: Verify method to launch Avenue

The goal is to analyse the measures and assess whether they are acceptable. The main

analysis is made under nominal condition. The measures were tested also in corner

conditions to observe variations experienced. Finally, a Monte Carlo analysis is also

performed, in which changes in measurements are observed not only in corner conditions,

but also with changes in device parameters. The three tests are presented as follows.

 TEST 1

Figure 45: Main measurements – typical conditions

os.system("anagen_layver run --lib " + generator.lib + " --cell" + generator.cell + " " +

"runATC.cfg" + " --force") # -force: update the output folder log.info(f"[INFO] Netlisting

done!")

log.info(f"[INFO] Setup Avenue plan")

plan = pyavenue.avePlan(ave_path + ’templates/Verification_plan_template.apf’)

plan.simulate() plan.viewResults() return specs

69

TEST 2

Figure 46: Main measurements – corner conditions

TEST 3

Figure 47: Main measurements – montecarlo conditions

The target of this thesis is to provide a generator of Driver with good time performances,

while maintaining limited consumption and occupied area. In particular, the specifications

in typical condition are presented in Table 4.1.

70

Measure Unit Specification

Rise lson s < 1.5n

Fall lson s < 500p

Delay on driver ls s < 1.5n

Delay off driver ls s < 1.2n

Curr cons vdd2v5 A < 35u

Curr cons vdd1v5 A < 10n

Curr leak 0B A < 5n

Curr leak 1B A < 5n

Table 4.1: Specifications in typical conditions

By comparing the measurements obtained with the specifications, it can be seen that the

performances are met; in particular, the timing performances of interest are largely satisfied

under nominal conditions, while under corner conditions the measurements remain close to

acceptable values. On the other hand, consumption under nominal conditions remains

limited to set values, while under corner conditions there is a wide variation, as it was

expected.

4.2 WiCked Optimisation

 The WiCked optimisation tool, presented in chapter 1, has been successfully used

obtaining the complete workflow for the schematic generator. A python code has been

written to exploit all the advantages of WiCked. Specifically, the WiCked gangway is made

available for the user to import into the code and which allows connection to the tool.

WiCked gangway enables starting the tool from Python for sizing, verification and

optimization. The code is presented in Listing 4.2 and a description of how it is structured

follows.

71

{ import wickedgangway

input data directory

basedir=os.getcwd()

def driver(mode):

’Sizing flow circuit driver’

#wickedbatch class instance

run = wickedgangway.standalone(projectname=’driver’)

print the relevant configuration

run.print_configuration()

netlist(s)

run.add_netlist(

netlistpath=os.path.join(basedir,’tb_driver.rs.tit’),

netlistpath=’/home/pad_ip_9/BAG/nodm/default/units/main/home/

demirid/simulation/tb_driver/titan/schematic/netlist/tb_driver.

rs.tit’, simulator=’titan’,

testbench_id=’tb_driver.rs’

parameterization

run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MN1_1’,

properties=[(’W’, ’WN_MIN’)])

72

 run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MN2_2’,

properties = [(’W’, ’WN_MIN*ALFA’)])

 run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MN3_3’,

 properties = [(’NF’, ’ALFA’), (’W’, ’WN_MIN*ALFA*ALFA’)])

run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MN4_4’,

properties = [(’M’, ’ALFA’), (’NF’, ’ALFA’), (’W’, ’WN_MIN*ALFA* ALFA’)])

 run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP1_1’,

properties = [(’W’, ’WP_MIN’)])

run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP2_2’,

properties = [(’W’, ’WP_MIN*ALFA’)])

run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP31_3’,

 properties = [(’NF’, ’ALFA’), (’W’, ’WP_MIN*ALFA*ALFA’)])

 run.add_parameterization(

deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP32_3’,

properties=[(’NF’, ’ALFA’), (’W’, ’WP_MIN*ALFA*ALFA’)]

)

73

run.add_parameterization(deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP4’,

properties=[(’W’, ’W_SWITCH’)])

run.add_parameterization(deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP41_4’,

properties=[(’M’, ’ALFA’), (’NF’, ’ALFA’), (’W’, ’WP_MIN*ALFA* ALFA’)])

run.add_parameterization(deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,X/MP42_4’,

properties=[(’M’, ’ALFA’), (’NF’, ’ALFA’), (’W’, ’WP_MIN*ALFA* ALFA’)])

run.add_parameterization(deviceinstance=’BOOST_DRIVER_LS_TAPERED_BUFFER,

X/MP9’, properties=[(’W’, ’W_SWITCH*ALFA’)])

Design parameters

run.add_design_parameter(parametername=’ALFA’, initial=4, lower=2, upper=7, grid

=[(2,1,7)]

)

run.add_design_parameter(parametername=’W_SWITCH’, initial=’2u’, lower=’0.5u’, upper=’15 u’,

grid = ’ifxdevsymbol c_*trans finger width *ana’

)

run.add_design_parameter(parametername=’WN_MIN’, initial=’0.92u’, lower=’0.5u’, upper=’ 10u’,

grid = ’ifxdevsymbol c_*trans finger width *ana’

)

run.add_design_parameter(parametername=’WP_MIN’, initial=’2.84u’, lower=’0.5u’, upper=’

10u’, grid = ’ifxdevsymbol c_*trans finger width *ana’

)

operating parameters run.add_operating_parameter(parametername=’TEMPERATURE’, initial=’27’,

lower=’-40’, upper= ’175’) run.add_operating_parameter(parametername=’VDD2V5’, initial=’2.5’,

lower=’2.25’, upper=’ 2.75’

)

74

Process corner

run.set_corner_mode(’ce’) run.add_ce_corner(’CORNER’,

models=[

(’/home/pad_ip_9/BAG/nodm/default/resources/.TECH/titan/models/ include.tit’, (’FAST’, ’NOM’,

’SLG’)),

(’/home/pad_ip_9/BAG/nodm/default/resources/.TECH/titan/models/ include_SOAC.tit’,

(’WARNINGS_OFF’,)),

(’/home/pad_ip_9/BAG/nodm/default/resources/.TECH/titan/models/ aging/AgeLib.tit’, (’OFF’,))

],)

Sizing flow sizingsettings = {

’twosteps’:False,

’constraints’:wickedgangway.WORSTCASE,

’wcoperationalgorithm’:[wickedgangway.COORDINATESEARCH,

wickedgangway.ALLCOMBINATIONS],

’wcoperationaccuracy’:0.05,

’combinePoCvalues’:False,

’displayconstraints’:True,

’usemanufacturinggrid’:True,

’feasalgorithm’:wickedgangway.FINDCENTRAL,

’maxiterations_feasibility’:15,

’maxiterations_nominal’:6,

’minmaxcostfunction’:wickedgangway.EXPONENTIAL,

’sensatworstcase’:True,

75

} flow = wickedgangway.flow_wicked_optimization(run,’runNominal’, sizingsettings,mode!=’setup’)

specifications flow.add_area_specification(’AREA_DRIVER’, [

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MN11’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MN1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MN2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MN3_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MN4_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP9’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP31_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP32_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP41_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<0>/MP42_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MN11’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MN1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MN2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MN3_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MN4_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP4’,

76

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP9’,

 ’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP31_3’,

 ’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP41_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<1>/MP42_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MN11’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MN1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MN2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MN3_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MN4_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP9’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP31_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP32_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP41_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<2>/MP42_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MN11’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MN1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MN2_2’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MN3_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MN4_4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP1_1’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP2_2’,

77

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP4’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP9’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP31_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP32_3’,

’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP41_4’,

 ’/tb_driver.rs/XI_DRIVER_LS/XI_TAPERED_BUFFER_0<3>/MP42_4’,

], nominaltype_initial=wickedgangway.MIN, scaling=’100p’)

flow.add_specification(’RISE_LSON’, analysis=’all’,

upper_initial=f’{713.7*1.1}p’, nominaltype_initial=wickedgangway

.BOUND, upper_worstcase=’1.2n’, nominaltype_worstcase=

wickedgangway.BOUND) #tran flow.add_specification(’FALL_LSON’, analysis=’all’,

upper_initial=f’{388.9*1.1}p’, nominaltype_initial=wickedgangway

.BOUND, upper_worstcase=’880p’, nominaltype_worstcase= wickedgangway.BOUND) #tran

flow.add_specification(’DELAY_ON_DRIVER_LS’, analysis=’all’,

 upper_initial=f’{837.2*1.1}p’, nominaltype_initial=wickedgangway

.BOUND, upper_worstcase=’1.8n’, nominaltype_worstcase = wickedgangway.BOUND) #tran

flow.add_specification(’DELAY_OFF_DRIVER_LS’, analysis=’all’,

upper_initial=f’{1.167*1.1}n’, nominaltype_initial=wickedgangway

.BOUND, upper_worstcase=’2n’, nominaltype_worstcase= wickedgangway.BOUND) #tran

flow.add_specification(’CURR_CONS_VDD2V5’, analysis=’all’, scaling=’100n’,

nominaltype_initial=wickedgangway.MIN) #tran

78

Listing 4.2: driver function for optimization

The starting point is to specified for the code the runset file, its path and the simulator. The

runset file for the driver contains a full set of informations for the program to be run

(simulation), plus the locations (paths) of all necessary (input & output) files. rs; specifically

it has the informations of outputs to be saved, corners, analysis to be done, variable

definitions and the pointing to the nd file which contains the actual netlist, i.e. the status of

the circuit. The runset file will be the reference for the code, together with the simulator to

be used. At this point follows the WiCked state of the circuit, that is the schematic

parametrization according to the design criterion.

Four design parameters has been defined:

flow.add_specification(’CURR_LEAK_0B’, analysis=’all’, scaling=’100p’,

nominaltype_initial=wickedgangway.MIN) #dc

flow.add_specification(’CURR_LEAK_1B’, analysis=’all’, scaling=’100p’,

nominaltype_initial=wickedgangway.MIN)#dc

flow.add_specification(’CURR_CONS_VDD1V5’, analysis=’---’)

print setup data

print(run) print(flow)

run WiCkeD optimization run.wicked(flow=flow, mode=mode, simulators=4, #should not be

larger than the number of used

cores

)

}

79

• alfa: the tapered factor (the index of increase) for the driver

• wn min: minimum nmos width of the first stage

• wp min: minimum pmos width of the first stage

• w switch: minimum width for the first switch in the third stage

The defined parameters can be controlled through the gangway, perform the optimization

and find the optimum values to reach specific performances. The parameterization of the

circuit is done with the four parameters to implement the criterion illustrated in Chapter 2.

For each of these parameters, an initial value and a range with a minimum and maximum

value has been specified.

Operating parameters, which are temperature and power supply, and process corners are

also defined. These are necessary for the circuit because it is tested in all combinations of

these parameters to assess how performances vary depending on operating conditions. This

first part of the code constitutes the constraint editor, that is, the initial setup of the tool.

Then follows the sizing flow in which the type of optimization and measures to be optimized

are defined. There are three types of optimisation: nominal, yeld and feasibility. For the code

the nominal optimization has been chosen.

The measures of interest are presented in the previous section; an other measure has been

added to the flow:

• Area: is the measure that takes into account the area occupied by the driver,

i.e. the devices that are subject to code sizing

For each of these measurements, the initial value was specified and how to optimize

them. In particular, for time measurements has been given an upper bound under nominal

condition and worst-case condition to not be exceeded; no lower bound has been specified,

because for this type of evaluations it is of interest to achieve the shortest possible time.

80

Area and current measurements were specified to minimise as much as possible and an

equivalent improvement index between the various measurements called scaling was

indicated (e.g. a decrease of 100n for the Curr cons vdd2v5 is equivalent to a decrease of

100p for Area occupied).

The Tables 4.2 can be consulted for greater clarity of the conditions imposed on the

optimizer.

Measure Lower Bound Initial Value Nominal Upper Bound

Rise lson / 713.7p 713.7p +10%

Rise lsoff / 388.9p 388.9p + 10%

Delay on driver ls / 837.2p 837.2p + 10%

Delay off driver ls / 1.167n 1.167n + 10%

Curr cons vdd2v5 / 27.87u /

Curr leak 0B / 2.238n /

Curr leak 1B / 2.985n /

Area / MIN MIN

81

Measure Worst Case Upper Bound Scaling

Rise lson 1.2n /

Rise lsoff 880p /

Delay on driver ls 1.8n /

Delay off driver ls 2n /

Curr cons vdd2v5 / 100n

Curr leak 0B / 100p

Curr leak 1B / 100p

Area / 100p

Table 4.2: Tables for measurements specifications

It is important to note that under nominal conditions the upper bound is much more

stringent than the specification required for the driver, in fact a variation of only 10% of the

simulation value was considered. The same applies to the worst case where strict conditions

have been imposed. Furthermore, measurement Curr cons vdd1v5 was not taken into

account as the Driver is a device supplied with 2.5V.

Finally, the code can be launched. The result will provide the optimal values of the

defined parameters in order to fulfil the conditions imposed on the measurements. For a

detailed study of the result, the tool can be opened in GUI mode and observe how the

optimiser performed through tables and graphs.

4.2.1 Wicked Flow

The use of the tool was included in the schematic generator in order to have the complete

workflow. In the code, it is proposed to perform the optimization with WiCked after the

82

trade-off sizing is carried out. Listing 4.3 presents the part of the code added within the

schematic generator to offer the possibility of using the optimizer.

Listing 4.3: Code for user interaction with WiCked

User = input("\u001b[36m[INFO]\u001b [0m "+"

Do you want to launch wicked? \u001b[32m(y/n)\u001b[0m: ")

 sizing = None

if user == ’y’:

user = input("\u001b[36m[INFO]\u001b[0m "+ "Mode: batch (b)/

GUI (g)/ setup (s) \u001b[32m(b/g/s)\u001b[0m: ")

 if user == ’b’: sizing = driver.driver(’batch’)

 elif user == ’g’: sizing = driver.driver(’gui’)

 elif user == ’s’: driver.driver(’setup’)

if sizing:

print(’Final sizing:’)

for p,v in sizing.items(): print(f’ {p} = {driver.wickedgangway.to_eng(v)}’)

driver_wicked_sizing(self, sizing)

 print(interspace)

print("\n\u001b[36m[INFO]\u001b[0m " + "Mosfet dimension after WICKED

optimization:\n") print(get_string_mos_ti_parameters(self))

print(interspace)

else:

 print(’No final sizing. Refer to above.’)

83

In order for the driver to be automatically resized with the optimal values provided by the

tool, a method has been written and is presented in Listing 4.4.

Method to size the driver according to optimum values of wicked

def driver_wicked_sizing(self, sizing):

Sizing done in this method follows the same parametrization done in WICKED

tapered_factor = sizing["ALFA"]

 # Sizing 1 stage with the new optimum value

 self.sch_gen.set_ti_parameter("N1_1", "w", sizing["WN_MIN"])

 self.sch_gen.set_ti_parameter("P1_1", "w", sizing["WP_MIN"])

 # Sizing 2 stage

self.sch_gen.set_ti_parameter("N2_2", "w", float(self.sch_gen.

instances["N1_1"]["parameters"]["w"]["value"]) * round(tapered_factor))

self.sch_gen.set_ti_parameter("P2_2", "w", float(self.sch_gen.

instances["P1_1"]["parameters"]["w"]["value"]) * round(tapered_factor))

Sizing 3 stage

Nmos stage

self.sch_gen.set_ti_parameter("N3_3", "w", float(self.sch_gen.

instances["N2_2"]["parameters"]["w"]["value"])* round(tapered_factor))

self.sch_gen.set_ti_parameter("N3_3", "nf", round(tapered_factor))

Pmos stage

self.sch_gen.set_ti_parameter("P31_3", "w", float(self.sch_gen.

84

instances["P2_2"]["parameters"]["w"]["value"])*round(tapered_factor))

self.sch_gen.set_ti_parameter("P31_3", "nf", round(tapered_factor))

self.sch_gen.set_ti_parameter("P32_3", "w", float(self.sch_gen.

instances["P2_2"]["parameters"]["w"]["value"])*round(tapered_factor))

self.sch_gen.set_ti_parameter("P32_3", "nf", round(tapered_factor))

Sizing 4 stage

Nmos stage

self.sch_gen.set_ti_parameter("N4_4", "w", float(self.

sch_gen.instances["N3_3"]["parameters"]["w"]["value"])) self.sch_gen.set_ti_parameter("N4_4",

"multi", round(tapered_factor))

self.sch_gen.set_ti_parameter("N4_4","nf",round(tapered_factor))

Pmos stage

self.sch_gen.set_ti_parameter("P41_4", "w", float(self.

sch_gen.instances["P31_3"]["parameters"]["w"]["value"]))

self.sch_gen.set_ti_parameter("P41_4","nf",round(tapered_factor))

self.sch_gen.set_ti_parameter("P41_4","multi",round(tapered_factor))

self.sch_gen.set_ti_parameter("P42_4", "w", float(self.

sch_gen.instances["P32_3"]["parameters"]["w"]["value"]))

self.sch_gen.set_ti_parameter("P42_4","nf",round(tapered_factor))

self.sch_gen.set_ti_parameter("P42_4", "multi", round(tapered_factor))

Sizing switch P4 and P9 of the third and fourth stage

respectively

self.sch_gen.set_ti_parameter("P4", "w", sizing["W_SWITCH"])

85

Listing 4.4: Method that sizes the driver according WiCked values

The user interaction flow offers the possibility of launching the tool in three modes:

batch, GUI and setup mode. Batch mode is chosen to have a fully automatic flow. The option

GUI allows to open the interface in order to analyse the results with graphs and tables. Of

particular interest is the worst-case analysis in Figure 48.

Figure 48: Worst case table

The tool builds a table with various options that can be referred to in order to evaluate

the results. In particular, from Figure 48, given the four time measures, it can be seen the

specification for the measurements. At this point, the Nominal column offers the simulation

results in nominal conditions, while the Worst-case value column offers the values of lower

and upper extremes that a measurement can assume. Specifically, in the last three columns

there are the operating conditions that cause the circuit to behave in that particular way.

Finally, there are columns that indicate the deviation from the nominal value both in absolute

and relative percentages, with an associated margin from the specified maximum value.

self.sch_gen.set_ti_parameter("P9", "w", float(self.sch_gen.

instances["P4"]["parameters"]["w"]["value"]) * round(tapered_factor))

return None

86

In addition to this interesting table, there are graphs of how measures change iteration

after iteration. In Figure 49 and 50 timing performances can be observe in both the nominal

(green) and worst case (blue) condition. In all four measures, the upper bound is respected.

Figure 49: Delay on and off measures in WiCked

Figure 50: Fall and rise measures in WiCked

Regarding the remaining current and area measures, having not specified a bound, but

simply imposed to minimise them, WiCked’s algorithm works in such a way that it first

satisfies the measurements with a bound, then in successive iterations minimises the

remaining measurements. This explains the initial oscillating pattern. Figure 51 and 52

present the results.

87

Figure 51: Current leakage measure in WiCked

Figure 52: Area and current dynamic measure in WiCked

In Figure 53 there is the legend for the graphs.

Figure 53: Legend for the WiCked graphs

Finally, we have the values for the parameters defined earlier to be used to achieve

optimum performance. The code prints out a summary table on the screen with the various

measurements and specifying whether or not the test conditions have passed, followed by

the final dimensioning values, as in Figure 54.

88

Figure 54: WiCked table summary

The code automatically resizes the driver mosfets using the measurements given by

WiCked and implementing the chosen criterion. It makes the performed update visible to

the user as in Figure 55.

Figure 55: Final sizing

89

4.2.2 Verification Result

Three tests are presented as in the previous section.

TEST1

Figure 56: Main measurements with WiCked sizing – typical conditions

TEST2

Figure 57: Main measurements with WiCked sizing – corner conditions

90

TEST3

Figure 58: Main measurements with WiCked sizing – Montecarlo conditions

Sizing with WiCked values provides improved performances, especially in timing

performances there is a clear improvement. Table 4.2.2 illustrates the relative percentage

improvement to show the result achieved with WiCked.

Measure Percentage improvement

Rise lson 21%

Rise lsoff 5%

Delay on driver ls /

Delay off driver ls 10%

Table 4.3: Tables for timing performances improvement

The graphs shown in Figure 49 and 50 are also important to consider. In fact, if examined

properly, it can be seen that even stricter constraints can be set for nominal conditions,

leading to an even better solution. The currents consumption have maintained the same

values, with some very small percentage deviations.

91

4.3 Layout generator: Driver

The workflow led to optimise the schematic, resulting in better electrical performance. At this

point, the layout must also be updated with the new values. The layout generator developed

allows the schematic layout to be instantiated with the new parameters, without the need to

recreate everything from scratch. The coding of the layout generator offers these great

advantages: flexibility and adaptability.

Figure X shows the new layout resulting DRC and LVS clean.

Figure 59: Final Layoutafter WiCked sizing

At this point, a post-layout verification is performed. The verification is done through

simulations in Avenue, as done for the schematic. In order to do post-layout simulation the layout

extraction first is needed as an intermediate step. Layout extraction is the translation of the

topological layout back into the electrical circuit it is intended to represent. In this way it can be

simulated. In addition, parasitic effects, specifically resistances and capacitance, are also taken

into account. The minimum tolerance thresholds set for the parasitic resistance and capacitance

contributions are 1mΩ and 1fF respectively.

92

4.3.1 Post-layout verification

The circuit is tested and the results for the three tests are given as follows.

TEST 1

Figure 60: Main measurements with WiCked sizing – Typical conditions – Post layout

Verification

TEST 2

Figure 61: Main measurements with WiCked sizing – Corner conditions – Post Layout

Verification

93

TEST 3

Figure 62: Main measurements with WiCked sizing – Montecarlo conditions – Post Layout

Verification

As expected, the performance of the layout varies with respect to the verification simulation

done directly on the schematic, due to all the effects taken into account. However, the actual

performance is very convincing, despite the fact that the layout is taken into account. In fact,

referring to Table 4.1, it can be seen that the specifications are all met. Particularly under nominal

conditions, current consumption remains below specification, not varying much from the

schematic verification simulations. Regarding time performance, only the delay off exceeds the

specification by 0.054 ns, which is considered acceptable as a variance; the other timings meet

all the set specifications.

94

CHAPTER 5

CONCLUSION

The presented results show that the reuse of blocks through a coded methodology is

not only possible but has been achieved. The sizing for the schematic generators

matched the requested specifications under typical conditions, which were the target

of the thesis, but also in some cases even the specifications at corner conditions are

met. It can be stated that generators really speed up the design process and can be

applied to the blocks which are commonly used in several applications but require

different specifications. The design cycle is not completed, since optimization loops

are needed such as the ones to also satisfy the given specifications in the corner

conditions or to minimize even more the area consumption; this is something that will

be investigated in future works. To have an even more compact layout and so a more

competitive product, the layout tool needs to be updated and improved with the

introduction of a more flexible routing algorithm. A more flexible generation of the

basic modules could also increase the quality of the layout itself by allowing the user

to fully express its expertise. The introduction of modules for the missing devices like

capacitors, logic ports or even abstract modules is necessary in order to make Qgen a

really efficient, complete and competitive layout tool.

95

REFERENCES

[1] H. G. a. R. S. J. Gerlach, "Analog Circuit Generator Design with a Flexible

Hierarchical Framework", 2017.

[2] R. K. U. M. T. S. M. P. M. &. R. A. Frevert, High Sigma Yield Analysis &

Optimization with WiCkeD, 2007.

[3] F. I. E. a. M. GmbH, Optimization of Mixer Circuits with WiCkeD, 2007.

s M. D. a. G. M. A. Balboni, Qgen: An Automatic Layout Generator for Analog

Circuit Design, 2016.

[5] F. M. a. L. Malcher, Analog Layout Optimization Using Qgen Framework, 2020.

[6] S. L. a. M. S. S. H. Goh, Full-Custom and Semi-Custom Design for Low-Power

Integrated Circuits, 2019.

[7] J. L. P. a. M. V. Amparo, Full-Custom and Semi-Custom Layout Generation

Techniques, 2005.

[8] H. B. Kaushik, D. C. Rai and S. K. Jain, "Uniaxial compressive stress-strain

model for clay brick masonry," Current Science, vol. 92, no. 4, pp. 497-501.,

2007.

