
COMPARISON OF DEEP LEARNING ALGORITHMS FOR SIGN LANGUAGE

RECOGNITION

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

LEJDI LOCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JUNE, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Comparison of Deep Learning

Algorithms for Sign Language Recognition” and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc.Prof.Dr. Arban Uka

Head of Department

Date: June 28, 2024

Examining Committee Members:

Assoc. Prof. Dr. Dimitrios Karras (Computer Engineering)

Prof. Dr. Bekir Karlık (Computer Engineering)

Dr. Florenc Skuka (Computer Engineering)

ii

Name Surname: Lejdi Loci

Signature:

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

iii

ABSTRACT

COMPARISON OF DEEP LEARNING ALGORITHMS FOR SIGN

LANGUAGE RECOGNITION

Loci, Lejdi

M.Sc., Department of Computer Engineering

 Supervisor: Prof.Dr. Bekir Karlık

 Communication has an essential impact in facilitating interaction between individuals.

It is a crucial and fundamental way of expressing feelings, thoughts, and opinions. The

community of deaf people relies on visual communication of information which uses sign

language and speechreading. The significant application of sign language is now a vital part

of the hearing-impaired culture. Sign language recognition systems implement machine

learning techniques to convey the hand pattern movement into an understandable message.

 This thesis aims to make a comparative study between two deep learning models, more

specifically, the Convolutional Neural Network (CNN) architecture used as feature extractor

and classifier and the hybrid model CNN – Support Vector Machine (SVM), which uses the

CNN model as feature extractor and SVM algorithm for the classification process. The paper

is divided into two parts, the first one lays into a comprehensive study of both models'

development, architecture, and design. The second part is about the practical comparison of

methods using coding to observe their performance.

 The methodology used to conduct this study is a combination of literature review and

practical application of two used models in data classification and prediction tasks. The

techniques used for this project include both the qualitative approach which is used in the first

section and the quantitative approach employed in the other section.

 The thesis dives deeply into the architecture of the models to ensure that each model

will perform at maximum capacity so the comparison will be held under the same

environment and restrictions. A real-world dataset is taken under consideration to validate

the performance of each of the used models.

iv

 In conclusion, we emphasize the importance of using machine-learning techniques to

enhance the interaction of deaf people within society, as well as the efficiency of the model

that may be applied for other data classification and prediction tasks.

Keywords: sign language recognition system, feature extractor, classifier, deep learning,

CNN model, CNN-SVM hybrid model

v

ABSTRAKT

KRAHASIMI I ALGORITMEVE TË DEEP LEARNING PËR NJOHJEN E

GJUHËS SË SHENJËVE

Loci, Lejdi

Master Shkencor, Departamenti i Inxhinierise Kompjuterike

Udhëheqësi: Prof.Dr. Bekir Karlık

 Komunikimi ka një ndikim thelbësor në lehtësimin e ndërveprimit ndërmjet individëve.

Është një mënyrë thelbësore dhe themelore për të shprehur ndjenjat, mendimet dhe opinionet.

Komuniteti i njerëzve të shurdhër mbështetet në komunikimin vizual të informacionit që

përdor gjuhën e shenjave dhe leximin e të folurit. Zbatimi i konsiderueshëm i gjuhës së

shenjave është tani një pjesë jetike e kulturës me dëmtim të dëgjimit. Sistemet e njohjes së

gjuhës së shenjave zbatojnë teknika të mësimit të makinës për të përcjellë lëvizjen e modelit

të dorës në një mesazh të kuptueshëm.

 Kjo tezë synon të bëjë një studim krahasues midis dy modeleve të të mësuarit të thellë,

më konkretisht, arkitekturës së Rrjetit Neural Konvolucionist (CNN) të përdorur si nxjerrës

dhe klasifikues i veçorive dhe modelit hibrid CNN – Mbështetje Vector Machine (SVM), i

cili përdor modelin CNN si nxjerrës i veçorive dhe algoritmi SVM për procesin e klasifikimit.

Punimi është i ndarë në dy pjesë, e para përfshin një studim gjithëpërfshirës të zhvillimit,

arkitekturës dhe dizajnit të të dy modeleve. Pjesa e dytë ka të bëjë me krahasimin praktik të

metodave që përdorin kodimin për të vëzhguar performancën e tyre.

 Metodologjia e përdorur për të kryer këtë studim është një kombinim i rishikimit të

literaturës dhe zbatimit praktik të dy modeleve të përdorura në detyrat e klasifikimit dhe

parashikimit të të dhënave. Teknikat e përdorura për këtë projekt përfshijnë si qasjen cilësore

që përdoret në seksionin e parë ashtu edhe atë sasiore të përdorur në seksionin tjetër.

 Teza perqendrohet në arkitekturën e modeleve për të siguruar që secili model të

performojë me kapacitetin maksimal, kështu që krahasimi do të mbahet nën të njëjtin mjedis

dhe kufizime. Një grup të dhënash të botës reale është marrë në konsideratë për të vërtetuar

performancën e secilit prej modeleve të përdorura.

vi

 Si përfundim, ne theksojmë rëndësinë e përdorimit të teknikave të mësimit të

makinerive për të rritur ndërveprimin e njerëzve të shurdhër brenda shoqërisë, si dhe

efikasitetin e modelit që mund të zbatohet për detyra të tjera të klasifikimit dhe parashikimit

të të dhënave.

Fjalë kyçe: sistem i njohjes së gjuhës së shenjave, feature extraction, klasifikues, deep

learning, modeli CNN, model hibrid CNN-SVM

vii

ACKNOWLEDGEMENTS

I want to express my gratitude to Prof.Dr. Bekir Karlik, my supervisor, for

his support. It was a pleasure for me to have the opportunity to work on my thesis,

with such a dedicated and understandable professor like him.

Grateful!

viii

TABLE OF CONTENT

ABSTRACT ... iii

ABSTRAKT .. v

ACKNOWLEDGEMENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES .. xi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Problem Statement ... 1

1.2 Thesis Objectives ... 2

1.3 Scope of works .. 4

1.4 Organization of the Thesis ... 5

CHAPTER 2 .. 6

LITERATURE REVIEW .. 6

2.1 Historical Development of Machine Learning .. 6

2.2 Related Work ... 8

2.3 Machine Learning .. 10

2.3.1 Supervised Learning .. 10

2.3.2 Unsupervised Learning .. 10

2.3.3 Reinforcement Learning .. 11

2.4 Deep Learning ... 11

2.5 Neural Networks .. 12

CHAPTER 3 .. 15

METHODOLOGY .. 15

3.1 Data Collection .. 15

3.1.1 Work Environment .. 15

3.1.2 Dataset Selection ... 16

3.2 Data Preprocessing .. 20

3.2.1 Handling Missing Values .. 20

3.2.2 Label Extraction .. 21

3.2.3 One-hot Encoding .. 22

3.2.4 Normalization .. 23

ix

3.2.5 Reshaping .. 24

3.2.6 Data Augmentation .. 25

CHAPTER 4 .. 27

ARCHITECTURE OF THE MODELS .. 27

4.1 CNN Architecture .. 27

4.1.1 Feature Extraction ... 28

4.1.2 CNN Classification .. 35

4.1.3 Regularization Methods .. 38

4.1.4 Complete Architecture .. 39

4.2 CNN - SVM Hybrid Architecture ... 40

4.2.1 SVM Classifier .. 41

CHAPTER 5 .. 45

MODEL TESTING & RESULTS COMPARISON .. 45

5.1 Evaluation Metrics ... 45

5.2 CNN Model Evaluation ... 46

5.3 CNN – SVM hybrid model evaluation .. 51

5.4 Model Comparison .. 53

CHAPTER 6 .. 56

CONCLUSIONS ... 56

6.1 Conclusion ... 56

6.2 Future Recomandations ... 57

 REFERENCES ... 59

x

LIST OF TABLES

Table 5.1 - Confusion matrix results for the CNN model .. 50

Table 5.2 - Confusion matrix results for CNN- SVM model ... 53

Table 5.3 - Comparison of confusion matrices .. 53

Table 6.1 - Comparison Table of Accuracy ... 53

file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195629
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195630
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195631
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195631

xi

LIST OF FIGURES

Figure 2.1- ML development over the years, period 1957-2017 ... 7

Figure 2.2- Neural Networks Schema ... 13

Figure 2.3- Graphical presentation of Back-propagation .. 14

Figure 3.1 - American Sign Language, including J and Z ... 17

Figure 3.2 - Grayscale image dataset .. 18

Figure 3.3 - Histogram for data distribution .. 19

Figure 3.4 - Dataset structure representation ... 21

Figure 3.5 - Data Augmentation Technique .. 26

Figure 4.1 - CNN model for image classification ... 27

Figure 4.2 - Convolution operation on grayscale image ... 29

Figure 4.3 - Depth representation .. 30

Figure 4.4 – Filters on corner pixel and middle pixel ... 31

Figure 4.5 - Valid Convolution ... 31

Figure 4.6 - Same Convolution ... 32

Figure 4.7 - Stride Visualization ... 32

Figure 4.8 - ReLU operation ... 33

Figure 4.9 - Max pooling vizualization ... 34

Figure 4.10 - Flattering Visualization ... 36

Figure 4.11 - Dense layer architecture .. 36

Figure 4.12- Dropout regularization .. 38

Figure 4.13 - CNN architecture code .. 40

Figure 4.14 - CNN- SVM model architecture ... 41

Figure 4.15 - SVM representation ... 42

Figure 4.16 - Non-linear SVM .. 42

Figure 4.17 - SVM with z dimension .. 43

Figure 5.1 - Hold-out cross-validation .. 46

Figure 5.2 - Predictions using CNN classifier ... 47

Figure 5.3 - Random testing .. 47

Figure 5.4 - Training and validation loss ... 48

Figure 5.5 - Training and Validation Accuracy ... 49

Figure 5.6 - Incorrect predictions from the CNN model ... 49

file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195578
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195579
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195580
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195581
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195582
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195583
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195584
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195585
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195586
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195587
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195588
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195589
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195590
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195591
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195592
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195593
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195594
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195595
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195596
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195597
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195598
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195599
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195600
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195601
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195602
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195603
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195604
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195605
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195606
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195607
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195608

xii

Figure 5.7 - Confusion matrix for CNN model ... 50

Figure 5.8 - Predictions using SVM classifier ... 51

Figure 5.9 - Incorrect predictions from the CNN- SVM model .. 52

Figure 5.10 - Confusion matrix for the CNN- SVM hybrid model 52

Figure 5.11 - Evaluation of metrics for both models ... 54

Figure 5.12 - Accuracy Evaluation .. 55

file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195609
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195610
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195611
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195612
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195613
file:///C:/Users/HP/Desktop/Thesis_Draft2.docx%23_Toc167195614

1

CHAPTER 1

INTRODUCTION

In this chapter, a comprehensive description will be provided regarding the primary

focus of the study, namely, sign language, and the significance of its exploration. The

objectives to be attained by the study's conclusion will be enumerated. Furthermore, the

chapter will focus on how machine learning techniques have a pivotal role in advancing sign

language detection systems, thereby enhancing communication accessibility for individuals

with hearing disabilities.

1.1 Problem Statement

Communication is the key component that enables people to share thoughts, beliefs,

and perspectives in their day-to-day lives. However, a significant portion of the world’s

population suffers from a disability to directly communicate a message to its community.

Studies indicate that there are people who face hearing loss and others who are orally

incapacitated. Cases, when both these anomalies occur, are numerous and are called deaf-

muteness, a disability that verbally isolates these people from the rest of the world. But with

today's advancements, the development of machine learning and artificial intelligence has

managed to break down this barrier.

According to the report of the World Health Organization (WHO), over 5% of the

world’s population, or 430 million (83%) people are affected by hearing loss. In line with this

estimation, 34 million (17%) are children under the age of sixteen.[21] Some statistical

reports estimate that by the year 2050 over 700 million people (1 in every 10 people) will

require hearing rehabilitation. Records indicate that 80% of people with this disorder live in

low-middle-income countries. In this rapid growth of deaf-mute individuals, it is vital to come

up with solutions to help this community communicate with others.

Sign language is what deaf-mute people use to bridge the communication gap with the

rest of the world. It aims to create a communication system that uses hand gestures and

movements to express spoken words. Following the World Federation of Deaf (WFD) there

2

are more than 300 sign languages used by these communities. There are two approaches for

sign language recognition, vison-based systems and wearable sensing mechanisms (sensory

gloves). Vision-based techniques for sign detection include machine learning, feature

extraction, and pattern recognition which are used to analyze the images and recognize the

signs. Meanwhile, sensory gloves are equipped with sensors to detect hand movement and

translate them as signals to the computer.

Integrating machine learning techniques and models into systems that detect sign

language holds a significant social impact for several reasons.

By enhancing the accuracy and efficiency of sign language detection systems through

machine learning, deaf and hard-of-hearing individuals gain improved access to

communication platforms. This facilitates their participation in various social, educational,

and professional contexts, reducing barriers to interaction and inclusion.

Integrating machine learning into sign language detection systems fosters a more

inclusive society by breaking down communication barriers between individuals with

different abilities. It promotes understanding, empathy, and respect for diversity, ultimately

contributing to a more cohesive and harmonious community.

Better sign language detection systems can improve education for deaf people by

helping them get to teaching materials, lessons, talks or even communicate with teachers and

others of their kind. Similarly, they promote an inclusive learning atmosphere where every

learner can enjoy such resources and opportunities.

1.2 Thesis Objectives

The main goal of the project is to develop two models for sign language recognition

and compare the performance of each (CNN and CNN-SVM model) for predicting the

American Sign Language.

The thesis resolves around conducting a comparative analysis of two deep learning

techniques utilized in sign language recognition. Precisely, the study will focus on the

employment of a Convolutional Neural Network where CNN is used both as a feature

extractor and classifier, and the hybrid CNN-Support Vector Machine (SVM) model where

CNN architecture operates as a feature extractor and SVM as a classifier.

3

There are also multiple aims and goals, which are queued below:

• Dataset exploration:

One of the main focuses was the selection of an appropriate dataset that would be in

alignment with the algorithms used and the scope of my thesis.

This paper draws upon two widely recognized sources for beginners in machine

learning projects: Kaggle and GitHub. Following thorough research, a dataset was chosen

from Kaggle, specifically the MNIST sign language dataset, comprising grayscale images.

This dataset includes two distinct subsets for training and testing purposes. While there are

numerous image-based datasets available for various languages worldwide, the MNIST sign

language dataset was selected due to its simplicity and ease of maintenance.

• Development of machine learning techniques:

The field of machine learning continues to evolve rapidly, with advancements in

development techniques occurring daily. This work aims to explore the various steps involved

in a machine learning project, starting from dataset selection, through data preprocessing,

feature extraction, model building and optimization, to training and testing. One of the

primary objectives of this thesis is to gain familiarity with these techniques and implement

them effectively to augment the models’ accuracy and capability.

• CNN architecture:

Examine the architecture of CNN, optimizing its multiple-layered structure, and CNN

performance as a feature extractor and classifier.

The CNN architecture, comprising essential layers such as convolutional, pooling, and

fully connected layers, has been thoroughly investigated regarding both the technical aspects

of data training and the classification process into respective classes.

• CNN-SVM model integration:

Evaluation and integration of CNN-SVM model, with a specific focus on adopting a

new strategy: SVM employed as a classifier, replacing so the fully–connected layer of CNN

architecture.

4

• Performance evaluation:

Evaluate and test the performance of each CNN and CNN-SVM model to find out

which method has the most potential for improving sign language recognition technology.

This incorporates evaluation of metrics such as precision, recall, and F1 score, to identify the

efficiency of each algorithm.

By outlining and following these objectives, the thesis attempts to contribute valuable

observations and advancements in the sign language recognition field, the motive to enhance

communication for communities with hearing disabilities.

1.3 Scope of works

This thesis aims to implement machine-learning approaches to recognize and analyze

sign language characters from a predefined dataset. The primary objective of my work is to

compare the performance of two unique deep-learning models based on the metrics

employed. This survey of the literature will give me a hand in identifying potential gaps in

current studies that our work aims to resolve.

The following stage focuses on the acquisition and preparation of the deployed dataset.

The dataset will contain characters from American Sign Language, each represented in an

image format. To provide consistency and compatibility with the models, the dataset images

will go through preprocessing steps including normalization, reshaping, and augmentation.

The next stage includes the design of the Convolutional Neural Network model, where

CNN architecture is used simultaneously as a feature extractor and classifier. The focus will

be on designing an architecture model where convolutional, pooling, and dense layers will

optimize the performance of the algorithm. Furthermore, a hybrid CNN-SVM model will be

implemented, where CNN is used as a feature extractor and SVM is employed as a classifier,

replacing so the dense layer of CNN.

After training and testing both models with a special focus on metrics and

hyperparameters to optimize the validation set, the performance of the used models then will

be compared. This comprehensive comparison will be based on our predefined metrics, which

include accuracy, precision, recall, and F1-score. Additionally, the performance of the models

will be discussed and evaluated.

5

In the end, after the discussion regarding the results and analyses conducted, we will

try to add a section about future work recommendations. This scope will try to suggest

promising insights for further investigation and improvements in the area of Sign Language

Recognition.

1.4 Organization of the Thesis

This thesis is divided into 5 chapters. Chapter 1 includes the problem statement, thesis

objectives, and scope of work. In Chapter 2, a literature review together with a historical

development of machine learning & machine learning background is presented. Chapter 3

describes the methodology used to conduct this study. In Chapter 4 we have the architecture

and implementation of the models. Chapter 5 includes model testing and performance

comparison. The last Chapter 6 presents conclusions and future recommendations for further

research.

6

CHAPTER 2

LITERATURE REVIEW

In this chapter, we will delve deeply into the historical evolution of machine learning

(ML), deep learning (DL), and neural networks, exploring their relation. We will also

categorize the field of ML into supervised learning, unsupervised learning, and reinforcement

learning, determining the category to which our multiclassification problem belongs, given

our dataset's structure with several classes. Additionally, we will extensively review relevant

literature and similar works to support our findings and enhance existing methodologies with

more efficient solutions.

2.1 Historical Development of Machine Learning

Machine Learning (ML) is a subset of Artificial intelligence (AI) that allows software

applications to make promising predictions without implementing explicit programming for

a specific task.

Machine learning has a wide application in many real-world sectors and fields like

healthcare, manufacturing, finance, autonomous vehicles, and Natural Language Processing

(NPL), which we are most concerned about in this thesis. ML techniques implemented in

NPL have significantly optimized the efficiency and accuracy of the models that are used to

recognize and analyze such patterns. Below we will mention some milestones in the

development of ML over the years.

In 1957 Frank Rosenblatt was the first to introduce the Perceptron, which is a

fundamental concept in Machine Learning and Artificial Neural Network (ANN). He

proposed this algorithm based on McCulloch-Pitts (MCP) neurons, to handle complex

agorithms and data applied in today's recognition tasks.

Support Vector Machines (SVMs) were initially presented by Corinna Cortes and

Vladimir Vapnik in 1995. It was based on a nonparametric method with kernel functions.

SVM today is widely used in both linear and nonlinear classification problems by determining

boundaries between data points on given datasets.

7

IBM’s Deep Blue supercomputer defeated the most popular chess champion, GM

Garry Kasparov (1997). This was the first time a chess computer was able to defeat a

champion player. This victory is considered a milestone in artificial intelligence since it

emphasizes the fact that AI overcame the capacity of a human being on a specific task.

Another important achievement was the development of the AlexNet, a convolutional

neural network model, that performed remarkable results compared to other models, on the

ImageNet Challenge for image classification. This model was represented in 2012 by Alex

Krizhevsky and contributed to further research in deep learning and convolutional neural

networks.

In 2017 Vaswani et al, a computer scientist proposed the transformer model. This

model contributed to the development of natural language processing. A great illustration of

a transformer model in today's advancements is ChatGPT which uses a Decoder-Only

Transformer.

As a constantly growing field, the future of ML remains both promising and challenging for

developers, researchers, and society.

Figure 2.1 - ML development over the years, period 1957-2017

8

2.2 Related Work

In this section, we will consider different paper research and articles published in

recent years. Through a critical review of the literature, my goal is to explore the best-

performing deep learning models used in sign language recognition. Below I will mention

some papers of interest for deeper insights that will help to defend my thesis theory.

A review article based on a comparative study for sign language identification and

recognition was published in Open Computer Science 2022. This paper utilizes static and

dynamic datasets from different sign languages, to make a comparison of the effectiveness of

different machine and deep learning techniques. The main focus is to identify the model that

outperforms others in terms of accuracy by optimizing deep learning parameters such as the

architecture of the model, number of epochs, classifier used, and so on. There are used

different datasets and methods such as CNN, KNN, SVM, and ANN. To recognize Bhutanese

Sign Language of numbers from 0-9, the authors used 20000 images of digits from 21

students. Images were captured from different conditions and angles. After all the models

were implemented the CNN exceeded each of them by achieving an average accuracy of

97.62%, followed by KNN with 78.95% and SVM with 70.25% accuracy. In this case, SVM

wasn’t the best option to be used.[10]

In [14], is developed a comparison between end-to-end approaches for sign language

recognition. The employed models are CNN, SVM, KNN, multilayered perceptrons (MLP),

and linear discriminant analysis (LDA). The utilized dataset is Irish Sign Language (ISL)

which contains 50000 images. The authors compose the architecture of CNN with 4

convolutional layers with ReLU non-linearity, 2 fully connected layers, and dropout layers to

prevent overfitting, and the Adadelta optimizer is used as a loss function. The MLP is

structured with a first layer, one hidden layer with 256 neurons, and an output layer with 23

neurons. The SVM approach uses a polynomial kernel, while KNN is set to k = 1, and for the

LDA they used singular value decomposition. After the experimental result, the model that

outperformed the other was CNN with an accuracy of 99.8%, followed by SVM at 97.86%

and then the rest of the algorithms had lower performance metrics. As a future work, the

authors promise to build an automatic transcript system for sign language detection and

recognition.

Another paper named “Digit Recognition in Sign Language Based on Convolutional

Neural Network and Support Vector Machine” proposed a hybrid model that combines a

9

conventional neural network (CNN) and support vector machine (SVM) for image

recognition in sign language. The CNN-SVM model is applied to two sustainable datasets

respectively named MU_HandImages_ASL and standard databases-SDL. The paper aims to

recognize the digits from American Sign Language (ASL) and the standard Sign Language

Digits. In this model, CNN is used as a feature extractor while as a classifier SVM is used.

A pre-trained Inception-v3 CNN architecture is utilized for the extraction of features. The

initial layers are frozen since they extract only low-level features (edges, corners, and texture),

while the remaining layers are then retrained to extract high-level features. Then the SVM

uses the radial basis function to recognize the images. The CNN-SVM model reached a

recognition accuracy of 98.2% in the ASL dataset and 98.3% in the SLD dataset. These results

were superior compared to other CNN models. [9]

“Sign Language Recognition using Neural Networks” is another article dedicated to

the discovery and implementation of a sign language recognition system. The proposed model

by the authors is divided into three stages. During the first stage, the dataset of images is

processed, and then in the next stage, the authors use the masking method to prepare the

dataset for training. The final phase then applies the cross-validation method to validate and

train the data. The image dataset consists of 90 images, 60 used for training and 30 for testing.

The total number of images is prepared with 3 non-identical images using the Bosnian

language alphabet. It consists of 15 input layers, 2 hidden layers, and one input layer. The

network then is trained using a backpropagation algorithm and then to estimate the quality of

the network a 3-fold cross-validation is applied. After the performance of ANN is evaluated

the accuracy of the model is calculated to be 84%. In the end, the authors propose that the

performance of the algorithm would be better if the images taken into consideration were

improved, considering the brightness, contrasts, shadows, and background transparency. [11]

On the overall investigation and insights gained from all the papers considered for this

thesis, I managed to choose among the deep learning and hybrid models that have a higher

accuracy compared to others. CNN was the main approach which gives you space to

experiment with different architecture models and hyperparameters, to optimize the

performance of the algorithm, for sign language detection and recognition. Among the used

classifiers within the papers, the SVM classifier tends to achieve better results in the

classification of the images in their proper classes. A combination of CNN architecture as a

feature extractor and SVM as a classifier is a promising hybrid model that uses the elements

of each machine-learning technique to optimize the recognition tasks.

10

2.3 Machine Learning

Based on the characteristics of the data obtained and used we categorized the machine

learning into three core types. The three main types are supervised learning, unsupervised

learning, and reinforcement learning.

 2.3.1 Supervised Learning

In supervised learning the algorithm learns from a dataset that is labeled, meaning that

data comes with a prior description. After the termination of the training process, the model

is passed to testing and then the output is predicted. The main goal of the model is to find a

general rule that matches the input features to output labels.

There are two subtasks of supervised learning: regression and classification.

Regression trains and predicts a quantity or continuous data such as predicting a real estate

price, while classification attempts to locate data on the appropriate class label such as secure

/insecure, spam or not spam email, male/female persons, and so on. We have many supervised

learning algorithms which are Neural Networks (NNs), Logistic Regression, Support Vector

Machines (SVMs), Linear Discriminant Analysis, and other models that can run on labeled

data.

Supervised Learning (SL) comes with both advantages and disadvantages based on

the nature of the dataset and the complexity of the model. The strengths of SL include prior

knowledge of the category or class that provides information about the dataset used. On the

other hand, SL requires a lot of training time and is not so suitable for handling complex tasks.

Also, in cases where the test data is so different from the training data the model can not

predict the correct output.

 2.3.2 Unsupervised Learning

Unsupervised Learning trains on unlabeled data, meaning that we don’t have a

mapping between input and corresponding output labels. The main aim is to discover

underlying patterns and relationships within the data. The rule is “Learn by doing”, which

means that the model aligns itself according to the input signals.

11

Clustering and Association are two common approaches used in unsupervised

learning. Clustering aims to group similar objects into classes or clusters as we recognize

them, however, association finds the relationship between data points while determining the

set of items that occur in the same dataset. K-means Clustering, Hierarchal Clustering, and

Fuzzy Clustering are some of the main algorithms used for this approach.

Unsupervised Learning also comes with strengths and limitations. This model is

generally used for more complex tasks, it can identify hidden patterns or relationships within

the variables without the need for labeled data. Also, the model can be useful since creating

clusters for similar items reduces the dataset dimensionality, making it easier to extract

information. On the other hand, unsupervised learning lacks corresponding outputs making it

more challenging to evaluate the performance of the algorithm. Following this logic,

unsupervised learning is more suitable for classification and data analysis rather than data

prediction

2.3.3 Reinforcement Learning

Reinforcement Learning (RL) is a method utilized in machine-learning technique that

learns through trial and error by receiving feedback in the form of rewards and penalties. This

model uses an agent, that interacts with the environment to achieve an objective. RL is a

learning paradigm, where the agent aquires the ability to make choices to maximize the total

rewards gained over time.

RL is broadly used in robotics, where robots interact with the environment by learning

different complex behaviors and performing tasks such as manipulation and control. Another

application of RL is the development of autonomous vehicles, where the vehicles learn to

navigate under certain conditions and follow traffic rules. This type of machine learning is

also used in other industries including finance, healthcare, education, gaming, and resource

management.

2.4 Deep Learning

Deep Learning (DL) is a subset of machine learning that utilizes Artificial Neural

Networks (ANNs) with multiple complex layers to represent and interpret the data. Both ML

12

and DL are subsets of Artificial Intelligence (AI) but they differ in terms of the techniques

used and applications. Deep learning algorithms are used in a wide range of applications, such

as extraction & segmentation, detection & recognition, classification tasks, and so on.

The primary objective of deep learning is to develop models by using techniques that

can automatically learn the hierarchical representation of data from raw input avoiding so

manual feature engineering. DL algorithms show strong generalization capabilities which

means that can achieve satisfying predictions even if the unseen data was not part of the

training set. Deep learning techniques can also be adapted and developed to suit specific

requirements since they are highly flexible with data handling.

Besides the strong capabilities of deep learning, it also comes with some challenges

related to computational complexity, overfitting, and hyperparameter tuning. Deep learning

models require high-performance GPUs and TPUs when they deal with a large number of

layers and parameters. This leads to additional costs and long time consumption of the model

implementation.

Overfitting is an event that occurs when a model demonstrates high proficiency on

training data but does not perform well in the validation data. The opposite of overfitting is

underfitting, which means that the model performs poorly on a set of data for training and

cannot fully learn from the data training. These two approaches are considered to be

disadvantages of DL, but there exist different techniques for their adjustment.

Due to their multilayered structure, DL models can be challenging to interpret, which

makes it difficult to understand how the model generates predictions to identify incorrect

results. Such problems are known as “black-box” models.

2.5 Neural Networks

Neural Networks (NNs) serve as the underlying principle of deep learning and

artificial intelligence, inspired by the functioning of the human brain.

Similarly to the cells in our brains analogously, the neurons compose the fundamental

framework of a neural network. In this network, a neuron first receives input, then the input

is processed and generated as an output.

13

As the input is received by the neuron it is multiplied by a numerical value known as

weight. The weight itself represents the strength of the connection between two units. If the

neuron has more than one input then each input will have a corresponding weight assigned to

it.

The weights are randomly initialized and are consecutively updated throughout the

model training process. After training, neural networks assign higher weights to inputs that

are considered more important. A weight of 0 indicates that a given feature is not essential to

effect the neuron's progress.

Besides the weights, another linear component known as bias is applied to the input.

After adding the bias, the result would be a⋅W1+ bias. This is the last linear component of the

input transformation. After a linear component is applied to the input, a non-linear function,

called Activation Function 𝑓(a⋅W1+bias) is used.

A neural network is composed of layers of neurons. Initially, the input layer receives

the input while the output layer generates the final output. The hidden layer, located between

these two, performs the majority of the computations on the network. Neurons of one layer

are connected to neurons of the other layer through channels. There can be more than one

hidden layer.

Once the output is obtained in a single iteration, we compute the network error. The

error is fed back to the network together with the gradient of the cost function (it measures

how well an ML model performs by calculating the difference between the predicted output

Figure 1.2 - Neural Networks Schema

14

and the actual output) to update the weights. Following up the updated weights, the errors in

the following iterations will be reduced.

This process of adjusting the weights while utilizing the gradient of the cost function

is known as back-propagation.

When training a model, instead of sending all the input at once, we divide it into

several equally sized parts. Training data in batches leads to a more structured model

compared to the model built when the entire dataset is fed into the network simultaneously.

Figure 2.3 - Graphical presentation of Backpropagation

15

CHAPTER 3

METHODOLOGY

3.1 Data Collection

In this chapter, we will work step by step to solve the concrete problem which is

classifying images with corresponding labels (letters). The focus will be on the preparation

of the work environment, dataset selection, and data preprocessing to adapt them to a

comprehensible format for the models.

Since the study aims to compare the performance of deep learning algorithms (CNN

and hybrid CNN-SVM) we will deploy a quantitative approach. This means that the

interpretation of the results we be made based on accuracy, precision, recall, F1 score, and

other relevant used metrics.

3.1.1 Work Environment

The work environment where we have applied our project is Jupyter Notebook.

Jupyter Notebook is an interactive computing environment that allows the creation and

sharing of documents that include live code and visualizations. The advantage of Jupyter

when processing a large set of data is that it allows us to divide the code into cells. These cells

can be executed independently reducing so the execution time and making the coding process

easier. Jupyter Notebook runs locally on our machine, meaning that it uses its computing

resources. When we start the Jupyter Notebook server, it runs as a local web application on

our computer. We can access it by determining the address http://localhost:8888/tree where

the localhost represents the local address of our machine and 8888 is the number of the default

gate of the server.

Taking into consideration the fact that Jupyter Notebook IDE is based on the computer

capacity of our machine, some of its parameters are listed below:

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42GHz

16

RAM 8.00 GB (7.77 GB usable)

OS Microsoft Windows 11 Home, 64-bit operating system, x64-based processor

The programming language used in this paper is Python, as one of the most popular

languages used in machine learning, due to its simplicity, readability, and the splendid support

it provides for both beginner and experienced programmers. Python has a variety of libraries,

which facilitate working with this language. Some of the main libraries that the language

provides and are used in this task are:

TensorFlow is an end-to-end open-source machine learning framework developed to

create and train deep learning models. With support for imperative and symbolic

programming, it offers an adaptable and scalable neural network platform.

NumPy is one of the main libraries used for numerical operations which provides a multi-

dimensional array. NumPy arrays are homogeneous, which means that every element has to

be the same data type.

Pandas is a fundamental library for cleaning, manipulating, and analyzing data. This

library provides a concept called "DataFrame". A DataFrame is a two-dimensional data

structure similar to an Excel spreadsheet, organized in rows and columns.

MatPlotLib is a library that creates static, animated, and dynamic visualizations.

Seaborn library provides a high-level interface for creating statistical graphs.

Scikit–Learn is a widely used library for machine learning tasks such as classification and

regression. This library provides algorithms for data processing, model selection, and

evaluation.

Keras is a library designed primarily for building and training models of deep learning.

It serves as a front-end API that allows users to define and configure neural networks, in a

few lines of written code.

3.1.2 Dataset Selection

Kaggle is the most used data science community, that allows users to determine

resources and utilities, to build and implement different ML models. The dataset employed

in our work is sourced from Kaggle.com.

17

The original MNIST image dataset (a large database, containing handwritten numbers,

used for training various images in processing systems) is a well-known reference point for

image-based machine learning methods. The scientists constantly worked to update, develop,

and improve sets of data that are more complex for the computer vision field and original for

applications in the real world. The sign language MNIST used in this paper follows the same

CSV format with labels and pixel values in single lines (rows).

More than 203 datasets, which are used in sign language, are available on the Kaggle

platform. These datasets include both characters (letters) and numbers. The letters

representing these data may be part of the alphabet of a particular country.

American Sign Language letters, is the dataset obtained for this thesis. It represents a

multi-class problem (to classify instances into 1 of 3 or more classes) with 24 letter classes

(excluding J and Z as they are characters that require movement as shown in Fig 4.

Among all the available datasets on Kaggle and GitHub, the MNIST sign language

dataset was selected due to the reasons outlined below:

• It uses grayscale images thus reducing the complexity of the dataset compared to

images in RGB format. Grayscale images have only a single channel (meaning a pixel

has only one ranked representative numerical value from 0 (black) to 255(white))

representing the intensity of each pixel, meanwhile, color images (RGB images) have

3 channels which include red, green and blue. In sign language recognition, the

Figure 3.1 - American Sign Language, including J and Z

18

primary focus is on capturing shapes and hand gesture structure rather than color

information. The grayscale images effectively capture the changes in brightness and

contrast, which are crucial for distinguishing between different sign gestures.

• The obtained grayscale images tend to avoid overfitting since they have fewer

channels compared to RGB images, lowering the possibility that the model may retain

noise or unimportant information from the data.

• The selected dataset contains a large amount of data, which is pre-classified into

training and testing. As a result, the accuracy and performance of the algorithm

increase while using more data to train the model and make predictions.

• This dataset provides a wide community of users who have built models similar for

sign language recognition. These have served as reference points to enhance the

design of our used models.

Every label (0–25) in the training and test data corresponds to a single letter A–Y (0

being A, 1 to B, and so forth). Meanwhile, the letters J(9) and Z(25) are excluded since they

require motion meaning they are not static actions.

The standard MNIST is almost half the size of the test data (7172 instances) and

training data (27455 instances). Each line with one data contains the label (0-25) and pixel1,

pixel2,pixel3, ..., pixel 784, which stands for a single grayscale 28 by 28 (28x28) pixel image

with values ranging from 0-255. To fit this dataset, it was used ImageMagick (free, open-

source software for adjusting and manipulating images digital).

Figure 3.2 - Grayscale image dataset

19

ImageMagick tools are utilized for cropping the images (to include only the hands), grayscale,

resizing, and creating at least 50+ variations to increase the quantity. Different filters such as

('Mitchell', 'Robidoux', 'Catrom', 'Spline', ‘Hermite') were used in the extension and

modification method, coupled with 5% random pixelation, +/- 15% brightness/contrast, and

then rotation by 3 degrees.

From the chart above we notice that our dataset is generally balanced. A balanced

dataset is essential because it prevents biased results in data analysis and machine learning

models. On the other hand, an imbalanced dataset means that a certain class or category

overwhelms the others, causing the model to perform poorly on the minority categories. There

are several techniques we can handle imbalanced data, such as under-sampling majority class,

oversampling minority class by duplication, oversampling minority class by SMOTE

(generates synthetic examples using k nearest neighbors algo), ensemble method, and so on.

Also, a balanced dataset ensures that each class has a sufficient number of records, allowing

the model to learn and generalize well across the classes. In this way, it enhances the model’s

ability to make predictions and classifications with a high degree of accuracy.

Figure 3.3 - Histogram for data distribution

20

3.2 Data Preprocessing

Following the dataset selection, an important step applied in ML projects is data

preprocessing. In this section, we will dive into some crucial steps to get our data ready for

analysis and other implementation tasks. We'll go over the essential methods for cleaning,

organizing, and improving our dataset, including handling missing values, scaling, encoding,

normalization, and data augmentation.

3.2.1 Handling Missing Values

It happens that there are missing values in the datasets, or even instances that are not

in the right format to be used by ML models. Since we can not proceed within these

conditions, we use some techniques that "clean" the data and make it suitable for these

models, increasing thus the accuracy and efficiency of a model in ML.

It is common practice to check for data that are irrelevant, incorrect, duplicate,

incomplete, or null values and find ways to handle them. By identifying these issues, the

values must be modified or deleted as required by the model.

It is visible that our set of data does not have any missing or duplicated values in both

training and testing datasets. Each row in the dataset contains a value and this value is unique,

21

so extensive preprocessing steps will not be conducted since the data recording is all clean

and complete at this point.

Below is a visual representation of the structure and content of the utilized dataset.

3.2.2 Label Extraction

For this phase, we extract the target variable (columns that belong to labels) from the

columns that belong to the input features which in our case are represented by images. Now

the dataset is separated into two parts labels and input features.

del train_df['label']

del test_df['label']

During the training phase, this separation enables the model to discover the relationship

between the images and the associated labels.

This step is carried out for the following reasons:

• Labels serve as target variables, which the model aims to predict based on the input

data. By separating the labels, a clear distinction is made between the input data and

the desired output data. This allows the model to learn to map between them.

• This separation ensures that the model makes predictions on unknown instances based

on the learned relationship between input features and labels.

Figure 3.4 - Dataset structure representation

22

3.2.3 One-hot Encoding

One-hot encoding is a technique that is used to convert categorical data (categorical

data – consists of discrete categories or labels that represent groups, different classes, or

attributes) into binary vector representations or a numerical format, where each category is

represented by a binary value (0 or 1).

In our case, one-hot encoding is applied to the labels (y_train & y_test) to transform

them into a format suitable for the model training process. This transformation allows the

model to treat each category independently and avoid serial (ordinal) relationships between

them.

The importance of one-hot encoding in sign language recognition is essential if we want to

increase the efficiency and accuracy of the model performance. Below we will mention

some reasons for using this technique in our pre-processing steps:

• When labels are presented with numerical values as in our case (0-25), this leaves

space in the model for misinterpretation. For example, if 0 is “A”, 1 is “B”, 2 is “C”

and so on, it is possible that the model assumes that the characters (letters) have an

ordinal relationship. In this scenario, the model detects labels 1(A) and 4 (E) and

incorrectly concludes that label 4 is more important than label 1, leading to incorrect

interpretations, meanwhile in reality the dataset has categorical variables with no

sequence among the letters.

• The use of numeric labels without one-hot encoding can lead to the adjustment of bias

(a type of error, that assigns more weight to some data points compared to other

instances) or arbitrary weights during the model training process, based on the

numerical values of these labels.

• "One-hot encoding" technique is especially necessary when using a certain loss

function

(method that evaluates the performance of a model, the more incorrect predictions the

model makes, the loss function will generate a large number of errors or inaccuracies).

In our task, we have used the "categorical cross-entropy" function, which we will talk

about further. These functions expect labels to be in the one-hot encoded format,

where each class has its binary column.

23

How does one-hot encoding work for our model?

In our dataset, we have 26 classes (letters from A-Z). We build a binary vector (a collection

of 0s and 1s) with the same length as the number of classes (26). For each binary vector, we

assign the value 1 to the letter corresponding to the class and 0 to other instances. Below is a

representation of the vectors:

A [1 0 0 0 0 … 0 0 0]

B [0 1 0 0 0 … 0 0 0]

C [0 0 1 0 0 … 0 0 0] …

The conversion of (y_train & y_test) labels into one–hot encoded vector is done by using the

LabelBinarizer class from scikit -learn.

3.2.4 Normalization

Normalization is a data preprocessing technique that transforms values and numerical input

features with a similar scalability range, usually between 0 and 1 (as in our case) or -1 and 1.

The purposes of using normalization in our data inputs are:

• In our dataset, the image’s pixel values range from 0 to 255. Scaling these values

between 0 and 1, brings the data into an approximate range, thus preventing certain

parts (such as color intensity) from overwhelming the learning process of the model.

• Normalization ensures fast convergence during the training phase. The model

convergence toward the most optimal solution is particularly beneficial in deep model

learning such as CNN for image classification.

• Normalization acts as a regulator by determining limits on the size of input features.

This prevents the effects of overfitting, as it encourages the model not to rely heavily

on individual pixel intensity values to make predictions.

There are two approaches when working with normalization: Min- Max Scaling and Z- score.

Since we have information regarding the range of data it is more favorable to use Min- Max

Scaling for the dataset.

24

𝑋𝑛𝑒𝑤 =

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1)

The minimum and maximum after scaling will take approximately values 0 and 1. This

scaling is achieved by dividing each pixel value by 255.

x_train = x_train / 255

x_test = x_test / 255

3.2.5 Reshaping

Another important pre-processing step when working with the CNN model is

reshaping. Reshaping refers to the process of changing the input shapes and dimensions,

without interfering with the original number of elements (images) within the dataset. This

process consists of converting 2D images (with dimensions: length and width) into 4D format

(with dimensions: batch_size, length, width, and channels) suitable for inputs to the CNN

model.

x_train = x_train.reshape(-1,28,28,1)

x_test = x_test.reshape(-1,28,28,1)

Batch size represents the number of images in each batch. In our case “-1” serves as a

placeholder, where the total size of the data (image’s number) is determined. The code also

shows that there is only one channel (number 1 indicates that the dataset consists of grayscale

images with a single channel).

Dataset representation after reshaping:

25

Results after reshaping:

• Each dataset image is reshaped into a 28x28 matrix format

• It generates a 4D array with a single grayscale channel

• The length of the dataset remains the same before and after reshaping

3.2.6 Data Augmentation

CNN model is not scale or rotation invariant (if you rotate an image CNN might not

achieve high accuracy), in this scenario, we implement a method called Data augmentation.

Data augmentation is a technique that increases the size and diversity of the training dataset

by applying different transformations to the data existing. By creating additional samples

(images), which are variations of the original images, the model is exposed to a wider range

of data. By incorporating variations into images in their lighting and orientation and many

other processing components, the model generalizes better and improves his ability to

recognize different images.

26

Some of the transform parameters that control the image extension process for our

paper are rotation range (specifies the range of angles with which the images randomly move),

zoom range, width/height shift range, and horizontal/vertical flip. "ImageDataGenerator" is

implemented, which represents a class of the Keras library, designed for the generation of

augmented data in tasks related to image data.

Figure 3.5 - Data Augmentation Technique

27

CHAPTER 4

ARCHITECTURE OF THE MODELS

In this chapter, we will study the Convolutional Neural Network (CNN) architecture,

the characteristics of the system, its operation, and code implementation. We will see how

this architecture serves as a feature extractor and further as classifications. For the CNN –

SVM hybrid model we will employ CNN architecture as feature extractor and SVM as

classifiers.

4.1 CNN Architecture

Convolutional neural networks (CNNs) are a type of deep learning architecture

designed to learn directly from data. CNNs are particularly effective at identifying patterns

in images, making them well-suited for object recognition and classification tasks. Below is

an illustration of a CNN model used for image classification.

 The above CNN takes a 28x28 image from the MNIST handwritten image dataset and

builds the model for image classification.

Figure 4.1 - CNN model for image classification

28

From the descriptions on the image it is visible that four main processes take place:

• Convolution Layer

• Activation Function (ReLU)

• Pooling Layer

• Fully Connected Layer

The first three operations are part of feature extraction (which we will emphasize below)

while the last operation introduces classification tasks.

4.1.1 Feature Extraction

Feature extraction is the dimensionality reduction process by which an initial raw data

set is reduced into manageable sets of data for processing. The importance of this step for our

model is due to:

• By reducing the dimensions of the data, the computational complexity is reduced,

the risk of model overfit is prevented and the performance of the models is

improved.

• Focusing more on features that carry important information, the feature extraction

process removes redundant or useless information. In this way, a more accurate

and concise representation of the data is obtained while preserving their essential

characteristics.

• By presenting the data in a more interpretable format, feature extraction makes it

easier for the model to understand and interpret the data and make decisions about

it.

• CNN models trained on big datasets can be efficiently transferred to tasks

requiring a smaller amount of labeled data through feature extraction. Developers

can save time and computational resources by creating accurate and reliable

models using pre-trained features without starting from scratch.

29

4.1.1.1 Convolutional Layer

Convolution is a mathematical operation that combines two functions to form a third

one. It is commonly used in CNN models and other deep learning techniques to extract

information from input data such as images, texts, audio, and so on. In our grayscale image

dataset, what convolution does is that it applies a filter, known as a kernel to our input image.

In the above figure, we represent the convolution operation. At first, a 3x3 filter

(kernel) is applied to the image, to detect similar input portions with the filter applied. This

filter is slid over the image, performing element-wise multiplication (between image pixels

and filter) and then these results are summed up to give a final result.

After these operations, it is formed a new matrix called a “Feature Map” or as shown in the

figure above “Convoluted feature”. Every value in the feature map captures patterns in the

grayscale input image. We can employ different filters for an input image such as edge

detection filters, sharpening, and blur filters.

The filter size or number is adjusted to achieve different results meanwhile the size of

a feature map is made up of layers in the feature map (depth), stride (number of pixels by

which a filter flows among the image), and padding (used to slid filter in the corners of the

image).

Figure 4.2 - Convolution operation on grayscale image

30

Depth represents the number of filters (where each filter refers to a single feature map),

that are employed for the convolution computations. If we have several N filters we will also

have N feature maps.

Why is this important?

When you use multiple filters it means that we have more depth. The more filters you

have the better you train the neurons to learn different patterns during the training process.

Deeper layers are used to detect more complex features on the input image. For a better

visualization of the depth concept, we can focus on the figure below.

After the convolution, the image dimensions are measured to be:

(Image size input – filter size +1) x (Image size input – filter size +1)

A disadvantage of the convolution is that the image becomes smaller and smaller losing too

much information while doing the operations.

During convolution, the pixels in the corners and edges are less included in the

convolution operations since the filter is applied only once to them. This means that the filters

in the corner don’t play an important role in feature detection. Meanwhile, the pixels located

in between (middle) contribute to multiple filters.

Figure 4.3 - Depth representation

31

As a result, the pixels in the corners and edges contribute less to the final output, so

the information in these parts may not be taken into consideration. To fix this problem, a

technique is implemented called padding.

There are two types of padding: Valid Convolution or “Valid Padding” and Same

Convolution. Valid Convolution has no padding, as explained above the problem with this

approach is that the corner pixels do not contribute as much to image classification tasks. The

dimensions (n x n) where the filter (f x f) is applied, will give the output dimensions to be (n

– f + 1) x (n – f + 1).

To solve this problem we use the same convolution. In this technique, we add rows

and columns of pixels from each side of the input image. Once the convolution operation

starts sliding over the image, the corner pixels are included more than one time on different

filters, giving these corners the same weight as the middle ones. After the convolution

process, the output image has the same dimensions as the original input image. This is called

the same convolution.

Figure 4.4 – Filters on the corner pixel and middle pixel

Figure 4.5 - Valid Convolution

32

In this project, we apply a 3 x 3 size filter, as it requires less weight compared to other

kernel sizes, it makes the model capture and recognize patterns in different positions

effectively and helps to build more complex networks. The stride indicates the step with

which the filter (kernel) moves horizontally and vertically over the pixels of the image.

The value determined for stride depends on what we expect in the output image. We prefer a

small stride value if we expect some detailed features to be reflected in the output.

4.1.1.2 ReLU Activation Function

The activation function is a mathematical operation that introduces non-linearity

within the neural network. It helps the network to "learn" nonlinear relationships between

inputs and outputs (these nonlinear relationships exist in tasks that require recognition of

Figure 4.6 - Same Convolution

Figure 4.7 - Stride Visualization

33

images since these objects have complex shapes that cannot be accurately represented by

straight lines or simple combinations of pixels).

There are some activation functions such as ReLU (Rectified Linear Unit), Sigmoid,

and Hyperbolic tangent. The most commonly used activation function in deep learning

algorithms is the ReLU function. This choice is due to the efficiency in the calculation, the

demand for less memory, and also its role as a regulator, which allows the network to focus

on the informative features of the data.

The ReLU operation is applied after the convolutional operation

The ReLU function takes a feature map and whatever negative values are there it will

replace them with 0. If the value is more than 0 it will keep it as it is. The mathematical

operation is defined as below:

f(x) = max(0,x)

After we have computed the convolution operation, with the appropriate padding and

stride as well as the activation function we build our convolution layers. In our work we have

used 3 convolutional layers:

model.add(Conv2D(75 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu' , input_shape

= (28,28,1)))

model.add(Conv2D(50 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))

Figure 4.8 - ReLU operation

34

model.add(Conv2D(25 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))

The reason for applying several convolutional layers is to enable the model to learn

complex and abstract patterns of input images. As the information passes through several

layers, the model can capture hierarchical features that are progressively more necessary for

the classification task.

When using multiple convolutional layers the model tends to incure overfitting. For this

reason, we use some regularizations on the layers which will be discussed later in the paper.

4.1.1.3 Pooling Layer

Pooling is another layer in the CNN model, used also for feature extraction. The

pooling layer is used to reduce the size or dimensions of the convolved feature that is obtained

after computing the convolution calculations.

There are two types of pooling: max pooling and average pooling. The most

commonly used approach is max pooling, which will be used in this work as well. In max

pooling, you take a window (it can be the size of 2x2, the yellow window in Figure 4.9) and

pick the maximum number. The maximum value in the yellow window is 30 so we insert it

in the newly created feature map. We follow the same logic for other windows and create a

feature map that requires less computation due to the reduced dimensions.

Figure 4.9 - Max pooling vizualization

35

Some benefits of the pooling layer are:

• It reduces the dimensions of the feature maps, leading to less complex computational

operations. By both dimensions & computation reduction, the network can be trained

faster and more efficiently.

• Pooling reduces overfitting since there are fewer parameters in the following layers

of the network (it keeps the model more focused on the important filters rather than

memorizing noise or unimportant details from the training set).

• Model is tolerant towards variations and distortion. Pooling aggregates local

information becoming insensitive to small shifts, orientations of the object, and

changes in contrast, shadow, or other lighting conditions.

4.1.2 CNN Classification

The CNN architecture is not completed yet. We have explained the feature extraction

part, which includes the computations on the convolutional and pooling layers. The next step

to be trained and implemented is the classification.

Classification is a supervised machine learning system, in which the data model is to generate

the true label belonging to an input data. The model is trained with the particular data for its

training and then evaluated with the particular data for testing. In this way, the model is

prepared (trained) to perform one on other unknown data.

4.1.2.1 Fully Connected Layer

In this thesis, a layer of the CNN architecture called the Dense Layer or “Fully

Connected Layer”, is used to classify the data. Up to the point where we compile the pooling

layer we have a 2D array. Now we convert this 2D array (the feature map that is obtained)

into a 1D array, in this way, the vector can be processed by the subsequent layers (Dense

Layers).

36

This conversion process is called “flattening”. Flatten does not affect the batch size.

model.add(Flatten())

A layer utilized in the last phase of a neural network is called a dense layer. Each node

of the dense layer is closely connected to the nodes of the subsequent layer, from which the

dense layer receives the generated outputs. Dense layer nodes perform matrix-vector

production. The condition for this action is that the number of rows of the output vector of

the previous layer is equal to the number of columns of the dense layer vector. Dense Layer

carries several hyperparameters, which are also used in our work.

A “unit” is a basic building element of a neural network that receives input data (for

every input then are assigned weights), after that it is performed the weighted sum which is

passed to the activation function to generate the final output.

Figure 4.10 - Flattering visualization

Figure 4.11 - Dense layer architecture

37

The activation function is an important step when dealing with multiple dense layers.

In this study, we have implemented two types of activation functions: ReLU (which was

discussed above) and softmax. Softmax is mostly used in the last layer of the network for

solving multi-class classification tasks. It is defined as a normalized exponential function that

converts the results of the previous layer into probabilities. It ensures that the sum of the

generated probabilities is equal to one. The class that holds the greater probability it the one

that is chosen as a predicted class from the model.

model.add(Dense(units = 512 , activation = 'relu'))

model.add(Dense(units = 24 , activation = 'softmax'))

The presence of several dense layers enables the model to learn more sophisticated

relationships between input features and target classes. In this way, the model manages to

make more accurate predictions for a classification task.

The “model.compile()” function is applied to set up the optimizer, loss function, and the

accuracy metric for the training process.

For the configuration of the training process, Adam optimizer was used, which is a

well-known optimization algorithm in the field of deep learning. The Adam optimizer adjusts

the weights and biases of the model based on the gradients calculated by the loss function.

These updates help the network learn and optimize its parameters.

For tasks that involve multi-class classification, the most commonly used loss function

is "categorical_crossentropy". This function calculates the difference between the predicted

class probabilities and the real labels. This difference serves as an estimator to show how well

a model predicts the appropriate classes.

model.compile(optimizer = 'adam' , loss = 'categorical_crossentropy' , metrics = ['accuracy'])

To train the model, a parameter called "epochs" is set, which indicates the number of

times, when the entire training dataset is passed through the layers of the model during the

training phase. The configuration of the number of epochs depends on several factors:

• size of the dataset

• complexity of the problem

• progress during the training phase

38

• computer resources

model.fit(datagen.flow(x_train,y_train, batch_size = 128) ,epochs = 20 , validation_data = (x_test,

y_test))

In the case of a dataset with a significant number of data, a larger number of epochs is

needed to train the model. When the accuracy decreases or stops improving after a certain

number of epochs, this indicates that the model has converged and further training may not

be necessary.

A balance between underfitting (few epochs) and overfitting (many epochs) is needed

to find the point when the model achieves good generalization and performance.

4.1.3 Regularization Methods

To prevent overfitting and improve the efficiency of the model, CNN uses

regularization techniques. In this work, we have used some approaches:

• Dropout regularization: It is a technique used to address overfitting problems in deep

learning. Adding a dropout layer increases the performance of the neural network.

What the technique does is that it randomly drops some neurons during each training

sample. When we drop these neurons, the neurons in the subsequent layer cannot rely

on one input as it might be dropped out at random. In the example below the neuron

colored in yellow in the no-dropout neural network relies on 5 neurons, meanwhile

when we use dropout the selected neuron relies on only 2 neurons.

Figure 4.12 - Dropout regularization

39

In our model, we have used 2 dropout layers, with respectively a dropout rate of 0.2

and 0.3 (the layer randomly deactivates 20% and 30% of the input during each training

sample).

model.add(Dropout(0.2))

model.add(Dropout(0.3))

Batch Normalization is a technique that helps stabilize and speed up the model training

process, which is realized by normalizing activations. Activations refer to the values produced

by each neuron or node of a layer. They hold information that is necessary to make predictions

or decisions. A small set of training data (batch) is taken and the activation values are adjusted

in such a way that they have the same scalability. This technique avoids the divergence of the

training process, which occurs due to the large variation of values. Batch Normalization also

acts as a regulator by adding a small amount of noise during training to improve the model's

capacity to generalize and reduce the effects of overfitting.

model.add(BatchNormalization())

In our model, we have used 3 layers of batch normalization. The choice was made by

experimenting with the CNN architecture. Besides the advantages that it has on stabilization

and generalization, multiple batch normalization layers come with additional computation

costs affecting the overall training time of the evaluation.

4.1.4 Complete Architecture

The whole operations and steps that we have covered up to now are dedicated to the

training process of the CNN model. The architecture initializes filters and parameters for

convolution, sequentially finds an output, propagates it backward to train the network, and

repeats steps until predicted outputs are near the actual output. Below we will give the code

implemented of the architecture of CNN with the feature extraction part and classification

layers applied.

40

This architecture is the same for both models (CNN and hybrid CNN-SVM) used in

this paper. It means that the feature extraction stage does not change for both algorithms. This

is done because we want the model to be implemented under the same conditions and

constraints so we can have a fair comparison between the two used approaches. The only

stage that is different is the classification task where the second model employs SVM (

Support Vector Machine) which will be discussed below.

4.2 CNN - SVM Hybrid Architecture

In the CNN – SVM hybrid model, SVM is used as a multi-class classifier replacing

so, the last layer of the CNN model, the dense layer. CNN is responsible for the feature

extractor while SVM plays the role of classifier.

Figure 4.13 - CNN architecture code

41

The feature extraction and architecture of CNN are the same as the one that we used

in the first model. The inputs that are passed to the N3 layer (the last layer, from the figure),

in the hybrid model, will be extracted features that will be used by the SVM to train and

continue with the tests and validation.

4.2.1 SVM Classifier

Support Vector Machine (SVM) is an algorithm that belongs to supervised machine

learning. It is used for two purposes: regression & classification. Mainly SVM is used for

classification tasks. The primary goal of this algorithm is to find an optimal decision boundary

that best separates data points belonging to different categories. This decision boundary is

called a hyperplane. To determine this hyperplane at first SVM needs a training set, which is

already labeled with the respective category. The best hyperplane is chosen in such a way that

the distance between it and the closest data points from each class is maximum (maximum

margin). The closest data points to the hyperplane are called support vectors. They play an

important role in defining the hyperplane and in classifying new data points.

Figure 4.14 – CNN - SVM model architecture

42

The x1 and x2 are called features, based on which the SVM can decide where to classify

the input image.

Based on the characteristics and complexity of the dataset we have two types of SVM: linear

and non-linear SVM.

Linear SVM is used for data sets that are linearly separable. In this case, a straight line

serves as a hyperplane to separate the classes. The algorithm finds the optimal hyperplane

since there can be more than one line that can separate the classes. It does this by finding the

closest data points for each of the classes (support vectors) and making sure that the distance

of these vectors is maximal from the hyperplane. Maximizing distance, SVM seeks to create

a greater separation between classes, which can improve the generalization of the model and

make it more robust to noise or points being in the wrong class. Figure 4.15 demonstrates a

linear SVM model.

Nonlinear SVM is used when the data are not linearly separable and require a more

complex decision boundary. In the case where the data were separated linearly, we could use

a straight line to separate the classes, here we can not. An example of non-linear SVM is

shown in the figure below:

Figure 4.15 - SVM representation

Figure 4.16 - Non-linear SVM

43

What do we do in this scenario?

A higher dimensional space is created so the data might be separatable by a

hyperplane, even though in the original input they are not linearity separable. A kernel

function then performs calculations on the high-dimensional space, finds the hyperplane, and

projects back to the original space. This technique is differently called “Kernel Trick”. In the

above example, we create a third dimension, (z dimension) using the formula:

z = x2 + y2

The transformation applied to the basic features is called a kernel. With this

transformation, we can draw the decision boundary.

There are some types of kernels used in SVM classification tasks: RBF (Radial Basis

Function), Sigmoid, Polynomial, and Linear kernel. In our model, we have implemented the

RBF kernel to introduce non-linearity on the high dimensional space. The hyperplane

generated by the RBF kernel is flexible and can take different shapes. This choice allows

the SVM classifier to handle non-linear relationships and complex hyperplanes in the

feature space.

svm_classifier = svm.SVC(kernel='rbf')

svm_classifier.fit(cnn_features_flatten, y_train)

Figure 4.17 - SVM with z-dimension

44

 We tried experimenting with different parameters for the SVM-CNN model, in this

way we could find the optimal solution. When the Linear kernel was used the accuracy of

the model decreased drastically compared to the above RBF kernel. Also, the training time

when using the Linear kernel was longer compared to our optimal solution.

For the RBF kernel, we obtained an accuracy of 83% meanwhile for the alternative

model the accuracy was 63%.

svm_classifier = svm.SVC(kernel='linear')

svm_classifier.fit(cnn_features_flatten, y_train)

 By looking at these experimental results we decided to use the CNN-SVM model

(which deploys a RBF kernel) for comparison with the CNN model since the accuracy and

training time for these parameters, was more favorable for our case.

45

CHAPTER 5

MODEL TESTING & RESULTS COMPARISON

In this chapter, we will work on testing the models and comparing the results obtained

from both models. We will interpret the conclusions drawn from the confusion matrixes and

respective classification ratios. In the end, we evaluate the best-performing model.

5.1 Evaluation Metrics

Evaluation metrics are metrics used to evaluate performance and the effectiveness of

a statistical or ML model. These metrics show how well the model performs and help compare

different models or algorithms. Several metrics are taken into consideration in evaluating the

results, some of which have been used in this paper as well.

A confusion matrix is a table that indicates the effectiveness of a model that classifies

data. This table reflects the number of true positive, true negative, false positive, and false

negative predictions. A confusion matrix, organized as a square, shows true classes in the

rows and predicted classes in the columns. The matrix's main diagonal represents correctly

classified instances, while the other part represents incorrect classifications.

The classification report is a summary of multiple evaluation metrics for each class in

a classification task. Metrics such as precision, recall, F1 - score, and support for each class

are determined and interpreted.

• Precision represents the value of the correctly predicted positive instances over the

total predicted positive class. In other words, precision is the accuracy of the positive

class predictions.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

TruePositive (TP)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
 (2)

46

• Recall is calculated as the ratio of the correctly predicted positive instances over the

real (actual) positives. It measures the model’s capacity to capture all positive

observations.

𝑅𝑒𝑐𝑎𝑙𝑙 =

TruePositive (TP)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
 (3)

• F1 – Score provides a balance (harmonic mean) between precision and recall. The

highest best value it can obtain is 1 while the worst takes the value of 0.

𝐹1 =

2 × Precision × Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

• Support is the total number of observations in a specific class within the dataset used.

We also use other metrics to evaluate the model’s performance such as accuracy,

macro, and weighted average. Accuracy measures the total number of correctly predicted

instances from all the classes of the dataset. Macro and weighted accuracy are useful for

evaluating performance when the dataset is not balanced. They take into account the overall

performance of all classes (categories).

A well-known technique in the field of ML for estimating the performance and

generalization ability of a model is cross-validation. This approach involves dividing the

available data into several subsets so that the model can be trained and tested with different

data. There are several forms of cross-validation such as hold-out, k-fold cross-validation,

etc., but in our paper, we used the simple case, which is hold–out cross-validation. It occurs

when the dataset is divided into subsets for training and testing.

The dataset used is split into 80% of training data and 20% used for data testing.

5.2 CNN Model Evaluation

Figure 5.1 - Hold-out cross-validation

47

After we have trained the model, we will make some predictions to test the performance of the

CNN model.

From the image, we can observe that our model performs well since the predicted label

matches the real label. We run this part multiple times and it randomly prints the image

together with the result of the predicted label and true label.

Figure 5.2 – Predictions using CNN classifier

Figure 5.3 - Random testing

48

Other metrics we need to observe when evaluating a model, are training and validation loss

techniques.

Loss is a value that sums up the model's errors, so it measures how well or poorly our

model is performing. Respectively the training loss (depicted in yellow) is used in the training

set while the validation loss (depicted in red) is suited for the validation set. In the graph

above we have visualized the performance of both lines (training and validation). We can

observe that both loss-es tend to decrease and reach a steady state, which indicates an optimal

balance within the dataset.

In the graph above we can observe two scenarios A and B, where the validation loss

increases while the training loss remains the same. This demonstrates the effect of overfitting

(the model performs less accurately on the testing set since it memorizes the training data

very well).

Besides the training and validation loss, we can measure the performance of the model

based on the accuracy. The training accuracy curve measures the model's fit to training data

over subsequent epochs, with a gradual increase as training performs better. The validation

accuracy curve measures the model's generalization to unseen data, indicating overfitting.

Figure 5.4 - Training and validation loss

49

The graph tends to increase meaning that the model is performing well (we can observe the

tendency to overfit).

From the histogram, we can observe that mainly the letters G, R, T, and V are predicted

incorrectly by the model.

Figure 5.5 - Training and validation accuracy

Figure 5.6 - Incorrect predictions from the CNN model

50

Figure 5.7 demonstrates the generated confusion matrix for the CNN model, which is used to

evaluate the performance of the classification task. By looking at the true labels and predicted

labels we can obtain the results of the total number of correct and incorrect predictions. The

general rule is that anything that is not part of the main diagonal is calculated to be an error.

From the classification report, we will examine the results for the accuracy obtained for the

CNN model.

Figure 5.7 - Confusion matrix for CNN model

Table 5.1 - Confusion matrix results for the CNN model

51

Since the standards of the industry are measured to be in the range of 70% and 90%, the

model displays a valuable performance (88% in our case). The value 7172 indicates the

number of the training samples.

5.3 CNN – SVM hybrid model evaluation

The accuracy of the CNN - SVM hybrid model will be evaluated using the test

dataset data, the same as we did for the CNN model. Here are the prediction results:

Figure 5.8 - Predictions using SVM classifier

52

Compared to the other model, the CNN-SVM hybrid model turns out to have predicted

more incorrect labels (letters K, N, R, S, etc), as can be seen from the histogram.

The results obtained from the confusion matrix are given in the table below:

Figure 5.9 - Incorrect predictions from the CNN-SVM model

Figure 5.10 - Confusion matrix for the CNN- SVM hybrid model

53

The accuracy of the hybrid CNN-SVM model seems to be slightly lower compared to the

CNN model.

It is still within the accepted range of the model accuracy performance.

5.4 Model Comparison

To compare the performances and accuracies of each model, we will analyze all the

estimation parameters generated between the respective algorithms.

Table 5.2- Confusion matrix results for CNN- SVM model

Table 5.3 - Comparison of confusion matrices

54

The CNN model correctly predicted 6345 labels, while the hybrid CNN-SVM model

predicted 5981. The CNN model outperformed the hybrid model in data classification due to

its sophisticated learning architecture.

It is apparent that for the five labels, the values of precision, recall, and f1-score differ.

In cases where the F1–score results in a larger value, it indicates a better balance between

precision and recall, the largest achievable value of which is 1. If we were to consider label

A and the others following the reasoning would be similar, the CNN model has achieved a

higher precision value, showing us that the model has performed better in identifying cases

for label A, compared to the other model.

Other parameters we have looked into are accuracy, macro average, and weighted

average. The difference between the two algorithms (models) is not particularly large.

Figure 5.11 - Evaluation of metrics for both models

55

The CNN model has a higher accuracy compared to CNN-SVM indicating that the

first model performs better on the sign language detection and classification tasks.

Another important parameter that we consider when evaluating and comparing two

algorithms is the training time. The model's training time indicates its efficiency, resource

allocation, and effectiveness in large datasets, particularly in real applications where time is

a critical factor.

The first training time is generated from the training of the CNN model, while the

second one is taken from the CNN-SVM model. We can observe a significant difference

between the two algorithms due to the below-mentioned factors:

• The CNN model is structured with multiple layers (including the convolutional layers,

pooling layers, and dense layers), compared to the CNN-SVM model which has a

simpler architecture. This means that the complexity of the model directly affects the

• CNN model hyperparameters include the number of epochs, which has a huge

influence on the training time. As the number of epochs increases the training time

does so, since the number of operations performed is repeated for each epoch.

Figure 5.12 - Accuracy evaluation

56

CHAPTER 6

CONCLUSIONS

6.1 Conclusion

This thesis presents a comparative study between two deep-learning models used for

Sign language Detection and classification. The main objective was to distinguish which

among the used models (CNN and CNN-SVM) outperforms the others. The first CNN model

is used both as a feature extractor and classifier, meanwhile, the second approach CNN-SVM,

uses SVM as a classifier. To maintain the models in equal conditions and conduct a fair

comparison we have used the same CNN architecture for both algorithms, and the

environment implemented is the same as well. From the results obtained after testing the

dataset on multiple metrics, we can observe that the CNN model offers higher accuracy

compared to the other model.

On the other hand, the SVM model requires less time to implement but lacks accuracy

compared to CNN. The choice between using CNN and CNN-SVM depends on whether the

application prioritizes the runtime or the level of accuracy. Real-life applications such as

medical imaging require a higher rate of accuracy, justifying the long runtime, facial

recognition systems and autonomous vehicles also require high accuracy for security reasons.

While the CNN-SVM is suitable for applications that prioritize training time such as video

systems or real-time image processing.

In conclusion, our study illustrates the trade-offs of CNN and CNN-SVM models for

the identification of sign language and demonstrates how real-time sign language recognition

technology might contribute to the development of a more diverse and connected society.

57

 Table 6.1 - Comparison Table of Accuracy

Models Dataset Image
Accuracy

(%)

Training time

(seconds)

CNN

(Used model with

20 epochs)

American Sign

Language
Grayscale 88 1451.98

CNN-SVM

(Used model)
American Sign

Language
Grayscale 83 136.46

KNN- k-nearest

neighbors [27]
American Sign

Language
Grayscale 60 675

SVM with linear

kernel [27]
American Sign

 Language
Grayscale 78 384

CNN

 (50 epochs) [27]
American Sign

 Language
Grayscale 88 Not mentioned

CNN- Convolution

neural networks [9]
Bhutanese Sign

 Language
RGB 97 Not mentioned

KNN- k-nearest

neighbors [9]
Bhutanese Sign

Language
RGB 78 Not mentioned

SVM- Support

vector

machine [9]

Bhutanese Sign

 Language
RGB 70 Not mentioned

6.2 Future Recomandations

Within machine learning, there is frequently a trade-off between the accuracy and task-

solving capabilities of the model as well as execution time. The CNN model has improved

prediction accuracy, but it takes longer to train and more processing power to use. Conversely,

the hybrid CNN-SVM approach improves speed at the expense of efficiency. Subsequent

research endeavors should focus on optimizing hyperparameters for every model and

integrating strategies for preparing data. We described a few other approaches, such k-fold

cross-validation, for assessing model performances. Better feature selection for each model

could result from experimenting with this evaluation technique.

58

Sign language recognition technologies are essential for reducing communication

barriers between the hearing and the deaf communities. Although machine learning

techniques for translating and recognizing sign language have advanced, more work has to

be done to promote inclusivity.

Continuous research and development efforts can focus on improving the accuracy and

robustness of sign language recognition systems. This includes addressing challenges such as

language variations, individual differences, and handling complex sign gestures.

Efforts can be directed towards real-time sign language translation systems to provide

access to communication for the deaf community. Integration of such systems into widely

used video conferencing platforms can offer inclusivity. Sign language systems promote

education and employment opportunities for individuals who are deaf. By providing access

to information, these systems empower them to be educated, employed, and actively

participate in various professional fields.

The overall study recommends developing a real-time sign language recognition system

to promote inclusivity and communication for deaf individuals, thereby enabling their full

participation in daily life.

59

 REFERENCES

[1] "Segmentation of medical images using adaptive region growing," IEEE, p. 11, 2017.

[2] Mustafa Khan; Amita Gondi , "Interpreting Sign Language using Image Classification

Techniques," IEEE, 2018.

[3] K. Bantupalli, "American Sign Language Recognition using Machine Learning and

Computer Vision," IEEE, 2019.

[4] Ankita Wadhawan; Parteek Kumar, "Deep learning-based sign language recognition

system for static signs," IEEE, 2020.

[5] MUNEER AL-HAMMADI; GHULAM MUHAMMAD; WADOOD ABDUL;

MANSOUR ALSULAIMAN; MOHAMMED A. BENCHERIF; TAREQ S.

ALRAYES; HASSAN MATHKOUR; MOHAMED AMINE MEKHTICHE, "Deep

Learning-Based Approach for Sign Language Gesture Recognition With Efficient Hand

Gesture Representation," IEEE, 2020.

[6] D. Bhavanaa ; K. Kishore Kumar ; Medasani Bipin Chandraa ; P.V. Sai Krishna

Bhargava; D. Joy Sanjanaa ; G. Mohan Gopi, "Hand Sign Recognition using CNN,"

IEEE, 2021.

[7] Amitkumar Shinde; Ramesh Kagalkar, "Advanced Marathi Sign Language Recognition

using Computer Vision," IEEE, 2015.

[8] ADEYANJU; I.A; BELLO; O.O. ;ADEGBOY; M.A, "Machine learning methods for

sign language recognition: a critical review and analysis," IEEE, 2021.

[9] Md. Jahid Hasan; Md. Shahin Alom; Md. Ferdous Wahid, "Digit Recognition in Sign

Language Based on Convolutional Neural Network and Support Vector Machine,"

IEEE, 2018.

[10] Ahmed Sultan; Walied Makram; Mohammed Kayed; Abdelmaged Amin Ali, "Sign

language identification and recognition: A comparative study," IEEE, 2022.

60

[11] Sabaheta Đogić; Gunay Karli , "Sign Language Recognition using Neural Networks,"

IEEE, 2020.

[12] S. Raschka, "Model Evaluation, Model Selection, and Algorithm Selection in Machine

Learning," IEEE, 2020.

[13] M. M. Saleem, "Deep Learning Application On American Sign Language Database For

Video-Based Gesture Recognition," IEEE, 2020.

[14] Marlon Oliveir; Houssem Chatbri; Suzanne Little ;Noel E. O’Connor; Alistair

Sutherland, "A comparison between end-to-end approaches and feature extraction-

based approaches for Sign Language recognition.," IEEE, 2017.

[15] Amrutha K; Prabu P, "ML Based Sign Language Recognition System," IEEE, 2021.

[16] Rahib H.Abiyev; Murat Arslan; John Bush Idoko, "Sign Language Translation Using

Deep Convolutional Neural Networks," IEEE, 2020.

[17] MUHAMMAD AL-QURISHI; THARIQ KHALID; RIAD SOUISSI, "Deep Learning

for Sign Language Recognition: Current Techniques, Benchmarks, and Open Issues,"

IEEE, 2021.

[18] A. F. M. Agarap, "An Architecture Combining Convolutional Neural Network (CNN)

and Support Vector Machine (SVM) for Image Classification," 2019.

[19] Yamashita, Rikiya, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi.

"Convolutional neural networks: an overview and application in radiology.", Insights

into imaging 9 ,(2018)

[20] Choudhary, Kamal, et al. "Recent advances and applications of deep learning methods

in materials science.",npj Computational Materials 8.1, (2022)

[21] World Health Organization. (2024, February 2). Deafness and hearing loss.

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

[22] Kothadiya, Deep, Chintan Bhatt, Krenil Sapariya, Kevin Patel, Ana-Belén Gil-González,

and Juan M. Corchado. "Deepsign: Sign language detection and recognition using deep

learning." Electronics 11, no. 11, (2022)

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

61

[23] Adeyanju, Ibrahim Adepoju, Oluwaseyi Olawale Bello, and Mutiu Adesina Adegboye.

"Machine learning methods for sign language recognition: A critical review and

analysis." Intelligent Systems with Applications 12, (2021)

[24] Bantupalli, Kshitij, and Ying Xie. "American sign language recognition using machine

learning and computer vision." (2019)

[25] Vakili, Meysam, Mohammad Ghamsari, and Masoumeh Rezaei. "Performance analysis

and comparison of machine and deep learning algorithms for IoT data

classification." arXiv preprint arXiv:2001.09636, (2020)

[26] Kamath, Cannannore Nidhi, Syed Saqib Bukhari, and Andreas Dengel. "Comparative

study between traditional machine learning and deep learning approaches for text

classification." In Proceedings of the ACM Symposium on Document Engineering

2018, (2018)

[27] Datamunge. https://www.kaggle.com/datasets/datamunge/sign-language-mnist. “Sign

Language MNIST.”

[28] Salama, Wessam M., and Moustafa H. Aly. "Deep learning in mammography images

segmentation and classification: Automated CNN approach."Alexandria Engineering

Journal 60, no. 5, (2021)

[29] Kembuan, Olivia, Gladly Caren Rorimpandey, and Soenandar Milian Tompunu

Tengker. "Convolutional neural network (CNN) for image classification of indonesia

sign language using tensorflow." 2020 2nd International Conference on Cybernetics

and Intelligent System (ICORIS). IEEE, 2020.

[30] Sharma, Sakshi, and Sukhwinder Singh. "Vision-based hand gesture recognition using

deep learning for the interpretation of sign language." Expert Systems with

Applications 182, (2021)

https://www.kaggle.com/datasets/datamunge/sign-language-mnist

