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ABSTRACT 

 

EMOTION RECOGNITION WITH  

ELECTROENCEPHALOGRAPHY USING ARTIFICIAL 

INTELLIGENCE  

 

Xhaferri, Ilva 

M.Sc., Department of Computer Engineering 

Supervisor: Dr. Florenc Skuka 

 

Emotion recognition has gained major importance in recent years, with 

applications in human-computer interfaces, affective computing, and numerous 

medical applications. To capture and analyze the emotional states, several modalities 

are used, where one of the most dominant is Electroencephalography (EEG). 

Facilitated by the advancements in EEG acquisition technologies, as well as in the 

Artificial intelligence field, Emotion Recognition with EEG data has attracted many 

researchers. This work aims to implement a subject-independent model that utilizes 

EEG to perform Emotion Recognition on DEAP and DREAMER datasets. It attempts 

to find the right combination of processing methods, feature extraction, feature 

selection and classifier that generalize well on unseen data without having excessive 

computational costs. In this thesis several Machine Learning models are implemented, 

along with a one-dimensional CNN model which succeeds in providing a reliable 

performance for the task of Emotion Recognition with EEG. 

 

Keywords: Emotion recognition, EEG, EEG feature extraction, Emotion 

classification, Inter-subject approach 
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ABSTRAKT 

 

KLASIFIKIMI I EMOCIONEVE ME          

ELEKTROENCEFALOGRAFI DUKE PËRDORUR INTELIGJENCËN 

ARTIFICIALE   

 

Xhaferri, Ilva 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Dr. Florenc Skuka 

 

Klasifikimi i emocioneve ka fituar një rëndësi të madhe vitet e fundit, me 

aplikime në ndërfaqet Human-Computer, procesim i emocioneve dhe në aplikime të 

shumta mjekësore. Për të regjistruar dhe analizuar gjendjet emocionale, përdoren disa 

modalitete, ku më dominantja është Elektroencefalografia (EEG). E ndihmuar nga 

zhvillimet në teknologjitë e regjistrimit të EEG, si dhe në fushën e inteligjencës 

artificiale, Klasifikim i emocioneve me anë të EEG ka tërhequr shumë studiues. Ky 

punim synon të krijojë një model që përdor EEG për të kryer Klasifikimin e 

Emocioneve me datasetet DEAP dhe DREAMER. Ai përpiqet të gjejë kombinimin e 

duhur të metodave të përpunimit, në nxjerrjen dhe selektimin e të dhënave më të 

dobishme, dhe modelit kalsifikues me qëllim që të prodhoj rezultat të mirë dhe me të 

dhëna qe nuk i ka hasur më parë, pa pasur llogaritje të tepërta. Në këtë temë janë 

zbatuar disa modele të Machine Learning, së bashku me një model 1D CNN i cili arrin 

të sigurojë një performancë të pëlqyeshme në lidhje me Klasifikimin e emocioneve me 

EEG.  

 

Fjalët kyçe: Njohja e emocioneve, EEG, Përzgjedhje e veçorive të EEG,Klasifikimi i 

emocioneve, model i pavarur nga pjesëmarrësit.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

Emotion recognition with EEG is an emerging multidisciplinary field with 

researchers from neurology, psychology, computer science, and many more. Despite 

the advances in both EEG recording technology and Machine Learning and Deep 

Learning algorithms, Emotion Recognition using EEG signals has several limitations, 

such as the susceptibility of EEG signal acquisition to noise and other interferences, 

the difficulty to capture the complex patterns given the non-linear and non-stationary 

nature of EEG signals, the limited generalization power of the model when tested on 

a cross-subject dataset, and high complexity of the algorithms utilized for the 

classification.  

 The goal of this thesis is to develop a reliable, scalable, and computationally 

efficient model for the task of Emotion Recognition using EEG. Specifically, the study 

will investigate the implementation of Machine Learning algorithms, and Deep 

Learning algorithms to classify time-series representation of the EEG signals for a 

subject-independent classification model. Moreover, this thesis will explore the 

robustness of different features extracted from the signals from the time and frequency 

domain respectively. This thesis makes use of two important EEG-ER datasets that 

have been utilized as benchmarks in the field of Emotion Recognition: DEAP [1] and 

DREAMER [2]. The results of prior studies on these datasets will be then compared 

to the results of our models.  

 The importance of this research lies in the potential increase in performance, 

and reduction of the computational and storage cost of the Emotion Recognition task, 

which facilitates real-world applications in the medical field, Human-computer-

interfaces, adaptive learning environments and many more. By addressing the current 

limitations in feature extraction and selection, model generalization and computational 

complexity, this thesis aims to provide a novel approach to the filed with a scalable 

EEG-Emotion Recognition system.  
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1.2 Thesis Objective 

The primary goal of this thesis is to build upon the existing methodologies and 

provide a new solution to the Emotion recognition with EEG task. More specifically, 

this thesis aims to:  

1. To compare the performance of various Machine Learning and 

Deep Learning algorithms in terms of accuracy and computational cost. 

2. To investigate on the feature extraction and selection methods 

that improve the classification process.  

3. To evaluate the proposed system on DEAP and DREAMER 

datasets and compare its performance with state-of-art algorithms. 

By achieving these objectives, the ultimate goal of this thesis is the contribution 

to the development of the field of Emotion Recognition with EEG signals. The thesis 

aims to provide reliable, scalable, and computationally efficient models for the ER task 

utilizing time-series data. 

 

 

1.3 Scope of works 

The scope of this thesis is to investigate on the combination of features 

extraction/selection and classifier implementation to achieve an effective model for 

ER with EEG task. This thesis EEG signals are utilized solely as time-series data, and 

no methodologies of 2D or 3D representations of EEG data are discussed. The reason 

for this is that the thesis aims to create a computationally inexpensive system that can 

readily be deployed in real-time, which is mostly not possible for computationally 

heavy processes such those including 2D and especially 3D data.  
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This study utilizes only the DEAP [1] and DREAMER [2] datasets of affective 

EEG signals, and provide comparison of the implementations with existing methods. 

The only emotion rating categories used in this thesis are Valence, Arousal, and 

Dominance as both the datasets provide these measures for each trial. Discrete 

classification of emotions is out of scope for this study. Moreover, this thesis solely 

aims to implement subject-independent modeling and therefore, subject-dependent 

approaches are out of the scope of this study.  

 

  

1.4 Organization of the thesis 

The thesis is organized into 7 chapters: in the first chapter a brief introduction 

of the Emotion Recognition task is provided, followed by the problem statement, thesis 

objectives and Scope of Works. Chapter 2 provides theoretical background 

information related to the fields of Emotion and Electroencephalography. For the field 

of Emotion, a comprehensive guide to the structure and basis of emotion is provided, 

along with the introduction to Emotion models and some concepts on 

neurophysiological mechanisms of emotion. In the second part of this theoretical 

background chapter, the basic concepts of Electrophysiology are discussed in order to 

provide the very genesis of the EEG signals. Finally, the chapter is enclosed with 

practical information of EEG acquisition procedures.  

In Chapter 3 an extensive Literature Review of the existing methodologies of 

the ER with EEG task are provided, starting from emotion targets, following with data 

processing, feature extraction and selection. The main classification methods are 

discussed and a brief overview of the datasets employed is given. The chapter is 

concluded with an important discussion on the problem of 'domain shifting' and the 

possible methods to by-pass it.  

Chapter 4 explains in detail the methodologies used during this study: the data 

processing done, the features that were selected to be representative of the EEG 

signals, as well as the classifiers utilized.  
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Chapter 5 presents the experimental results with several tables for the multiple 

implementations done during the study. In Chapter 6 discussions of the results are 

given as well as multiple plots to visualize the performance of the models. Finally, 

Chapter 7 gives concluding remarks and provides with future research suggestions. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

  

2.1 Introduction   

Emotion recognition refers to the detection and interpretation of emotional 

states that affect humans. It includes several fields such as psychology, neuroscience, 

and more recently computer science. The goal of Emotion recognition (ER) is to 

identify and understand human emotions by analyzing different mediums in which 

they might be showcased (i.e. facial expressions, body language, physiological signals, 

voice, text patterns, etc.) [3]. The application of ER is widespread, starting from 

medical usages, Human-computer-interfaces (HCI) especially when facilitating 

activities for people with disabilities, market research, etc. Given its importance, ER 

has been receiving a lot of interest from researchers in recent years. 

Although there are a multitude of modalities from which emotion can be 

observed, Electroencephalography (EEG) is considered as one of the most appropriate 

to achieve this task. Emotion recognition with EEG involves analyzing the 

physiological signals originating from the activity of the individual’s central nervous 

system [4], to infer their emotional states. Furthermore, EEG data has a high temporal 

resolution, reliable since it is a relatively impartial way of interpreting emotions, as 

well as being easily obtainable with non-invasive, affordable EEG headsets.  

The emergence of research interest in Emotion Recognition has also 

contributed to the advancements in the Machine learning field, with the development 

of deep learning and AI technology that has greatly facilitated the processing speed 

and computing capabilities, as well as removed the need for medical expert analysis 

and feature extraction. Moreover, the advancement in EEG acquisition technology has 

also made it possible for good-quality EEG data can be acquired efficiently [5].  
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2.2 Emotions 

To be able to design and conduct a successful experiment with EEG, a prior 

introduction to several concepts must be done.  This section is further divided into the 

following topics: the definition of emotions, emotion components, Emotion theories, 

emotion models, emotion-evoking methods, and finally the Neurobiological basis of 

emotions. 

The American Psychological Association (APA) defines emotions as: 

“Conscious mental reactions subjectively experienced as strong feelings … typically 

accompanied by physiological and behavioral changes in the body.” A common view 

that emotion researchers have is that emotions are episode-like and are elicited by 

various stimuli [6] [7] [8]. Given their episodic nature, emotions are generally short-

lived.  

 

2.2.1 Components of emotions  

In addition, researchers commonly regard emotions as having several 

components that are influenced by evolutionary and social contexts [6] [7] [8]. 

Usually, they are grouped into three major categories: subjective experience 

component, physiological responses, and behavioral responses. (UWA) A more 

complex set of components is mentioned by [9] [10] [11]: a subjective feeling 

component, a motor component, a physiological component, an action tendency 

component, and an appraisal component.  

 

• Subjective feeling component is considered to have a 

monitoring function. In this case, the monitoring is done with respect to the 

individual’s immediate emotional experiences, recognizing the subjective 

feeling (for example: fear) and applying regulatory strategies to deal with said 

feeling (feeling less scared). 

• Action tendency component prioritizes actions needed in 

given situations. For example, students feeling curious tend to approach and 

ask questions, while when feeling fear there is a tendency/urge to avoid the 
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situation. However, action tendencies are not actions – rather they are overt 

behavior – so one has the choice of acting or not. 

• Appraisal component is labeled with the meaning-making 

function: the cognitive evaluation of an emotional event considering the 

significance and the consequences of the event, predicting the emotional 

reactions and achieving the regulation of emotions, as well as the 

communication of the emotional knowledge to others. 

• The motor component has a communicative function since it 

helps express feelings, for example crying to signal sadness, or smiling to 

communicate happiness. 

• The physiological component acts as a support to the other 

components. For instance, appraisal of an event as significant is related to an 

increase in the activity of the amygdala.   

Given that emotions are considered to have components, each of them can be 

assessed using different paradigms. For example, physiological changes can be 

measured by investigating single-neuron activity, up to the large-scale autonomic and 

motor system responses to emotional episodes. Motor components can be evaluated 

by measuring the muscle activity (from the smallest units to the expression in the entire 

body). Although these measuring methodologies provide information for the essence 

of the emotion, because of the inherently subjective nature of feelings, self-report 

remains the most significant tool to measure emotions.  

 

2.2.2 Emotion Theories  

To explain how the different emotion components interact with one another 

several emotion frameworks/theories have been developed/suggested: 

Charles Darwin Evolutionary Theory of Emotion is one of the first theories 

of emotion that arises from the comparative studies performed by Charles Darwin [12] 

[13]. Darwin proposed that physiological behavior and emotions are controlled by the 

intellect and cortical mechanisms. He aligned the idea of instinctive behavior and 

natural selection, by suggesting that these behaviors are inherited and are critical to the 
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survival of the species. For example, the emotion of fear keeps us safe from predators 

[13]. 

The James-Lange Theory [14] suggests that emotions are a result of 

physiological arousal. Noticing the physiological responses, one experiences during 

an external event leads to the corresponding emotion. For instance, while encountering 

a threat the fight or flight response makes our heart rate and respiration rate increase. 

Becoming aware of such a change in our physiological state gives rise to the feeling 

of fear.  

The Cannon-Bard Theory [15] contradicts James-Lange’s claim that 

physiological arousal comes before emotional experience. Rather they claim that this 

process is simultaneous and independent. Given the same example of imminent threat, 

according to the Cannon-Bard theory the flight or fight response of the organism, and 

the emotion of fear occur at the same time, though the reactions are not connected. In 

the example of cortical processes (connected with higher cognitive functions and 

therefore the emotional experience part of the process) was inhibited by anesthesia, 

but the emotional display is still present: during the early stage of ether anesthesia 

sobbing (grief), laughter (happiness), or energetic aggressive reactions (rage) may be 

present. This serves to show that even when the cognitive appraisal of the 

physiological state does not happen as suggested by James-Lange, emotional 

experiences still occur, further proving the independent nature of these two processes. 

 

2.2.3 Emotion Models 

In current research, emotions are usually defined according to two types of 

models: discrete and dimensional emotion models [16]. In discrete emotion models, 

the emotions are described by a specific subset of emotional states. For instance, [9] 

categorizes emotions in eight basic states (anger, fear, sadness, disgust, surprise, 

happiness, trust, and expectation). Similarly, [17] claims there are six basic emotions 

(anger, disgust, fear, happiness, sadness, and surprise). However, these discrete models 

fail to capture the complexity of Human emotion and have been found to have many 

limitations [18].  
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Dimensional models, on the other hand, are more effective for quantifying and 

characterizing the type and intensity of emotions. The dimensions used to describe 

emotions in these models have been termed valence, arousal, and dominance.   

    

         

       

         
       
       

   

    

      

           

     

Figure 2: Distribution of different emotions on arousal-valence-

dominance 3D space. 

Figure 1:Distribution of different emotions on 

arousal-valence 2D 



10 

 

Valence refers to the emotion type ranging from unpleasant to pleasant. 

Arousal measures the intensity of the emotion, where boredom is categorized as 

having low arousal, while excitement has a high arousal level. Dominance refers to 

the emotion of being controlling or submissive in nature [19]. Figure 1 and Figure 2 

showcase how these dimensions can be used to describe different emotions. Because 

the dimensional emotion model provides a way to quantify emotions, it is a better fit 

with the emotion recognition task at hand.  

Choosing the right method to evoke the target emotions is one of the key 

elements in emotion recognition studies. Selecting the stimulation materials to be as 

suitable and effective has direct consequences on the quality of the collected data. The 

evoking methods can be divided into internal and external stimuli [20] [21], where 

internal stimuli refer to the recollection of personal experiences or self-imagination 

under a set of experimental instructions [22]. In contrast, external stimuli utilize 

pictures, audio, and videos for emotion evoking.  

Considering the individual differences between the subjects in age, culture, 

gender, personal experience, and emotional perception, there are many limitations of 

internal stimuli as an emotion-evoking method [16]. On the other hand, evoking 

emotion using external stimuli, while still recognizing individual differences, seems 

as a more efficient approach in a laboratory environment. [23] claim that video-based 

stimuli provide much richer stimulation than pictures or audio separately and, therefore 

are very effective as emotion-inducing stimuli [24]. Recently, VR has also been used 

as a stimulus and has shown great results as it provides the capability to be immersed 

in a virtual environment. A suggestion from the review paper [25] is to keep the 

stimulus length in VR studies between 15-20 seconds to avoid the fluctuations of 

emotions. 
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2.2.4 Emotion-related neurophysiological mechanism  

The brain is comprised of three main components: the cerebrum, the 

cerebellum, and the brainstem. The cerebrum is the largest of the three and can be 

divided into two cerebral hemispheres [26]. The intermediate region between the 

cerebrum and the brainstem is termed the diencephalon. The cerebrum is composed of 

nerve cells with their cell bodies being in the outer part (cerebral cortex) a consistency 

that is termed ‘gray matter’ and the inner part is made up mainly of axons termed as 

‘white matter’ [26]. The cerebral hemispheres are furthermore partitioned into five 

lobes: frontal, temporal, parietal, occipital, and limbic [27] depicted in Figure 3. There 

is also the insular lobe (‘insula’ meaning island) situated within the lateral fissure 

(sulcus) that separates the temporal lobe from the frontal and parietal lobes.  Some 

structures of the limbic system are situated in the diencephalon, that is the thalamus, 

subthalamus, and hypothalamus [26]. Others like the hippocampus and amygdala 

(paired structure with parts on both hemispheres) are located in the medial temporal 

lobe [28]. 

 

Figure 3: Brain regions 
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The cerebral cortex is the considered as the basis for our conscious activities. 

Out of the lobes that constitute the cortex, the frontal, temporal and insular lobes are 

crucial in emotional activity. Not only are they involved in behavior such as planning, 

or motivation, but also, they are situated close to the limbic system (the part of the 

brain related to behavioral and emotional responses). The temporal lobe sits right 

above the hippocampus and amygdala, while the interior part of the frontal lobe - the 

anterior cingulate cortex takes part in emotional processing. In addition, the insula has 

the function of analyzing sensory impulses and associates them with emotional 

experience [29]. 

While the function of each region of the brain is sometimes claimed as being 

fixed, there is a division of thought regarding the neurobasis of emotions: the 

locationist approach, and the psychological constructionist approach. The first one 

hypothesizes that emotions have discrete categories, which are linked to specific parts 

of the brain, while the second believes that emotions are more complex and rely on the 

interaction of several brain regions [30]. 

Emotions from a locationist perspective have several basic categories such as 

happiness, sadness, anger, fear, disgust, etc., which cannot be further decomposed into 

more basic psychological components, and in turn rely on distinct brain mechanisms 

to exhibit themselves [31] or as networks [32] [33]. On the other hand, psychological 

constructionist perspective explains that discrete emotions are not established 

categories, but rather psychological events that emerge from the interaction of brain 

regions [34] [35] [36] [37]. Moreover, in some psychological constructionist views, 

these emotions are product of the ‘core affect’ - a state of feeling emotionally charged 

(feeling good/bad/energized/exhausted) that influences the body in a kinesthetic, 

somatovisceral, and neurochemical way [8] [30]. More generally, ‘core affect’ can be 

summarized as the neurophysiological state of consciously feeling emotion [8].  

There are several structures mentioned by locationist hypothesists, that are 

directly linked to specific emotions. The amygdala for example is termed as the source 

of emotion ‘fear’. This hypothesis was founded on the studies on fear-learning in rats 

where the amygdala was observed to be stimulated [38] [39] [40] [41] [42] [43] [44] 

[45]. Moreover, it was viewed that individuals with some damage to the amygdala had 

difficulty in perceiving instances of fear [46] [47]. However, the psychological 
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constructionist perspective counters this, claiming that the amygdala is most likely 

involved when salient stimuli occur. Salient stimuli capture the attention more readily 

than other stimuli, given their importance and distinctiveness. The amygdala is most 

likely activated in order to process the uncertain stimulus, which extensively includes 

fear-inducing stimuli giving rise to the misconceptions [48]. 

Another structure that locationists hypothesize as the basis of the emotion 

‘disgust’ is the anterior insula (insular lobe) [49] [50]. They claim that disgust is an 

emotion that has evolved from the reflex of rejecting food [51] or as an aversion to 

potential disease [52]. Moreover, they state that individuals suffering from damage to 

this structure have difficulty in perceiving disgust exhibited in facial or vocal 

expressions [53] [54].Similarly, the psychological constructionist perspective negates 

this exclusive relationship between the emotion of ‘disgust’ and the anterior insula. 

They claim that this structure is a key region in processing awareness of physical 

sensations, which most likely includes the feeling of ‘disgust’. Other sensations 

exhibited during the stimulation of the insula include twitching, tingling and warmth 

in different parts of the body, feelings of movement, etc. [55] [56]. Below in Table 1 

there is a compilation of the brain structures that locationist hypothesis links with 

specific emotions, followed by the psychological constructionist explanation. 

Table 1: Neurobasis of emotion: two views [30] 

Brain structure Locationist 

hypothesis on 

emotion processed  

Psychological constructionist 

hypothesis 

Amygdala fear Detects salient stimuli 

Anterior Insula disgust Involved in awareness of physical 

sensations 

Orbitofrontal 

cortex 

anger [57] [58] Integrates sensory information form the 

environment and the body [59] [60] 

Anterior cingulate 

cortex 

sadness [57] [61] Stimulated when engaged in cognitive 

load [30] 
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2.3 Electrophysiology 

Electrophysiology in neuroscience is the discipline that deals with bio-electrical 

activity in living tissues. It investigates the electrical properties of cell membranes and 

their functional significance by analyzing the electrical signals produced during 

physiological processes [62] [63]. Electrophysiology techniques remain the main 

choices for analyzing neural activity and the physiological properties that give rise to 

this activity.  Considered by neuroscientists to be the backbone of neuroscience 

research as it provides a precise method to investigate the activity of neurons that 

produce cognition and behavior [63]. 

Electroencephalography is a type of electrophysiological experiment that 

studies the electrical activity of the brain. Therefore, to describe EEG process in detail 

it is necessary to provide context as to what electrophysiological experiments attempt 

to measure. 

 

2.3.1 Anatomy and functionality of a neuron 

The nervous tissue is made up of neurons and supporting tissue (neuroglia/glia) 

[64].  Neurons are independent cells, highly differentiated and specialized in nature. 

They are excitable cells since they generate and propagate electrical signals and are 

connected to one another via special contact sites called synapses. Despite their 

differences in morphology, all neurons share features: having a cell body (soma), and 

the cytoplasmic prolongations dendrites and the axon (dendrites converge on the soma, 

while the axon emerges from the soma at the axon hillock). The morphology of a 

neuron is shown in Figure 4.The somatodendritic tree (the dendrites and the soma) is 

considered to be the neuron’s receptor site, since they receive synaptic contacts from 

other neurons and in response to the stimuli generate electrical signals. The axon and 

axon collaterals on the other hand, are the transmission site of the neuron, given the 

fact that they propagate the action potential over varied distances without attenuating 

their amplitude. The axon and its collaterals end in synaptic boutons that create 

synaptic contacts with target cells (terminal arborization) [65]. 
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The function of the neuron is the information flow throughout the neural 

circuitry via the transmission of the electrical impulses. To achieve this flow of signals 

there are two types of transmissions that occur: inter-neuronal (between adjacent 

neurons at the synaptic sites) and intra-neuronal (along the somatodendritic domain 

and axon of a single neuron). This is made possible by the bioelectrical nature of the 

neuron’s cell membrane, which originates from the voltage difference between the cell 

and the extracellular fluid caused by the asymmetrical concentration and electrostatic 

gradients of ions, and by the presence of ion channels that affect their permeabilities. 

Given these variations in charge between the intracellular and extracellular parts of the 

membrane, an electrical potential is created.  The neuron membrane is said to have 

two main potential states: the resting potential when the neuron cell is in a non-excited 

state, and the action potential when the neuron is in an excited state. Due to the 

differences in permeability of inorganic ions (mainly Na+, Cl-, and K+) as well as due 

to the Sodium-potassium-ATPase pump, the net charge across the membrane during 

the resting potential is approximately -70 mV [63] [65]. 

 

Figure 4: Neuron structure 
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When the membrane potential passes the threshold of -55 mV (due to external 

impulses from adjacent neurons – process explained in detail in inter-neuronal 

transmission section below) an action potential is triggered at the axon hillock, and 

propagates as a wave through the axon. The local depolarization opens the voltage 

gated Sodium ion (Na+) channels which rush inside the cell according to the 

electrochemical gradient. The cytoplasm becomes less and less negative. The Na+ ions 

continue to flow causing the membrane to become depolarized at 0 mV. Because the 

voltage gated Na+ channels are not immediately deactivated, there is overshoot and 

the electric potential becomes 30 – 40 mV. Following this the potassium (K+) voltage-

gated channels open and due to the electrochemical gradient of the potassium ions 

(K+) flow outside the cell and the membrane potential becomes negative again in a 

stage denoted as repolarization. There is a delay in the closing of the K+ voltage-gated 

channels, making the membrane potential even more negative (hyperpolarization). 

Finally, the Na+/K+ pump, that was active during the entire time, restores the 

membrane polarity back to the resting potential of approximately -70mV. The process 

is depicted in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Action Potential process 
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Neurons communicate with one another by causing changes in the membrane 

potential of the adjacent neurons at the synapses. Synaptic transmission can be 

electrical, chemical or mixed. In electrical synapses the ions can flow directly between 

the cells without the mediation of the neurotransmitters. This is made possible by the 

clusters of intracellular channels or gap junctions between the pre-synaptic and post-

synaptic neurons [65] [66] [64]. These synapses have minimal delay and are typically 

found in pyramidal neurons [64]. Chemical synapses have a space between the plasma 

membranes called the synaptic cleft, approximately 30-50 nm wide. During an action 

potential the presynaptic membrane is depolarized and Ca2+ ions exit the cell via the 

Ca2+ voltage-sensitive channels. The increased intracellular concentration of Ca2+ 

ions cause the synaptic vesicles to undergo exocytosis and release neurotransmitters 

in the synaptic cleft. Depending on the neurotransmitter molecules that bind to 

receptors on the post-synaptic neuron and can bring about an excitatory postsynaptic 

potential (EPSP) or inhibitory postsynaptic potential (IPSP) [65]. EPSP bring about 

the depolarization of the membrane and if the electric potential passes the threshold an 

action potential occurs. IPSP on the other hand promote the hyperpolarization of the 

membrane, that is make it more negative than the resting state (-70 mV) and therefore 

lowering the possibility of an action potential from occurring [62] [67]. The 

combination of EPSP and IPSP events is the overall signal detected in the postsynaptic 

neuron. When localized potentials add up and cause the depolarization of the 

membrane to surpass the threshold (usually -55 mV) an action potential will occur 

[67]. 

 

 

 

 

 

 

 

 

Figure 6: The synaptic cleft during an EPSP 
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2.4 Electrophysiology 

After the brief introduction to the fundamentals of neuron anatomy and 

functioning, we can proceed with our discussion of Electroencephalography as an 

electrophysiological experiment. This section examines the neural basis of EEG 

signals, different frequencies of EEG signals and how they relate to emotional states.  

EEG represents the potential difference between two cerebral locations plotted 

over time: the voltage of the “active” electrode where neural activity is happening is 

compared with the voltage in a “neutral” electrode chosen as a reference [64]. For 

surface EEG the measurable activity is not generated by action potentials, as they are 

very short in duration (1 ms) and the amplitude and electric field produced by them 

rapidly decreases. Therefore, EEG signals rely on detecting the postsynaptic potentials 

of groups of cortical neurons, as they have greater duration (10 – 40 ms) and generate 

stronger electric fields that can be detected from scalp electrodes [64]. Cortical neurons 

and their unique morphology are crucial in the generation of EEG. They are situated 

in deep cortical areas and have long apical dendrites perpendicular to the cortical 

surface, which makes them great electric dipoles. Let’s consider the following cases: 

1. A superficial EPSP occurs, opening the Na+ voltage-gated channels 

and promoting depolarization of the cell. The extracellular space becomes 

negative. In the deep cortical areas, the electric potential of the extracellular fluid 

is positive (no action potential has triggered channels to open and depolarize). By 

the EEG this is recorded as negative scalp potential and depicted as an upward 

deflection. If a deep EPSP happens, the opposite situation will unfold: positive 

scalp potential and negative in the distant cortical areas. This is recorded as 

downward deflection in EEG [68]. 

2. When IPSPs happen, the situation is reversed. With a deep inhibitory 

postsynaptic potential, the scalp polarity becomes negative, while the polarity 

distant to the synapse is positive. The opposite for superficial inhibitory 

postsynaptic potentials [68]. 
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Thus, the EEG is a summation of all the EPSP and IPSP of over 100 cortical 

pyramidal neurons, measured in an area of at least 6cm2. The cortical activity has to 

be synchronized for the EEG signals to be detected. The more synchronized the 

activity of the cells is the larger the amplitude of the signal. Moreover, if this 

synchronous performance of the neurons is repeated numerous times, it results in 

rhythmic EEG waves [64]. 

 

2.4.1 Neural Oscillations – Brain Rhythm  

As mentioned above when discussing the genesis of EEG signals, the 

summarized and synchronized activity of a large number of neurons produce electrical 

signals [64]. Given the pulsating nature of EPSP/IPSP, these firing mechanisms 

produce neural oscillations. There are three main categories of brain 

rhythms/oscillations [69]: 

1. Spontaneous rhythms that occur during periods of absent sensory 

inputs, and have usually low frequencies ($<15$Hz). For example, the delta 

rhythm, theta, and the spindle rhythm that usually range between 4-12 Hz.  

2. Induced rhythms are termed as ‘wake state rhythms’ as they are mostly 

observed to occur during conscious activities such as perceiving external stimuli 

(olfactory, visual, auditory, to name a few). The alpha, beta, and gamma rhythm 

can be included in this section, as there are studies that show the presence of fast 

oscillations during complex behaviors done in a conscious state.  

3. Pathological rhythms exhibit themselves during specific neurological 

cases that can include epileptic seizures, and tremors. 

Given that frequencies of these neural oscillations can be linked to specific 

functions of the brain, the same can be said for emotional states. Many studies suggest 

that different brain rhythms are present during specific emotions. For instance, 

research suggests that the Alpha activity observed regions such as the frontal lobe 

(right side) can be an indicator of negative emotions, whereas their activity in the left 

frontal lobe may indicate positive ones. It is suggested that gamma oscillations that 

appear to have an asymmetric nature in the temporal and parietal lobes can identify 
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emotions [70]. The Table 2 gives a summarized view of the different brain rhythms 

and the states they are associated with. 

Table 2: Frequency ranges of the EEG signal extracted from [70] 

Brainwave Frequency Range Mental Condition 

Delta 0-4 Hz Unconscious/deep sleep state 

Theta 4-8 Hz Relaxed state/meditative/dreaming 

Low Alpha 8-10 Hz Calmness/State of peacefulness while 

being awake 

High Alpha 10-12 Hz Focused/actively learning 

Low Beta 12-18 Hz Solving-problems/engaged thinking  

High Beta 18-30 Hz Alertness/agitated 

Low Gamma 30-50 Hz Self-control/compassion 

High Gamma 50-70 Hz Cognitive tasks 

 

2.4.2 EEG acquisition  

An EEG signal acquisition system is composed of EEG electrodes, analog-to-

digital converters, preprocessing circuits, and EEG signal control and feedback 

systems [71]. This composition is shown in Figure 7Figure 9. Each of the elements is 

briefly introduced in the following subsections. 

 

 

 

 

 

 

 

 

Figure 7: EEG real-time acquisition mechanism [71] 
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EEG electrodes are the sensors which detect and measure the electrical brain 

activity. They can be categorized into groups according to some of their 

characteristics: 

Ag/AgCl electrodes are the most commonly used, due to their excellent 

performance. These gel-based electrodes have high reliability, good SNR, stable signal 

quality, and cost-effectiveness [71]. 

The most common electrode placement system is the 10/20 system, a 

standardization proposed in 1958 by the "International Federation in 

Electroencephalography and Clinical Neurophysiology" [72] [73]. The 10-20 label 

refers to the proportional distance (in %) between the ears and nose where the positions 

for the electrodes are chosen. 

The electrode labeling convention is done according to the brain region/lobe: F 

for frontal, O for occipital, P for posterior, C for Central and T for Temporal succeeded 

by a number. An even number indicates the electrode is in the right hemisphere, while 

an odd number indicates the left hemisphere. If it is followed by "Z" it stands for zero 

and denotes the electrodes' positions in the midline region (Figure 8). 

 

 

 

 

Figure 8: Electrode placement of 32-Channel EPOC 

Flex Gel Sensor Kit 
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Another factor that affects the process of data acquisition is the electrode 

impedance. Measured in Ohm(Ω), impedance is the measure of opposition to electrical 

flow, and it is crucial to have it as low as possible to ensure high-quality EEG data. 

Impedance may be increased by dead skin, scalp sweating, and oily skin secretions 

among some factors that obstruct brain activity from being recorded. A solution to this 

is to clean electrode sites with alcohol and apply an appropriate amount of conductive 

material [74].  

Table 3: EEG electrodes 

Category Description 

Material Metal disc electrodes are typically made out of tin, gold, 

stainless steel, Ag/AgCl electrodes made out of silver, and a 

silver chloride layer [74]. 

Invasiveness Non-invasive electrodes are placed on the scalp, while invasive 

electrodes are surgically implanted into the cerebral cortex 

[71]. 

Wet or Dry Wet electrodes require a conductive material (gel, saline, 

paste). Dry electrodes can transmit the electrical signals 

independently [71] [73]. 

Cap-based or 

Free-from 

Some headsets specify where the electrode should be placed in 

the cap, while Freeform electrodes can be placed freely on the 

scalp [73]. 

Active or Passive Active electrodes have built-in amplifiers to maintain signal 

quality, while passive electrodes are connected via normal 

cables [75]. 

 

 

2.4.3 Analog-to-Digital Converter Circuit 

After EEG data is recorded through the headset, the analog voltage signals need 

to be converted into digital form. This is done by the Analog-to-Digital Converter 

circuit (ADC). Several factors should be considered when designing an ADC circuit 

for a specific application since its performance greatly affects the quality of the 

recorded EEG data [76].  

First, ADC resolution radically affects the acquisition quality and accuracy 

since having a higher resolution allows the circuit to convert minimal voltage 

oscillations [77]. Secondly, the ADC sampling rate determines the number of data 
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points acquired per second, so this parameter should be selected appropriately [78]. 

Moreover, the noise level of the ADC should be at a low level to ensure a high SNR. 

Here noise suppression techniques may also be implemented [79]. Also important is 

the power-supply noise that may influence the quality of the signals. Stable power 

supplies can minimize this effect, as well as a positioning of the reference electrodes 

that avoids this noise [80].  Finally, power consumption should be considered to fit the 

application, and to have reliable and prolonged data acquisition periods [71]. 

 

2.4.4 Pre-processing Circuit 

Pre-processing circuits are implemented to improve the quality of th EEG 

signal, by removing noise and artifacts. They are composed of filters, op-amps and 

reference electrodes [81]. 

Filters are used to remove noise and artifacts while conserving the main 

frequency components. For instance, in [82] a Band-pass filter of 0.5 - 45 Hz in range 

was applied to remove signal frequencies unfit for Emotion recognition. Firstly, the 

Savitzky-Golay smoothing filter is applied to the signal, and then these features are 

subtracted from the original resulting in the average trend of the EEG signal [83] [84]. 

Reference electrodes are considered as zero or a known potential when 

calculating the potential difference at other electrodes, therefore they should be placed 

away from the primary sources of brain EEG signals. In the Emotiv EPOC Flex Gel 

sensor kit (32 channels) there are 2 reference electrodes CMS/DRL that can be 

configured in any 10-20 location or on ears. 

 

2.4.5 Processor Circuit 

In the system displayed in Figure 7Figure 9 the next element to discuss is the 

Processor Circuit. It is a key component that allows the real-time processing and 

analysis of the acquired EEG signals from the previous stages. Table 4 gives an 

overview of the units that can be used. 
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Table 4: Processing Circuit Options 

Type Features Suitable for: 

FPGA [85] High speed, flexible, 

reconfigurable  

Utilizing hardware speed processing for 

digital filtering, waveform or spectral 

observations. 

DSP [86] High computation 

speed, strong real-

time processing 

Implementing signal processing 

algorithms (digital filtering, power 

spectrum estimation, frequency 

analysis, and T-F analysis). 

CPU [87] [88] Versatile, large 

storage capacity 

Implement complex algorithms such as 

neural networks and machine learning. 

 

2.4.6 EEG Artifacts 

Artifacts are errors in the perception or representation of any data caused by the 

technique or equipment used. EEG artifacts are divided into two main groups: 

physiologic/intrinsic artifacts, and extra physiologic/extrinsic artifacts [71](See  

Table 5 ). Some extra-physiologic factors can be seen in  Figure 9 [74] [73]. 

 

 

 

 

 

 

 

Figure 9: Spectral densities of Interference sources 
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Table 5: EEG Artifacts 

Type Examples 

Physiological 

Muscle artifacts: Generated from the movement of facial 

muscles. This activity is usually shorter than the brain 

activities therefore it can be identified based on duration, 

morphology, and frequency [74]. 

Eye movements: The human eye generates electrical activity 

that is distinct from the brain's. It has been observed that 

horizontal eye movements appear in a box shape, while 

vertical eye movements appear to have a sinusoidal wave 

structure [74] [73]. 

Eye blinks: also known as an electrooculogram (EOG), these 

signals generally have higher amplitude compared to EEG 

signals (same frequency) [74] [89]. 

Extra-physiological 

Equipment Artifacts: Usually caused by the movement of 

the electrodes or headset. 

Power Line Artifacts: With a frequency of 50 Hz in Europe 

(60 Hz in the US), the power line noise causes artifacts 

especially when the electrode impedance is reduced. Since 

most brain activity signals have a lower frequency, these 

artifacts can be filtered using low-pass filters and notch filters 

[74] [89]. 

Thermal Noise: In a similar manner as the power line noise, 

this type of noise caused by the random thermal motion of 

charge carriers in electrical conductors causes artifacts [89]. 

Flicker Noise:  Occurs in almost all electronic devices [89]. 
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CHAPTER 3 

LITERATURE REVIEW 

 

3.1  Emotion models as classification labels  

As mentioned in section 2. When discussing emotion models, there are two 

types of emotion models that can be used to classify emotions: the discrete and the 

continuous model. Datasets that have used the discrete model categorize emotions in 

several classes. For example, in SEED-IV [90] there are 4 classes (happy, sad, fear, 

and neutral), MAHNOB-HCI [91] has 9 discrete types, and MPED [92] uses 7 types 

(joy, anger, fear, funny, disgust, sad, and neutral). On the other hand, datasets that use 

continuous emotion models use the values of Valence, Arousal, or Dominance to 

classify them. Depending on the combination selected, this classifying model can be 

2D (predominantly Valence-Arousal) or 3D (Valence-Arousal-Dominance). Datasets 

such as DEAP [1], DREAMER [2], and MANHOB-HCI use all 3 of these measures 

to indicate the emotional state of the subject. During the recording of the affective 

signals and the self-labeling by the subjects of the emotion they experience it is very 

common to use diagrams such as SAM (Self-Assessment-Manikin) in Figure 10 to 

perform the labeling. 

It is important to discuss the labeling schemes of continuous emotion models, 

especially when they are intended to be used in Machine Learning/Deep Learning. 

While discrete models have distinct classes that can be immediately used as targets of 

the classification, for the continuous models some processing has to be done. 

Depending on the rating system used in the datasets there are mainly four labeling 

schemes [93]: 

1. One-dimensional binary labels for each of the measures 

(valence, arousal, and dominance). For example, in DEAP with a range of 1-9 

to label each measure, High Valence (HA/HD) is everything above 4.5, and 

below this threshold the Low Valence (LA/LD). 
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2. One-dimensional three-class labels. Taking again the case of 

DEAP, the range 1-3.5 can be LV/LA/LD, 3.5-6.5 the neutral class for 

Valence/Arousal/Dominance, and the upper range 6.5-9 the HV/HA/HD 

classes.  

3. Two-dimensional scheme for Arousal-Valence with 4 classes 

one per each quadrant. For DEAP this is Low Arousal-Low Valence, HA-LV, 

LA-HV, and HA-HV. 

4. Three-dimensional label scheme for Arousal-Valence-

Dominance with 8 classes. Similarly to the 2D scheme, for each binary 

combination of the three measures there is a class: LA-LV-LD, LA-LV-HD, 

LA-HV-LD, LA-HV-HD, HA-LV-LD, HA-LV-HD, HA-HV-LD, HA-HV-

HD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:Images used for self-assessment, from top: Valence SAM, 

Arousal SAM, Dominance SAM, Liking SAM 
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Figure 11:Emotion labels 

Figure 12:Three-dimensional binary Arousal-Valence-Dominance (split into two for 

better visualization) 



29 

 

3.2 EEG data processing 

As mentioned before, EEG signals are difficult to collect and interpret. 

Moreover, they are usually mixed with a multitude of noisy signals coming from the 

body itself or the environment. Predominantly, EEG recording is done with a high 

sampling rate: 256 Hz, 512 Hz, or even 1024 Hz. For emotion recognition where the 

brain oscillations related to them are in the ranges of 8-45 Hz cite [70] [94] even the 

sampling rate of 128 Hz is enough, if taking into account the Nyquist-Shannon theorem 

where the highest frequency that can be reliably captured is 64 Hz.  

To remove the noise, EEG signals can be manually cleaned from artifacts, or 

different filtering methods such band-pass filters (Butterworth/Chebyshev filters). 

Moreover, methods such as ICA, discrete wavelet can be used to separate the different 

signal sources, and remove the noisy ones [94]. 

 

 

3.3  Feature Extraction 

Feature extraction aims to collect information that can be used effectively to 

distinguish a person’s emotional state. Therefore, the accuracy of the classification 

algorithm is determined by the quality of the EEG features that are extracted [95].  The 

process of feature extraction includes transforming the signal by choosing relevant 

parts of it and discarding irrelevant elements [96] [95]. Moreover, it reduces the 

required resources for data analysis since the complexity of the data is also reduced 

[97]. Several forms of inputs are used in EEG classification tasks, which use different 

extraction methods. 

1. Raw EEG data: Because feature engineering for EEG 

processing is considered a complex and time-consuming step, it has become 

increasingly popular to use the EEG signal as time series that are slightly 

processed (filtered, cleaned form artifacts, down sampled). This category of 

inputs is often named “Raw EEG” [98]. For the DEAP dataset, the Raw EEG 

signals have been preprocessed by down sampling to 128 Hz, and applying a 
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bandpass filter of 4-45 Hz range (common range to avoid artifacts such as 

ocular artifacts) [68]. 

2. Time domain features: Temporal features of EEG refer to the 

characteristics of the signal observed in the time domain. They provide insight 

into how the electrical activity measured by the headset varies over time. 

Analyses in the time domain features are done to extract the statistical 

parameters of EEG, and they primarily depict the waveform features of the 

EEG signal [95] [96]. 

3. Frequency domain features: The frequency domain is 

extracted from the time domain, and it shows the spectral (frequency) 

characteristics of the EEG signal. The spectrum acquired from the time domain 

(most commonly using Fourier Transform), is divided into several sub-bands 

(usually in 5 bands to represent the major brain activity frequency bands) from 

which features are extracted [95] [96] [97]. 

4. Time-frequency domain features: As with most biological 

signals, EEG has a non-stationary nature. Stationary signals have a mean and 

variance that does not change over time. For such signals, measuring the mean 

and variance over only one segment retrieves enough information to estimate 

the signal’s true mean and variance. Therefore, these measures cannot be 

captured similarly for EEG physiological signals such as ECG, EMG, and EEG 

to name a few [98].  

While the time domain analysis gives the temporal representation of the 

signal, it does not include the information that the frequency domain provides 

- frequency variations or the energy distribution of the signal. To overcome 

these limitations, the signals can be represented in the time-frequency domain 

[97].  

5. Topographic maps: Topographic maps (topo maps) of the 

brain are visual-spatial illustrations of brain activity cite [99]. It illustrates the 

electrical activity across the scalp, depicting elements such as the amplitude or 

power of EEG signals across different electrode locations. Apart from the 

amplitude or power component of the EEG signal, other quantitative features 
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mentioned above (time and frequency domain features) can be used to 

construct topographic maps (in [99] Differential Entropy is used). 

6. Connectivity features: Connectivity features serve as a method 

for quantifying connections between different brain regions based on the 

electrical activity recorded by the electrodes [100]. Effective connectivity 

depicts how the information flows between different EEG channels at a 

specific frequency component.  The most common effective connectivity 

method is Granger-Causality computed in the frequency domain [101]. In two 

estimators of brain effective connectivity measures are used: dDTF(based on 

Granger-Causality), and PCD measure used extensively in neuroscience 

studies. The information extracted from these estimators can be represented as 

a matrix or graph [100]. 

Table 6: List of features to extract from EEG [94] 

Feature Type Feature  

Time-domain Histogram analysis, Statistical measures (Mean, Variance, 

STD, Skewness, Kurtosis), Hjorth parameters, Fractal 

dimensions, Event-related potential, Entropy measures, 

Zero Crossing Rate (ZCR), Slope Sign Change (SSC), 

Willison Amplitude (WAMP) 

Frequency-domain Power spectral density (PSD), Higher-order spectrum 

(HOS), Logarithm energy spectrum, Approximate entropy 

(AnEn), Permutation entropy (PeEn) 

Time-frequency 

domain 

Discrete Wavelet Transform, Short-time Fourier transform, 

Hilbert Huang Transform, Wavelet packet transform, 

Differential entropy (DE) 

 

 

3.4  Feature selection 

After the extraction of the features, there are several methods that can be used 

to select the ones that represent the data more reliably and efficiently. There are two 

main methods to feature selection: manual and automatic. The first method requires 

some knowledge of the field to be able to choose the right features given the inherent 
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complexity of EEG signals. The experimentation with choosing the features manually 

may be too laborious for the EEG-untrained person. Therefore, the automatic feature 

selections are utilized in order to by-pass the complex process of selecting features 

personally [94]. 

Automatic feature selection methods can be divided into 'filter methods' and 

'wrapper methods', with the first one being model-independent, while the latter 

requires a built model to function. Therefore, when dealing with large datasets or real-

time applications the 'filter method' is often preferred. Some of the most utilized 'filter 

methods' are: chi-squared (χ2) test-based approach, mutual information-based 

approach with mRMR(minimal-redundancy-maximal-relevance) [102] being the most 

widely used, ANOVA F-test approach, etc.  

 

 

3.5 Classification Methods 

Classifiers are algorithms used to classify data. There are numerous 

classification methods for EEG Emotion recognition that can be categorized into two 

main groups: Machine Learning (ML) algorithms and Deep Learning Algorithms. ML 

algorithms most commonly include Support Vector Machines (SVM), Decision 

Forests, Random Forest, Linear Discriminant Analysis (LDA), k-nearest Neighbors 

(KNN), and Naive Bayes, to name a few. 

These algorithms are usually dependent on manually selected features, and are 

considered impractical when dealing with large datasets. The general framework of an 

ER with EEG using Machine Learning is showcased in Figure 13. Often, they are 

employed in subject-dependent modeling, where the data is limited to only one subject. 

In [21], of the classifiers reviewed, 59% SVM was used (with different kernels: RBF, 

linear, polynomial, and Pearson). 14% of the works used kNN, while Linear 

Discriminant Analysis was used 6.3%, and Quadratic Discriminant Analysis 3.2%. 

The final 6.35% is split equally among the Naive Bayes method and Multi-Layer 

Perceptron Backpropagation. Study [103] tests 5 classic ML classifiers on the DEAP 

dataset:  Support Vector Machine, K-Nearest Neighbor, Decision Trees, Logistic 
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Regression, and Linear Discriminant Analysis. Firstly, the performance of the 

classifiers before using PCA on the data, the accuracy was 50-65%. After PCA was 

employed and the data dimensionality was reduced, that is the most significant 

channels were found (F3, C3, F4, C4, AF3, PO4, CP1), the accuracy results improved 

to 55-75%. On the other hand, subject-dependent implementations report satisfactory 

performances with accuracies reaching 73.14% for Valence and 73.06% [94] for 

Arousal using SVM algorithm, and 86.75% for Valence and 84.05% for Arousal using 

KNN [104] [105].   

In the last years Deep learning algorithms have been increasingly employed as 

classifiers in the Emotion Recognition with EEG task. Compared to the traditional ML 

classifiers, Deep learning methods have reported a better performance without the need 

to perform extensive feature extraction that generally relies on human experts. There 

are different features used to train the DL models. The raw signals can be supplied, as 

well as the time-domain, frequency-domain, and time-frequency domain features of 

the EEG signal [96]. Furthermore, spatial features such as Topographic maps, and 

effective connectivity measures can be provided as image inputs, especially for models 

that specialize in image recognition. 

 

 

Figure 13:The General framework of emotion recognition using Machine Learning 
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An example of models that use RAW and processed EEG signals (STD) is the 

study [106] where the application of DNN (multi-layer perceptron), one-dimensional 

CNN (Convolutional Neural Network), LSTM (Long Short-Term Memory), and a 

hybrid CNN-LSTM model was investigated. The RAW data includes the data array 

preprocessed by the DEAP dataset where of the 32 initial channels, only 14 with the 

most impact was selected. On the other hand, the STD data (Spatio-temporal 

decomposition) is extracted from the time domain using eight statistical methods: 

mean, standard deviation, maximum, minimum, average absolute values of the first 

difference, average absolute values of second difference, skewness, and kurtosis. 

These statistical features are combined into an eigenvector to represent the time 

domain features. The labeling scheme for this study is similar to the 2D Arousal-

Valence labeling scheme in the 2D Arousal-Valence model shown in Figure 11 where 

the DNN is reported to have 63.99% accuracy with the RAW features, and 79% with 

Figure 14:Algorithms used to classify emotions 
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the STD features. The other models also achieve favorable results (67-94%), with the 

CNN-LSTM having the highest accuracy with the RAW feature dataset 94.17%.  

Other DL models applied to the ER task are Stacked Autoencoders (SAE) 

[107], Deep Belief Network (DBN) [23], Recurrent Neural Network (RNN) [108], 

Graph Convolutional Neural Networks (GCNN) [109], Domain Adversial Neural 

Network (DANN) [110], 2D and 3D Convolutional Neural Networks [111]. In [100] 

2D CNNs(AlexNet, VGG-19, ResNet-50, and Inception-v3) [112] trained on 

MAHNOB-HCI [91] dataset using dDTF images (32x32 images showing information 

flow between regions of the brain) were compared in all frequency bands and achieved 

accuracies ranging from 79.20-99.43% with ResNet-50 [112] having the highest 

performance over all frequencies (accuracy, precision, recall, f1-score). For the DEAP 

dataset [1], the accuracy ranged from 75.20-95.77% where ResNet-50 is again the 

model with the best performance. [113] implements a 2D-CNN with PSD features as 

inputs and achieves 85.5% accuracy for Valence and 87.3% for Arousal with a 10-fold 

cross-validation strategy. realize a 3D CNN that captures the along with the spatial 

information of 2D EEG frames, its temporal information too, by using 3D streams as 

inputs. With a 5-fold validation strategy they achieve 99% accuracy in both Valence 

and Arousal for subject-independent modeling. 

 

 

3.6  Emotion Classification Datasets 

3.6.1 DREAMER 

DREAMER dataset [2] is a multi-modal database with EEG and ECG signals 

recorded during affect elicitation using audio-visual stimuli. In total, there were 23 

subjects participating in the experiment, by viewing 18 video sequences labeled as 

‘stimuli’ variable. Before each film clip, a neutral clip is shown which is labeled as a 

‘baseline’ variable. The structure of the data for each i-th subject/participant is shown 

in Table 7. 



36 

 

Table 7: DREAMER dataset [2] 

Audiovisual stimuli 

Number if videos 18 

Video content Audio-video 

Video-duration 65-393 s (M = 199 s) 

Experiment information 

Number of participants 23 

Rating scales Arousal, Valence, Dominance 

Rating values 1-5 

Recorded signals 14-channel 128 Hz EEG, 256 Hz ECG 

 

3.6.2 DEAP 

DEAP Dataset [1] (See Table 8) is a multi-modal database with EEG signals 

and peripheral physiological signals of 32 participants during an audio-visual affect 

experiment. The signals were recorded while participants watched 40 one-minute-long 

sections of music videos, and provided their rating in terms of valence, arousal, 

dominance, like/dislike, and familiarity. The three measures that are of major interest 

in this study, that is valence, arousal, and dominance, where measured on a discrete 

scale of 1-9 with Self-Assessment-Manikins (SAM). DEAP dataset includes EEG 

signals measured by 32-channel 512 HZ EEG, down sampled to 128 Hz.  

Table 8: DEAP dataset [1] 

Audiovisual stimuli 

Number if videos 40 

Video content Music Videos 

Video-duration 63 s 

Experiment information 

Number of participants 32 

Rating scales Arousal, Valence, Dominance 

Rating values 1-9 

Recorded signals 32-channel 128 Hz EEG 
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3.7  Subject-dependent/independent emotion recognition 

The structure of the train/validation/test datasets is crucial when it comes to 

EEG signals. Given their complex and temporal nature the data splitting strategy 

greatly affects the performance of the model. When performing the division of data 

there are two approaches that researchers take: the subject-dependent and the subject-

independent approach. The subject-dependent modeling achieves the process of 

emotion recognition by building different models for each of the subjects, given that 

the domain-shift between different subjects makes it substantially difficult to 

generalize on EEG data. 

 As mentioned above, the 'domain shift' hinders the ability for models to 

perform well with inter-subject modeling. This phenomenon is caused by the diversity 

of EEG signals between individuals. These contrasting characteristics may arise from 

several factors: culture, gender, age, genetics, etc. Studies have shown that women are 

more sensitive to negative emotion than men despite their age [114]. While there is 

plenty of research done on the socio-cultural factors that may cause variations in EEG 

signals, the most significant difference remains that between genders. 

Therefore, the subject-independent modeling aims to build a model that 

generalizes well on the dataset despite the inter-subject discrepancies. The common 

trend for the performance of the two modeling approaches is with 70% - 100% 

accuracy for subject-dependent modeling, and for the subject-independent counterpart 

the results dropped significantly (10%-20%). Finding a way around the 'domain shift' 

problem is crucial to subject-independent models, and there are four main ways 

utilized nowadays: 

1. Calibration of signals among participants: This can be done 

by using baseline recording (recordings during non-affective trials) and 

aligning them with one another.  

2. Aspect-oriented modeling: By restricting the sample space to 

only one gender, age or culture, for very specific modeling can produce good 

results. For example, [115] established an individual-specific, a gender-

specific and a general model and reported increased accuracy in the individual-

specific (subject-dependent) and gender-specific models.  
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3. Transfer Learning-domain adaptation approach: By using 

Transfer Learning EEG features are mapped into a common feature 

representation space, further adjusted into distinctive inter-subject features 

[116]. 

4. Choosing subject-independent features: Researchers are 

looking into finding robust EEG features that provide enough information to 

work around the 'domain shift'. Some of these features are the Power Spectrum 

Density extracted from low Alpha frequencies, Hjorth parameters extracted 

from the Beta rhythm, as well as the brain oscillations of subset Beta and 

Gamma when observed in the temporal lobe.   
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CHAPTER 4 

METHODOLOGY 

 

4.1 Data processing  

The datasets utilized in this thesis are the DEAP (Database for Emotion 

Analysis using EEG, Physiological and Video Signals) [1] and DREAMER [2] (The 

details on their structure is given in 3.6.) The Raw EEG signals from each dataset are 

processed into numpy arrays and used to extract features needed for the classification 

task. Apart from the preliminary filtering and down sampling done to the datasets by 

the researchers who carried out the EEG recordings, no additional band-pass filters, or 

wavelet decompositions are applied to either one of them. This is done in order to have 

no bias when comparing the results of our model implementations with the existing 

literature. 

Both datasets were processed by removing the baseline signals from the affect 

recordings: for DEAP the 3s baseline recording was duplicated into 60s, while for 

DREAMER the 60s baseline recording was replicated to fit the length of each of the 

stimuli trial lengths. The removal of the baseline is done by taking the mean value of 

the baseline recordings for an epoch of 1s (128 sample points) and then subtract this 

mean from the affect recordings sectioned into 128 sample epochs [117]. This method 

helps 'clean' the EEG stimuli recordings from background/non-affective signals and 

provides a less noisy representation of the RAW EEG recordings. However, as later 

seen in the results of ML algorithms tried with both the original and cleaned data, they 

perform better with the uncleaned signals. 
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4.2 Feature Extraction 

The features extracted from the time-series EEG signals are part of the time 

domain, frequency domain, and time-frequency domain. For the Deep Learning 

implementations, the Euclidean distance from the center of the clusters, as well as the 

label predicted by the algorithm Kmeans are added as additional features. Table 9 

shows each of the features extracted from the original EEG data. 

 

Table 9: Extracted Features 

Feature Type Feature 

Time-domain Mean, Standard deviation, Minimum, Maximum, 

Skewness, Kurtosis, Hjorth parameters 

(Activity/Complexity/Mobility) [118] 

Frequency-domain Power spectral density (PSD) for 5 frequency bands 

(4-8 Hz,8-12 Hz,12-16 Hz,16-45 Hz), Spectral 

Entropy 

Other Euclidean Distance from cluster centers, K-means 

predicted labels 

 

The formulas for the statistical measures, as well as the PSD and Spectral 

Entropy used to extract features from the raw EEG are given below: 

𝒙̅ =  
𝟏

𝑵
∑ 𝒙𝒊 

𝑵
𝒊=𝟏      Equation 1 

𝝈 =  √
𝟏

𝑵
∑ (𝒙𝒊 − 𝒙̅)𝟐𝑵

𝒊=𝟏     Equation 2 

𝑴𝒊𝒏𝒊𝒎𝒖𝒎 = 𝒎𝒊𝒏(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵)   Equation 3 

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 = 𝒎𝒂𝒙(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵)   Equation 4 
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𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝟏

𝑵
∑ 𝒙𝒊

𝟐𝑵
𝒊=𝟏    Equation 5 

𝑴𝒐𝒃𝒊𝒍𝒊𝒕𝒚 =  √
𝟏

𝑵
∑ (𝒙𝒊+𝟏−𝒙𝒊)𝟐𝑵

𝒊=𝟏

𝝁𝟎
   Equation 6 

𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 =  √
𝟏

𝑵
∑ (𝒙𝒊+𝟏−𝒙𝒊)𝟐𝑵

𝒊=𝟏

𝝁𝟎
√

𝝁𝟐

𝝁𝟎
⁄   Equation 7 

𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔 =  
𝟏

𝑵
∑ (𝒙𝒊−𝒙)𝟒𝑵

𝒊=𝟏

(
𝟏

𝑵
∑ (𝒙𝒊−𝒙)𝟐𝑵

𝒊=𝟏 )
𝟐   Equation 8 

𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔 =  
𝟏

𝑵
∑ (𝒙𝒊−𝒙)𝟑𝑵

𝒊=𝟏

(
𝟏

𝑵
∑ (𝒙𝒊−𝒙)𝟐𝑵

𝒊=𝟏 )

𝟑
𝟐

     Equation 9 

Spectral Density of a signal x(t) is given by: 

𝑺𝒙𝒙(𝒇) =  𝒍𝒊𝒎
𝑻→∞

𝟏

𝑻
|𝑿(𝒇)|𝟐    Equation 10 

Where X(f) is the Fourier Transform of x(t). 

Spectral entropy measures the complexity of the power spectrum and is defined 

as: 

𝑺𝑬 =  − ∑ 𝑷(𝒇𝒊) 𝒍𝒐𝒈𝟐(𝑷(𝒇𝒊))𝑵
𝒊=𝟏   Equation 11 

Where P(fi) is the normalized power spectral density at frequency fi and N is 

the number of frequency bins.  
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In addition to the type and number of the features selected to represent the EEG 

data, the number of channels used to record the signals is also relevant. The DEAP 

dataset is recorded using 32 channels, while DREAMER only 14 channels. In order to 

assess the influence of the number of channels on the performance of the model from 

the DEAP dataset the most relevant 18, 14, and 10 groups of electrodes are collected. 

This is done by reshaping the raw/original EEG array into (sample points) x 32 

channels, and then by using the mRMR filter method for the target label scheme the 

18/14/10 most representative channels will be selected. 

 

 

4.3 Compilation of datasets  

1. DEAP dataset: The time/frequency domain features are 

extracted from overlapping 2 second windows (256 sample points) with step 

size 32 sample points. The full size of the dataset is then 313160 x 480 features 

with features from both domains. Then this dataset is sectioned into: 

i. DEAP time-domain: 9 time-domain features for each 32 

channels totals to 288 attributes. After the addition of the 

Euclidean distances and the KMeans labels the number of 

attributes goes to 291 for binary classification and 297 for 3D 

classification (8 classes). 

ii. DEAP time-domain ML: For the dataset used in ML 

implementation the number of samples had to be reduced and 

therefore it was reshaped into: 4680 x 4656 (binary) and 4680 

x 4752 (3D). 

iii. DEAP frequency-domain: 6 frequency-domain features for 

each channel totals to 192 attributes, and after the addition of 

Euclidean distances and KMeans labels it goes to 195 for 

binary, and 201 for 3D classification. 
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b. DEAP frequency-domain ML: Similarly, the dataset 

is reduced in size for ML implementation to 4680 x 3120 (binary) and 

4680 x 3216 (3D). 

2. DREAMER dataset: The time/frequency domain features are 

extracted for each of the 14 channels over a 2s window with step size 64 sample 

points. It results into a dataset of dimensions 170246 x 210. 

i. DREAMER time-domain: There are 9 time-domain features 

so 126 attributes, and 129 after adding the cluster distances and 

KMeans labels for binary classification, and 135 for 3D 

classification.  

ii. DREAMER time-domain ML: The sample number is reduced 

by reshaping the array into 5674 x 1935 (binary), 5674 x 2025 

(3D).  

iii. DREAMER frequency-domain: There are 6 frequency-

domain features so 84 attributes, and 87 after adding the cluster 

distances and KMeans labels for binary classification, and 93 

for 3D classification.  

iv. DREAMER frequency-domain ML: The sample number is 

reduced by reshaping the array into 5674 x 1305 (binary), 5674 

x 1395 (3D). 
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Table 10: Datasets used 

Usage Data 

DEAP-ML time-domain  4680 x4656 (4752) 

DEAP-ML frequency-domain 4680 x 3120 (3216) 

DEAP-CNN time-domain 313160 x 291 (297) 

DEAP-CNN frequency-domain 313160 x 195 (201) 

DREAMER-ML time-domain 5674 x 1935 (2025) 

DREAMER-ML frequency-domain 5674 x 1305 (1395) 

DREAMER-CNN time-domain 170246 x 129 (135) 

DREAMER-CNN frequency-domain 170246 x 87 (93) 

 

4.3.1 Data splitting and cross-validation 

The models are trained using K-Fold cross-validation with k being 5, 10, 15, 

and 20. In each fold the data is split into training and validating sets, therefore trained 

on the training part and evaluated on the other. In the traditional ML and ensemble ML 

models, after performing the training with cross-validation the average accuracy is 

given to get a better understanding of the performance of the model.  

On the other hand, the CNN datasets are not split with cross-validation. Due to 

the sample size of the datasets, as well as the complexity of the 1D CNN models, it is 

highly computationally expensive to use cross-validation. Therefore, the models 

undergo normal train/validation/test process. Another important aspect to mention is 

the fact that the data is not shuffled randomly, to ensure that some of the temporal 

information is learned by the model. We adapt a similar approach to [119] where every 

10th sample point is allocated to the test dataset, every 4th sample point to the 

validation dataset, and everything else to the training dataset. This ensures that the 

continuous development of the emotion along those sample points is kept intact, as 

well as ensure that all partitions have some data from each subject to help with the 

domain-shift problem. When the random shuffle was used with DEAP dataset it caused 

over-fitting with the training accuracy drastically increasing while the validation 

accuracy did not improve after the first few epochs. 
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4.4 Classifiers 

In this thesis the classifiers can be divided into the two main groups mentioned 

in 3.5: Machine Learning and Deep Learning models. These classifiers are used for 

the task of Emotion Classification for binary Arousal, Valence, and Dominance, as 

well as the 3D eight category-classification. 

 

4.4.1 Machine Learning Classifiers 

The Machine learning models implemented are namely: Decision Tree, K-

Nearest Neighbors, Random Forest, Linear Discriminant Analysis, and Support Vector 

Machines. While the Deep Learning models used two versions of 1D Convolutional 

Neural Network (CNN).  

Decision Tree is a supervised learning algorithms that is used for classification 

and regression. The way it works is it splits data into subsets creating a tree-like model 

of decisions (see Figure 15). The splitting is done based on the value of input features, 

and there are sub-trees, decision nodes terminal nodes that represent the outcome of 

the classification or regression process. 

 

 

Figure 15:Decision Tree algorithm 
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Table 11: Decision Tree Classifier Algorithm 

Algorithm 1 Decision Tree Classifier 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)}, feature set F 

2: Output: Decision Tree T 

3: 

4: function BULID TREE(D,F) 

5: if all examples in D belong to the same class then 

6:    return leaf node with that class 

7: end if 

8: if F is empty then 

9:    return leaf node with the majority class in D 

10:end if 

11: f*  arg max fF InformationGain(f,D) 

12:T  create a decision node that splits on f* 

13:for each value v of f* do  

14:   Dv  subset of D where feature f* has value v 

15:   Tv  BUILD TREE (Dv,F\{f*}) 

16:   add branch to T corresponding to f* = v and subtree Tv 

17:end for 

18:return T 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16:Linear Discriminant Analysis Algorithm 
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Linear Discriminant Analysis (LDA) is a statistical method primarily utilized 

for dimensionality reduction and classification. It maximizes the separation between 

the features of different classes. This algorithm performs the separation between 

classes by assuming that each class follows a Gaussian distribution and searches for a 

linear combination of the best features to separate these classes (Figure 16) 

Table 12: LDA Algorithm 

Algorithm 2 Linear Discriminant Analysis (LDA) 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)} 

2: Output: Classifier f(x) 

3: 

4: Compute the mean vectors µk for each class k 

5: Compute the within-class scatter matrix SW 

6: Compute the between-class scatter matrix SB 

7: Compute the matrix 𝑺𝑾
−𝟏𝑺𝑩 

8: Find the eigenvectors and eigenvalues of 𝑺𝑾
−𝟏𝑺𝑩 

9: Select the top k-1 eigenvectors to form a transformation matrix W 

10: Transform the data using W 

11: Classify new samples 

K-Nearest Neighbor (kNN) is a supervised learning algorithm for classification and 

regression, which classifies data points into classes based on the majority class among 

its k nearest neighbors (see Figure 17). K is a parameter that can be set to a desired 

Figure 17:K-Nearest Neighbors Algorithm 
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number. The distance between datapoints is mainly measured using Euclidean 

distance, which makes it computationally expensive if the dataset is too large since 

there has to be a distance calculation for all. 

Table 13: k-NN Algorithm 

Algorithm 3 k-Nearest Neighbors (k-NN) 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)}, number of neighbors k, 

query point xq 

2: Output: Predicted class for xq 

3: 

4: Compute the distance between xq 

5: Select the k nearest neighbors to xq 

10: Assign the class label to xq based on the majority class among the k nearest 

neighbors 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random Forest (RF) is an ensemble learning method used for classification 

and regression tasks. It works by constructing multiple decision trees, training them 

on subsets of the dataset and then getting the prediction of each of the models. The 

Figure 18:Random Forest Algorithm 



49 

 

results are gathered, the averaging/voting process occurs and then the prediction of the 

RF model is given. Random Forests provide good performance and known for the 

ability to deal with high-dimensional feature datasets( Figure 18). 

Table 14: Random Forest Algorithm 

Algorithm 4 Random Forest 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)}, number of trees T, number 

of features m 

2: Output: Ensemble classifier F(x) 

3: 

4: for t = 1 to T do 

5:    Draw a bootstrap sample Dt from D 

6:    Train a decision tree Tt on Dt with the following modifications: 

7:    for each node in Tt do 

8:      Randomly select m features from the feature set F 

9:      Choose the best feature and split based on the selected m features 

10:   end for 

11: end for 

12: Aggregate the predictions of the T trees: 

13: For classification: F(x) = mode(T1(x), T2(x), . . . , TT(x)) 

14: For regression: 𝑭(𝒙) =  
𝟏

𝑻
∑ 𝑻𝒕

𝑻
𝒕=𝟏 (𝒙)  

 

Support Vector Machine (SVM) is a supervised learning algorithm utilized 

for both classification and regression tasks. It finds the best hyperplane that separates 

the data into different classes in the feature space. By maximizing the margin (the 

Figure 19:SVM Algorithm with different kernels 
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distance between the hyperplane and the nearest data points from any class) the 

optimal hyperplane is found 

Table 15: SVM with linear kernel algorithm 

Algorithm 5 SVM with Linear Kernel 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)} 

2: Output: Classifier f(x) 

3: 

4: Solve the problem:𝐦𝐢𝐧
𝒘,𝒃

𝟏

𝟐
‖𝒘‖𝟐 

Subject to yi(w ·x + b) ≥ 1 

i5: Compute decision function f(x) = w ·x+ b 

10: Classify new samples using f(x) 

Table 16: SVM with Polynomial kernel algorithm 

Algorithm 6 SVM with Polynomial Kernel 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)} degree d 

2: Output: Classifier f(x) 

3: 

4: Solve the optimization problem: 

𝐦𝐢𝐧
𝜶

𝟏

𝟐
∑ 𝜶𝒊𝜶𝒋𝒚𝒊𝒚𝒋(𝒙𝒊 ∙ 𝒙𝒋 + 𝟏)𝒅 + 𝒃

𝒊,𝒋

− ∑ 𝜶𝒊

𝒊

 

Subject to ∑ 𝜶𝒊𝒚𝒊 = 𝟎 𝒊 and 𝜶𝒊  ≥ 𝟎 

5: Compute decision function 𝒇(𝒙) =  ∑ 𝜶𝒊𝒚𝒊(𝒙𝒊 ∙ 𝒙 + 𝟏)𝒅
𝒊 + 𝒃 

10: Classify new samples using f(x) 

 

 

 

 

 

 

 



51 

 

Table 17: SVM with RBF kernel Algorithm 

Algorithm 7 SVM with RBF Kernel 

1: Input: Training data D = {(x1,y1), (x2,y2), . . . , (xn,yn)}, parameter γ 

2: Output: Classifier f(x) 

3: 

4: Solve the optimization problem: 

𝐦𝐢𝐧
𝜶

𝟏

𝟐
∑ 𝜶𝒊𝜶𝒋𝒚𝒊𝒚𝒋𝒆−𝜸‖𝒙𝒊−𝒙‖𝟐

𝒊,𝒋

−  ∑ 𝜶𝒊

𝒊

 

Subject to ∑ 𝜶𝒊𝒚𝒊 = 𝟎 𝒊 and 𝜶𝒊  ≥ 𝟎 

5: Compute decision function 𝒇(𝒙) =  ∑ 𝜶𝒊𝒚𝒊𝒆
−𝜸‖𝒙𝒊−𝒙‖𝟐

𝒊 + 𝒃 

10: Classify new samples using f(x) 

 

4.4.2 Deep Learning Classifiers 

The Deep Learning models used in this study are commonly used with 

sequential data, which includes EEG signals. The CNN models implemented in this 

thesis are one-dimensional Convolutional Neural Networks designed to work well 

with time-series data such as EEG signals. There are 3 versions that will be referenced 

as CNN1, CNN2, and CNN3 throughout the thesis. CNN1 is taken from [119] and 

implemented with binary and 8 classes classification different from the original 10 

classes implementation on only 3 subjects. The other two CNN models are further 

advancements of it.  

CNN1 (see Figure 20)accepts input data and passes it to three convolutional 

Conv1D layers with batch normalization, kernel size=3, max-pooling with stride=2 

and padding set to ‘same’. Each of the Conv1D layers has the activation function 

ReLU, with the first and second layer having 128 filters, and the third layer having 64 

filters.  
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The convolutional layers are followed by a Flatten layer making the 3D output 

of the last layer into a 1D vector. Three Fully Connected Dense layers follow, with 

dropout rate 0.2. The two first dense layers with 64 and 32 units respectively use 

hyperbolic tangent ‘tanh’ as activation function, while the last fully connected dense 

layer with 16 units, uses ReLU. The last dense layer is the output layer, where the 

number of units corresponds to the number of classes. The activation function is either 

softmax or sigmoid depending on the type of classification(multi-class/binary). 

CNN2 (see Figure 22) accepts input data and passes it to three convolutional 

blocks with a 1D convolutional layer Conv1D (kernel size=3), batch normalization, 

max-pooling with stride=2 and padding set to ‘same’. Each of the Conv1D layers has 

the activation function ReLU.  The first and second layer have 256 feature filters, and 

the third layer 128. The convolutional blocks are followed by a convolutional layer 

Conv1D with 128 filters and only max-pooling, without batch normalization.  

Figure 20:CNN1 architecture 
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The convolutions are followed by a Flatten layer making the 3D output of the 

last layer into a 1D vector. Four Fully Connected Dense layers follow, with dropout 

rate 0.2. The three first dense layers with 128, 64 and 32 units respectively use 

hyperbolic tangent ‘tanh’ as activation function, while the last fully connected dense 

layer with 16 units, uses ReLU. The last dense layer is the output layer, where the 

number of units corresponds to the number of classes. The activation function is either 

softmax or sigmoid depending on the type of classification(multi-class/binary). 

 

Figure 22:CNN2 architecture 

Figure 21:CNN3 architecture 
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CNN3 (See Figure 21) accepts input data and passes it to three convolutional 

blocks with a 1D convolutional layer Conv1D (kernel size=3), batch normalization, 

max-pooling with stride=2 and padding set to ‘same’. Each of the Conv1D layers has 

the activation function ReLU.  The first layer has 512 feature filters, the second and 

third layer have 256, and the fourth layer 128. The convolutional blocks are followed 

by a convolutional layer Conv1D with 128 filters and only max-pooling, without batch 

normalization.  

The convolutions are followed by a Flatten layer making the 3D output of the 

last layer into a 1D vector. Three Fully Connected Dense layers follow, with dropout 

rate 0.2. The two first dense layers with 64 and 32 units respectively use hyperbolic 

tangent ‘tanh’ as activation function, while the last fully connected dense layer with 

16 units, uses ReLU. The last dense layer is the output layer, where the number of 

units corresponds to the number of classes. The activation function is either softmax 

or sigmoid depending on the type of classification(multi-class/binary). 

 

4.4.3 Optimizers and learning rates 

The selection of the optimizer and learning rate are crucial to the efficient 

implementation of a DL model. To achieve the best utilization of the models at hand, 

a grid search of the best parameters is utilized. For optimizers Adam, Stochastic 

Gradient Descent and RMSprop were considered, while the learning rates included 

0.01, 0.001, and 0.0001. The training was done for 50 epochs with model CNN1 for 

DEAP time CNN dataset (32 channels), and the best combination of the trials was then 

used for all the other implementations of CNN1 with different datasets. The pair with 

the best result was optimizer: Adam and learning rate:0.001. 
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Table 18: Grid Search for Parameters 

F
1
-s

co
re

_
1

 

0
.7

9
8
 

0
.8

7
7
 

0
.8

7
5
 

0
.8

5
1
 

0
.8

0
8
 

0
.7

9
0
 

0
.7

9
8
 

0
.8

5
9
 

0
.8

6
5
 

R
a
ca

ll
_
1

 

1
.0

0
0
 

0
.8

9
0
 

0
.9

0
3
 

0
.8

8
9
 

0
.9

0
4
 

0
.9

6
7
 

1
.0

0
0
 

0
.9

2
5
 

0
.8

7
7
 

P
re

ci
si

o
n

_
1

 

0
.6

6
4

 

0
.8

6
5

 

0
.8

4
7

 

0
.8

1
7

 

0
.7

3
1

 

0
.6

8
0

 

0
.6

6
4

 

0
.8

0
2

 

0
.8

5
2

 

F
1
-s

co
re

_
0

 

0
.0

0
0
 

0
.7

4
7
 

0
.7

2
6
 

0
.6

6
5
 

0
.4

4
8
 

0
.1

7
5
 

0
.0

0
0
 

0
.6

4
7
 

0
.7

2
1
 

R
a
ca

ll
_
0

 

0
.0

0
0
 

0
.7

2
6
 

0
.6

7
9
 

0
.6

0
8
 

0
.3

4
3
 

0
.1

0
2
 

0
.0

0
0
 

0
.5

4
8
 

0
.7

0
0
 

P
re

ci
si

o
n

_
0

 

0
.0

0
0
 

0
.7

7
0
 

0
.7

8
1
 

0
.7

3
4
 

0
.6

4
3
 

0
.6

1
0
 

0
.0

0
0
 

0
.7

8
8
 

0
.7

4
3
 

A
cc

u
ra

cy
 

0
.6

6
4
 

0
.8

3
5
 

0
.8

2
8
 

0
.7

9
4
 

0
.7

1
5
 

0
.6

7
6
 

0
.6

6
4
 

0
.7

9
8
 

0
.8

1
7
 

L
ea

rn
in

g
 

ra
te

 

0
.0

1
 

0
.0

0
1
 

0
.0

0
0
1
 

0
.0

1
 

0
.0

0
1
 

0
.0

0
0
1
 

0
.0

1
 

0
.0

0
1
 

0
.0

0
0
1
 

O
p

ti
m

iz
er

s 

A
d
am

 

A
d

a
m

 

A
d
am

 

S
G

D
 

S
G

D
 

S
G

D
 

R
M

S
p
ro

p
p
 

R
M

S
p
ro

p
 

R
M

S
p
ro

p
 

 



56 

 

4.4.4 Environment Details 

The environments used to implement the models where Google Collaboratory 

and Kaggle Environment with the respective resources: 16 GB Tesla T4 GPU, 12.7 

GB CPU for Google Collaboratory, 2x 15 GB T4 GPU, 29 GB CPU for Kaggle. The 

most crucial libraries used where TensorFlow 2.15.0, Keras 3.4.1. 

 

4.4.5 Performance Evaluation 

To evaluate the performance of the implemented models several evaluation 

metrics are used. For ML models the average accuracy for binary classification of 

Valence, Arousal, and Dominance, and the additional eight-class classification is 

calculated during each of the cross-validation runs. In addition to that, the average time 

for the implementation of the model is given in seconds. The Deep Learning models 

are evaluated on the accuracy, precision, recall, and f1-score metrics. The average 

duration of an epoch and the total time of implementation is also recorded in seconds. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
    Equation 12 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷
     Equation 13 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
    Equation 14 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∙  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
   Equation 15 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

5.1. Implementation Results 

In this chapter are presented the results of all the implementations of the 

different classifiers for both of the datasets. There are two types of experiments carried 

out: the ML implementation on both time and frequency features with DEAP and 

DREAMER, and the Deep Learning Model with the one-dimensional CNN model. For 

ML implementations there are 7 classifiers that are trained and tested on 4 different 

cross validation trials. The DL implementation involves several trials with DEAP and 

DREAMER datasets. With DEAP both time and frequency domain features were 

applied separately on 32, 18, 14, and 10 channels of the DEAP dataset, in order to 

investigate on the channels' influence on performance. In addition to that, the CNN 

model is used for the time and frequency domain feature datasets for DREAMER, 

separately in this case as well. The classifications done were of the binary scheme for 

Valence, Arousal, and Dominance, but also including the 3D emotion labeling scheme 

which is also utilized. This brings the number of total implementations to 488 

individual classifier implementations: for ML: 4*7*4 classifiers per dataset *4 ML 

datasets = 448; 4 channel configurations of DEAP x 2 datasets x 4 classification labels 

= 32, and finally 8 implementations from DREAMER CNN. The results of these 

implementations are given by the tables below, where they are grouped according to 

their similarities. 

 

5.1.1 Removing baseline effect 

In the following tables the effect of removing the mean baseline from each 

epoch is given by comparing the results of Machine Learning algorithms using the 

original data and the cleaned version of the dataset. 
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Table 19: ML algorithms on DEAP time-domain dataset with baseline/without 

baseline recordings 

  
Unclean Clean 

Algorithm k-

fold 

Val. Aro. Dom. Val. Aro. Dom. 

DT 5 0.535 0.558 0.567 0.520 0.572 0.585 

LDA 5 0.590 0.641 0.617 0.612 0.590 0.611 

KNN 5 0.585 0.623 0.617 0.591 0.603 0.624 

RF 5 0.609 0.650 0.633 0.615 0.645 0.658 

SVM_linear 5 0.589 0.632 0.621 0.600 0.589 0.604 

SVM_poly 5 0.612 0.625 0.646 0.626 0.634 0.641 

SVM_rbf 5 0.613 0.646 0.655 0.630 0.637 0.666 

DT 10 0.534 0.550 0.590 0.546 0.561 0.595 

LDA 10 0.598 0.638 0.603 0.592 0.591 0.614 

KNN 10 0.584 0.625 0.625 0.591 0.609 0.611 

RF 10 0.624 0.644 0.646 0.644 0.644 0.650 

SVM_linear 10 0.598 0.641 0.618 0.591 0.587 0.611 

SVM_poly 10 0.616 0.623 0.645 0.630 0.635 0.644 

SVM_rbf 10 0.623 0.653 0.657 0.629 0.644 0.663 

DT 15 0.569 0.549 0.566 0.526 0.570 0.565 

LDA 15 0.591 0.626 0.593 0.592 0.607 0.606 

KNN 15 0.590 0.621 0.627 0.589 0.612 0.612 

RF 15 0.626 0.643 0.663 0.621 0.654 0.664 

SVM_linear 15 0.593 0.637 0.623 0.584 0.595 0.600 

SVM_poly 15 0.614 0.623 0.646 0.629 0.635 0.645 

SVM_rbf 15 0.621 0.652 0.660 0.628 0.646 0.669 

DT 20 0.537 0.533 0.546 0.537 0.578 0.591 

LDA 20 0.585 0.632 0.596 0.592 0.600 0.607 

KNN 20 0.590 0.618 0.634 0.591 0.607 0.616 

RF 20 0.632 0.653 0.651 0.623 0.650 0.659 

SVM_linear 20 0.597 0.635 0.635 0.593 0.582 0.615 

SVM_poly 20 0.614 0.623 0.646 0.629 0.636 0.644 

SVM_rbf 20 0.623 0.655 0.657 0.630 0.642 0.668 
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Table 20:ML algorithms on DREAMER time-domain dataset with baseline/without 

baseline recordings 

  
Unclean Clean 

Algorithm k-

fold 

Val. Aro. Dom. Val. Aro. Dom. 

DT 5 0.676 0.815 0.841 0.680 0.805 0.835 

LDA 5 0.628 0.734 0.767 0.616 0.720 0.741 

KNN 5 0.601 0.692 0.737 0.578 0.688 0.720 

RF 5 0.761 0.820 0.850 0.727 0.799 0.727 

SVM_linear 5 0.624 0.702 0.737 0.585 0.692 0.585 

SVM_poly 5 0.618 0.771 0.802 0.627 0.773 0.627 

SVM_rbf 5 0.692 0.780 0.811 0.676 0.774 0.676 

DT 10 0.683 0.816 0.844 0.685 0.806 0.838 

LDA 10 0.636 0.739 0.777 0.619 0.734 0.755 

KNN 10 0.607 0.703 0.743 0.589 0.698 0.729 

RF 10 0.760 0.822 0.852 0.740 0.803 0.740 

SVM_linear 10 0.619 0.708 0.741 0.604 0.703 0.604 

SVM_poly 10 0.622 0.772 0.802 0.628 0.773 0.628 

SVM_rbf 10 0.698 0.781 0.812 0.678 0.776 0.678 

DT 15 0.685 0.815 0.844 0.686 0.808 0.841 

LDA 15 0.641 0.738 0.783 0.622 0.726 0.758 

KNN 15 0.605 0.707 0.751 0.592 0.697 0.728 

RF 15 0.764 0.823 0.854 0.735 0.804 0.735 

SVM_linear 15 0.624 0.710 0.743 0.602 0.704 0.602 

SVM_poly 15 0.624 0.772 0.803 0.627 0.772 0.627 

SVM_rbf 15 0.700 0.781 0.812 0.682 0.776 0.682 

DT 20 0.685 0.816 0.844 0.688 0.809 0.841 

LDA 20 0.645 0.740 0.778 0.618 0.724 0.759 

KNN 20 0.604 0.711 0.749 0.592 0.700 0.733 

RF 20 0.766 0.820 0.854 0.734 0.805 0.734 

SVM_linear 20 0.623 0.717 0.747 0.603 0.703 0.603 

SVM_poly 20 0.625 0.773 0.803 0.628 0.773 0.628 

SVM_rbf 20 0.699 0.781 0.814 0.682 0.777 0.682 

 

5.1.2 Machine Learning Implementation Results  

The following tables show the results for the implementations of the Machine 

Learning Algorithms for the time-domain and frequency-domain datasets of DEAP 

and DREAMER.  
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Table 21: DEAP ML time-domain dataset results (cont.) 
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Table 22:DEAP ML time-domain dataset results (part 2) 
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Table 23:DEAP frequency-domain dataset results (part 1) 
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Table 24:DEAP ML frequency-domain dataset results (part 2) 
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Table 25:DREAMER time-domain dataset results (part 1) 
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Table 26:DREAMER time-domain dataset results (part 2) 
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Table 27:DREAMER frequency-domain dataset results (part 1) 
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Table 28:DREAMER frequency-domain dataset results (part 2) 
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5.1.3 Deep Learning Implementation Results  

The following tables show the results for the implementations of the three CNN 

models for the time-domain and frequency-domain datasets of DEAP and DREAMER. 

Table 29: DEAP CNN1 results for time and frequency-domain (0: arousal, 1: 

valence, 2: dominance, 3:3D model) 

domain Nr total(s) avg(s) label acc prec. recall 
f1-

score 

time 

32 3322 16.611 0 0.881 0.881 0.881 0.88 

18 1859 9.297 0 0.846 0.845 0.846 0.845 

14 1491 7.455 0 0.817 0.815 0.817 0.815 

10 1218 6.088 0 0.795 0.794 0.795 0.789 

32 3544 17.721 1 0.887 0.887 0.888 0.886 

18 1863 9.316 1 0.856 0.855 0.856 0.854 

14 1499 7.495 1 0.815 0.814 0.815 0.81 

10 1224 6.118 1 0.799 0.799 0.799 0.79 

32 3252 16.259 2 0.899 0.898 0.899 0.899 

18 1817 9.087 2 0.846 0.844 0.846 0.842 

14 1476 7.378 2 0.824 0.821 0.824 0.82 

10 1203 6.013 2 0.812 0.808 0.812 0.806 

32 1659 16.591 3 0.574 0.689 0.449 0.52 

18 915 9.148 3 0.697 0.781 0.623 0.685 

14 760 7.6 3 0.574 0.689 0.449 0.52 

10 631 6.305 3 0.57 0.701 0.436 0.512 

freq. 

32 1940 9.701 0 0.87 0.87 0.87 0.87 

18 1321 6.605 0 0.834 0.833 0.834 0.834 

14 1154 5.772 0 0.818 0.816 0.818 0.816 

10 932 4.66 0 0.802 0.8 0.802 0.798 

32 1958 9.792 1 0.884 0.884 0.884 0.882 

18 1332 6.661 1 0.846 0.845 0.846 0.843 

14 1156 5.778 1 0.831 0.829 0.831 0.828 

10 929 4.645 1 0.803 0.8 0.803 0.8 

32 1967 9.837 2 0.89 0.889 0.89 0.89 

18 1379 6.895 2 0.852 0.85 0.852 0.85 

14 1172 5.859 2 0.832 0.829 0.832 0.828 

10 940 4.702 2 0.819 0.816 0.819 0.816 

32 2473 24.73 3 0.802 0.85 0.765 0.804 

18 1421 14.215 3 0.709 0.783 0.642 0.703 

14 1225 12.26 3 0.672 0.745 0.602 0.662 

10 991 9.917 3 0.667 0.745 0.595 0.654 
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Table 30:DEAP CNN2 results for time and frequency-domain (0:arousal, 1:valence, 

2:dominance, 3:3D model) 

domain Nr total(s) avg(s) label acc prec. recall f1-score 

time 

32 3445 34.453 0 0.897 0.897 0.897 0.897 

18 1959 19.59 0 0.89 0.89 0.89 0.889 

14 1539 15.387 0 0.863 0.862 0.863 0.862 

10 1236 12.358 0 0.793 0.79 0.793 0.789 

32 3490 34.901 1 0.917 0.916 0.917 0.916 

18 1982 19.822 1 0.87 0.869 0.87 0.869 

14 1551 15.51 1 0.864 0.863 0.864 0.862 

10 1213 12.125 1 0.831 0.83 0.831 0.83 

32 3490 34.904 2 0.925 0.925 0.925 0.925 

18 1951 19.506 2 0.882 0.881 0.882 0.881 

14 1584 15.839 2 0.842 0.841 0.842 0.842 

10 1221 12.207 2 0.791 0.786 0.791 0.786 

32 3549 35.488 3 0.807 0.848 0.776 0.808 

18 2038 20.38 3 0.677 0.758 0.605 0.664 

14 1585 15.846 3 0.559 0.605 0.501 0.536 

10 1264 12.639 3 0.548 0.614 0.462 0.516 

freq. 

32 2293 22.933 0 0.911 0.911 0.911 0.911 

18 1399 13.991 0 0.881 0.881 0.881 0.881 

14 1190 11.897 0 0.881 0.88 0.881 0.88 

10 948 9.481 0 0.848 0.848 0.848 0.848 

32 2183 21.826 1 0.92 0.92 0.92 0.92 

18 1350 13.503 1 0.895 0.895 0.895 0.894 

14 1149 11.489 1 0.877 0.877 0.877 0.877 

10 918 9.185 1 0.866 0.865 0.866 0.864 

32 2345 23.447 2 0.925 0.925 0.925 0.925 

18 1427 14.265 2 0.885 0.885 0.885 0.885 

14 1208 12.076 2 0.883 0.881 0.883 0.882 

10 900 8.997 2 0.87 0.868 0.87 0.868 

32 2353 23.527 3 0.787 0.839 0.742 0.786 

18 1484 14.843 3 0.716 0.785 0.659 0.712 

14 1218 12.182 3 0.693 0.774 0.616 0.678 

10 998 9.976 3 0.679 0.752 0.604 0.666 
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Table 31:DEAP CNN3 results for time and frequency-domain (0:arousal, 1:valence, 

2:dominance, 3:3D model) 

domain Nr total(s) avg(s) label acc prec. recall 
f1-

score 

time 

32 5853 58.53 0 0.925 0.925 0.924 0.924 

18 3412 34.12 0 0.911 0.911 0.91 0.911 

14 2726 27.26 0 0.898 0.897 0.898 0.897 

10 2241 22.41 0 0.881 0.881 0.881 0.881 

32 5821 58.21 1 0.932 0.932 0.932 0.932 

18 3287 32.87 1 0.919 0.919 0.919 0.919 

14 2621 26.21 1 0.887 0.887 0.887 0.887 

10 1962 19.62 1 0.874 0.874 0.874 0.874 

32 5776 57.76 2 0.935 0.935 0.935 0.935 

18 3290 32.9 2 0.88 0.88 0.88 0.88 

14 2637 26.37 2 0.892 0.893 0.892 0.892 

10 2005 20.05 2 0.875 0.875 0.875 0.875 

32 5993 59.93 3 0.821 0.846 0.803 0.822 

18 3331 33.31 3 0.734 0.769 0.708 0.736 

14 2757 27.57 3 0.759 0.796 0.728 0.759 

10 2094 20.94 3 0.735 0.78 0.697 0.735 

freq. 

32 3899 38.99 0 0.926 0.927 0.926 0.926 

18 2355 23.55 0 0.904 0.904 0.904 0.904 

14 1936 19.36 0 0.903 0.903 0.903 0.903 

10 1774 17.74 0 0.887 0.887 0.887 0.887 

32 3787 37.87 1 0.937 0.937 0.937 0.937 

18 2211 22.11 1 0.917 0.916 0.917 0.917 

14 1883 18.83 1 0.912 0.991 0.912 0.912 

10 1447 14.47 1 0.891 0.89 0.891 0.89 

32 3801 38.01 2 0.941 0.941 0.941 0.941 

18 2337 23.37 2 0.916 0.916 0.916 0.916 

14 2657 26.57 2 0.902 0.901 0.902 0.901 

10 2010 20.1 2 0.889 0.889 0.889 0.889 

32 3897 38.97 3 0.8 0.825 0.783 0.802 

18 2387 23.87 3 0.782 0.82 0.75 0.783 

14 2106 21.06 3 0.767 0.81 0.731 0.768 

10 1608 16.08 3 0.746 0.785 0.715 0.745 
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Table 32:DREAMER CNN results for time and frequency-domain (0:arousal, 

1:valence, 2:dominance, 3:3D model) 

Model domain total(s) avg(s) label acc prec. recall f1-score 

CNN1 

time 

806 4.032 0 0.923 0.922 0.923 0.921 

805 4.023 1 0.848 0.847 0.848 0.847 

806 4.029 2 0.91 0.909 0.91 0.91 

840 4.198 3 0.727 0.788 0.67 0.719 

freq. 

643 3.215 0 0.936 0.935 0.936 0.935 

650 3.248 1 0.881 0.881 0.881 0.881 

635 3.174 2 0.944 0.943 0.944 0.942 

666 3.331 3 0.814 0.844 0.79 0.814 

CNN2 

time 

838 8.376 0 0.883 0.883 0.883 0.882 

845 8.454 1 0.688 0.709 0.688 0.697 

880 8.798 2 0.915 0.915 0.915 0.915 

889 8.892 3 0.672 0.729 0.62 0.667 

freq. 

657 6.573 0 0.877 0.877 0.877 0.877 

652 6.521 1 0.924 0.923 0.924 0.924 

652 6.524 2 0.949 0.948 0.949 0.949 

692 6.925 3 0.803 0.816 0.794 0.802 

CNN3 

time 

1440 14.4 0 0.867 0.878 0.867 0.871 

1453 14.53 1 0.825 0.823 0.825 0.823 

1440 14.4 2 0.927 0.929 0.929 0.927 

1538 15.38 3 0.635 0.697 0.605 0.635 

freq. 

1095 10.95 0 0.945 0.945 0.945 0.945 

1082 10.82 1 0.884 0.885 0.884 0.884 

1094 10.94 2 0.955 0.954 0.955 0.955 

1160 11.6 3 0.778 0.785 0.774 0.779 
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CHAPTER 6 

DISCUSSION OF RESULTS 

 

6.1.  Machine Learning Results 

In this thesis we construct several classifiers (Machine Learning and Deep 

Learning classifiers) for the task of Emotion Recognition with the usage of EEG 

affective signals. The Machine Learning Classifiers Decision Tree, K-Nearest 

Neighbor, Linear Discriminant Analysis, Random Forest, and three Support Vector 

Machine classifiers (with linear/polynomial/rbf kernels) were tested on both DEAP [1] 

and DREAMER [2] datasets and evaluated by the accuracy metric. For DEAP the 

results are in par with the pre-existing implementations, since the accuracies for DEAP 

time-domain dataset and frequency-domain dataset did not surpass the 68% mark with 

cross-validation (k=5,10,15,20). On the other hand, both instances of the DREAMER 

dataset have a satisfactory performance with the best performing model scoring 85% 

only with Machine Learning classifiers. This performance could be most likely 

attributed to the removal of the baseline signals from the affective recordings in the 

pre-processing stage.  

In the following histograms there are several points of interest. First of all, it is 

observed that across both the DREAMER and DEAP datasets the Dominance Binary 

Scale has the highest accuracy, followed by Arousal, leaving Valence as the less 

accurate binary emotion category to classify. While not very apparent in the 

DREAMER dataset results, when observing the DEAP counterpart, the classifiers 

mostly reach their highest when k=5 or 10, with a slight drop for k=20. Moreover, the 

graph shows that for DEAP Random Forest is the classifier with the most reliable 

performance.  
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Figure 23:DEAP time-domain Accuracy vs Nr of k-folds 
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Figure 24:DEAP time-domain Accuracy vs Nr of k-folds 
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Figure 25:DEAP time-domain Accuracy vs Nr of k-folds for 3D model 
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Figure 26:DEAP frequency-domain Accuracy vs Nr of k folds 
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Figure 27:DEAP frequency-domain Accuracy vs Nr of k 

folds 
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Figure 28:DEAP frequency-domain Accuracy vs Nr of k folds for 3D model 
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Figure 29:DREAMER time-domain Accuracy vs Nr of k folds 
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Figure 30:DREAMER time -domain Accuracy vs Nr of k 

folds 
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Figure 31:DREAMER  time-domain Accuracy vs Nr of k folds for 3D model 
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Figure 32:DREAMER frequency-domain Accuracy vs Nr of k 

folds 
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Figure 33:DREAMER frequency-domain Accuracy vs Nr of 

k folds 
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Figure 34:DREAMER frequency-domain Accuracy vs NR of k folds for 3D model 
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Figure 35:DEAP time-domain ML results 

(acc) 
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Figure 36:DEAP frequency-domain ML 

results (acc) 
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Figure 37:DREAMER time-domain ML results 

(acc) 
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Figure 38:DREAMER frequency-domain ML 

results (acc) 
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The following figures (Figure 39, Figure 40, Figure 41, Figure 42) showcase 

all the implementations done with ML algorithms and their respective accuracy for 

each of the binary classifications and the 3D model multi-class one. Figure 44 and 

Figure 43 show that the models trained on frequency-domain dataset slightly 

outperformed those in time-frequency domain for both DEAP and DREAMER.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 39:DEAP time-domain heatmap of implementations (Algorithm 

and Accuracy) 
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Figure 40:DEAP frequency-domain heatmap of implementations 

(Algorithm and Accuracy) 
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Figure 41:DREAMER time-domain heatmap of implementations 

(Algorithm and Accuracy) 
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Figure 42:DREAMER frequency-domain heatmap of implementations 

(Algorithm and Accuracy) 
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Figure 44:DREAMER ML results time-domain vs frequency-domain Accuracies 

Figure 43:DEAP ML results time-domain vs frequency-domain Accuracies 
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6.2. Deep Learning Results 

For the DL classifiers, the CNN models are trained on 1D time-series, which 

makes the training process significantly rapid, a characteristic that is important when 

deploying models in real-life applications. With both DEAP and DREAMER datasets 

the model performs well, with the latter having very reliable accuracy (over 90%) for 

all 4 emotion classification labels. For DEAP the additional investigation on the 

configuration of channels was done, and it is observed that there is a slow drop in 

accuracy and other metrics as the channels go from 32 to 18,14, and finally 10 for both 

time and frequency domain feature datasets.  

The following figures (Figure 45, Figure 47, Figure 49, Figure 51, Figure 53) 

show the training-validation accuracy VS epochs during the training of the model 

CNN1, for different channel numbers (32, 18, 14, 10). The upper graph shows the 

performance of the model on time-domain features dataset, while the bottom is for 

frequency-domain feature dataset. 

The figures (Figure 46, Figure 48, Figure 50, Figure 52, Figure 54) show the 

training-validation accuracy VS epochs during the training of the model CNN2, for 

different channel numbers (32, 18, 14, 10). The upper graph shows the performance of 

the model on time-domain features dataset, while the bottom is for frequency-domain 

feature dataset. 

From the graphs it can be observed that while the accuracy increases slightly in 

CNN2, but the validation curve is very irregular and can introduce problems during 

the inference process.  
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Figure 45:CNN1 Arousal binary classification (Accuracy vs 

Epochs during training) top: time-domain, bottom: 

frequency-domain 
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Figure 46:CNN2 Arousal binary classification (Accuracy vs 

Epochs during training) top: time-domain, bottom: 

frequency-domain 
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Figure 47:CNN1 Valence binary classification (Accuracy vs 

Epochs during training) top: time-domain, bottom: 

frequency-domain 
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Figure 48:CNN2 Valence binary classification (Accuracy vs 

Epochs during training) top: time-domain, bottom: frequency-

domain 
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Figure 49:CNN1 Dominance binary classification 

(Accuracy vs Epochs during training) top: time-domain, 

bottom: frequency-domain 
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Figure 50:CNN2 Dominance binary classification 

(Accuracy vs Epochs during training) top: time-

domain, bottom: frequency-domain 
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Figure 51:CNN1 3D model classification (Accuracy vs 

Epochs during training) top: time-domain, bottom: 

frequency-domain 
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Figure 52:CNN2 3D model classification (Accuracy vs 

Epochs during training) top: time-domain, bottom: 

frequency-domain 
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Figure 53:CNN1 DREAMER (Accuracy vs Epochs for 

validation process) top: time-domain, bottom: frequency-

domain 



104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54:CNN2 DREAMER (Accuracy vs Epochs for 

validation process) top: time-domain, bottom: frequency-

domain 
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For DEAP dataset the accuracy of the models increases as the complexity of 

the model does too, that is CNN3 has the best performance followed by CNN2 and 

then CNN1. In CNN1 and CNN2 it can be seen that the time domain features yield 

higher accuracy values for the binary classification, but for CNN3 for this type of 

classification frequency-domain features outperform the latter.  For the DREAMER 

dataset the accuracy of the model decreases with CNN1 having the best performance, 

Figure 55: DEAP CNN all models 

Figure 56:DREAMER CNN all models 
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followed by CNN2 and CNN3. This could be caused by the limited data or noisy 

recordings.  

Compared to the existing models, the DEAP-CNN implementation for a 

subject-independent approach is satisfactory, as it is a fairly simple 1D CNN model 

that does not require the resources a 2D or 3D CNN approach might need. 
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Table 33:Comparison of models and methodologies 
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CHAPTER 7 

CONCLUSIONS 

 

7.1. Key findings  

The goal of this thesis is to implement subject-independent models for Emotion 

Recognition with EEG affective signals. The primary objective was developing an 

efficient Artificial Intelligence model that performs well with inter-subject data, but at 

the same time is easy to deploy and does not require excessive computations. This 

main objective of the thesis was successfully completed as it resulted in the 

implementation of three one-dimensional Convolutional Neural Networks that 

generalize well with inter-subject data. The results were compared to state-of-art 

methodologies and came out to have higher performance that a good portion of them. 

The few models that report higher accuracy in our case have turned out to be the 

complex 2D-3D CNN models that require a lot of computational power and are not fit 

for real-time application of Emotion Recognition.  

This thesis achieves its secondary objective, that is providing a compilation of 

the most relevant methodologies used in the task of Emotion Recognition with EEG 

signals, serving as a stepping stone for further research. In addition to that, it provides 

a selection of robust features that can be extracted from EEG signals in order to capture 

the information more accurately, starting from frequency or time domain features, to 

the different channel configurations that can be chosen. 
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7.2. Limitations of the Study 

Several limitations were encountered during the completion of this thesis. 

Despite being widely used as benchmarks for ER with EEG, the datasets DEAP and 

DREAMER have limited number of subjects, which is crucial when dealing with EEG 

signals given the inherent diversity of physiological signals as well as emotional 

expressions. And lastly, the complexity of the data pre-processing, feature extracting 

methods and computationally expensive algorithms used, hinder the time efficiency of 

the models so that they cannot be deployed in real-time. 

 

 

7.3.  Recommendations for Future Research 

Given the increasing trend of ER with EEG research in the recent years, it 

would be important for future works to include more methodologies or processing 

strategies that work around the significant difference between EEG signals of two 

individuals. This can be done by finding robust features that appear to be shared by 

distinct individuals. These can be features of the time-frequency domain, features that 

quantify the asymmetrical activity of the brain and so on. Another suggestion would 

be to use domain adaptation methods, or by assembling a hybrid model from models 

that have been trained by similar individuals (in age, gender, culture, etc.). And most 

importantly investigation ways to simplify the pre-processing and implementation of 

the models in order to achieve real-time application of these algorithms. Lastly, the 

suggested approach for future research is the inclusion of fusion data, for example 

between EEG and ECG signals, EEG and facial expression video-recording, and so 

on. The combination of several mediums will provide a better understanding of the 

emotional processes undergoing and therefore improve upon the accuracy of the 

Emotion Recognition task. 
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7.4.  Final Thoughts 

To summarize, this thesis presents three 1D CNN models with subject-

independent modeling that perform well in Emotion Recognition with EEG, despite 

not having a heavy computational load, and therefore providing a foundation on 

possible straightforward models that can be deployed in real-time for Human-

computer interfaces. The key findings also demonstrate the great importance of 

choosing the right processing and feature selection methods as it can drastically 

decrease the complexity of the EEG data and help represent it better. 
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APPENDIX A  

CODE IMPLEMENTATION 

 

1. Feature Extraction Implementation 

!pip install git+https://github.com/forrestbao/pyeeg.git 

 

import numpy as np 

import pyeeg as pe 

import pickle as pickle 

import pandas as pd 

import math 

from sklearn import svm 

from sklearn.preprocessing import normalize 

import os 

import time 

from scipy.stats import skew, kurtosis 

 

def Feature_Processing(sub, channel,band, window_size, 

step_size,sample_rate): 

    meta = [] 

    m = 0 

    with open("/content/drive/My Drive/DEAP_ILVA/DATA/s" + sub + 

'.dat', 'rb') as file: 

        subject = pickle.load(file, encoding='latin1') 

        print(sub) 

 

        for i in range(0, 40): 

 

            labels = subject["labels"][i] 

            start = 0 

 

            data = subject["data"][i] 

            # data = np.transpose(data) 

            print(data.shape) 

 

            while start + window_size <= data.shape[1]: 

                meta_array = np.empty((1,484)) 

                meta_data = np.empty((len(channel), 15))   

# Initialize meta_data as an array 

                measures_per_dataset = np.zeros((15,)) 
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                for idx, j in enumerate(channel): 

                    X = data[j][start : start + window_size] 

                # Calculate statistics for each window 

                    mean_per_window = np.mean(X,axis=0) 

                    std_per_window = np.std(X, axis=0) 

                    min_per_window = np.min(X, axis=0) 

                    max_per_window = np.max(X, axis=0) 

                    skewness_per_window = skew(X, axis=0) 

                    kurtosis_per_window = kurtosis(X, axis=0) 

 

 # Calculate Hjorth parameters 

complex_per_window =   

np.sqrt(np.mean(np.diff(X, axis=0)**2, 

axis=0)) / np.std(X, axis=0) 

                    mobility_per_window = np.std(np.diff(X, 

axis=0), axis=0) / np.std(X, axis=0) 

                    activity_per_window = np.std(X, axis=0) 

 

# Calculate wavelet features 

# wavelet_energy = calculate_wavelet_energy(X) 

# wavelet_entropy = calculate_wavelet_entropy(X) 

 

                    Y = pe.bin_power(X, band, sample_rate) 

 

# # Calculate differential entropy 

# diff_entropy = calculate_differential_entropy(X) 

 

                    spec_entropy = calculate_spectral_entropy(X, 

sample_rate) 

 

                    Y = pe.bin_power(X, band, sample_rate) 

 

                    # Store statistics for the current channel 

                    measures_per_dataset[0] = mean_per_window 

                    measures_per_dataset[1] = std_per_window 

                    measures_per_dataset[2] = min_per_window 

                    measures_per_dataset[3] = max_per_window 

                    measures_per_dataset[4] = skewness_per_window 

                    measures_per_dataset[5] = kurtosis_per_window 

                    measures_per_dataset[6] = complex_per_window 

                    measures_per_dataset[7] = mobility_per_window 

                    measures_per_dataset[8] = activity_per_window 

                    # measures_per_dataset[9] = wavelet_energy 

                    # measures_per_dataset[10] = wavelet_entropy 

                    # measures_per_dataset[11] = diff_entropy 
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                    measures_per_dataset[9] = spec_entropy 

                    measures_per_dataset[10:] = Y[0] 

 

# Store the calculated measures for the 

current dataset 

                    meta_data[idx] = measures_per_dataset[:] 

 

                print(meta_data.shape) 

                meta_data = meta_data.reshape((-1,)) 

                print(meta_data.shape) 

                meta_array[0,0:480] = meta_data[:] 

                meta_array[0,480:484] = labels[:] 

 

                # meta_array.append(meta_data) 

                # meta_array.append(labels) 

 

                meta.append(meta_array) 

                start = start + step_size 

                print(i,j,meta_array.shape,start) 

 

        meta = np.array(meta) 

        np.save('/content/drive/My 

Drive/DEAP_ILVA/Datasets/small_step/s' + sub, meta, 

allow_pickle=True, fix_imports=True) 

 

for subjects in sorted(subjectList): 

    Feature_Processing (subjects, channel, band, window_size, 

step_size, sample_rate) 
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2. Deep Learning Implementation 

import numpy as np 

#import pyeeg as pe 

import pickle as pickle 

import pandas as pd 

import math 

 

from sklearn import svm 

from sklearn.preprocessing import normalize 

 

import os 

import time 

 

import pandas as pd 

import keras.backend as K 

import numpy as np 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.models import Sequential 

from keras.layers import Conv1D 

from keras.layers import MaxPooling1D 

from keras.utils import to_categorical 

from keras.layers import Flatten 

from keras.layers import Dense 

import numpy as np 

import keras 

from keras.datasets import mnist 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Flatten, Conv2D, 

MaxPooling2D 

from keras import backend as K 

from keras.models import Model 

import timeit 

from keras.models import Sequential 

from keras.layers import Flatten, Dense, Dropout 

from keras.layers import Convolution1D, MaxPooling1D, 

ZeroPadding1D 

from keras.optimizers import SGD 

#import cv2, numpy as np 

import warnings 

warnings.filterwarnings('ignore') 

 

subjectList = ['01','02','03', '04', '05', '06', '07', '08', 

'09', '10', '11' , '12', '13', '14', '15', '16', '17', '18', 
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'19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', 

'30', '31', '32'] 

 

import numpy as np 

from sklearn.model_selection import train_test_split 

 

def split_eeg_data_by_subject_in_chunks(chunk_size, 

train_size=0.7, val_size=0.15, test_size=0.15): 

 

    # Ensure the split sizes add up to 1 

    assert train_size + val_size + test_size == 1, "Split sizes 

must add up to 1" 

 

    train_data = [] 

    val_data = [] 

    test_data = [] 

 

    for subject in subjectList: 

      with open('/kaggle/input/deapsmall/small_step/s' + subject 

+ '.npy', 'rb') as file: 

        sub1 = np.load(file,allow_pickle=True) 

        #sub1 = sub1[240:,:,:] 

 

#         sub1 = sub1[::2, :] 

 

        print(sub1.shape) 

        subject_data = sub1.reshape(sub1.shape[0],1*484) 

 

        n_chunks = len(subject_data) // chunk_size 

        subject_data = subject_data[:n_chunks * chunk_size]  # 

Trim excess rows not fitting into a full chunk 

        chunks = np.array_split(subject_data, n_chunks) 

 

        # Split chunks into training and temp (validation + test) 

        train_chunks, temp_chunks = train_test_split(chunks, 

train_size=train_size, shuffle=False) 

 

        # Split temp chunks into validation and test sets 

        val_size_relative = val_size / (val_size + test_size) 

        val_chunks, test_chunks = train_test_split(temp_chunks, 

train_size=val_size_relative, shuffle=False) 

 

        # Append chunks to the respective lists 

        train_data.append(train_chunks) 

        val_data.append(val_chunks) 
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        test_data.append(test_chunks) 

 

      # Convert lists back to numpy arrays 

      train_arr = np.concatenate(train_data) 

      val_arr = np.concatenate(val_data) 

      test_arr = np.concatenate(test_data) 

 

    return train_arr, val_arr, test_arr 

 

train_data, val_data, test_data = 

split_eeg_data_by_subject_in_chunks(chunk_size=1) 

 

train_data = 

train_data.reshape((train_data.shape[0]*1,train_data.shape[2])) 

val_data = 

val_data.reshape((val_data.shape[0]*1,val_data.shape[2])) 

test_data = 

test_data.reshape((test_data.shape[0]*1,test_data.shape[2])) 

 

# Check the resulting shapes 

print(f"Train data shape: {train_data.shape}") 

print(f"Validation data shape: {val_data.shape}") 

print(f"Test data shape: {test_data.shape}") 

 

import numpy as np 

from sklearn.datasets import make_classification 

from sklearn.model_selection import train_test_split 

from sklearn.cluster import KMeans 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score 

from keras.utils import to_categorical 

 

# choose the dataset 0 for time, 1 for frequency, 2 for time-

frequency 

 

def choose_data(dataset_type,label_type, source_data_array, 

select_nr): 

   

  if select_nr == 32: 

    select_channels = 

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

,25,26,27,28,29,30,31] 

  elif select_nr == 18: 

    if label_type == 0: 
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        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_18_arousal.npy'

) 

    elif label_type == 1: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_18.npy') 

    elif label_type == 2 or label_type==3: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_18_dominance.np

y') 

  elif select_nr == 14: 

    if label_type == 0: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_14_arousal.npy'

) 

    elif label_type == 1: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_14.npy') 

    elif label_type == 2 or label_type==3: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_14_dominance.np

y') 

  elif select_nr == 10: 

    if label_type == 0: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_10_arousal.npy'

) 

    elif label_type == 1: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_10.npy') 

    elif label_type == 2 or label_type==3: 

        select_channels = 

np.load('/kaggle/input/selectch/selected_channels_10_dominance.np

y') 

     

     

 

  if dataset_type == 0: 

    ch = 0 

    target_data_array = 

np.empty((source_data_array.shape[0],select_nr,9)) 

    for channel in select_channels:   

      target_data_array [:,ch,:] = 

source_data_array[:,channel,0:9] 

      ch += 1 

  elif dataset_type == 1: 

    ch = 0 
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    target_data_array = 

np.empty((source_data_array.shape[0],select_nr,6)) 

    for channel in select_channels: 

      target_data_array [:,ch,:]= source_data_array[:,channel,9:] 

      ch += 1 

  else: 

    print('dataset_error') 

 

  target_data_array = 

target_data_array.reshape((source_data_array.shape[0],select_nr*t

arget_data_array.shape[2])) 

 

  return target_data_array 

 

# choose the measure to be 0 Arousal 1 Valence 3 Dominance for 

deap 

def choose_label(label_type, source_data_array): 

  target_data_array = np.empty((source_data_array.shape[0])) 

 

  if label_type == 0: 

      target_data_array = source_data_array[:,0] 

  elif label_type == 1: 

      target_data_array = source_data_array[:,1] 

  elif label_type == 2: 

      target_data_array = source_data_array[:,2] 

  elif label_type == 3: 

      target_data_array = eight_class(source_data_array[:,:]) 

      print(target_data_array.shape) 

  else: 

    print('label_error') 

 

  return target_data_array 

 

def eight_class(label_array): 

    array_classes = np.empty((label_array.shape[0],)) 

     

    print(label_array.shape) 

    arousal = binary_labels(label_array[:,0]) 

    valence = binary_labels(label_array[:,1]) 

    dominance = binary_labels(label_array[:,2]) 

     

    for i in range(label_array.shape[0]): 

        if arousal[i] == 0 and valence[i] == 0 and dominance[i] 

== 0: 

            array_classes[i] = 0 
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        elif arousal[i] == 0 and valence[i] == 0 and dominance[i] 

== 1: 

            array_classes[i] = 1 

        elif arousal[i] == 0 and valence[i] == 1 and dominance[i] 

== 0: 

            array_classes[i] = 2 

        elif arousal[i] == 0 and valence[i] == 1 and dominance[i] 

== 1: 

            array_classes[i] = 3 

        elif arousal[i] == 1 and valence[i] == 0 and dominance[i] 

== 0: 

            array_classes[i] = 4 

        elif arousal[i] == 1 and valence[i] == 0 and dominance[i] 

== 1: 

            array_classes[i] = 5 

        elif arousal[i] == 1 and valence[i] == 1 and dominance[i] 

== 0: 

            array_classes[i] = 6 

        elif arousal[i] == 1 and valence[i] == 1 and dominance[i] 

== 1: 

            array_classes[i] = 7 

        else: 

            print("error") 

    return array_classes 

             

         

     

     

     

# convert labels into binary 

def binary_labels(label_array): 

    array_binary = np.empty((label_array.shape[0],)) 

 

    for i in range(label_array.shape[0]): 

      if 1 <= label_array[i] <= 4.55: 

        array_binary[i] = 0 

 

      elif 4.56 <= label_array[i] <=9: 

        array_binary[i] = 1 

 

      else: 

        print(label_array[i],'error') 

 

    return array_binary 

# find Kmeans labels and distance from cluster centers and add to 

dataset 
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  # y_train = to_categorical(classes_train) 

  # y_val = to_categorical(classes_val) 

  # y_test = to_categorical(classes_test) 

 

def kmeans_features(x,y,n_clusters): 

  # Apply K-means clustering 

   

  kmeans = KMeans(n_clusters=n_clusters, random_state=42) 

  kmeans.fit(x) 

 

  # Transform the data by adding the distances from each cluster 

center: +2 features 

  X_transformed = np.hstack((x, kmeans.transform(x))) 

 

  # Predict cluster labels for the entire dataset 

  cluster_labels = kmeans.predict(x) 

 

  # Add cluster labels as new features to the dataset 

  X_transformed = np.hstack((X_transformed, 

np.expand_dims(cluster_labels, axis=1))) 

 

  return X_transformed 

 

def dataset_kfolds(X_transformed,y): 

     

    x_train = [] 

    y_train = [] 

    x_val = [] 

    y_val = [] 

    x_test = [] 

    y_test = [] 

     

    for i in range(X_transformed.shape[0]): 

        if i % 10 == 0: 

            x_test.append(X_transformed[i]) 

            y_test.append(y[i]) 

        elif i % 8 ==0: 

            x_val.append(X_transformed[i]) 

            y_val.append(y[i]) 

        else:       

            x_train.append(X_transformed[i]) 

            y_train.append(y[i]) 

         

    return 

np.array(x_train),np.array(y_train),np.array(x_val),np.array(y_va

l),np.array(x_test),np.array(y_test) 
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def save_models(history, model, dataset_type, label_type, 

nr_channels): 

     

    if dataset_type == 0: 

        dataset = 'time' 

    elif dataset_type == 1: 

        dataset = 'frequency' 

         

    if label_type == 0: 

        label = 'arousal' 

    elif label_type == 1: 

        label = 'valence' 

    elif label_type==2: 

        label = 'dominance' 

    elif label_type==3: 

        label= '8class' 

    else: 

        print('error') 

         

     

    filename_model = '/kaggle/working/deap_cnn3_'+ dataset +'_' + 

label + '_' + str(nr_channels) +'.h5' 

    filename_history = '/kaggle/working/deap_cnn3_'+ dataset +'_' 

+ label + '_' + str(nr_channels) +'.csv' 

     

    model.save(filename_model) 

    history_df = pd.DataFrame(history.history) 

    history_df.to_csv(filename_history) 

     

     

import numpy as np 

from keras.models import load_model 

 

def threshold_predictions(y_pred_prob, threshold): 

    """ 

    Convert predicted probabilities to binary predictions based 

on a threshold. 

 

    Parameters: 

    - y_pred_prob: Predicted probabilities (can be 1D or 2D 

array) 

    - threshold: Threshold value 

 

    Returns: 

    - Binary predictions 

    """ 
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    return (y_pred_prob >= threshold).astype(int) 

 

def evaluating_model(x_test,y_test,dataset_type,label_type, 

nr_channels, metrics_cnn,total_time, avg_time): 

     

    if dataset_type == 0: 

        dataset = 'time' 

    elif dataset_type == 1: 

        dataset = 'frequency' 

         

    if label_type == 0: 

        label = 'arousal' 

    elif label_type == 1: 

        label = 'valence' 

    elif label_type==2: 

        label = 'dominance' 

    elif label_type==3: 

        label= '8class' 

    else: 

        print('error') 

         

    filename_model = '/kaggle/working/deap_cnn3_'+ dataset +'_' + 

label + '_' + str(nr_channels) +'.h5' 

    print(filename_model) 

    x_test = x_test.reshape(x_test.shape[0],x_test.shape[1], 1) 

 

    model = load_model(filename_model)     

    evaluation = model.evaluate(x_test, y_test) 

 

    # The evaluate method returns the model's loss value and 

metrics values 

    loss = evaluation[0] 

    accuracy = evaluation[1] 

 

    y_pred = model.predict(x_test) 

 

    print(y_pred) 

 

    # Example usage: 

    threshold = 0.5  # Set your threshold value here 

    y_pred_binary = threshold_predictions(y_pred, threshold) 

 

    print("Loss:", loss) 

    print("Accuracy:", accuracy) 

 

    print(y_pred_binary) 
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    from sklearn import metrics 

    precision = metrics.precision_score(y_test, y_pred_binary, 

average='weighted') 

    recall = metrics.recall_score(y_test, y_pred_binary, 

average='weighted') 

    f1_score = metrics.f1_score(y_test, y_pred_binary, 

average='weighted') 

 

    precision_0 = precision 

    recall_0 = recall 

    f1_0 = f1_score 

 

    print(precision_0, recall_0, f1_0) 

     

        # Combine all metrics into a dictionary 

    individual_metrics = { 

        'model':'cnn3', 

        'dataset': dataset_type, 

        'nr_channels' : nr_channels, 

        'total_time': total_time, 

        'average_time': avg_time, 

        'emotion_categ' : label_type, 

        'labels': '8class', 

        'accuracy': accuracy, 

        'precision': precision_0, 

        'recall': recall_0, 

        'f1-score': f1_0 

        } 

     

    print(individual_metrics) 

 

    metrics_cnn.append(individual_metrics) 

 

     

     

from tensorflow.keras.utils import to_categorical 

 

def cnn_run(dataset_type, 

label_type,train_data,val_data,test_data, results, channel_nr): 

     

    # splilt data from labels 

    x_train, y_train = train_data[:,:480], train_data[:,480:] 

    x_val, y_val = val_data[:,:480], val_data[:,480:] 

    x_test, y_test = test_data[:,:480], test_data[:,480:] 

 

    print(x_train.shape, y_train.shape) 
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    print(x_val.shape, y_val.shape) 

    print(x_test.shape, y_test.shape) 

     

    # reshape them to show channels so that the dataset can be 

selected 

    X_train = x_train.reshape((x_train.shape[0],32,15)) 

    Y_train = y_train[:,:] 

 

    X_val = x_val.reshape((x_val.shape[0],32,15)) 

    Y_val = y_val[:,:] 

 

    X_test = x_test.reshape((x_test.shape[0],32,15)) 

    Y_test = y_test[:,:] 

 

    # chose data 

    x_train = choose_data(dataset_type,label_type, 

X_train,channel_nr) 

    x_val = choose_data(dataset_type,label_type, X_val, 

channel_nr) 

    x_test = choose_data(dataset_type,label_type, 

X_test,channel_nr) 

 

    print(x_train.shape, x_val.shape, x_test.shape) 

 

    # choose labels 

    y_train = choose_label(label_type, Y_train) 

    y_val =choose_label(label_type, Y_val) 

    y_test = choose_label(label_type, Y_test) 

    print(y_train.shape,y_val.shape, y_test.shape) 

 

    # turn labels into binary 

    if label_type == 0 or label_type==1 or label_type==2: 

        train_binary = binary_labels(y_train) 

        val_binary = binary_labels(y_val) 

        test_binary = binary_labels(y_test) 

        n_clusters = 2 

    else: 

        train_binary = to_categorical(y_train[:]) 

        val_binary = to_categorical(y_val[:]) 

        test_binary = to_categorical(y_test[:]) 

        n_clusters = 8 

 

    print(train_binary.shape,val_binary.shape,test_binary.shape) 

 

    # concatenate for kmeans 

    x = np.concatenate((x_train,x_val,x_test),axis=0) 
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    y = np.concatenate((train_binary,val_binary,test_binary), 

axis=0) 

    X_kmeans_add = kmeans_features(x,y,n_clusters) 

 

    # create the datasets to be used for classification 

    x_train,y_train,x_val,y_val,x_test,y_test= 

dataset_kfolds(X_kmeans_add,y) 

    print(x_train.shape, y_train.shape,x_val.shape, y_val.shape, 

x_test.shape, y_test.shape) 

     

#     unique_labels_train, counts_train = np.unique(y_train, 

return_counts=True) 

#     count_dict_train = dict(zip(unique_labels_train, 

counts_train)) 

 

#     # Count occurrences of each label in validation set 

#     unique_labels_val, counts_val = np.unique(y_val, 

return_counts=True) 

#     count_dict_val = dict(zip(unique_labels_val, counts_val)) 

 

#     # Count occurrences of each label in test set 

#     unique_labels_test, counts_test = np.unique(y_test, 

return_counts=True) 

#     count_dict_test = dict(zip(unique_labels_test, 

counts_test)) 

 

#     # Print results 

#     print(f"Train set label counts: {count_dict_train}") 

#     print(f"Validation set label counts: {count_dict_val}") 

#     print(f"Test set label counts: {count_dict_test}") 

 

    total_time, avg_time = 

train_model(x_train,y_train,x_val,y_val,x_test,y_test,dataset_typ

e,label_type,channel_nr,n_clusters) 

    evaluating_model(x_test,y_test,dataset_type,label_type, 

channel_nr, results, total_time, avg_time) 

     

metrics = [] 

 

cnn_run(1,2,train_data,val_data,test_data, metrics, 32) 

cnn_run(1,2,train_data,val_data,test_data, metrics, 18) 

 

 

 

df = pd.DataFrame(metrics) 
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print(df) 

df.to_csv('/kaggle/working/deap_metrics_cnn3.csv',index=False) 

 


