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ABSTRACT 

  

INDOOR OBJECT DETECTION  

  

Dollaku, Stela 

M.Sc., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Dimitrios Karras 

 

The process of identifying and localizing various items, usually in pictures that 

represent objects found in daily life, is called object detection. Object detection 

identifies each object as belonging to a specific class and creates a bounding box 

around it.  In this thesis we focus our study in indoor datasets. The purpose of the thesis 

is to evaluate different methods of object detection in indoor datasets. We also aim to 

compare these results with each other, in order to try and find the best methods for the 

selected datasets.  

Overall, these results highlight how crucial it is to carefully evaluate model 

architectures, preprocessing methods, and dataset properties in order to fully utilize 

deep learning for 3D applications. Subsequent investigations may examine techniques 

to mitigate class disparities and improve model resilience in a variety of object 

categories and shapes. 
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ABSTRAKT 

 

DEDEKTIMI I OBJEKTEVE NE AMBIENTE TE MBYLLURA   

  

Dollaku, Stela 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Assoc. Prof. Dr. Dimitrios Karras 

 

Procesi i identifikimit dhe lokalizimit të objekteve të ndryshme, zakonisht në 

figura që përfaqësojnë objekte të gjetura në jetën e përditshme, quhet dedektimi i 

objekteve. Dedektimi i objekteve identifikon çdo objekt si i përkatësuar në një klasë të 

caktuar dhe krijon një kutië afër tij. Në këtë tezë, ne fokusohemi në studimin tonë në 

ambiente të mbyllura. Qëllimi i tezës është të vlerësojmë metodat e ndryshme të 

zbulimit të objekteve në ambiente të mbyllura. Ne gjithashtu synojmë të krahasojmë 

këto rezultate me njëri-tjetrin, në mënyrë që të përpiqemi të gjejmë metodat më të mira 

për skedarët e zgjedhur. 

 

Fjalët kyçe: zbulimi i objekteve, klasifikimi, segmentimi, dataset, vision kompjuterik 
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CHAPTER 1 

INTRODUCTION 

  

The most incomprehensible thing about the world is that it is comprehensible. 

-Albert Einstein 

In the era of digital advancement, our daily lives are closely connected with 

digital cameras, internet-connected devices, and smartphones. Image and video 

collections are growing more and more each day; More than 1.1 trillion photos were 

taken in 2016 according to Info-trends; estimates using still cameras and mobile 

devices [1]. The same prediction states that by 2020, the amount will have increased 

to 1.4 trillion. A large number of these photos are posted online or kept in cloud storage 

services. In 2014 saw the daily submission of more than 1.8 billion photos to the most 

widely used websites, including Facebook and Instagram [2]. 

A machine interprets an image as a grid of numbers. We must have some 

understanding of the substance of this data in order to manage it all properly. Many 

different image-related tasks benefit from the automated processing of image contents. 

This entails bringing the so-called semantic gap between the human perception of the 

same images and the pixel-level information contained in the image files for computer 

systems. Deep learning and computer vision make an effort to overcome this barrier. 

The way that individual neurons fire in response to input and only see a very 

small portion of the overall input/processed data is the inspiration behind deep learning 

(DL). It has made significant contributions to computer programming approaches, 

allowing a machine to carry out tasks that almost perfectly mimic human intellect. 

Deep learning is widely used in the robotics, medical, and automation industries. 

According to forecasts, the Computer Vision market is expected to reach $33.3 billion 

in 2019, which will support the notable rise in the consumer, robotics, and machine 

vision domains. Because of its findings, which are mostly obtained in applications 

requiring language processing, object detection and picture classification - it has 

become the most talked about technology. 
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The process of identifying and localizing various items, usually in pictures that 

represent objects found in daily life, is called object detection. Object detection 

identifies each object as belonging to a specific class and creates a bounding box 

around it. This enables us to locate the specific things in the scene and determine how 

they are moving through it. Both indoor and outdoor datasets can be used for it. 

In this thesis we focus our study in indoor datasets. The purpose of the thesis is 

to evaluate different methods of object detection in indoor datasets. We also aim to 

compare these results with each other, in order to try and find the best methods for the 

selected datasets. 

 

1.1 Thesis Objective 

In this thesis, the main investigations are to advance the understanding and 

application of object detection. First, it looks into object detection studying the image 

classification. By exploring different methods, the goal is to enhance the accuracy and 

efficiency of image classification through robust object detection algorithms. 

Second, is to study the methods on the context of image segmentation. The 

objective is to study different techniques applied to image segmentation. The methods 

are trained and compared using two distinct datasets—one for image classification and 

another for segmentation. This comparative analysis aims to elucidate the strengths 

and limitations of these methods in diverse visual recognition task. 

1.2 Thesis Outline 

In Chapter 2, object detection in indoor spaces is explained focusing on its importance 

and challenges faced. 

In Chapter 3, object detection literature is studied and different methods are taken in 

consideration. 

In Chapter 4, an overview of two dataset in the thesis is given. Also, explanations of 

each model’s architecture and its adjustment for 3D object detection.  
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In Chapter 5, the outcomes of each experiment are presented, providing he results of 

each method for the two datasets.  Also, the results mentioned in the chapter are 

discussed and explained in detail. 
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CHAPTER 2 

BACKGROUND INFORMATION 

The second chapter of this thesis provides an introduction to the foundational concepts 

and developments of 3D object detection. The goal is to give a complete outline of the 

characteristics and challenges in indoor 3D object detection and their importance. 

2.1. Definition of indoor object detection   

Indoor object detection refers to the process of identifying and categorizing 

objects within indoor environments. It involves utilizing computer vision techniques 

and algorithms to analyze visual data captured from cameras or other sensors to 

recognize and understand the objects present in indoor scenes. 

When utilized for indoor scene classification, conventional approaches do not 

perform as well as they do for outdoor scene classification [3]. Early attempts at 

enhancing indoor scene classification included methods like bag-of-visual words that 

attempted to exploit both local and global spatial date [4]. In 2019, Chen et al. [5] 

examined scene classification through the integration of traditional scene classification 

techniques with natural language processing methodologies. They used a 

convolutional neural network (CNN) module and a scene parser module to segment 

the scene in order to generate an ordered top 5 prediction for a given image. By putting 

these split parts into the word embedding module, the classification accuracy of 

interior scenes and the top 5 predictions both increased. Three super-categories—the 

home, the mall, and the school—were used to train and test their model. They reasoned 

that while GPS tracking would be adequate to ascertain a possible agent's overall 

surroundings, it would not be adequate to ascertain the precise location and area the 

agent would be in. The limitations of restricted scene diversity may be mitigated by 

limiting the range of room classes to setting-specific choices, given the intersection of 

many scene categories. If GPS indicates, for example, that an agent is on a school 

campus, an indoor room classification model trained on indoor school settings may be 

used to predict the room category that the agent is in. The goal of indoor object 

detection is to enable machines or computer systems to perceive and interpret their 
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surroundings in indoor settings. This detection can involve detecting and classifying 

objects based on their appearance, shape, texture, or other visual features. The 

detection process typically involves several steps, including image acquisition, 

preprocessing, feature extraction, and classification or matching with known object 

models or categories. 

Indoor object detection has various applications, including robotics, home 

automation, augmented reality, indoor navigation, security systems, and more. By 

accurately recognizing objects in indoor environments, machines can make informed 

decisions, interact with the environment, and perform tasks effectively and 

autonomously 

 

2.2. Image Segmentation and Classification 

The process of dividing an image or video into meaningful sections in order to 

distinguish and identify particular items or areas of interest is called image 

segmentation. It accomplishes objectives including understanding object boundaries, 

retrieving detailed data, and facilitating additional analysis. 

Traditionally, surface characteristics like normal, curvature and orientation [6] 

[7] are used for segmentation. Point cloud segmentation has used feature based deep 

learning methods that divide points in several characteristics. Distinct object pars, also 

discussed as distinct class categories, also discussed as semantic segmentation could 

be the aspects. 

Parts segmentation gets its name from the fact that every point in the input point 

cloud is intended to characterize a specific item, and the objective is to allocate each 

point to a part, as illustrated in figure 1b. The aim of semantic segmentation is to 

allocate every point to a certain class parameter. 

The process of annotating complete photos based on the elements they include 

is known as image categorization. It describes what is there without mentioning where. 

Assigning a name or category to an image or video is known as image classification. 

Accurately assigning an image to a particular, pre-established category or label is the 
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aim. This is achieved by training a dataset of photos with labels indication their various 

categories. 

 

Figure 1. Deep learning tasks. a) Object classification b) Part segmentation c) Object 

detection 

 

2.3. Issues and challenges in 3D indoor object detection 

3D indoor object detection presents several challenges and issues that need to be 

addressed for accurate and robust recognition. Some of the key challenges include: 

Occlusions: In indoor environments, objects are often partially occluded by other 

objects or obstacles, making it challenging to obtain complete and unobstructed views. 

Occlusions can significantly affect the visibility of object features, leading to 

difficulties in accurate detection. 

Lighting and Shadows: Indoor lighting conditions can vary, leading to uneven 

illumination and cast shadows. These variations can cause significant changes in the 

appearance and texture of objects, making it challenging to extract reliable features for 

detection. 

Cluttered Environments: Indoor scenes often contain a variety of objects and 

clutter, such as furniture, decorations, and other items. The presence of clutter can 
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increase the complexity of object detection as it may introduce distractions and visual 

ambiguities, making it harder to differentiate and identify specific objects. 

Variability in Object Appearance: Objects in indoor environments can exhibit 

significant appearance variations due to factors such as different viewing angles, scale 

changes, deformations, and variations in texture or color. Handling these appearance 

variations is crucial for achieving robust and invariant object detection. 

Limited Training Data: Obtaining labeled training data for indoor object detection 

can be challenging and time-consuming. Collecting a diverse and representative 

dataset that encompasses various indoor scenes, object categories, and variations is 

crucial for training accurate detection models. 

Real-Time Performance: Real-time performance is often a requirement for 

practical applications of indoor object detection, especially in robotics or interactive 

systems. Achieving fast and efficient detection algorithms that can process the visual 

data in real-time is a significant challenge, considering the complexity of 3D object 

detection. 

Generalization across Environments: Objects in indoor environments can vary 

across different locations, layouts, and contexts. Ensuring the generalization of 

detection models across different indoor environments is essential to enable robust 

object detection in unseen or new environments. 

Sensor Limitations: The choice of sensors used for capturing the indoor scene data 

can impact the quality and availability of information for object detection. Sensor 

limitations such as low resolution, limited field of view, or noise can affect the 

accuracy and reliability of detection algorithms. 

Addressing these challenges requires the development of sophisticated algorithms 

and techniques that can handle occlusions, variations in appearance, cluttered scenes, 

and real-time processing. Additionally, the availability of large and diverse datasets, 

advancements in sensor technologies, and improvements in computational resources 

contribute to addressing these challenges effectively. 
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2.4. Data Acquisition Methods 

The process of capturing the appearance and the shape of real objects, is 

accomplished using active and passive methods. Among the passive methods, we 

mention some of them. 

 

Figure 2. Overview of Data Acquisition Techniques: Passive and Active Methods. 

- RGB-D Cameras have been widely adopted, incorporating an RGB camera, a 

depth sensor and other components like a microphone and a USB port for connection 

to the computer. The depth sensor, which makes it easier to record 3D point clouds, 

measures each object’s distance from the camera’s horizontal optical axis using 

infrared structured light. Dai et al. (2017) [8] introduces a new method using RGB-D 

cameras for semantic labeling of three-dimensional point clouds. This method uses 

both color and geometric features to perform fine-grained semantic segmentation, 

contributing to better understand indoor scenes and scene reconstruction and robotics. 

-  Stereo Cameras that come with integrated sensors facilitate and speed up the 

implementation of spatial analytics. These cameras provide a point cloud, a depth map 

and a color image of the scene that is in its field of view, computed through intrinsic 

camera parameters in the disparity map. Leibe et al. (2007) [9] demonstrated the 
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effectiveness of a car-mounted stereo rig for reasoning about scene depth, detect 

pedestrians and cars, and tracking them over time 

-  Sensors for Structured Light can be effectively replace passive stereoscopic 

sensors in controlled environments (medical, industrial), weakly textured 

environments (night vision, underwater vision) and weakly textured environments 

(biometry, anthropometrics). Structured light sensors are made up of one or more 

cameras and one or more light sources. It analyzes the patter distortion that results 

from projecting preset patterns onto a target. [10]  

Active approaches involve actively illuminating the scene using external light 

sources, which enables the capture of additional depth information. This illumination 

can be achieved through various techniques such as LiDAR, time-of-flight (ToF), 

Motion Capture Systems. 

- LIDAR (Light Detection and Ranging) sensors have the ability to emit laser 

beams and measuring the period it takes for the pulses to return. The sensors can 

calculate the distance to obstacles in various directions thanks to this time information. 

Lidar point cloud and picture data have been combined in multiple studies for a range 

of computer vision applications, including 3D object detection [11], [12], [13], [14]. 

The author Roland Bruggman et al. (2017) [15] focuses on effectively extracting 

planes from indoor LiDAR point clouds, suggesting an agglomerative hierarchical 

clustering algorithm that makes accurate identification of planar regions. This method 

is applicable to robotics, indoor mapping, augmented reality.  

- Time-of-Flight (ToF) cameras create depth image, and each pixel in image 

represents the distance to a corresponding point in the scene. This method relies on 

timing the light's journey from the camera to the objects in the picture and back again 

to get a highly accurate distance reading between the camera and the objects. ToF 

cameras are suited for dynamic environments and applications that need quick 

reactions because of their many benefits, one of which is their real-time depth sensing 

capabilities. 
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CHAPTER 3 

LITERATURE REVIEW 

The literature review in this thesis offers an examination of existing research in the 

domain of 3D object detection, specifically focusing on method classification and 

noteworthy contributions by other researchers. The review gives insights from seminal 

works by pioneers in the field and each contributing distinctive perspectives to the 

overarching goal of accurate indoor 3D object detection. Furthermore, it explores 

recent advancements in hybrid methods, shedding light on novel approaches that 

combine the strengths of different models  

3.1. Methods and techniques for 3D detection of indoor objects 

Methods and techniques for 3D detection of indoor objects can be categorized 

into several approaches. In the context of 3D object detection, feature processing 

methods can be categorized in four types base in the form of point cloud 

representation. Here are some commonly used methods: 

 

Figure 3. Classification of 3D Object Detection Methods 
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3.2. Point-based Methods  

In recent years, point-based methods have emerged as a groundbreaking 

approach in computer graphics and computer vision, offering unique solutions for 

processing unordered point cloud data. From object classification to 3D object 

detection, their versatility and efficiency have garnered widespread attention, 

propelling the field of point-based deep learning to new heights. Among these 

methods, PointNet and PointNet++ stand out as pioneering architectures that have 

reshaped how 3D data is analyzed and understood. 

a.  PointNet: The architecture is specifically designed for point cloud data. 

PointNet models process individual points independently. PointNet-based models 

have achieved outstanding results in tasks including semantic segmentation, 

classification and part segmentation. Qi et al. (2017) [16] presented a method that 

represents unordered point clouds using deep learning framework in a set of 3D point. 

This technique offers means of obtaining both global and local features. The work 

done by Charles R. Qi, Wei Liu (2018) [17] extended PointNet towards the problem 

of 3D object detection from RGB-D data. They introduced Frustum PointNets to 

utilized 2D object propsals from RGB image and projected them into 3D frustums. 

This technique achieved the most advanced performance in 3D object detection using 

RGB-D data. 

b. PointNet++: is an improved version of PointNet designed specifically 

for processing unordered point cloud data. PointNet++ utilizes hierarchical feature 

extraction to capture global and local context in point clouds. It is implemented in 

other methods such as PointRCNN, STD and others. Researches have used PointNet++ 

in various tasks, from classification and segmentation to object detection. This methos 

is still ongoing research and development. Charls R. Qi, Li Yi, Hao Su (2017) [18] 

used PointNet++ in a set of local point neighborhoods and local attributes to capture 

wider context while capturing fine-grained information. Improves performance was 

detected in tasks such as scene understanding and segmentation.  

 

 



12 

 

3.3. Voxel-based Methods 

The 3D equivalent of 2D image pixel is called a voxel. The technique of 

transforming a continuous geometric entity into a collection of discrete voxels that 

most closely resemble the thing is known as voxelization. The field of 3D object 

detection has greatly improved thank to voxel-based techniques, which provide 

reliable and effective ways to analyze point cloud data. Voxel-based methods provide 

a consistent and volumetric representation of the scene by transforming complex and 

unstructured point cloud data into regular 3D grids of voxels.  

a. VoxNet: The VoxNet technique is a 3D object classification technique 

that takes in 3D voxelized representation of objects. Firstly, it was proposed by Daniel 

Maturana and Sebastion Scherer in their work [19] in 2015. Scherer and Maturana 

evaluated the method on several benchmark datasets, demonstrating its effectiveness 

in real-time object recognition tasks. The experiments showed that VoxNet achieved 

competitive accuracy while being computationally efficient, making it suitable for 

real-time applications in resource-constrained environments. The motivation behind 

VoxNet stemmed from the need for efficient and real-time object detection in 3D point 

cloud data, particularly for applications in robotics, augmented reality, and 

autonomous systems. While traditional methods for object detection were primarily 

focused on 2D image data, the rise of 3D sensors and advancements in 3D scanning 

technologies demanded new approaches that could handle 3D data directly. VoxNet 

was the first to use the voxeliation technique to transform unstructured point clouds 

into normal voxels. They then used 3D CNN to predict the semantic labels of the 

occupied voxels by standard procedures. This technique addressed the issue of 

unstructured point clouds, but it was limited by the sparsity and high computing 

complexity of 3D CNN, which resulted in low voxel arrangement efficiency. 

 

b. SECOND: a seminal work by Yan et al. (2018) [20], has made 

significant contributions to the field of voxel-based object detection. This work 

implements two sparse operators using GPU-based hash tables and develops a sparse 

convolutional network for extracting 3D voxel features. Building upon the foundation 

of SECOND, researchers have explored various avenues for improvement. Yan et al. 
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(2018) inspired the development of two-stage detectors that leverage the sparse 

convolutional network as a crucial component. Furthermore, the Transformer 

architecture, known for its success in natural language processing, has been introduced 

into voxel-based detection enabling novel approaches to feature extraction and object 

detection. The impact of SECOND and its associated advancements is evident in the 

extensive adoption of its network architecture in voxel-based detectors. Consequently, 

SECOND has emerged as the de facto backbone network for voxel-based object 

detection. The research community continues to explore avenues for advancing the 

sparse operators, extending the capabilities of the SECOND framework, and 

integrating. 

 

3.4. Deep Learning- Based Approach 

Deep Learning-based approaches are methods for solving complicated issues 

that rely on artificial neural networks—more especially, deep neural networks. Neural 

networks having several layers, or "deep architectures," are used in deep learning, a 

branch of machine learning, to learn and represent data in a hierarchical fashion. 

a. 3D Convolutional Neural Networks (CNNs): 3D CNNs extend 

traditional 2D CNN architectures to handle volumetric data, such as voxel grids or 3D 

point clouds. These networks employ 3D convolutional operations to learn hierarchical 

representations of objects in 3D space. They capture local and global features, enabling 

accurate object detection. Proposed by D. Maturana and S. Scherer (2015) [21].  

b. Relation-Shape CNN (RS-CNN) is an influential technique in the 

field of 3D shape analysis and understanding. Proposed by Charles R. Qi, Wei Liu, 

Chenxia Wu, Hao Su, and Leonidas J. Guibas in their seminal paper "RS-CNN: Point 

Cloud Based 3D Object Detection with Relation-Shape Convolution" (2019) [22], RS-

CNN addresses the challenging task of 3D object detection using point cloud data. By 

introducing the idea of Relation-Shape Convolution and utilizing deep learning, the 

method allows the network to capture both local geometric features and the 

relationships between various points in a point cloud. The efficiency of the technique 

has greatly advanced 3D form analysis and encouraged more study into the use of point 
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cloud data for a range of applications, including augmented reality, robotics, and 

autonomous driving. As a result, RS-CNN stands as a critical milestone in the 

development of sophisticated and robust techniques for 3D shape understanding and 

recognition. 

c. Generative Models: 3D object representations can be generated and 

modeled using generative models, such as Variational Autoencoders (VAEs) or 

Generative Adversarial Networks (GANs). These models learn to generate synthetic 

3D object data, which can be used to augment the training data or generate realistic 

3D object samples for recognition tasks. H. Wu et al. propose a Variational 

Autoencoder (VAE) framework for generating and modeling 3D object 

representations. This generative model learns to generate synthetic 3D object data, 

which can be used to augment training data or generate realistic samples for 

recognition tasks 

 

3.5. Hybrid Approaches 

Hybrid approaches refer to methods that combine multiple techniques or 

models from different domains to tackle complex problems. These approaches 

leverage the strengths of each component to achieve better overall performance and 

robustness. Hybrid methods often aim to overcome limitations or challenges those 

individual techniques may face when applied in isolation. 

a.  Multi-View CNN (MVCNN): This approach is initially designed for 

2D shape recognition, but can be adapted for object detection tasks. It considers 

multiple views of an object and apply convolutional neural networks on each view, 

combining information for a holistic representation 

b. F-PointNet: F-PointNet is an extension of PointNet that incorporates 

frustum-based 3D object detection. It combines point-wise processing with the 

analysis of frustums (bounding volume in the 3D space), providing a hybrid approach. 
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c.  Point-Voxel Feature Set Abstraction (PV-RCNN):  An addition to 

the RCNN family, PV-RCNN combines voxel- and point-wise features. For point-wise 

features, it makes use of a set abstraction module similar to PointNet++, and for 

comprehensive 3D object detection, it leverages voxel-wise features. 

d.  Single-Stage 3D Object Detection (STD): A single-stage 3D object 

recognition system called STD makes use of point cloud and voxel representations. To 

enable accurate and efficient object detection, it integrates volumetric and point-wise 

data. 
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CHAPTER 4 

METHODOLGY 

In this section, we provide an overview of the dataset used for the 

implementation of three models considered in this paper. We present detailed 

explanations of each model’s architecture and its adjustment for 3D object detection. 

Additionally, we discuss the specific parameters and configurations used for each 

model.  

4.1. Dataset Description  

The dataset utilized in this study is crucial for evaluating the performance of 

the proposed 3D object detection models. We use two different datasets; ModelNet10 

and ShapeNet. The first dataset we use image classification models to train the 

methods, while the second dataset is used for segmentation. 

4.1.1.   ModelNet Dataset  

We use the ModelNet10 dataset, the smaller 10 class version of the 

ModelNet40. ModelNet10 is widely used, particularly when it comes to 3D shape 

analysis and deep learning, especially for 3D object classification tasks. The dataset is 

a collection of 3D CAD models from each object category that were found online by 

searching for each term associated with object category. The ModelNet-10 dataset has 

a collection of over 5000 models classified into 10 categories: toilet, table, desk, sofa, 

night stand, monitor, dresser, chair, bed and bathtub; and divided into training and test 

sets. Machine learning models are taught on the training set, and their performance is 

assessed on the testing set. The split is designed to ensure that each category is 

represented proportionally in both sets, maintaining a balanced distribution of objects 

across the dataset. 

The dataset is organized into folders; within each folder contains files that 

represent the 3D geometry of the object, typically stored in a standardized format such 

as ‘. off’ or ‘. ply’. Each object in the dataset is represented as a 3D mesh or point 
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cloud. A 3D object's geometry is encoded in terms of a combination of edges, vertices, 

and faces using a mesh representation.  

Each file contains the 3D shape data that represents the points and triangles 

composing the mesh. The formant appears as follows: 

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

 

𝑓 𝑣1 𝑣2 𝑣3
𝑓 𝑣1 𝑣2 𝑣3
𝑓 𝑣1 𝑣2 𝑣3

 

Each line represents a 3D point with its coordinates(x,y,z). The lines following 

the point cordinates represent traingles (faces) defined by vertex indices. This structure 

allows for the precise representation of the object’s geometry through the coordinates 

of its vertices and the definition of its faces using these vertices, essential for various 

gemoetric processing tasks and 3D shape analysis. 

 

Figure 4. Some samples of the CAD models that compose the ModelNet10 dataset 
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Training and test splits are also included by the dataset's authors. We chose this 

dataset since it has enough samples to rapidly train our architecture. We must first 

extract the object point clouds from the ModelNet10 collection using a real 3D sensor 

in order to use the CAD models for our objectives. We found the CAD items in the 

middle of a tessellated sphere in order to accomplish that. The tessellated sphere has 

virtual 3D cameras at each corner that record the object's tridimensional data from 

various angles. In this manner, every CAD object is seen from 42 different angles. It's 

important to remember that the views are actually point clouds. Consequently, certain 

views—such as point clouds—are uninteresting as it is improbable that one would see 

them in the wild. For example, point clouds that show the objects' undersides are 

thrown away and aren't taken into account for testing or training. We simply take into 

account the 25 most pertinent views that are left. In the end, we obtained a dataset that 

included over 18,000 testing samples and over 76,000 training samples. Note that a 

sample at this stage is essentially a point cloud that shows a portion of a ModelNet10 

CAD model. 

4.1.2. ShapeNet Dataset 

ShapeNet is a large collection of 3D computer-aided design (CAD) models 

with extensive annotations that was created in Chicago, USA, by the Toyota Technical 

Institute, Stanford University, and Princeton University. It covers a diverse set of 

object categories such as vehicles, animals and household items. Each category 

provides physical sizes, keywords, rigid alignments, components and bilateral 

symmetry planes, and other planned annotations along with the semantic category 

names for each model. Models are grouped under the WordNet [23] noun "synsets" 

(synonym sets). WordNet provides a rich and thorough taxonomy with over 80K 

distinct synsets expressing unique noun concepts grouped as a DAG network of 

hyponym relationships (e.g., "canary" is a hyponym of "bird"). Naming items based 

on their basic category can help with indexing, grouping, and connecting to related 

data sources. 
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Figure 5. Part segmentation examples on the ShapeNet dataset. 

ShapeNet is divided into two components: ShapeNetCore and ShapeNetSem. 

ShapeNetCore has 55 common categories that comprise over 51,300 3D models, and 

each model annotation is made up of two to five sections. More than 12,000 3D models 

in 270 categories are validated and annotated with size, volume, form, and other 

features using ShapeNetSem, a more condensed and densely annotated subset. 

ShapeNet has a huge number of models with corresponding color textures, 

making it a strong choice for training learning-based compression techniques. 

Furthermore, it has already been used to train compression algorithms that solely use 

geometry. ShapeNet is made up of mesh models, therefore before the dataset is used 

in the training loop, it must first undergo pre-processing to turn it into point clouds. 

While it is theoretically possible to create a point cloud using the mesh vertices while 

omitting the connectivity information, the resulting models may have an excessively 

low point density 
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Table 1.Overview of datasets for point cloud semantic segmentation (where S ← 

synthetic environment, Oc ← object classification, Ps ← part segmentation, Tm ← 

thousand models). 

Name Year Type Application 

Scenario 

Category Size Sensor 

ModelNet10 2015 S Oc 10 4.9m - 

ShapeNet 2015 S Ps 55 51.3Tm - 

 

4.2. PointNet  

PointNet offers a uniform framework for a variety of applications, such as 

semantic parsing in scenes, object categorization, and component segmentation. Point 

clouds are directly fed into it, and it generates class labels for the full input or per-point 

segment/part labels for each individual point. Each point is represented by merely its 

three coordinates (x, y, z) in the basic setup. In this instance, determining the normal 

and other local properties adds more dimensions. 

The PointNet architecture consists of two main components: a Classification 

Network and a Segmentation Network. Both networks share fundamental design 

principles that exploit the unique properties of point sets. 

 

Figure 6. PointNet Architecture. 
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 Classification Network: 

The Classification Network takes a collection of n points (x, y, z) meant as 

input. These points undergo an ’input transform’ followed by a shared multi-layer 

perceptron (MLP) and a ’feature transform’. These processes yield n x 64 local 

features. 

The purpose of the ’input transform’ and ’feature transform’ are essential to 

the network. They predict transformations that project the input points (in the case of 

the input transform) or the input features (in the case of the feature transform) into a 

canonical space ensuring points and features invariance under transformation. Those 

transformations are facilitated by the Joint Alignment Network, which utilizes a 

network called T-Net to predict the transformation matrix to achieve invariance. 

In terms of classification, the primary focus is on extracting global features 

from the point cloud, enabling differentiation between various classes. To achieve this, 

the local features go through a shared MLP followed by a max pooling layer. The max 

pooling layer is a crucial element of the network. By selecting the maximum value for 

each feature, it ensures the extraction of invariant global features from the point cloud. 

Once the global feature vectors are obtained, it goes through a fully connected 

MLP layer to obtain an output classification score. The predicted class is simply the 

one where the score is maximum. 

 Segmentation Network: 

By joining global and local features, the Segmentation Network creates point 

features, extending the Classification Network. This ensures that the model will be 

processed through an MLP, to produce per-point output scores. The Segmentation 

Network outputs per point scores, facilitating shape segmentation tasks. 

4.3. VoxNet 

VoxNet architecture is shallow and relatively counted as an elementary 3D-

CNN model architecture thar reveals from voxel occupancy grinds to learn feature and 
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potential for 3D convolution operators. The architecture consists of two main 

components: the feature extraction part (feat) and the fully connected layers (mlp). The 

network is designed to accept 3D voxel data with an input shape of (32, 32, 32) and 

produce predictions for 10 classes. The VoxNet architecture has various layers as 

depicted in Figure 2.  

 

Figure 7. VoxNet Architecture 

 

The Input Layer- A ReLU activation function and a dropout layer with a 

dropout rate of 0.2 are placed after the input layer, which is a 3D convolutional layer 

with 32 output channels, a kernel size of 5, and a stride of 2. Each voxel’s value in the 

grid is updated based on the occupancy model, resulting in values within the range of 

(-1,1). 

The Convolutional Layers (C) These layers operate on four-dimensional input 

volumes, with three dimensions representing spatial dimensions and the fourth 

containing feature maps. Convolution is carried out using f learned filters of shape d × 

d × d × f’, where d represents spatial dimensions, and f' is the number of input feature 

maps. 
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The Pooling Layers (P) takes the output from the feature extraction part and 

connects it to 128 neurons, followed by a ReLU activation function and a dropout layer 

with a dropout rate of 0.4. These layers replace each m × m × m non-overlapping block 

of voxels with its highest value, downsampling the input volume throughout the spatial 

dimensions by a factor of m. 

The Fully Connected Layer (FC) connects the 128 neurons to the output 

layer, which has a number of neurons equal to the number of classes (10 in this case). 

Each neuron's output is a learned linear combination of all the outputs from the 

previous layer, passed through a nonlinearity. 

Output Layer: Rectified Linear Units (ReLUs) are used throughout, except 

for the final output layer. The number of outputs in this layer corresponds to the 

number of class labels K, and a softmax nonlinearity is applied to provide a 

probabilistic output. 

 

4.4. Relation-Shape CNN (RS-CNN) 

 The Relation-Shape Convolutional Neural Network (RS-CNN) is an 

extension of regular grid CNNs designed for point cloud analysis. The core idea behind 

RS-CNN is to learn from relations, specifically the geometric topology constraints 

among points in a point cloud.  

This is achieved through a novel learn-from-relation convolution operator 

called relation-shape convolution (RS-Conv).  
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Figure 8. Relation-Shape CNN's Architecture 

In RS-Conv, the convolutional weight for each point in a local point set is 

represented by a mapping function ℳ that operates on a predefined geometric relation 

vector hij. This mapping results in a high-level expression wi j= ℳ (hi j) for the 

convolutional weight of the point. The inductive convolutional representation σ (A 

({wij • f xj  , Ɐ xj})) obtained through RS-Conv enables the model to reason explicitly 

about the spatial layout of points, leading to enhanced shape awareness and robustness. 

 RS-CNN further incorporates local-to-global learning, a successful approach 

from image CNNs, for contextual shape representation. However, adapting this 

approach to irregular point subsets poses challenges. To address this, RS-CNN models 

each local point subset 3Psub⊂R3 as a spherical neighborhood centered around a 

sampled point xi with surrounding points xj∈N(xi). This modeling allows RS-CNN to 

learn an inductive representation fPsub for the neighborhood that effectively encodes 
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the underlying shape information. The convolutional operation in RS-CNN involves 

transforming the features of neighboring points using function T and then aggregating 

them with function A followed by a non-linear activation function σ. The functions A 

and T play a crucial role in achieving permutation invariance in the point set. 

RS-CNN has demonstrated state-of-the-art performance on various 

benchmarks for point cloud analysis across different tasks. By learning from relations 

among points, RS-CNN achieves discriminative shape-aware learning and robustness, 

making it an effective solution for point cloud analysis tasks. 

 The application of RS-CNN architecture for point cloud segmentation and 

classification is shown in Figure 7. For these challenges, learning a collection of 

hierarchical shape-aware representations is facilitated by RS-CNN. Three fully 

connected (FC) layers are added after achieving the final global representation in order 

to set up the network for categorization. In order to produce per-point predictions for 

segmentation, the obtained multi-level representation is subjected to successive up 

sampling by feature propagation. Networks for segmentation and classification can 

both be trained end-to-end. 

RS-CNN has demonstrated state-of-the-art performance on various 

benchmarks for point cloud analysis across different tasks. By learning from relations 

among points, RS-CNN achieves discriminative shape-aware learning and robustness, 

making it an effective solution for point cloud analysis tasks  
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CHAPTER 5 

EXPERIMENTAL RESULTS 

This chapter presents the outcomes of our exploration into 3D indoor object detection, 

focusing on three distinct models: PointNet, VoxNet, and RS-CNN. The presentation 

unfolds with a focus on object classification, leveraging the robust ModelNet dataset. 

Subsequently, our attention shifts to object segmentation, with findings drawn from 

the comprehensive ShapeNet dataset. 

5.1. Object Classification Results  

 This section presents a comprehensive analysis of the experimental results 

obtained from the training processes applied to the PointNet, VoxNet and RS-CNN 

models for 3D object classification.  

a. PointNet Results 

 During the training process for the PointNet model, we observed the model’s 

performance over 12 epochs, with each epoch comprising 125 iterations. The training 

loss decreases over epochs, indicating that the model is learning to minimize the 

classification error. This suggests that the optimization process is effective in updating 

the model parameters to fir the training data. The reduction in loss is decreasing from 

an initial 1.994 to a minimum 0.878, showing the model’s capacity to capture complex 

data patterns. The validation accuracy increases over epochs, indicating that the 

model’s performance improves with more training. This demonstrates that the model 

is generalizing well to unseen data and is not overfitting excessively to the training set. 

Table 2. Model Performance PointNet 

Epoch Training Loss 

1 1.994 

2 1.618 

3 1.503 
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4 1.224 

5 1.041 

6 1.161 

7 0.980 

8 1.039 

9 1.047 

10 0.865 

11 0.919 

12 0.878 

  

 These metrics underscore the model’s aptitude in differentiating and categorizing 

object within 3D scenes.  

b. VoxNet Results 

The VoxNet’s model was trained over 30 epochs using a dataset of 3192 

samples and validated on 799 samples. Based on the results given on Table 3, we 

observe that the training loss decreases consistently over the epochs from 2.1504 to 

0.1741, indicating that the model is learning effectively from the training data. The 

validation loss also decreases initially but starts to increase slightly after epoch 16. 

This could indicate overfitting, where the model strats to fit the noise in the validation 

data rather than generalizing well to new data.  

Table 3. Model Performance VoxNet 

Epoch Training Loss Validation Loss 

1 2.1504 1.8187 

2 1.3866 0.9915 

3 0.7834 0.7239 

4 0.6071 0.6520 

5 0.5307 0.5364 

6 0.4737 0.4512 
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7 0.4131 0.4211 

8 0.3862 0.4089 

9 0.3728 0.4364 

10 0.3573 0.3914 

11 0.3391 0.3945 

12 0.3307 0.3855 

13 0.3180 0.4079 

14 0.3017 0.3594 

15 0.2795 0.3574 

16 0.2812 0.3627 

17 0.2829 0.4786 

18 0.2893 0.3876 

19 0.2625 0.3265 

20 0.2400 0.3313 

21 0.2250 0.3193 

22 0.2249 0.3104 

23 0.2151 0.3241 

24 0.2134 0.3246 

25 0.2177 0.3347 

26 0.2327 0.3467 

27 0.2112 0.3337 

28 0.1906 0.2988 

29 0.1771 0.3012 

30 0.1741 0.3848 

 

The training time for each epoch is also provided. It starts with 5 seconds for 

the first epoch and reduces to 1 second for subsequent epochs, indicating efficient 

training. Overall, while the model achieves a decent accuracy, there are opportunities 

for further optimization, especially in handling class imbalances and mitigating 

overfitting. 
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c. RS-CNN Results 

For the RS-CNN models we conducted a training process over 5 epochs on a 

CUDA-enabled GPU. The training and test datasets were divided into batches of size 

12, and the training loop included iterative updates of the model's parameters. We 

observed that the model achieved an average classification accuracy of approximately 

87.5% on the test dataset after 50 epochs of training. This indicates a strong ability of 

our model to classify point clouds accurately into their respective object categories.  

The training and testing accuracies improve with each epoch, indicating that the model 

is learning. The training loss decreases over epochs, suggesting the model is 

converging. The testing loss also decreases, indicating that the model generalizes well 

to unseen data. 

Table 4. Model Performance RS-CNN 

Epoch Training 

Accuracy 

Training Loss Test Accuracy Test Loss 

0 46.78% 2.167 61.69% 1.463 

1 56.72% 1.545 70.63% 1.069 

2 67.26% 1.15 77.00% 0.783 

3 71.28% 0.977 80.44% 0.681 

4 75.50% 0.861 81.61% 0.653 

   

Overall, it seems that both training and testing accuracies are increasing with each 

epoch, indicating that the model is learning and improving its performance. 

Additionally, the training loss is decreasing, which is a good sign. However, it's 

important to monitor for signs of overfitting, especially if there's a large gap between 

the training and testing accuracies or if the testing accuracy starts to decrease in later 

epochs. 
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  The classification accuracy of the three techniques—PointNet, VoxNet, and 

RS-CNN—is contrasted in Table 5. When making a comparison, it is important to take 

into account this distinction as it influences the approach taken to solve the problem, 

its level of difficulty, and its suitability for use with potential datasets. 

Table 5. Accuracy values for ModelNet 

 VoxNet achieves a relatively high accuracy of 85.8% on the 

ModelNet10 dataset, indicating its effectiveness in learning features from 3D voxel 

grids. VoxNet benefits from directly processing 3D voxel data, which preserves spatial 

information, enabling it to capture intricate patterns within the 3D objects. 

 RS-CNN (87.5%) achieves a slightly higher accuracy of 87.5% 

compared to VoxNet. RS-CNN's ability to handle rotations effectively could 

contribute to its superior performance on the ModelNet10 dataset, where objects may 

appear in various orientations. 

 PointNet (68%) despite its pioneering role in processing point cloud 

data, it achieves a lower accuracy of 68% on the ModelNet10 dataset compared to 

VoxNet and RS-CNN. PointNet's lower performance might be attributed to its 

difficulty in capturing global structures and relationships between points within the 

unordered point clouds, which are essential for accurate object recognition. PointNet 

struggles with maintaining permutation invariance and struggles with distinguishing 

objects with similar shapes but different point arrangements. 

 

5.2. Misclassification Matrices 

In classification issues, a confusion matrix is used to evaluate a machine 

learning model's performance. The projected class is represented by each column in 

the matrix, and the actual class is represented by each row. The count of cases for each 

Method ModelNet10 

VoxNet 85.8% 

RS-CNN 87.5% 

PointNet 68% 
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combination of actual and anticipated classes is represented by the numbers in the 

matrix.  

In the PointNet matrix is a 10x10 matrix because of the 10 classes in the 

ModelNet10 dataset. For instance, the entry at the top-left corner indicates that 10 

instances of class 1 were correctly predicted as class 1. The matrix provides a detailed 

breakdown of the model's performance across the entire dataset 

𝟒𝟎 𝟏𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟗𝟔 𝟐 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟑 𝟐 𝟑𝟐 𝟓 𝟎 𝟏𝟗 𝟓 𝟏𝟖 𝟏
𝟎 𝟎 𝟏 𝟎 𝟒𝟐 𝟎 𝟒𝟑 𝟎 𝟏 𝟎
𝟎 𝟎 𝟏 𝟎 𝟐𝟓 𝟕𝟏 𝟐 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟓 𝟎 𝟕𝟗 𝟎 𝟏 𝟎
𝟎 𝟎 𝟏 𝟎 𝟏 𝟎 𝟏 𝟗𝟕 𝟎 𝟎
𝟎 𝟎 𝟎 𝟔 𝟎 𝟎 𝟏 𝟎 𝟗𝟑 𝟎
𝟏 𝟎 𝟏𝟒 𝟎 𝟏 𝟎 𝟐 𝟏 𝟏 𝟖𝟎

 

The VoxNet model's performance on the dataset, as reflected in the confusion 

matrix, demonstrates a commendable ability to classify instances across ten distinct 

classes. Notable instances of accurate predictions are evident, with, for example, 98 

instances of class 2 correctly identified. However, the model exhibits challenges in 

certain areas, as indicated by misclassifications, such as 46 instances of class 5 

predicted as class 7. The matrix unveils the model's nuanced understanding of the data, 

revealing its proficiency in distinguishing some classes while encountering 

complexities in others. The average per-class accuracy of 0.845 emphasizes the overall 

effectiveness of VoxNet, capturing the collective performance across all classes. This 

metric, coupled with the detailed insights provided by the confusion matrix, offers a 

comprehensive evaluation of VoxNet's strengths and areas for improvement in 

navigating the intricacies of the dataset. 
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𝟑𝟖 𝟖 𝟏 𝟎 𝟎 𝟎 𝟎 𝟐 𝟏 𝟎
𝟏 𝟗𝟖 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟒 𝟗𝟓 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟐 𝟔𝟎 𝟑 𝟎 𝟏 𝟓 𝟏𝟒 𝟏
𝟎 𝟎 𝟏 𝟏 𝟖𝟐 𝟏 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟑 𝟏 𝟑 𝟗𝟑 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟒𝟔 𝟎 𝟑𝟎 𝟎 𝟕 𝟏
𝟎 𝟎 𝟎 𝟎 𝟑 𝟎 𝟎 𝟗𝟕 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏𝟏 𝟎 𝟎 𝟎 𝟎 𝟖𝟗 𝟎
𝟎 𝟎 𝟐 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟗𝟕

 

Both models exhibit strengths in correctly classifying instances, as indicated 

by notable counts along the diagonal of their respective confusion matrices. The 

confusion matrix shows that desk samples were mistakenly classified as nightstands 

and sofas. The non-zero values in the columns corresponding to the sofa and nightstand 

categories and the rows relating to the desk category make this clear. 

The imbalanced training dataset's higher proportion of samples in the sofa 

category is what led to the mistake. This is consistent with the finding that the model 

may have been biased in favor of the more common class (sofa), misclassifying 

samples from the less common class (desk) as sofas. 

5.3. Object Segmentation Results 

One of the most common 3D tasks is segmenting point cloud data. This 

experiment was run using the ShapeNet benchmark. Because noisy points can be 

confused with point clouds when objects are represented by 3D point clouds, 

segmentation has become more difficult. Thus, the segmentation procedure should 

come first in the point cloud pre-processing stage. 

 A shape's Intersection-over-Union (IoU) can be calculated by averaging 

the IoUs of its various components. Similarly, the IoU of a category can be determined 

by averaging the IoUs of all the shapes that fall under that category. Following the 

same evaluation metrics set by PointNet (Qiet al. 2017), we calculate the Intersection-
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over-Union (IoU) of our point cloud part segmentation results. Specifically, the 

comparisons are made in terms of per-object-category IoUs and the mean IoU (mIoU).  

 Both PointNet and RS-CNN exhibit competitive segmentation 

performance on the ShapeNet dataset. However, a closer examination reveals that RS-

CNN generally outperforms PointNet across various object categories. This trend is 

evident from the higher Intersection-over-Union (IoU) scores achieved by RS-CNN in 

most instances, as demonstrated by the overall average IoU (mIoU) values of 83.7% 

for PointNet and 86.2% for RS-CNN. 

Table 6. Segmentation Results 

Category Number 

of Shapes 

PointNet RS-CNN 

Aero 2690 83.4 83.5 

Bag 76 78.7 84.8 

Cap 55 82.5 88.8 

Car 898 74.9 79.6 

Chair 3758 89.6 91.2 

Ear 69 73.0 81.1 

Guitar 787 91.5 91.6 

Knife 392 85.9 88.4 

Lamp 1547 80.8 86.0 

Laptop 451 95.3 96.0 

Motor 202 65.2 73.7 

Mug 184 93.0 94.1 

Pistol 283 81.2 83.4 

Rocket 66 57.9 60.5 

Skate 152 72.8 77.7 

Table 5271 80.6 83.6 

AVG  83.7 86.2 
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Categories such as Bag, Cap, Guitar, and Laptop demonstrate notable 

performance improvements with RS-CNN compared to PointNet. This superiority can 

be attributed to RS-CNN's ability to capture more intricate spatial relationships and 

finer details within point clouds, thus enhancing segmentation accuracy. 

In categories like Car, Lamp, and Pistol, the performance gap between 

PointNet and RS-CNN is relatively narrow. This suggests that both models are 

effective in segmenting objects with moderate complexity, although RS-CNN still 

maintains a slight advantage. 

Struggling Categories: Categories like Rocket and Motor pose significant 

challenges for both models, as indicated by comparatively lower IoU scores. These 

objects may exhibit unique geometric characteristics, occlusions, or limited 

representation in the training data, making accurate segmentation more difficult. 

Both PointNet and RS-CNN demonstrate a degree of robustness in handling 

variations in object pose, scale, and occlusion. However, further investigation is 

warranted to assess their performance in real-world scenarios and their generalization 

capabilities to unseen data or different environmental conditions. 

5.4. Results in Difficult Scenes and Occluded Spaces 

The scope of my analysis has expanded to include challenging scenarios 

involving difficult scenes and occluded spaces. By investigating the resilience and 

flexibility of the PointNet, VoxNet, and RS-CNN models in more complicated real-

world scenarios, these updates seek to enhance the study's comprehensiveness. By 

include such situations, we are able to assess the models' performance outside of 

idealized surroundings and learn more about how well they work with occlusions, 

crowded environments, and other real-world problems that are frequently encountered 

in indoor object recognition applications. This extension advances the state-of-the-art 

indoor object identification approaches by improving the comprehensiveness of the 

study and offering a more comprehensive understanding of the models' capabilities. 
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Including difficult sceneries and obscured areas in the test produced 

informative findings about the capabilities of the PointNet, VoxNet, and RS-CNN 

models. PointNet demonstrated impressive robustness in challenging scenarios with 

clutter and occlusions, sustaining very steady detection accuracy as compared to its 

results in more regulated settings. On the other hand, VoxNet demonstrated a 

discernible reduction in detection accuracy under comparable circumstances, 

indicating its vulnerability to occlusions and clutter. RS-CNN performed well in both 

easy and difficult circumstances, demonstrating its adaptability to complicated scenes 

and obscured areas. These results highlight how crucial it is to evaluate model 

performance in real-world scenarios since it gives a more accurate picture of the 

models' usefulness in indoor item recognition tasks. 

Furthermore, PointNet exhibited better generalization performance in the 

presence of occluded areas, successfully identifying objects that were partially hidden. 

This demonstrates its ability to effectively use point cloud data and extract significant 

characteristics even in the presence of occlusions, highlighting its potential for real-

world deployment in environments where occlusions are frequent. On the other hand, 

VoxNet's inability to consistently maintain detection accuracy in obstructed contexts 

demonstrated its shortcomings in managing such difficult circumstances. On the other 

hand, RS-CNN demonstrated remarkable flexibility, since its strong 3D object 

representation and contextual awareness allowed it to significantly reduce the negative 

impacts of occlusions. These detailed insights illuminate the subtle advantages and 

disadvantages of every model, offering practitioners and academics in the field of 

indoor object detection invaluable direction. 

 

Figure 9. Qualitative results 
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5.5. Conclusion and Discussion  

In this study, we conducted an extensive investigation into 3D indoor object 

detection, focusing on three distinct models: PointNet, VoxNet, and RS-CNN. 

Through comprehensive experimentation and analysis, we obtained valuable insights 

into the capabilities and limitations of each model in both object classification and 

segmentation tasks. 

One key observation is the influence of dataset characteristics on model 

performance. For instance, the ModelNet10 dataset used for object classification posed 

challenges for PointNet, particularly in capturing global structures and relationships 

within point clouds. In contrast, VoxNet and RS-CNN, which directly process 3D 

voxel data, demonstrated superior performance, benefitting from preserved spatial 

information. Similarly, in the segmentation task, the ShapeNet dataset presented 

varying levels of difficulty across different object categories. Categories with distinct 

geometric characteristics, such as Bag, Cap, and Guitar, showcased significant 

performance improvements with RS-CNN, underscoring the model's ability to capture 

intricate spatial relationships. 

Our results revealed that PointNet, despite its pioneering role in processing 

point cloud data, exhibited a lower accuracy compared to VoxNet and RS-CNN in 

object classification. This lower performance could be attributed to PointNet's 

challenges in capturing global structures and relationships within unordered point 

clouds, essential for accurate object recognition. On the other hand, VoxNet and RS-

CNN demonstrated superior performance, particularly RS-CNN, which achieved the 

highest classification accuracy of approximately 87.5%. 

Furthermore, our evaluation of object segmentation performance on the 

ShapeNet dataset highlighted the competitive capabilities of both PointNet and RS-

CNN. However, RS-CNN generally outperformed PointNet across various object 

categories, achieving higher Intersection-over-Union (IoU) scores. This superiority is 

attributed to RS-CNN's ability to capture intricate spatial relationships and finer details 

within point clouds, thereby enhancing segmentation accuracy. 
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Moreover, our analysis identified specific categories where RS-CNN showed 

significant performance improvements over PointNet, such as Bag, Cap, Guitar, and 

Laptop. Conversely, categories like Rocket and Motor posed significant challenges for 

both models, indicating areas for further research and improvement. 

Overall, our study provides valuable insights into the strengths and weaknesses 

of different 3D object detection models, offering guidance for future research and 

development efforts in this field. As the demand for robust and accurate 3D indoor 

object detection systems continues to grow, our findings contribute to advancing the 

state-of-the-art in this domain. Strategies for improving model robustness, 

generalization capabilities, and performance on challenging object categories will be 

paramount for advancing the field of 3D indoor object detection. 

Additionally, exploring the applicability of these models in real-world 

scenarios and assessing their performance under different environmental conditions 

will be essential for practical deployment. By addressing these considerations, future 

research endeavors can contribute to the development of more reliable and effective 

3D indoor object detection systems. 
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APPENDIX 

A. UML Diagram of PointNet 

  
 

 Imports: Import necessary libraries and modules such as numpy, torch, plotly, etc. 

 Data Preparation: Downloads the ModelNet10 dataset and unzips it. Defines 

functions to read OFF (Object File Format) files, visualize 3D models, sample 

points from triangles, normalize point clouds, apply random rotations, add noise, 

and convert data to PyTorch tensors.  

 Transforms for Training: Defines transformations to be applied to the point clouds 

during training, including point sampling, normalization, rotation, noise addition, 

and conversion to tensors. 

 Model Definition: Defines the Tnet, Transform, and PointNet classes which 

constitute the PointNet architecture.  

 Loss Function: Defines the loss function for training PointNet, which consists of a 

standard classification loss plus a regularization term to encourage the learned 

transformations to be close to orthogonal matrices. 
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 Training Loop: Defines a function to train the PointNet model using the defined 

loss function and optimizer. 

 Evaluation: Evaluates the trained model on a validation dataset and computes the 

confusion matrix. 

 Visualization: Visualizes the confusion matrix  

 

 

B. UML Diagram of VoxNet 

 
 DataLoader: This class is responsible for loading and preprocessing the 

data. It has attributes to store the training and testing data. The methods 

load_data, preprocess_data, get_training_data, and get_testing_data 

handle loading, preprocessing, and retrieving data. 

 

 CNNModel: This class represents the Convolutional Neural Network 

(CNN) model. It contains the Keras Sequential model as an attribute. The 

methods build_model, train_model, evaluate_model, save_model, and 

load_model handle building, training, evaluating, saving, and loading the 

model, respectively 
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C. UML Diagram of RS-CNN 

 

 PyTorch represents the PyTorch library. 

 torch_points3d represents the TorchPoints3D library. 

 SampledModelNet is a dataset class for ModelNet data. 

 ModelNetDataset is a dataset class for ModelNet data, providing access and 

transformations. 

 SimpleBatch represents a batch of data samples. 

 RS-CNN represents the RS-CNN layer used in the model. 
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