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ABSTRACT 

 

SMART CONTRACT VULNERABILITY DETECTION ON EVM 

BYTECODE WITH DEEP LEARNING 

 

Prifti, Lejdi 

M.Sc., Department of Computer Engineering 

Supervisor: Prof. Dr. Betim Cico 

 

In the quickly changing world of blockchain technology, it is critical to 

guarantee the security of self-executing contracts, written in programming languages 

like Solidity called smart contracts. Not all security vulnerabilities in smart contracts 

will be found by human code reviews and security audits using traditional methods. 

Deep learning networks have become a promising answer to this problem. In this 

paper, we present the architecture of two models—using convolutional and recurrent 

neural networks—that are intended to effectively discover five vulnerabilities in 

smart contracts. To train and validate the models, we used a dataset that includes 

106474 audited smart contracts taken from the public Ethereum blockchain. Instead 

of the source code used by most deep learning-based solutions, the models receive 

input in the form of Ethereum Virtual Machine (EVM) bytecode. Across all five 

vulnerabilities, the Recurrent Neural Network model has an average micro F1-score 

of 0.93, whereas the Convolutional Neural Network achieves an average micro F1-

score of 0.89. Through comparative research with various deep learning systems and 

static analysis tools, we have determined that EVM bytecode may be leveraged as a 

feature to detect vulnerabilities in smart contracts. 

Keywords: Smart Contracts, Security, Deep Learning, Recurrent Neural Network, 

Convolution Neural Network, Bytecode 
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ABSTRAKT 

 

ZBULIMI I DOBËSIVE NË KONTRATAT INTELIGJENTE NË 

KODIN EVM ME MËSIM TË THELLUAR 

 

Prifti, Lejdi 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Prof. Dr. Betim Cico 

 

Në botën e ndryshimeve të shpejta të teknologjisë së blockchain, është kritike 

të garantohet siguria e kontratave vetë-ekzekutive, të shkruara në gjuhë programimi 

si Solidity të quajtura kontrata inteligjente. Rrjetet e mësimit të thellë kanë bërë një 

përgjigje të premtueshme për këtë problem. Në këtë punim, ne prezantojmë 

arkitekturën e dy modeleve—duke përdorur rrjete konvolucionale dhe rrjete neurale 

rekurrente—që janë të krijuara për të zbuluar efektivisht pesë dobësi në kontratat 

inteligjente. Për të trajnuar dhe vlerësuar modelet, ne përdorëm një set të të dhënash 

që përfshin 106474 kontrata inteligjente të audituara marrë nga blockchain-i publik 

Ethereum. Në vend të kodit burimor, modelet marrin hyrje në formë të kodit të 

makinës virtuale Ethereum (EVM). Për të pesë dobësitë, modeli i Rrjetit Neuronal 

Rekurent ka një vlerësim mesatar mikro F1 të 0.93, ndërsa Rrjeti Neuronal 

Konvolucional arrin një vlerësim mesatar mikro F1 prej 0.89. Përmes hulumtimeve 

krahasuese me sisteme të ndryshme të mësimit të thellë dhe mjeteve të analizës 

statike, kemi përcaktuar se kodit EVM mund të shfrytëzohet si një tipare për të 

zbuluar dobësitë në kontratat inteligjente. 

 

Fjalët kyce: Kontrata inteligjente, Siguria, Mësim i thelluar, Rrjeti Neuronal 

Konvolucional, Kodi bajt 
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CHAPTER 1 

INTRODUCTION 

 

1.1      Problem Statement 

Deep learning, a branch of machine learning, has achieved good results in 

several fields, including speech recognition, computer vision, and natural language 

processing. 

In this paper, we present the architecture of two deep learning neural networks 

that are shown to achieve good performance in detecting vulnerabilities into 

Ethereum smart contracts. 

Through the literature review, we provided a comprehensive overview of the 

methods used to find smart contract vulnerabilities and classified them into two 

groups: deep learning methods and static analysis tools. The importance of several 

well-known tools in enhancing the security of Ethereum smart contracts is 

highlighted, including Oyente, Mythril, Maian, Zeus, EtherFuzz, and Securify. These 

technologies do, however, have several drawbacks, such as restricted vulnerability 

coverage, false positives and false negatives. Many deep-learning models and 

methods, including Convolutional Neural Networks (CNNs), Long-Short Term 

Memory (LSTM) networks, and neuro-symbolic frameworks, have been proven to be 

efficient.  

However, most of these models expect to input the source code of smart 

contracts. Instead of the source code, we use the EVM bytecode. From the results we 

got, we have concluded that EVM bytecode is a good feature to detect vulnerabilities 

in smart contracts. We have compared the results of our model with those achieved 

by Rossini, Zichichi, & Ferret (2022) in the same dataset. For future work, we 

suggest expanding data collection efforts by increasing the number of smart contract 

vulnerabilities. Furthermore, we recommend increasing convolutional block 
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complexity, as well as creating a single model that expects two forms of inputs, the 

source code and the bytecode of the smart contract.  

1.2      Thesis Objectives 

The following are the key goals of this study's investigation into employing 

deep learning networks to identify smart contract vulnerabilities: 

1. Increase security of smart contracts: The main objective is to increase the 

security of smart contracts used on Ethereum and other blockchain systems. 

Our goal is to identify vulnerabilities more precisely and quickly than with 

conventional techniques by building a strong deep learning model, thereby 

reducing the risks related to smart contract vulnerabilities. 

2. Using a deep learning-based solution: The goal is to create, put into practice, 

and assess a deep learning-based model that can efficiently identify a variety 

of smart contract vulnerabilities. This entails dealing with problems like 

reentrancy flaws, integer overflows, uncovered calls, and other typical 

security concerns. 

3. Investigate multi-class categorization: Our goal is to create a model with 

multi-class categorization capabilities that can recognize several types of 

vulnerabilities in a single smart contract. This method offers a more thorough 

evaluation of the security posture of a contract. 

4. Optimize training and inference speed: Security mechanisms for smart 

contracts must be quick to respond, especially considering the urgency of 

blockchain transactions. The goal is to accelerate the model's inference and 

training processes to provide quick and effective vulnerability detection. 
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CHAPTER 2 

LITERATURE REVIEW 

 

We provide a general overview of the current approaches to smart contract 

vulnerability detection in this literature study. Static and deep learning solutions are 

the two categories we will examine. We will list the potential flaws that each may 

have below.  

There are several well-known solutions based on symbolic execution that are 

widely used in the field of automated security tools for smart contracts. 

To increase the security of Ethereum smart contracts, a specific security 

analysis tool called Oyente (Loi Luu, 2016) was created. Oyente, a tool designed to 

find potential flaws and vulnerabilities in smart contract programming, uses symbolic 

execution techniques to thoroughly examine all possible execution routes. It 

simulates the behavior of the contract without executing it, which enables it to 

identify intricate flaws that could be difficult to find through manual analysis. 

Oyente's main goal is to highlight security flaws that could be used by malevolent 

actors, such as reentrancy vulnerabilities, integer overflows, and other potential 

exploits. As a result, it helps programmers find and fix flaws before releasing their 

smart contracts onto the Ethereum network. Although useful, Oyente's capabilities 

have several drawbacks, such as the potential for false positives or negatives, and the 

complexity of the contract code may have an impact on how effective it is. 

Another popular open-source security analysis tool made exclusively for 

finding security flaws and vulnerabilities in Ethereum smart contracts code 

developed by ConsenSys (Consesys, 2018) is called Mythril. Mythril extensively 

examines multiple smart contract execution paths using symbolic execution and 

static analysis methods without executing them on the blockchain. This enables it to 

identify weaknesses that might be used by bad actors to their advantage.
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Complex problems like reentrancy vulnerabilities, integer overflows, and 

logic defects that could elude manual code review are particularly well-detected. 

Mythril is acknowledged to have a number of drawbacks, though, including a high 

rate of false positive and false negative results, analytical complexity, and restricted 

support for specific contract types. 

To identify between potential greedy, prodigal, and suicidal smart contracts, 

Ivica Nikolic et al. (2018) introduced a new tool called Maian. The contracts that, 

when attacked, restore money to owners, advertise a specific solution at addresses 

that have previously given them ether, or both have been dubbed prodigal contracts 

by the authors. When a contract malfunctions or runs out of Ether due to an attack, it 

frequently has the security fallback option of being terminated by its owner or other 

trustworthy addresses. The authors consider a contract to be suicidal if it can be 

terminated by any random account. Lastly, contracts that remain active and 

permanently lock Ether, preventing its release under any circumstances, are referred 

to as greedy. Maian uses symbolic analysis and concrete validation to find the 

vulnerabilities mentioned above. Ivica Nikolic et al. came to conclusion that around 

97% of prodigal, 97% suicidal, and 69% of greedy contracts were genuine positives 

using a concrete validation engine or manual inspection after analyzing 970,898 

contracts. They observed that it is crucial to analyze the contracts' bytecode rather 

than their Solidity code. Despite the fact that Maian is a powerful general tool for 

finding defects, it does not ensure that all program paths are explored (leading to 

false negatives).  

In their work, Giancarlo Bigi et al. (2015) validate a decentralized smart 

contract protocol using a combination of game theory and probabilistic model 

testing.  

Bhargavan et al. (2016) present preliminary research on the adaptive type and 

effect system of F*. Their approach, based on shallow embeddings and type 

checking within an existing verification framework, is applicable for looking into the 

formal verification of contracts written in Solidity and EVM bytecode. The system is 

designed to capture and prove desired features for contract programmers. 
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In the study by Grossman et al. (2018), the focus is on domain-specific 

features. They introduce a dynamic linearizability checker to delve deeper into 

pinpointing reentrancy problems, emphasizing the importance of addressing issues 

related to specific domains in contract programming. 

The Zeus system (Kalra, Goel, Dhawan, & Sharma, 2018), a sound analyzer 

that converts smart contracts to the LLVM framework, does not support violation 

patterns to lower false positives. Additionally, Zeus does not allow for the 

verification of data- and control-flow aspects. Properties are written in the XACML 

language. 

Securify was introduced by Tsankov et al. (2018). It makes use of the 

domain-specific insight that many of the practical properties for smart contracts that 

are violated are also violated by simpler, much easier-to-check properties. It 

examines every contract action to prevent unfavorable false negatives. Additionally, 

by ensuring that certain actions are genuine problems, it decreases the user effort 

required to categorize warnings into true positives and false alarms. Furthermore, it 

facilitates the usage of a brand-new domain-specific language that enables users to 

communicate newly discovered vulnerability patterns. Its analytical pipeline is 

entirely automated utilizing scalable, commercial Datalog solvers, from bytecode 

decompilation to optimizations through pattern validation. 

By propagating contaminated information via several transactions, a new tool 

called Ethain (Brent, Grech, Lagouvardos, Scholz, & Smaragdakis, 2020) detects 

composite assaults that lead to grave infractions. With a very high precision of 82.5% 

valid warnings for end-to-end vulnerabilities, their research spans over the entire 

blockchain and achieves better results than Securify, mentioned previously.  

To identify TOD issues in smart contracts, Wang et al. (2022) provided a 

modified version of the fuzzy framework EtherFuzz. According to their experimental 

results, EtherFuzz is more effective than other tools at identifying TOD 

vulnerabilities. Between them, there is a reduction in time cost that is on average 

31.1% and a reduction in memory cost that is on average 29.2%. The authors note 

that they hope to reduce EtherFuzz's current false positive rate in subsequent works. 
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Neural networks have been created to aid in the detection of smart contracts 

vulnerabilities as deep learning has advanced. 

Cheng, Wang, Hua, Xu and Sui (2021) proposed in their work DeepWukong, 

a novel deep learning-based embedding method for C/C++ program static software 

vulnerability identification. They create a new code representation that maintains 

both the natural language information of a program and high-level programming 

logic by using sophisticated graph neural networks to embed code fragments in a 

compact and low-dimensional representation. 

By combining metric learning triplet loss with a bidirectional long short-term 

memory (BiLSTM) network model, Meiying, Xie, Wen, Li and Zhou (2023) 

proposed a unique vulnerability detection method for Ethereum smart contracts. By 

boosting cohesion within a single category and discreteness between various 

categories of smart contracts, the system optimizes feature representation space and 

improves the accuracy of vulnerability identification. The method improves 

interpretability and aids in locating root causes by using source code as input data, 

word vectorization, and an attention method to locate crucial details linked to 

vulnerabilities. A comprehensive dataset of 165,000 verified smart contract source 

codes is produced, and vulnerability flags are provided using a variety of detection 

techniques to provide robust data support. The suggested method outperforms 

previous deep learning models and conventional methods in successfully extracting 

vectorized features and increasing vulnerability detection precision. 

In their study, Lutz, et al. (2023) proposed ESCORT with the goal of 

overcoming the scalability and generalization restrictions of the earlier published 

research. ESCORT is a multi-output neural network trained to recognize each 

specific vulnerability class and learn the bytecode properties. ESCORT makes use of 

a feature extractor to accomplish these two objectives since it can read contract 

bytecode regardless of its flaws and extract its semantic and syntactic information. 

The second objective is accomplished by using an individual vulnerability class 

branch to characterize susceptibility considering the previously extracted bytecode 

attributes. ESCORT achieves an average F1 score of 95% on six different 

vulnerability categories, according to experimental findings, and the detection time is 
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0.02 seconds per contract. When ESCORT is expanded to include new vulnerability 

categories, the average F1 score is 93%. 

To find weaknesses in smart contracts' opcode, the study by Joon-Wie Tann, 

Jie Han, Sen Gupta, and Ong (2018) suggests using a sequence learning approach. 

The contract's opcode is expressed specifically using the one-hot encoding and 

embedding matrix. An LSTM model is trained to predict if a given smart contract is 

safe or vulnerable using the obtained code vectors as input (binary classification). 

Because the LSTM-based technique cannot distinguish between the different 

vulnerability categories and has a stated F1 score of 86%, it performs poorly at 

detecting vulnerabilities.  

Gogineni, Swayamjyoti, Sahoo and Sahu (2022) present a multi-class 

categorization technique based on sequencing. For identifying vulnerabilities, their 

study adopts the "Average Stochastic Gradient Descent Weighted Dropped LSTM" 

(Merity, Keskar, & Socher, 2017). A pre-trained encoder for linguistic tasks (Howard 

& Ruder, 2018) and an LSTM-based classifier for vulnerability classification make 

up the proposed model's two components. Three different vulnerability types can be 

found with this technology, which operates at the opcode level. An F1 score of 95% 

on safe contracts and 30% on prodigal contracts is generated by the model. The 

model's extensibility was not considered by the writers. 

The contract bytecode is converted into fixed-sized RGB color images by 

TonTon Hsien-DeHuang (2018) and a convolution neural network is trained for 

vulnerability identification. CNN-based classifier uses multi-label classification, 

which has a poor confidence score for identifying the precise vulnerability classes. 

Due to the low confidence level, the performance of the multi-label classification is 

not satisfactory. This could be caused by the CNN architecture and image 

representation of the bytecode ignoring the sequential data provided in the contract. 

A graph neural network (GNN)-based technique is suggested by Zhuang et al. 

(2020). This work creates a contract graph from the source code of the contract, 

where nodes and edges stand in for crucial function calls and variables and the 

temporal execution trail, respectively. To emphasize key nodes, this graph is 
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normalized before being sent to a temporal message propagation (TMP) network to 

look for vulnerabilities. There are a few drawbacks to the concept in terms of its 

limited applicability and efficacy. The F1-score for all three vulnerabilities is 77%.  

Deng et al. (2023) proposed a smart contract vulnerability detection 

mechanism based on multimodal decision fusion. This approach also considers the 

smart contract’s control structure and code semantics. Using the multimodal decision 

fusion method, it unifies the source code, operation code, and control-flow modes. 

With great accuracy and recall rates, the deep learning approach extracts five 

attributes that are utilized to represent contracts. As demonstrated by the 

experimental results, the authors’ method's detection accuracy for re-entrant 

vulnerability, Ethernet locking vulnerability, arithmetic vulnerability, and transaction 

order dependence can reach 91.6%, 90.9%, 94.8%, and 89.5%, respectively, and its 

detected AUC values can reach 0.834, 0.852, 0.886, and 0.825, respectively. 

The extraction of features and the volume of data utilized for training are 

critical to the efficacy of vulnerability detection for smart contracts, according to the 

data-driven deep learning technique. Consequently, Gao, Jiang, Xia, Lo, & Grundy 

(2020) suggested an automated technique based on word embedding to acquire 

Solidity smart contract capabilities. 

Zhang et al. (2022) proposed leveraging ensemble learning (EL) techniques 

to smart contract vulnerabilities prediction. To facilitate contract-level vulnerability 

detection, multiple NNs were included in the proposed SCVDIE-ENSEMBLE 

approach. These models were then used to create an ensemble framework known as 

the Information Graph and Ensemble Learning-based Smart Contract Vulnerability 

Detection technique (SCVDIE). The authors observed that since each NN has a 

distinct function to fulfill, SCVDIE-ENSEMBLE could perform more accurately and 

robustly on unseen data while increasing the efficiency of data utilization. According 

to the authors, on various sized datasets, the mean F1 score and the mean prediction 

accuracy both reached ideal values of 97.57% and 97.42%, respectively, and 

achieved decreased relative RMSEs. 
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Huang, Zhou, Xiong and Li (2022) developed a smart contract vulnerability 

model using multi-task learning. The model's detection capabilities were enhanced to 

enable the identification and detection of vulnerabilities by assigning supplementary 

tasks to learn more directional vulnerability features. The hard-sharing design, which 

has two components, is the foundation of the model. First, the input contract's 

semantic information is mostly learned via the bottom sharing layer. The neural 

network, which is based on an attention mechanism, is used to learn and extract the 

feature vector of the contract after word and positional embedding has first converted 

the text representation into a new vector. Second, each task's functions are primarily 

done by using the task-specific layer. As the authors have stated, for each task, a 

classification model that learns and pulls features from the shared layer for training 

to accomplish their separate task objectives was built using a standard convolutional 

neural network. The findings of the experiment demonstrate that the addition of the 

auxiliary vulnerability detection task improved the model's capacity to identify the 

different types of vulnerabilities. 

In their paper, Sun & Gu (2021) suggest using a CNN model with a self-

attention mechanism to identify smart contract vulnerabilities. Additionally, their 

approach uses feature engineering to combine a stop word list, sensitive word 

sharding, and an enhanced one hot encoder. However, the model is limited to 

detecting only three types of vulnerabilities.  The authors plan to expand on their 

single binary classification models in future research by developing a multinomial 

classification model that may simultaneously identify several vulnerability kinds.  

The Dual Attention Graph Convolutional Network (DA-GCN) is a unique 

model that Fan, Shang and Ding (2021) propose to detect vulnerabilities in 

blockchain-based smart contracts. Graph convolutional network and self-attention 

mechanism-based feature extractor receives input from the control flow graph and 

the opcode sequence retrieved from smart contract bytecodes. Then, using control 

flow level attention, Model DA-GCN concentrates on the most significant nodes in 

the control flow graph while suppressing irrelevant data. In the end, a multilayer 

perceptron is employed to determine the smart contract's vulnerability. Their 

suggested model DA-GCN may effectively increase the smart contract vulnerability 

detection performance, as demonstrated by experimental findings on the real-world 
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smart contract data set containing two vulnerabilities: timestamp dependency and 

reentrancy. 

Peng et al. (2015) in their work pointed out that there is a difference between 

natural language and programming language. In essence, the programming language 

does not benefit from the NLP algorithms as much as the natural language does. The 

authors concluded that their proposed “coding criterion” based on ASTs is a 

successful representation learning algorithm for programs. They convert abstract 

syntax tree nodes into vectors. To identify similar source code snippets, Mou et al. 

(2016) suggest a tree-based convolutional neural network based on program abstract 

syntax trees.  

To improve the class separation between vulnerable and non-vulnerable 

samples during model building, Chakraborty, Krishna, Ding and Ray (2020) 

demonstrate that representation learning can be applied on top of conventional DL 

techniques. A common family of machine learning algorithms called representation 

learning eliminates the need for human feature engineering by automatically 

identifying the input representations required for better classification. The authors 

claim the model must learn to automatically represent benign and vulnerable code in 

the feature space since it is hard to distinguish between their attributes. Moreover, the 

model's accuracy rate can be raised by addressing the class imbalance of 

vulnerable/non-vulnerable samples through semantic information, data 

deduplication, and training data balancing. 

VELVET, a unique ensemble learning method for identifying vulnerable 

statements, is presented by Ding et al (2021). The author’s approach properly 

captures the local and global context of a program graph and effectively understands 

susceptible patterns and code semantics by combining graph-based and sequence-

based neural networks. They used a commercially available synthetic dataset and a 

recently released real-world dataset to examine the efficacy of VELVET. According 

to the authors, in the static analysis environment, VELVET performs 4.5 times better 

on real-world data than baseline static analyzers when vulnerable functions are not 

known ahead of time. 
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To overcome the "simple" first-order limitations, Xie, Kesting and Neider 

(2022) have created the first neuro-symbolic framework for neural network 

verification. This framework allows for the expression of complex correctness 

aspects through deep neural networks. They have demonstrated how quickly their 

framework may be added to the existing infrastructure for verification. 

Two novel model families have been developed by Hellendoorn, Sutton, 

Singh, Maniatis and Bieber (2020) that efficiently combine the longer distance 

information that the sequence model can convey with the semantic structure 

information that the Gated Graph Neural Network (GGNN) can access.  

Graph Relational Embedding Attention Transformer (GREAT) is another 

family of families that conveys structural relations instead by generalizing the 

relative position embeddings in Transformers by Shaw, Uszkoreit and Vaswani 

(2018). Graph Sandwich is one family of families that alternates between sequential 

information flow and message passing through a chain of nodes within the graph. 

The authors show that their proposed model family outperformed all previous 

findings and their new, already stronger baseline by an additional 10% each, while 

training both substantially faster and with fewer parameters. 

To address the shortcomings of the current GNN, Wang, Wang, Gao, & 

Wang (2020) developed a new graph neural network architecture known as the 

Graph Interval Neural Network (GINN). In contrast to the conventional GNN, GINN 

expands from a carefully selected graph representation that is acquired via an 

abstraction technique intended to support model learning. Specifically, GINN 

employs just intervals (which are typically represented by looping constructs) to 

mine a program's feature representation. In addition, GINN uses a hierarchy of 

intervals to scale learning over huge graphs. 

A code property graph is a novel source code representation introduced by 

Yamaguchi, Golde, Arp, & Rieck (2014). This representation combines ideas from 

classic program analysis, such as abstract syntax trees, control flow graphs, and 

program dependence graphs, into a joint data structure. With this comprehensive 

representation, they are able to model elegantly templates for common vulnerabilities 
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with graph traversals that can identify, for example, buffer overflows, integer 

overflows, format string vulnerabilities, or memory disclosures; they implement their 

approach using a widely used graph database and demonstrate its effectiveness by 

finding eighteen previously undiscovered vulnerabilities in the Linux kernel source 

code. 

Li, Wang, & Nguyen (2021) separately examine each vulnerable statement 

and its surrounding settings to identify vulnerabilities using data and control 

dependencies. Consequently, their model outperforms earlier methods that included 

contextual and susceptible code in its ability to discern between statements that are 

vulnerable and those that are not. In addition to the coarse-grained vulnerability 

detection result, they use interpretable AI to provide customers with fine-grained 

interpretations that include the subgraph in the Program Dependency Graph (PDG) 

holding the significant statements that are relevant to the discovered vulnerability. 

IVDetect outperforms the current DL-based approaches by 43%–84% in top-10 

nDCG and 105%–255% in MAP ranking scores, according to their empirical 

assessment using vulnerability databases.  

In their work, Tarlow et al. (2019) use a graph to represent build 

configuration files and compiler diagnostic messages. Then, they employ a Graph 

Neural Network to predict a diff, which denotes how to alter the abstract syntax tree 

of the code, which is represented by a series of tokens and pointers to code places in 

the neural network.  

W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang (2020) have 

demonstrated the significant impact of using the Transformer model for the source 

code summarization task. The authors claim that the Transformer, which 

incorporates copy attention and relative position representations, performs 

significantly better than state-of-the-art methods. 

A bimodal pre-trained model for natural language (NL) and programming 

language (PL) called CodeBERT is presented by Feng et al. (2020). With a 

Transformer-based neural architecture, CodeBERT is trained with a hybrid objective 

function that includes replacement token detection as a pre-training job. The goal of 
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this work is to identify logical substitutes that have been sampled from generators. 

To enable a variety of NL-PL applications, such as natural language code search and 

code documentation production, the model learns general-purpose representations. 

Both "unimodal" data—in which NL and PL are taken into separate consideration—

and "bimodal" data—which consists of NL-PL pairs—are used in the training 

process. After fine-tuning the model parameters, CodeBERT's evaluation on two NL-

PL apps shows state-of-the-art performance in natural language code search and code 

documentation production.  

The VSCL framework was proposed by Mi et al. (2021) in their attempt to 

automatically identify vulnerabilities in blockchain-based smart contracts. More 

precisely, as the source code of smart contracts is rarely made available to the public, 

they first use feature vector generating techniques from the bytecode of the contract. 

To obtain the detection result, the gathered vectors are then fed into a deep neural 

network (DNN) that is based on metric learning. 

Wu et al. (2021) present a novel method called Peculiar that uses a pre-

training technique to identify smart contract vulnerabilities based on critical data 

flow graphs. Crucial data flow graph is less complicated and does not introduce an 

unduly deep hierarchy than the typical data flow graph, which is already used in 

existing techniques. This makes it easier for the model to focus on the important 

aspects. Additionally, pre-training methodology was incorporated into the model 

because of the significant gains it has made on a range of natural language 

processing tasks according to the authors. 

A unique approach to reentrancy vulnerabilities in Ethereum smart contracts 

was developed by Eshghie, Artho and Gurov (2021). They suggest Dynamit, a 

monitoring framework that merely uses transaction metadata and balance data from 

the blockchain system in place of domain expertise or code instrumentation. To 

categorize transactions as benign or dangerous, Dynamit takes attributes out of 

transaction data and applies a random forest classifier to it.  

In their work, Dinella et al. (2020) presents a model that consists of an LSTM 

central controller that performs a series of basic operations (such predicting type, 
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producing patch, etc.) to accomplish a fix, and an external memory (a Graph Neural 

Network) for embedding a malfunctioning program. An autoregressive model is used 

to implement the multi-step decision procedure. The authors claim that the way the 

memory is managed in the model is different from that of the normal NTM: in 

addition to the usual read and write operations, the controller can additionally 

increase or decrease the memory when adding or removing nodes from the original 

graph. 

A pipeline named AI4VA is proposed by Suneja, Zheng, Zhuang, Laredo and 

Morari (2020). It begins by encoding a sample source code into a Code Property 

Graph. The authors then vectorize the retrieved graph in a way that they say retains 

its semantic content. Then, using many of these graphs, GGNN is trained to 

automatically extract templates that distinguish the graph of a vulnerable sample 

from a healthy one. On two of the three datasets the authors tested, the model beats 

CNN and RNN-based deep learning models, static analyzers, and traditional machine 

learning. This work provides more evidence that the code-as-graph encoding—rather 

than the code-as-photo and linear sequence encoding methods currently in use—is 

more significant for vulnerability detection. Vytovtov and Chuvilin (2019) cluster 

Java classes automatically into business logic, interface, and utility classes using 

GNN based auto-encoders for unsupervised learning over source code ASTs. 

Moreover, Alon, Zilberstein, Levy and Yahav (2019) proposed to encrypt source 

code using a set of path contexts (AST paths + leaf-node values) and train an 

attention-based neural network to identify suitable function names based on the code. 

In their work, Nguyen et al. (2022) present the ReGVD model, which is 

based on graph neural networks.  To construct a graph, ReGVD treats each raw 

source code as a flat series of tokens. Only the token embedding layer of a trained 

programming language (PL) model initializes the node features. To generate a graph 

embedding for the source code, ReGVD then makes use of residual connections 

between GNN layers and looks at a combination of graph-level sum and max 

poolings.  

Furthermore, Hin, Kan, Chen and Ali Babar (2022) introduced a unique deep 

learning framework called LineVD that treats the problem of node classification in 
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conjunction with statement-level vulnerability identification. LineVD uses a 

transformer-based architecture to encode the raw source code tokens and graph 

neural networks to utilize control and data dependencies between statements. 

Şahin, Özyedierler and Tosun (2022) presented a method for employing 

GNNs to anticipate susceptible code versions by taking advantage of commits in 

addition to code. Specifically, they tested various deep learning and machine learning 

architectures, including Graph Convolutional Networks and GraphSAGE. To train 

the GNN models, the Wireshark project samples were gathered, and the data were 

converted into AST representations and fed into the GNN models. To understand the 

features of the nodes, they also employed a technique akin to word2vec. They used 

the SZZ technique in conjunction with the commits to pinpoint the exact position of 

the code's vulnerability. Ultimately, the application of GraphSAGE to identify 

susceptible code yielded the highest results, with an F1 score of 74.4% and an AUC-

ROC score of 96.0%.  

According to Evangelos, Katsadouros and Charalampos & Patrikakis (2022), 

multi-class classification is more advantageous in providing information about the 

type of vulnerability. However, the authors claim that there hasn't been a lot of 

research done in this area.  

Lastly, an overview of the literature review based on the methodology is 

provided in Table 1. 
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Table 1. Summary of references based on the methodology used. 

 

 

 

 

 

 

 

 

 

Method References 

Symbolic Execution (Loi Luu, 2016), (Consesys, 2018) 

Game Theory & Probabilistic 

Model Testing 

(Bigi, Bracciali, Meacci, & Tuosto, 2015) 

Concrete Validation and 

Analysis 

(Nikolic, Kolluri, Sergey, Saxena, & Hobor, 2018), (Tsankov, et al., 

2018), (Brent, Grech, Lagouvardos, Scholz, & Smaragdakis, 2020), 

(Wang, et al., 2022) 
LLVM Framework and Type 

Systems 

 (Bhargavan, et al., 2016), (Kalra, Goel, Dhawan, & Sharma, 2018) 

Dynamic Linearizability Checker (Grossman, et al., 2018) 

Deep Learning (Cheng, Wang, Hua, Xu, & Sui, 2021),  (Meiying, Xie, Wen, Li, & 

Zhou, 2023), (Lutz, et al., 2023),  (Fan, Shang, & Ding, 2021),  

(Zhuang, et al., 2020), (Merity, Keskar, & Socher, 2017) 
Ensemble Learning (Zhang, et al., 2022), (Ding, et al., 2021) 

Multi-Modal Decision Fusion (Deng, et al., 2023), (Gao, Jiang, Xia, Lo, & Grundy, 2020) 

Sequence Learning (Tann, Han, Gupta, & Ong, 2018) 

Transformer Model (Ahmad, Chakraborty, Ray, & Chang, 2020),  (Feng, et al., 2020) 

Graph Neural Networks (GNNs) (Wang, Wang, Gao, & Wang, 2020), (Tarlow, et al., 2019), (Mi, et 

al., 2021), (Wu, et al., 2021), (Suneja, Zheng, Zhuang, Laredo, & 

Morari, 2020), (Vytovtov & Chuvilin, 2019), (Nguyen, et al., 2022) 

AST-based Approaches (Peng, et al., 2015), (Chakraborty, Krishna, Ding, & Ray, 2020), 

(Ding, et al., 2021),  (Nguyen, et al., 2022), (Hin, Kan, Chen, & 

Babar, 2022) 

Other Approaches  (Xie, Kersting, & Neider, 2022), (Hellendoorn, Sutton, Singh, 

Maniatis, & Bieber, 2020), (Li, Wang, & Nguyen, 2021), (Eshghie, 

Artho, & Gurov, 2021), (Dinella, et al., 2020), (Alon, Zilberstein, 

Levy, & Yahav, 2019), (Şahin, Özyedierler, & Tosun, 2022), 

(Evangelos, Katsadouros and Charalampos, & Patrikakis, 2022), 

(Tann, Han, Gupta, & Ong, 2018) 
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CHAPTER 3 

RESEARCH GAP 

 

Based on the literature review and previous works, we have identified that 

there has been relatively little research on multi-class categorization about Ethereum 

smart contract vulnerabilities based on Ethereum Virtual Machine (EVM) bytecode. 

Thus, creating multi-class classification models using RNNs and CNNs trained 

specifically on smart contract bytecode will be our main goal. We aim to investigate 

the following research question in this study. 

1. Could EVM bytecode be used as a feature for uncovering smart contract 

vulnerabilities? 

2. How do RNNs and CNNs trained on EVM bytecode perform compared to 

other deep learning solutions? 

3.1 Could EVM bytecode be used as a feature for uncovering smart 

contract vulnerabilities? 

We aim at developing a deep learning model using RNNs or CNNs and 

training it on EVM bytecode. Our goal will be to achieve an weighted F1-score, 

which is a harmonic mean between precision and recall, higher than 0.85.  

The F1 score, shown in Equation 1, is the metric we use to evaluate the 

models. It combines two essential performance measures: precision and recall. The 

ratio of true positive predictions to the total number of positive predictions (true 

positives plus false positives) is known as precision, whereas recall is the ratio of true 

positive predictions to the total number of actual positive instances (true positives 

plus false negatives). Better performance is indicated by a higher score on the F1 

scale, which goes from 0 to 1. A score of 0 indicates that neither precision nor recall 

are present, whereas a score of 1 indicates flawless precision and recall.  

          
                       

                  
      (Equation 1) 
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3.2  How do RNNs and CNNs trained on EVM bytecode perform 

compared to static analysis tools and other deep learning 

solutions? 

We aim at comparing two different approaches, deep learning and static 

analysis, at how efficient they are in detecting vulnerabilities in a dataset of public 

smart contracts. We will develop two models using RNNs and CNNs to observe the 

performance of each compared to the current approaches widely used. We will 

compare the performance of each model and tool based on the F1-score mentioned 

above. Our goal is to understand how well models trained on EVM bytecode can 

capture patterns in vulnerability detection. 
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CHAPTER 4 

ETHEREUM AND SMART CONTRACTS 

 

4.1  Ethereum as a blockchain 

Introduced for the first time by Vitalik Buterin (2013), Ethereum is a public 

blockchain network that is distributed and designed to execute any kind of 

decentralized application code, as shown in Fig. 1. 

 

Figure 1. Ethereum architecture. (Chittoda, 2019) 

Multiple entities make up Ethereum's blockchain network architecture. Every 

node in an Ethereum network maintains the most recent version of the Ethereum 

blockchain ledger and is connected to every other node via the P2P network protocol. 

Through the Ethereum client, which could be a desktop, mobile or web page, a user 

can communicate with the Ethereum network. The Ethereum Virtual Machine 

(EVM) powers every node in the network, allowing it to carry out its commands. The 

nodes then translate the smart contracts into EVM code and carry them out (Wood, 

2018).  
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The Ethereum network relies on a modified version of the GHOST protocol 

(Greedy Heaviest Observed Subtree) for consensus, which was developed to address 

the network's stale block problem. Stale blocks can happen when a mining pool's 

aggregate processing power is greater than that of the other groups of miners. This 

means that the blocks from the first pool will contribute more to the network, which 

will lead to a centralization problem. These outdated blocks are considered by the 

GHOST protocol for determining the longest chain 

Ethereum can be viewed as a transaction-based state machine with a built-in 

Turing-complete programming language (Farnaghi & Mansourian, 2020). It begins 

with a genesis state and after each successful transaction, the state is modified. Data 

relevant to the physical world is included in the state, along with account balances, 

trust agreements, and reputations.  

Anyone can design their own ownership structures for transactions and state 

transition mechanisms because of Ethereum's abstract layer. Smart contracts, used to 

achieve the previous objective, are a collection of cryptographic guidelines that only 

act when specific requirements are satisfied (Chittoda, 2019).  

4.2  Ethereum key components 

We will now examine the essential elements of Ethereum, including the 

account, the global state, and the transaction as shown in Fig. 2.  

According to the Ethereum Foundation, a core element of Ethereum is the 

account (Buterin V. , 2013). Each account contains four important fields that are 

nonce, balance, storage hash and code hash. 

The nonce is a transaction counter, increased by one for every new 

transaction sent by the account. In a similar manner, it indicates the number of 

contracts generated by an account that is associated with a code (Chittoda, 2019).  

The balance is a scalar number that represents how many Weis the address 

owns (Chittoda, 2019). 
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Figure 2. Accounts in Ethereum. (Farnaghi & Mansourian, 2020) 

The storage hash is made up of a 256-bit hash of the Merkle Patricia tree's 

root node, which encodes the account's storage contents. The encoded values are 

mapped from Keccak 256-bit integer values into the tree (Chittoda, 2019).  

Finally, the code hash is the hash of the Ethereum Virtual Machine (EVM) 

code of this account. This code runs if a message call is made to this address. For 

eventual retrieval, all these code snippets are stored in the state database under their 

respective hashes (Chittoda, 2019). 

The global state is a mapping between addresses, which are 160-bit 

identifiers and account states. As stated previously, the global state represents the 

current snapshot of account balances, contract storage, and other relevant 

information for all accounts and smart contracts on the Ethereum network.  

Accounts come in two varieties: contract accounts and external accounts. A 

contract account is managed by its code, while an external account is managed by 

public-private key pairs held by human account holders. The key difference between 

the two is that contract accounts do not have an empty code field as external accounts 

do.  
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Actions that modify the EVM's state can only be started by external accounts. 

We refer to these actions as transactions. A transaction is a single instruction created 

by an actor outside the Ethereum network and cryptographically signed. There are 

three transaction types: 0 (legacy), 1 (EIP-2930) and 2 (EIP-1559) (Buterin, et al., 

2019). Furthermore, there are two subtypes of transactions: those which result in 

message calls and those which result in the creation of new accounts with associated 

code, which as mentioned earlier are the contact accounts. This process is called 

contract creation and is described more in depth in the next section.  

Each transaction consists of the recipient of the message, a signature 

identifying the sender, amount of Wei to be sent, an optional data field, gas amount, 

and gas price values (Wood, 2018).  

The reason why the last fields are included is because transaction execution is 

not always free. This is because energy-intensive processing resources are needed for 

the global state change (transaction) that needs to be approved by all (Buterin, 2013). 

Gas was developed for smart-contract communication and transaction execution. It 

stands for the units that the transaction initiator must pay to have the transaction 

executed. The gas price is the amount of Ether that the initiator is willing to pay for 

each unit of gas, whereas the gas limit is the highest quantity of gas that the initiator 

is ready to pay (Buterin, 2013).  

4.3  Smart contracts and their lifecycle 

Smart contracts are programs that run on the Ethereum blockchain. They 

consist of data and code that is kept on the Ethereum blockchain at a particular 

address. 

Nonetheless, smart contracts remain a specific type of Ethereum account 

known also as contract accounts. As mentioned earlier, these types of accounts have 

a balance and can be the target of transactions. However, they are not controlled by a 

user, instead they are deployed to the network and run as programmed. Submitting 

transactions that carry out a function specified on the smart contract is how user 

accounts can then communicate with the contract. Like a traditional contract, a smart 
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contract can specify rules and have the code automatically enforce them. Smart 

contract interactions are irreversible and cannot be deleted by default. 

As shown in Fig. 3, the four stages of a smart contract are creation, 

deployment, execution, and completion (Buterin, 2013). 

Figure 3. The lifecycle of Ethereum smart contracts. 

4.3.1 Creation Phase 

During the creation phase, the smart contract is written in a high-level 

programming language, such as Solidity as shown in Code 1. The developer specifies 

the rules that will guide the operations. This includes definition of functions and data 

storage. 

Functions are rules that could include external calls to other smart contracts 

or externally owned accounts, arithmetic operations and security checks.  

Any contract data needs to be allocated to one of two places: memory or 

storage. Memory variables are values that are only kept for the duration of a contract 

function's execution. These are far less expensive to use because they are not kept on 

the blockchain indefinitely.  On the other hand, those that are stored for a longer 

period of time are inserted in the global state and called storage values. Changing the 

storage is a costly operation and requires more gas. 

4.3.2 Deployment Phase 

The primary objective of the deployment phase is to transfer the rules defined 

in the smart contract during the creation phase to the EVM. However, the Ethereum 

Virtual Machine (EVM) understands a low-level, stack-based bytecode language.  
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// Solidity Smart Contract 

pragma solidity ^0.8.0; 

 

contract SimpleCounter { 

    uint256 public counter; 

 

    function incrementCounter() public { 

        counter++; 

    } 

} 

Code 1. Smart contract written in Solidity that implements a counter function. 

Consequently, the smart contract must be compiled into opcodes, which are 

the EVM's low-level instructions. The EVM bytecode is a set of instructions that the 

Ethereum nodes execute. It is a low-level representation of smart contract logic. Each 

bytecode instruction corresponds to a specific operation, such as arithmetic, storage 

manipulation, conditional branching, etc. The following is an example bytecode of 

the simple counter smart contract in Code 1. 

606060408181526001815260206004820152601f60248201527f48656c6c6f2c20576f

726c642100000000000000000000000000000000602082015290565b506000819055

505b5060e58061003e6000396000f3fe6080604052600436106049576000357c01000

00000000000000000000000000000000000000000000000000000900463ffffffff1680

6359d1d3d714604e578063cfae3217146070575b600080fd5b348015605957600080f

d5b506076600480360381019080803590602001909291905050506080565b005b348

015608757600080fd5b50608e60aa565b604051808281526020019150506040518091

0390f35b8060006000508190909055506000600050548156fea165627a7a723058209

a1a2b0f3f1b99708c65c0a0c07ea6f297fa4d1a0712856cf1115dca7cc631a1a0029 

The developer starts a transaction that includes the bytecodes kept in the 

transaction structure's "init" field during the Deployment phase. This action returns 
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another code fragment that will be saved in the EVM running environment and 

executed later. It can be carried out with tools like Truffle. 

 

 

Figure 4. The workflow of Ethereum smart contract source. (Yiu, 2021) 

4.3.3  Execution Phase 

When a smart contract is deployed to the Ethereum blockchain, the EVM 

ensures the execution of the contract's bytecode in a decentralized and deterministic 

manner across all nodes in the network. A smart contract bytecode is a set of 

operations that runs similar to a thread or process on a standalone computer. EVM 

bytecode is machine-readable and is the language that the Ethereum network nodes 

understand and execute.  Until the task is completed or the gas limit is reached, the 

EVM carries out each instruction one at a time. The moment a new block is mined, 

this process takes place.  

4.3.4  Completion Phase 

In the completion phase, after the transaction has been concluded, states are 

modified and documented in blockchains. The new block is mined and distributed to 

all the nodes in the network. Finally, the changes in state persist in the global state. 
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CHAPTER 5 

ETHEREUM SMART CONTRACT TYPES OF 

VULNERABILITIES 

 

5.1  Reentrancy 

According to Code 2, reentrancy describes a situation where contract A calls 

contract B, but contract B may call A back and carry out A's call again due to 

Solidity's fallback mechanism. The fallback function will be called in the event that 

calls from other contracts are unable to find a matching function. The callee's 

fallback function will be activated if the caller uses the call function without 

providing a function signature. In order to re-enter the caller, this function may call 

the caller's function. 

// SPDX-License-Identifier: MIT 

pragma solidity ^0.8.0; 

 

contract VulnerableContract { 

    mapping(address => uint) private balances; 

 

    function deposit() public payable { 

        balances[msg.sender] += msg.value; 

    } 

 

    function withdraw(uint _amount) public { 

        require(balances[msg.sender] >= _amount, "Insufficient balance"); 

 

        // imagine an external call here, like calling another contract 

        (bool success, ) = msg.sender.call{value: _amount}(""); 

        require(success, "Transfer failed"); 

 

        balances[msg.sender] -= _amount; 

    } 
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    function getBalance() public view returns (uint) { 

        return balances[msg.sender]; 

    } 

} 

 

// an attacker contract that exploits reentrancy 

contract AttackerContract { 

    VulnerableContract vulnerableContract; 

 

    constructor(address _vulnerableContractAddress) { 

        vulnerableContract = VulnerableContract(_vulnerableContractAddress); 

    } 

 

    // this function is designed to exploit reentrancy 

    function attack() public payable { 

        // call the withdraw function of the vulnerable contract 

        vulnerableContract.withdraw(1 ether); 

    } 

 

    // fallback function to keep the attack going 

    receive() external payable { 

        if (address(vulnerableContract).balance >= 1 ether) { 

            vulnerableContract.withdraw(1 ether); 

        } 

    } 

 

} 

Code 2. An example of smart contract with reentracy vulnerability. 

5.2  Arithmetic issues 

Overflow and underflow can happen when using integer variables with value 

constraints for addition, subtraction, or storing user input, as the examples in Code 3 

demonstrate. Variable values will wrap to the other side of the bound if they exceed 

either the upper or lower bound.  
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// SPDX-License-Identifier: MIT 

pragma solidity ^0.8.0; 

 

contract SafeMath { 

    function unsafeAdd(uint256 a, uint256 b) public pure returns (uint256) { 

        return a + b; 

    } 

 

    function safeAdd(uint256 a, uint256 b) public pure returns (uint256) { 

        require(a + b >= a, "SafeMath: Addition overflow"); 

        return a + b; 

    } 

} 

Code 3. An example of smart contract implementing safe addition and unsafe 

addition. 

5.3  Unchecked external calls 

Unchecked external calls in Solidity, described by Code 4, are instances in 

which calls to external functions are made without properly implementing error 

handling methods or verifying the return values. In Solidity, external calls are 

interactions with external addresses or other contracts. If not used appropriately, they 

can result in many problems. Unchecked external calls are seen as dangerous because 

they could malfunction or act strangely, and they could trigger smart contract 

vulnerabilities if their results are not adequately verified. 

// SPDX-License-Identifier: MIT 

pragma solidity ^0.8.0; 

 

contract Caller { 

    uint public value; 

 

    function setValue(address _target, uint _newValue) external { 

        // using delegatecall to execute the setValue function of the target contract 

        (bool success, ) = 

_target.delegatecall(abi.encodeWithSignature("setValue(uint256)", _newValue)); 

        require(success, "Delegate call failed"); 
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    } 

} 

 

contract Callee { 

    uint public value; 

 

    function setValue(uint _newValue) external { 

        value = _newValue; 

    } 

} 

Code 4. An example of smart contracts implementing unchecked external calls. 

5.4  Access control 

“tx.origin” is always an external account that keeps track of the originating 

caller's address for a transaction. Bob is “tx.origin” if contract A is being called by 

contract B, and contract A is being called by Bob. But contract A's msg.sender is 

contract B's. The person who called right away is identified as “msg.sender”.  It is 

advised never to utilize “tx.origin” for authentication or identity verification. 
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// Contract A 

pragma solidity ^0.8.0; 

 

contract ContractA { 

    address public originalCaller; 

 

    // Function in Contract A that calls Contract B 

    function callContractB(address contractBAddress) external { 

        // Save the original caller (Bob) 

        originalCaller = tx.origin; 

 

        // Call Contract B 

        ContractB(contractBAddress).doSomething(); 

    } 

} 

 

// Contract B 

contract ContractB { 

    address public actualCaller; 

 

    // Function in Contract B 

    function doSomething() external { 

        // Save the actual caller (Contract A) 

        actualCaller = msg.sender; 

    } 

Code 5. An example of smart contracts having access control vulnerability. 

5.5  Other issues 

A smart contract's function is to send and receive ether. A person is 

considered in a freezing state if they can only accept ether and cannot send ether out. 

The contract might be avaricious and freeze the Ether transferred to its address if it 

does not mention any withdrawal functions. The necessary procedure for depositing 

Ether is illustrated in the example below; once deposited, it cannot be withdrawn. 

The Ether fund is going to be frozen for good. 

Solidity contracts and Ethereum lack a real source of entropy. Because 

historical blocks never change, attackers can utilize the same random number 
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creation procedure to get the same result if the timestamp or hash of historical blocks 

is used for randomness production. The technique could be vulnerable to rogue 

miners who could purposefully select transactions and the sequence in which they 

are executed if future blocks are used.  

// SPDX-License-Identifier: MIT 

pragma solidity ^0.8.0; 

 

contract Example { 

    address public owner; 

 

    modifier onlyOwner() { 

        require(msg.sender == owner, "Not the owner"); 

        _; 

    } 

 

    function transferOwnership(address newOwner) external onlyOwner { 

        (bool success, ) = 

newOwner.call(abi.encodeWithSignature("acceptOwnership()")); 

 

        // checking the return value and handling it 

        require(success, "Ownership transfer failed"); 

 

        // update the owner 

        owner = newOwner; 

    } 

} 

Code 6. An example of smart contracts implementing freezing ether vulnerability. 
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CHAPTER 6 

DATASET 

6.1  Data Collection 

The dataset used to train and validate the models was created by Martina 

Rossini (2022) and is publicly accessible from the HuggingFace repository. The 

dataset consists of verified Ethereum smart contracts provided by SmartBugs, 

ScrawlID and Smart Contract Sanctuary, which is a repository in Github that collects 

smart contracts in different blockchain environments.  

The authors of the dataset then used the Slither contract flattener to download 

the source code from the repository or via Etherscan (Rossini, 2022). Using INFURA 

as their endpoint, they used the web3.eth.getCode() function of the Web3.py module 

to extract the bytecode. Finally, the Slither static analysis tool was used to review 

every smart contract. After identifying 38 distinct vulnerability types in the gathered 

contracts, they were categorized into five groups. These groups represent five 

different sorts of vulnerabilities: reentrancy, arithmetic issues, unchecked calls, 

access control, and others. Others is a class that groups all other detectors. 

The dataset contains 106474 audited smart contracts split into three 

categories: train, validation and test. The train split contains 79641 entries, the test 

split 15972 entries and the validation split 10861 entries. Every data object has the 

address, source code, bytecode, and slither audited output. The address is a 

representation of the Ethereum blockchain platform's smart contract address. The 

source code is its plain-text code in Solidity. The low-level, machine-readable 

hexadecimal code known as bytecode on Ethereum, explains how a smart contract 

functions and behaves. Slither consists of a list of vulnerabilities detected by the 

Slither static analysis tool.  
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6.2  Data Cleaning 

Cleaning the dataset before use was essential. The authors (Rossini, 2022) 

mentioned that smart contracts without a bytecode can be recognized by their 

bytecode field in the specific row containing only the characters "0x". These symbols 

are commonly used to signify a string's hexadecimal format. Consequently, for 

training, validating, and testing the model, only the data items with bytecode lengths 

longer than 4 are retained. The creators of the dataset also used the number 4 to 

represent the security of a contract. As the most secure smart contracts are those that 

are impervious to attacks, label 4 was removed from the model to prevent confusion. 

The dataset must also be split into two groups, called features and labels. In 

this case, the Slither output that pinpoints the vulnerabilities will act as the labels, 

and the smart contract bytecode will act as the features. To better understand the 

relationships between the Ethereum operation codes, the remaining bytecode is 

divided into two characters that are separated by whitespace. The distribution of the 

bytecode length on the dataset is shown in Fig. 5. 

 

Figure 5. Distribution of bytecode length in the dataset. 

Each data instance's slither output is a list containing a configurable number 

of vulnerabilities. The Slither output is first converted to binary format, where the 
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output number, if it exists in the list, is represented as 1 in that index on the new list, 

to make the labels uniform. The distribution of the labels is shown in Fig. 6. 

 

 

Figure 6. Distribution of outputs in the dataset. 

The slither output, for one of the data instances, for example, shows that the 

smart contract has two vulnerabilities, which are identified as [1, 3]. The highest 

number of vulnerabilities that can be found is five, since we previously removed 

label 4. The list [1, 3]'s binary output would be [0, 1, 0, 1, 0, 0]. Due to the existence 

of vulnerabilities 1 and 3, they are represented by 1 on the binary list. These binary 

vulnerabilities are then categorized in a Python dictionary according to the types they 

represent.   

Finally, “Dataset” is used to create the datasets that will be fed to the model. 

To maximize GPU speed, it combines the bytecode and the vulnerability dictionary, 

divides them into groups of 32, and utilizes autotuned prefetch.  
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CHAPTER 7 

ARCHITECTURE OF OUR MODELS 

Both models receive the input EVM bytecode, which is divided into pairs of 

characters. This division by pairs allows for a more accurate representation of the 

Ethereum opcodes. Contrary to other models that are fed with source code, we feed 

these sequences of pairs from the EVM bytecode into our models. Both models are 

trained and validated on a GPU T4 with 50 GB of System RAM and 15 GB of GPU 

RAM. 

7.1  CNNs 

The model is a multi-output convolutional neural network (CNN) as shown in 

Figure 8. The text vectorizer layer uses 256 tokens as the maximum number of 

tokens, an output sequence length of 21041 and splits by whitespace. The embedding 

layer uses an input dimension of 256, an input length of 21041 and an output 

dimension of 128. The model has three sets of convolutional blocks, each consisting 

of two 1D convolutional layers followed by a max-pooling layer. These 

convolutional layers are designed to capture different levels of abstraction in the 

input data. 

 First Block: 2 convolutional layers with 4 filters each, kernel of size 3, stride 

of size 1, followed by max pooling. 

 Second Block: 2 convolutional layers with 8 filters each, kernel of size 3, 

stride of size 1, followed by max pooling. 

 Third Block: 2 convolutional layers with 16 filters each, kernel of size 3, 

stride of size 1, followed by max pooling. 

After each convolutional block, the number of features is doubled to give the 

model the chance to forget any of the patterns it may have previously learnt, as 

suggested also in the WaveNet (Zhuang et al., 2020). At the end, there is a global 

max-pooling layer to capture the most important features from each feature map. A 

dense (fully connected) layer follows the global max-pooling layer. It has 32 units 
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and uses the ReLU activation function. There is a distinct dense layer with a single 

unit and sigmoid activation for each class (indexed by an index). The loss function 

used is binary cross entropy, the learning rate is 0.001 and the optimization function 

is Adam. The model is fitted on the training dataset and trained for 35 epochs. It has 

36557 trainable parameters in total and each epoch takes about 165 seconds to run. 

 

Figure 7. Architecture of the model with CNNs. 
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7.2  RNNs 

The model architecture with RNNs is composed of various layers that 

sequentially process input data and produce a multi-output structure as shown in 

Figure 8.  

The text vectorizer layer splits by whitespace, uses an output sequence length 

of 21041 characters, and allows a maximum of 256 tokens. The embedding layer 

uses a 256-dimensional input and output, with an input length of 21041.  Two Gated 

Recurrent Unit (GRU) layers are employed for sequential modeling of the embedded 

text data. The first GRU layer has 64 units and is configured to return sequences, 

while the second GRU layer has 32 units. The activation function employed is the 

hyperbolic tangent. 

A dropout layer with a dropout rate of 0.2 is introduced to prevent overfitting, 

followed by a fully connected dense layer with 16 units and a hyperbolic tangent 

activation function. The final output layer is made up of several sub-layers, each of 

which uses sigmoid activation to produce a binary classification result.  

The output sub-layer count is equal to the five labels that are supplied. The 

loss function used is binary cross entropy, the learning rate is 0.001 and the 

optimization function is Adam. The model is fitted on the training dataset and trained 

for 20 epochs. It has 80037 trainable parameters, and each epoch takes about 2216 

seconds.  
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Figure 8. Architecture of the model with RNNs. 
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CHAPTER 8 

RESULTS 

This section summarizes the results we were able to get during the training, 

validation and testing phase on the dataset mentioned above. 

8.1  Results of the CNN model 

The visual in Fig. 9 displays the training loss for every single vulnerability. It 

is consistently falling, which indicates that the model is accurately representing the 

features. On the other hand, the validity loss fluctuates, occasionally increasing and 

occasionally decreasing over time.  

 

Figure 9. Training loss during each epoch. 
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Figure 10. Validation loss during each epoch. 

Accuracy in training and validation is rising continuously as shown in Figure 

11. Accuracy is highest for the first and final flaws, particularly access control and 

unchecked calls. The "other" class vulnerabilities have the lowest precision, making 

it more difficult for the model to map these vulnerabilities. This is because there is 

less data with this kind of vulnerability and there are several bytecode changes that 

could be indicative of this issue. 

 

Figure 11. Comparison of training and validation accuracy. 

The model was tested on the test dataset and evaluated, as shown in Table 2, 

on four metrics, accuracy, precision, recall and weighted f1-score. 
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Table 2. Metrics on the test split of the dataset for the CNN model 

 Access control Arithmetic 

Issues 

Other Reentrancy Unchecked external 

calls 

Accuracy 90.515671 89.510709 84.730859 88.267069 90.157653 

Precision 0.899902 0.891799 0.842886 0.881834 0.901656 

Recall 0.905157 0.895107 0.847309 0.882671 0.901577 

Weighted F1-score 0.901644 0.881681 0.837517 0.879274 0.901437 

 

8.2  Results of the RNN model 

The training loss for each vulnerability is shown in Figure 12. It is steadily 

declining, proving that the model is capturing the patterns of EVM bytecode. It is 

worth noting that the validity loss with RNNs, shown in Figure 13, is more consistent 

over time than CNNs, which experienced fluctuations.  

 

Figure 12. Training loss during each epoch. 
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Figure 13. Validation loss during each epoch. 

In Figure 7.2.3, training and validation accuracy are both steadily improving. 

The first and last faults, namely access control and unchecked external calls, have the 

highest accuracy. The model has a harder time mapping vulnerabilities in the "other" 

class since they have the lowest precision. 

 

Figure 14. Comparison of training and validation accuracy. 

We used the test dataset to evaluate the model on four metrics such as 

accuracy, precision, recall and f1-score. The results are shown in Table 3. 
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Table 3. Metrics on the test split of the dataset. 

 Access control Arithmetic 

Issues 

Other Reentrancy Unchecked external 

calls 

Accuracy 93.185101 92.337165 88.945418 91.369889 96.815527 

Precision 0.928605 0.920718 0.887975 0.913099 0.968689 

Recall 0.931851 0.923372 0.889454 0.913699 0.968155 

Weighted F1-score 0.928301 0.921411 0.884900 0.912275 0.968094 

8.3  Result comparison 

The micro F1-score for both our models is an average micro F1-score 

calculated across all five vulnerability classes on the validation split of the dataset. 

Table 7.3.1 displays the micro F1-scores that different models trained by Rossini, 

Zichichi, & Ferret (2022) achieved on the validation split of the dataset. The last two 

entries of Table 4 show the micro F1-score that our models achieved on the same 

split. They clearly perform better than the other models. 

Table 4. Comparison of micro F1-scores between different models. 

Model Micro F1-score 

ResNet1D 0.8381 

ResNet 0.7928 

Inception 0.8015 

LSTM Baseline 0.7953 

Our RNN model 0.93 

Our CNN model 0.89 
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CHAPTER 9 

CONCLUSIONS  

 

9.1  Conclusions 

Based on the results achieved during testing, we conclude that EVM bytecode 

is effective in showing smart contract vulnerabilities. We base our conclusion on the 

fact that we managed to achieve an average micro F1-score of 0.93 and 0.89 across 

all five vulnerabilities for our RNN model and CNN model, respectively.  

9.2  Recommendations for future research 

For future initiatives, we recommend stepping up data gathering efforts and 

convolutional block complexity in the model architecture. The quantity and diversity 

of the dataset can be increased to facilitate the model's generalization and to provide 

more detailed insights and applications. The auditing of smart contracts could be 

performed by experts in the field to ensure the correct labeling of the smart contracts. 

Finally, we encourage developing a concatenation between two different types of 

inputs in a single model. One input layer would expect the bytecode of the smart 

contract and the other input layer would expect the source code of the same smart 

contract. 
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