
SMART CONTRACT VULNERABILITY DETECTION ON EVM BYTECODE

WITH DEEP LEARNING

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

LEJDI PRIFTI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

MARCH, 2024

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Smart Contract

Vulnerability Detection on EVM Bytecode with Deep Learning” and that in our

opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master

of Science.

 Assoc. Prof. Dr. Arban Uka

Head of Department

 Date: 03, 01, 2024

Examining Committee Members:

Assoc. Prof. Dr. Dimitrios Karras (Computer Engineering) _______________

Prof. Dr. Gëzim Karapici (Computer Engineering) _______________

Prof. Dr. Betim Cico (Computer Engineering) _______________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name Surname: Lejdi Prifti

Signature: ______________

iii

ABSTRACT

SMART CONTRACT VULNERABILITY DETECTION ON EVM

BYTECODE WITH DEEP LEARNING

Prifti, Lejdi

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Betim Cico

In the quickly changing world of blockchain technology, it is critical to

guarantee the security of self-executing contracts, written in programming languages

like Solidity called smart contracts. Not all security vulnerabilities in smart contracts

will be found by human code reviews and security audits using traditional methods.

Deep learning networks have become a promising answer to this problem. In this

paper, we present the architecture of two models—using convolutional and recurrent

neural networks—that are intended to effectively discover five vulnerabilities in

smart contracts. To train and validate the models, we used a dataset that includes

106474 audited smart contracts taken from the public Ethereum blockchain. Instead

of the source code used by most deep learning-based solutions, the models receive

input in the form of Ethereum Virtual Machine (EVM) bytecode. Across all five

vulnerabilities, the Recurrent Neural Network model has an average micro F1-score

of 0.93, whereas the Convolutional Neural Network achieves an average micro F1-

score of 0.89. Through comparative research with various deep learning systems and

static analysis tools, we have determined that EVM bytecode may be leveraged as a

feature to detect vulnerabilities in smart contracts.

Keywords: Smart Contracts, Security, Deep Learning, Recurrent Neural Network,

Convolution Neural Network, Bytecode

iv

ABSTRAKT

ZBULIMI I DOBËSIVE NË KONTRATAT INTELIGJENTE NË

KODIN EVM ME MËSIM TË THELLUAR

Prifti, Lejdi

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Prof. Dr. Betim Cico

Në botën e ndryshimeve të shpejta të teknologjisë së blockchain, është kritike

të garantohet siguria e kontratave vetë-ekzekutive, të shkruara në gjuhë programimi

si Solidity të quajtura kontrata inteligjente. Rrjetet e mësimit të thellë kanë bërë një

përgjigje të premtueshme për këtë problem. Në këtë punim, ne prezantojmë

arkitekturën e dy modeleve—duke përdorur rrjete konvolucionale dhe rrjete neurale

rekurrente—që janë të krijuara për të zbuluar efektivisht pesë dobësi në kontratat

inteligjente. Për të trajnuar dhe vlerësuar modelet, ne përdorëm një set të të dhënash

që përfshin 106474 kontrata inteligjente të audituara marrë nga blockchain-i publik

Ethereum. Në vend të kodit burimor, modelet marrin hyrje në formë të kodit të

makinës virtuale Ethereum (EVM). Për të pesë dobësitë, modeli i Rrjetit Neuronal

Rekurent ka një vlerësim mesatar mikro F1 të 0.93, ndërsa Rrjeti Neuronal

Konvolucional arrin një vlerësim mesatar mikro F1 prej 0.89. Përmes hulumtimeve

krahasuese me sisteme të ndryshme të mësimit të thellë dhe mjeteve të analizës

statike, kemi përcaktuar se kodit EVM mund të shfrytëzohet si një tipare për të

zbuluar dobësitë në kontratat inteligjente.

Fjalët kyce: Kontrata inteligjente, Siguria, Mësim i thelluar, Rrjeti Neuronal

Konvolucional, Kodi bajt

v

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAKT .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Problem Statement .. 1

1.2 Thesis Objectives .. 2

CHAPTER 2 .. 3

LITERATURE REVIEW... 3

CHAPTER 3 .. 17

RESEARCH GAP .. 17

3.1 Could EVM bytecode be used as a feature for uncovering smart contract

vulnerabilities? ... 17

3.2 How do RNNs and CNNs trained on EVM bytecode perform compared to

static analysis tools and other deep learning solutions? ... 18

CHAPTER 4 .. 19

ETHEREUM AND SMART CONTRACTS ... 19

4.1 Ethereum as a blockchain .. 19

vi

4.2 Ethereum key components .. 20

4.3 Smart contracts and their lifecycle .. 22

4.3.1 Creation Phase .. 23

4.3.2 Deployment Phase .. 23

4.3.3 Execution Phase ... 25

4.3.4 Completion Phase .. 25

CHAPTER 5 .. 26

ETHEREUM SMART CONTRACT TYPES OF VULNERABILITIES 26

5.1 Reentrancy ... 26

5.2 Arithmetic issues ... 27

5.3 Unchecked external calls ... 28

5.4 Access control ... 29

5.5 Other issues ... 30

CHAPTER 6 .. 32

DATASET ... 32

6.1 Data Collection .. 32

6.2 Data Cleaning .. 33

CHAPTER 7 .. 35

ARCHITECTURE OF OUR MODELS .. 35

7.1 CNNs ... 35

vii

7.2 RNNs ... 37

CHAPTER 8 .. 39

RESULTS .. 39

8.1 Results of the CNN model ... 39

8.2 Results of the RNN model ... 41

8.3 Result comparison ... 43

CHAPTER 9 .. 44

CONCLUSIONS .. 44

9.1 Conclusions ... 44

9.2 Recommendations for future research ... 44

REFERENCES ... 45

viii

LIST OF TABLES

Table 1. Summary of references based on the methodology used. 16

Table 2. Metrics on the test split of the dataset for the CNN model 41

Table 3. Metrics on the test split of the dataset. ... 43

Table 4. Comparison of micro F1-scores between different models. 43

ix

 LIST OF FIGURES

Figure 1. Ethereum architecture. (Chittoda, 2019) .. 19

Figure 2. Accounts in Ethereum. (Farnaghi, Mahdi & Mansourian and Ali, 2020) .. 21

Figure 3. The lifecycle of Ethereum smart contracts. .. 23

Figure 4. The workflow of Ethereum smart contract source. (Yiu, 2021) 25

Figure 5. Distribution of bytecode length in the dataset. ... 33

Figure 6. Distribution of outputs in the dataset. ... 34

Figure 7. Architecture of the model with CNNs. ... 36

Figure 8. Architecture of the model with RNNs. ... 38

Figure 9. Training loss during each epoch. .. 39

Figure 10. Validation loss during each epoch. ... 40

Figure 11. Comparison of training and validation accuracy. 40

Figure 12. Training loss during each epoch. .. 41

Figure 13. Validation loss during each epoch. ... 42

Figure 14. Comparison of training and validation accuracy. 42

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Deep learning, a branch of machine learning, has achieved good results in

several fields, including speech recognition, computer vision, and natural language

processing.

In this paper, we present the architecture of two deep learning neural networks

that are shown to achieve good performance in detecting vulnerabilities into

Ethereum smart contracts.

Through the literature review, we provided a comprehensive overview of the

methods used to find smart contract vulnerabilities and classified them into two

groups: deep learning methods and static analysis tools. The importance of several

well-known tools in enhancing the security of Ethereum smart contracts is

highlighted, including Oyente, Mythril, Maian, Zeus, EtherFuzz, and Securify. These

technologies do, however, have several drawbacks, such as restricted vulnerability

coverage, false positives and false negatives. Many deep-learning models and

methods, including Convolutional Neural Networks (CNNs), Long-Short Term

Memory (LSTM) networks, and neuro-symbolic frameworks, have been proven to be

efficient.

However, most of these models expect to input the source code of smart

contracts. Instead of the source code, we use the EVM bytecode. From the results we

got, we have concluded that EVM bytecode is a good feature to detect vulnerabilities

in smart contracts. We have compared the results of our model with those achieved

by Rossini, Zichichi, & Ferret (2022) in the same dataset. For future work, we

suggest expanding data collection efforts by increasing the number of smart contract

vulnerabilities. Furthermore, we recommend increasing convolutional block

2

complexity, as well as creating a single model that expects two forms of inputs, the

source code and the bytecode of the smart contract.

1.2 Thesis Objectives

The following are the key goals of this study's investigation into employing

deep learning networks to identify smart contract vulnerabilities:

1. Increase security of smart contracts: The main objective is to increase the

security of smart contracts used on Ethereum and other blockchain systems.

Our goal is to identify vulnerabilities more precisely and quickly than with

conventional techniques by building a strong deep learning model, thereby

reducing the risks related to smart contract vulnerabilities.

2. Using a deep learning-based solution: The goal is to create, put into practice,

and assess a deep learning-based model that can efficiently identify a variety

of smart contract vulnerabilities. This entails dealing with problems like

reentrancy flaws, integer overflows, uncovered calls, and other typical

security concerns.

3. Investigate multi-class categorization: Our goal is to create a model with

multi-class categorization capabilities that can recognize several types of

vulnerabilities in a single smart contract. This method offers a more thorough

evaluation of the security posture of a contract.

4. Optimize training and inference speed: Security mechanisms for smart

contracts must be quick to respond, especially considering the urgency of

blockchain transactions. The goal is to accelerate the model's inference and

training processes to provide quick and effective vulnerability detection.

3

CHAPTER 2

LITERATURE REVIEW

We provide a general overview of the current approaches to smart contract

vulnerability detection in this literature study. Static and deep learning solutions are

the two categories we will examine. We will list the potential flaws that each may

have below.

There are several well-known solutions based on symbolic execution that are

widely used in the field of automated security tools for smart contracts.

To increase the security of Ethereum smart contracts, a specific security

analysis tool called Oyente (Loi Luu, 2016) was created. Oyente, a tool designed to

find potential flaws and vulnerabilities in smart contract programming, uses symbolic

execution techniques to thoroughly examine all possible execution routes. It

simulates the behavior of the contract without executing it, which enables it to

identify intricate flaws that could be difficult to find through manual analysis.

Oyente's main goal is to highlight security flaws that could be used by malevolent

actors, such as reentrancy vulnerabilities, integer overflows, and other potential

exploits. As a result, it helps programmers find and fix flaws before releasing their

smart contracts onto the Ethereum network. Although useful, Oyente's capabilities

have several drawbacks, such as the potential for false positives or negatives, and the

complexity of the contract code may have an impact on how effective it is.

Another popular open-source security analysis tool made exclusively for

finding security flaws and vulnerabilities in Ethereum smart contracts code

developed by ConsenSys (Consesys, 2018) is called Mythril. Mythril extensively

examines multiple smart contract execution paths using symbolic execution and

static analysis methods without executing them on the blockchain. This enables it to

identify weaknesses that might be used by bad actors to their advantage.

4

Complex problems like reentrancy vulnerabilities, integer overflows, and

logic defects that could elude manual code review are particularly well-detected.

Mythril is acknowledged to have a number of drawbacks, though, including a high

rate of false positive and false negative results, analytical complexity, and restricted

support for specific contract types.

To identify between potential greedy, prodigal, and suicidal smart contracts,

Ivica Nikolic et al. (2018) introduced a new tool called Maian. The contracts that,

when attacked, restore money to owners, advertise a specific solution at addresses

that have previously given them ether, or both have been dubbed prodigal contracts

by the authors. When a contract malfunctions or runs out of Ether due to an attack, it

frequently has the security fallback option of being terminated by its owner or other

trustworthy addresses. The authors consider a contract to be suicidal if it can be

terminated by any random account. Lastly, contracts that remain active and

permanently lock Ether, preventing its release under any circumstances, are referred

to as greedy. Maian uses symbolic analysis and concrete validation to find the

vulnerabilities mentioned above. Ivica Nikolic et al. came to conclusion that around

97% of prodigal, 97% suicidal, and 69% of greedy contracts were genuine positives

using a concrete validation engine or manual inspection after analyzing 970,898

contracts. They observed that it is crucial to analyze the contracts' bytecode rather

than their Solidity code. Despite the fact that Maian is a powerful general tool for

finding defects, it does not ensure that all program paths are explored (leading to

false negatives).

In their work, Giancarlo Bigi et al. (2015) validate a decentralized smart

contract protocol using a combination of game theory and probabilistic model

testing.

Bhargavan et al. (2016) present preliminary research on the adaptive type and

effect system of F*. Their approach, based on shallow embeddings and type

checking within an existing verification framework, is applicable for looking into the

formal verification of contracts written in Solidity and EVM bytecode. The system is

designed to capture and prove desired features for contract programmers.

5

In the study by Grossman et al. (2018), the focus is on domain-specific

features. They introduce a dynamic linearizability checker to delve deeper into

pinpointing reentrancy problems, emphasizing the importance of addressing issues

related to specific domains in contract programming.

The Zeus system (Kalra, Goel, Dhawan, & Sharma, 2018), a sound analyzer

that converts smart contracts to the LLVM framework, does not support violation

patterns to lower false positives. Additionally, Zeus does not allow for the

verification of data- and control-flow aspects. Properties are written in the XACML

language.

Securify was introduced by Tsankov et al. (2018). It makes use of the

domain-specific insight that many of the practical properties for smart contracts that

are violated are also violated by simpler, much easier-to-check properties. It

examines every contract action to prevent unfavorable false negatives. Additionally,

by ensuring that certain actions are genuine problems, it decreases the user effort

required to categorize warnings into true positives and false alarms. Furthermore, it

facilitates the usage of a brand-new domain-specific language that enables users to

communicate newly discovered vulnerability patterns. Its analytical pipeline is

entirely automated utilizing scalable, commercial Datalog solvers, from bytecode

decompilation to optimizations through pattern validation.

By propagating contaminated information via several transactions, a new tool

called Ethain (Brent, Grech, Lagouvardos, Scholz, & Smaragdakis, 2020) detects

composite assaults that lead to grave infractions. With a very high precision of 82.5%

valid warnings for end-to-end vulnerabilities, their research spans over the entire

blockchain and achieves better results than Securify, mentioned previously.

To identify TOD issues in smart contracts, Wang et al. (2022) provided a

modified version of the fuzzy framework EtherFuzz. According to their experimental

results, EtherFuzz is more effective than other tools at identifying TOD

vulnerabilities. Between them, there is a reduction in time cost that is on average

31.1% and a reduction in memory cost that is on average 29.2%. The authors note

that they hope to reduce EtherFuzz's current false positive rate in subsequent works.

6

Neural networks have been created to aid in the detection of smart contracts

vulnerabilities as deep learning has advanced.

Cheng, Wang, Hua, Xu and Sui (2021) proposed in their work DeepWukong,

a novel deep learning-based embedding method for C/C++ program static software

vulnerability identification. They create a new code representation that maintains

both the natural language information of a program and high-level programming

logic by using sophisticated graph neural networks to embed code fragments in a

compact and low-dimensional representation.

By combining metric learning triplet loss with a bidirectional long short-term

memory (BiLSTM) network model, Meiying, Xie, Wen, Li and Zhou (2023)

proposed a unique vulnerability detection method for Ethereum smart contracts. By

boosting cohesion within a single category and discreteness between various

categories of smart contracts, the system optimizes feature representation space and

improves the accuracy of vulnerability identification. The method improves

interpretability and aids in locating root causes by using source code as input data,

word vectorization, and an attention method to locate crucial details linked to

vulnerabilities. A comprehensive dataset of 165,000 verified smart contract source

codes is produced, and vulnerability flags are provided using a variety of detection

techniques to provide robust data support. The suggested method outperforms

previous deep learning models and conventional methods in successfully extracting

vectorized features and increasing vulnerability detection precision.

In their study, Lutz, et al. (2023) proposed ESCORT with the goal of

overcoming the scalability and generalization restrictions of the earlier published

research. ESCORT is a multi-output neural network trained to recognize each

specific vulnerability class and learn the bytecode properties. ESCORT makes use of

a feature extractor to accomplish these two objectives since it can read contract

bytecode regardless of its flaws and extract its semantic and syntactic information.

The second objective is accomplished by using an individual vulnerability class

branch to characterize susceptibility considering the previously extracted bytecode

attributes. ESCORT achieves an average F1 score of 95% on six different

vulnerability categories, according to experimental findings, and the detection time is

7

0.02 seconds per contract. When ESCORT is expanded to include new vulnerability

categories, the average F1 score is 93%.

To find weaknesses in smart contracts' opcode, the study by Joon-Wie Tann,

Jie Han, Sen Gupta, and Ong (2018) suggests using a sequence learning approach.

The contract's opcode is expressed specifically using the one-hot encoding and

embedding matrix. An LSTM model is trained to predict if a given smart contract is

safe or vulnerable using the obtained code vectors as input (binary classification).

Because the LSTM-based technique cannot distinguish between the different

vulnerability categories and has a stated F1 score of 86%, it performs poorly at

detecting vulnerabilities.

Gogineni, Swayamjyoti, Sahoo and Sahu (2022) present a multi-class

categorization technique based on sequencing. For identifying vulnerabilities, their

study adopts the "Average Stochastic Gradient Descent Weighted Dropped LSTM"

(Merity, Keskar, & Socher, 2017). A pre-trained encoder for linguistic tasks (Howard

& Ruder, 2018) and an LSTM-based classifier for vulnerability classification make

up the proposed model's two components. Three different vulnerability types can be

found with this technology, which operates at the opcode level. An F1 score of 95%

on safe contracts and 30% on prodigal contracts is generated by the model. The

model's extensibility was not considered by the writers.

The contract bytecode is converted into fixed-sized RGB color images by

TonTon Hsien-DeHuang (2018) and a convolution neural network is trained for

vulnerability identification. CNN-based classifier uses multi-label classification,

which has a poor confidence score for identifying the precise vulnerability classes.

Due to the low confidence level, the performance of the multi-label classification is

not satisfactory. This could be caused by the CNN architecture and image

representation of the bytecode ignoring the sequential data provided in the contract.

A graph neural network (GNN)-based technique is suggested by Zhuang et al.

(2020). This work creates a contract graph from the source code of the contract,

where nodes and edges stand in for crucial function calls and variables and the

temporal execution trail, respectively. To emphasize key nodes, this graph is

8

normalized before being sent to a temporal message propagation (TMP) network to

look for vulnerabilities. There are a few drawbacks to the concept in terms of its

limited applicability and efficacy. The F1-score for all three vulnerabilities is 77%.

Deng et al. (2023) proposed a smart contract vulnerability detection

mechanism based on multimodal decision fusion. This approach also considers the

smart contract’s control structure and code semantics. Using the multimodal decision

fusion method, it unifies the source code, operation code, and control-flow modes.

With great accuracy and recall rates, the deep learning approach extracts five

attributes that are utilized to represent contracts. As demonstrated by the

experimental results, the authors’ method's detection accuracy for re-entrant

vulnerability, Ethernet locking vulnerability, arithmetic vulnerability, and transaction

order dependence can reach 91.6%, 90.9%, 94.8%, and 89.5%, respectively, and its

detected AUC values can reach 0.834, 0.852, 0.886, and 0.825, respectively.

The extraction of features and the volume of data utilized for training are

critical to the efficacy of vulnerability detection for smart contracts, according to the

data-driven deep learning technique. Consequently, Gao, Jiang, Xia, Lo, & Grundy

(2020) suggested an automated technique based on word embedding to acquire

Solidity smart contract capabilities.

Zhang et al. (2022) proposed leveraging ensemble learning (EL) techniques

to smart contract vulnerabilities prediction. To facilitate contract-level vulnerability

detection, multiple NNs were included in the proposed SCVDIE-ENSEMBLE

approach. These models were then used to create an ensemble framework known as

the Information Graph and Ensemble Learning-based Smart Contract Vulnerability

Detection technique (SCVDIE). The authors observed that since each NN has a

distinct function to fulfill, SCVDIE-ENSEMBLE could perform more accurately and

robustly on unseen data while increasing the efficiency of data utilization. According

to the authors, on various sized datasets, the mean F1 score and the mean prediction

accuracy both reached ideal values of 97.57% and 97.42%, respectively, and

achieved decreased relative RMSEs.

9

Huang, Zhou, Xiong and Li (2022) developed a smart contract vulnerability

model using multi-task learning. The model's detection capabilities were enhanced to

enable the identification and detection of vulnerabilities by assigning supplementary

tasks to learn more directional vulnerability features. The hard-sharing design, which

has two components, is the foundation of the model. First, the input contract's

semantic information is mostly learned via the bottom sharing layer. The neural

network, which is based on an attention mechanism, is used to learn and extract the

feature vector of the contract after word and positional embedding has first converted

the text representation into a new vector. Second, each task's functions are primarily

done by using the task-specific layer. As the authors have stated, for each task, a

classification model that learns and pulls features from the shared layer for training

to accomplish their separate task objectives was built using a standard convolutional

neural network. The findings of the experiment demonstrate that the addition of the

auxiliary vulnerability detection task improved the model's capacity to identify the

different types of vulnerabilities.

In their paper, Sun & Gu (2021) suggest using a CNN model with a self-

attention mechanism to identify smart contract vulnerabilities. Additionally, their

approach uses feature engineering to combine a stop word list, sensitive word

sharding, and an enhanced one hot encoder. However, the model is limited to

detecting only three types of vulnerabilities. The authors plan to expand on their

single binary classification models in future research by developing a multinomial

classification model that may simultaneously identify several vulnerability kinds.

The Dual Attention Graph Convolutional Network (DA-GCN) is a unique

model that Fan, Shang and Ding (2021) propose to detect vulnerabilities in

blockchain-based smart contracts. Graph convolutional network and self-attention

mechanism-based feature extractor receives input from the control flow graph and

the opcode sequence retrieved from smart contract bytecodes. Then, using control

flow level attention, Model DA-GCN concentrates on the most significant nodes in

the control flow graph while suppressing irrelevant data. In the end, a multilayer

perceptron is employed to determine the smart contract's vulnerability. Their

suggested model DA-GCN may effectively increase the smart contract vulnerability

detection performance, as demonstrated by experimental findings on the real-world

10

smart contract data set containing two vulnerabilities: timestamp dependency and

reentrancy.

Peng et al. (2015) in their work pointed out that there is a difference between

natural language and programming language. In essence, the programming language

does not benefit from the NLP algorithms as much as the natural language does. The

authors concluded that their proposed “coding criterion” based on ASTs is a

successful representation learning algorithm for programs. They convert abstract

syntax tree nodes into vectors. To identify similar source code snippets, Mou et al.

(2016) suggest a tree-based convolutional neural network based on program abstract

syntax trees.

To improve the class separation between vulnerable and non-vulnerable

samples during model building, Chakraborty, Krishna, Ding and Ray (2020)

demonstrate that representation learning can be applied on top of conventional DL

techniques. A common family of machine learning algorithms called representation

learning eliminates the need for human feature engineering by automatically

identifying the input representations required for better classification. The authors

claim the model must learn to automatically represent benign and vulnerable code in

the feature space since it is hard to distinguish between their attributes. Moreover, the

model's accuracy rate can be raised by addressing the class imbalance of

vulnerable/non-vulnerable samples through semantic information, data

deduplication, and training data balancing.

VELVET, a unique ensemble learning method for identifying vulnerable

statements, is presented by Ding et al (2021). The author’s approach properly

captures the local and global context of a program graph and effectively understands

susceptible patterns and code semantics by combining graph-based and sequence-

based neural networks. They used a commercially available synthetic dataset and a

recently released real-world dataset to examine the efficacy of VELVET. According

to the authors, in the static analysis environment, VELVET performs 4.5 times better

on real-world data than baseline static analyzers when vulnerable functions are not

known ahead of time.

11

To overcome the "simple" first-order limitations, Xie, Kesting and Neider

(2022) have created the first neuro-symbolic framework for neural network

verification. This framework allows for the expression of complex correctness

aspects through deep neural networks. They have demonstrated how quickly their

framework may be added to the existing infrastructure for verification.

Two novel model families have been developed by Hellendoorn, Sutton,

Singh, Maniatis and Bieber (2020) that efficiently combine the longer distance

information that the sequence model can convey with the semantic structure

information that the Gated Graph Neural Network (GGNN) can access.

Graph Relational Embedding Attention Transformer (GREAT) is another

family of families that conveys structural relations instead by generalizing the

relative position embeddings in Transformers by Shaw, Uszkoreit and Vaswani

(2018). Graph Sandwich is one family of families that alternates between sequential

information flow and message passing through a chain of nodes within the graph.

The authors show that their proposed model family outperformed all previous

findings and their new, already stronger baseline by an additional 10% each, while

training both substantially faster and with fewer parameters.

To address the shortcomings of the current GNN, Wang, Wang, Gao, &

Wang (2020) developed a new graph neural network architecture known as the

Graph Interval Neural Network (GINN). In contrast to the conventional GNN, GINN

expands from a carefully selected graph representation that is acquired via an

abstraction technique intended to support model learning. Specifically, GINN

employs just intervals (which are typically represented by looping constructs) to

mine a program's feature representation. In addition, GINN uses a hierarchy of

intervals to scale learning over huge graphs.

A code property graph is a novel source code representation introduced by

Yamaguchi, Golde, Arp, & Rieck (2014). This representation combines ideas from

classic program analysis, such as abstract syntax trees, control flow graphs, and

program dependence graphs, into a joint data structure. With this comprehensive

representation, they are able to model elegantly templates for common vulnerabilities

12

with graph traversals that can identify, for example, buffer overflows, integer

overflows, format string vulnerabilities, or memory disclosures; they implement their

approach using a widely used graph database and demonstrate its effectiveness by

finding eighteen previously undiscovered vulnerabilities in the Linux kernel source

code.

Li, Wang, & Nguyen (2021) separately examine each vulnerable statement

and its surrounding settings to identify vulnerabilities using data and control

dependencies. Consequently, their model outperforms earlier methods that included

contextual and susceptible code in its ability to discern between statements that are

vulnerable and those that are not. In addition to the coarse-grained vulnerability

detection result, they use interpretable AI to provide customers with fine-grained

interpretations that include the subgraph in the Program Dependency Graph (PDG)

holding the significant statements that are relevant to the discovered vulnerability.

IVDetect outperforms the current DL-based approaches by 43%–84% in top-10

nDCG and 105%–255% in MAP ranking scores, according to their empirical

assessment using vulnerability databases.

In their work, Tarlow et al. (2019) use a graph to represent build

configuration files and compiler diagnostic messages. Then, they employ a Graph

Neural Network to predict a diff, which denotes how to alter the abstract syntax tree

of the code, which is represented by a series of tokens and pointers to code places in

the neural network.

W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang (2020) have

demonstrated the significant impact of using the Transformer model for the source

code summarization task. The authors claim that the Transformer, which

incorporates copy attention and relative position representations, performs

significantly better than state-of-the-art methods.

A bimodal pre-trained model for natural language (NL) and programming

language (PL) called CodeBERT is presented by Feng et al. (2020). With a

Transformer-based neural architecture, CodeBERT is trained with a hybrid objective

function that includes replacement token detection as a pre-training job. The goal of

13

this work is to identify logical substitutes that have been sampled from generators.

To enable a variety of NL-PL applications, such as natural language code search and

code documentation production, the model learns general-purpose representations.

Both "unimodal" data—in which NL and PL are taken into separate consideration—

and "bimodal" data—which consists of NL-PL pairs—are used in the training

process. After fine-tuning the model parameters, CodeBERT's evaluation on two NL-

PL apps shows state-of-the-art performance in natural language code search and code

documentation production.

The VSCL framework was proposed by Mi et al. (2021) in their attempt to

automatically identify vulnerabilities in blockchain-based smart contracts. More

precisely, as the source code of smart contracts is rarely made available to the public,

they first use feature vector generating techniques from the bytecode of the contract.

To obtain the detection result, the gathered vectors are then fed into a deep neural

network (DNN) that is based on metric learning.

Wu et al. (2021) present a novel method called Peculiar that uses a pre-

training technique to identify smart contract vulnerabilities based on critical data

flow graphs. Crucial data flow graph is less complicated and does not introduce an

unduly deep hierarchy than the typical data flow graph, which is already used in

existing techniques. This makes it easier for the model to focus on the important

aspects. Additionally, pre-training methodology was incorporated into the model

because of the significant gains it has made on a range of natural language

processing tasks according to the authors.

A unique approach to reentrancy vulnerabilities in Ethereum smart contracts

was developed by Eshghie, Artho and Gurov (2021). They suggest Dynamit, a

monitoring framework that merely uses transaction metadata and balance data from

the blockchain system in place of domain expertise or code instrumentation. To

categorize transactions as benign or dangerous, Dynamit takes attributes out of

transaction data and applies a random forest classifier to it.

In their work, Dinella et al. (2020) presents a model that consists of an LSTM

central controller that performs a series of basic operations (such predicting type,

14

producing patch, etc.) to accomplish a fix, and an external memory (a Graph Neural

Network) for embedding a malfunctioning program. An autoregressive model is used

to implement the multi-step decision procedure. The authors claim that the way the

memory is managed in the model is different from that of the normal NTM: in

addition to the usual read and write operations, the controller can additionally

increase or decrease the memory when adding or removing nodes from the original

graph.

A pipeline named AI4VA is proposed by Suneja, Zheng, Zhuang, Laredo and

Morari (2020). It begins by encoding a sample source code into a Code Property

Graph. The authors then vectorize the retrieved graph in a way that they say retains

its semantic content. Then, using many of these graphs, GGNN is trained to

automatically extract templates that distinguish the graph of a vulnerable sample

from a healthy one. On two of the three datasets the authors tested, the model beats

CNN and RNN-based deep learning models, static analyzers, and traditional machine

learning. This work provides more evidence that the code-as-graph encoding—rather

than the code-as-photo and linear sequence encoding methods currently in use—is

more significant for vulnerability detection. Vytovtov and Chuvilin (2019) cluster

Java classes automatically into business logic, interface, and utility classes using

GNN based auto-encoders for unsupervised learning over source code ASTs.

Moreover, Alon, Zilberstein, Levy and Yahav (2019) proposed to encrypt source

code using a set of path contexts (AST paths + leaf-node values) and train an

attention-based neural network to identify suitable function names based on the code.

In their work, Nguyen et al. (2022) present the ReGVD model, which is

based on graph neural networks. To construct a graph, ReGVD treats each raw

source code as a flat series of tokens. Only the token embedding layer of a trained

programming language (PL) model initializes the node features. To generate a graph

embedding for the source code, ReGVD then makes use of residual connections

between GNN layers and looks at a combination of graph-level sum and max

poolings.

Furthermore, Hin, Kan, Chen and Ali Babar (2022) introduced a unique deep

learning framework called LineVD that treats the problem of node classification in

15

conjunction with statement-level vulnerability identification. LineVD uses a

transformer-based architecture to encode the raw source code tokens and graph

neural networks to utilize control and data dependencies between statements.

Şahin, Özyedierler and Tosun (2022) presented a method for employing

GNNs to anticipate susceptible code versions by taking advantage of commits in

addition to code. Specifically, they tested various deep learning and machine learning

architectures, including Graph Convolutional Networks and GraphSAGE. To train

the GNN models, the Wireshark project samples were gathered, and the data were

converted into AST representations and fed into the GNN models. To understand the

features of the nodes, they also employed a technique akin to word2vec. They used

the SZZ technique in conjunction with the commits to pinpoint the exact position of

the code's vulnerability. Ultimately, the application of GraphSAGE to identify

susceptible code yielded the highest results, with an F1 score of 74.4% and an AUC-

ROC score of 96.0%.

According to Evangelos, Katsadouros and Charalampos & Patrikakis (2022),

multi-class classification is more advantageous in providing information about the

type of vulnerability. However, the authors claim that there hasn't been a lot of

research done in this area.

Lastly, an overview of the literature review based on the methodology is

provided in Table 1.

16

Table 1. Summary of references based on the methodology used.

Method References

Symbolic Execution (Loi Luu, 2016), (Consesys, 2018)

Game Theory & Probabilistic

Model Testing

(Bigi, Bracciali, Meacci, & Tuosto, 2015)

Concrete Validation and

Analysis

(Nikolic, Kolluri, Sergey, Saxena, & Hobor, 2018), (Tsankov, et al.,

2018), (Brent, Grech, Lagouvardos, Scholz, & Smaragdakis, 2020),

(Wang, et al., 2022)
LLVM Framework and Type

Systems

 (Bhargavan, et al., 2016), (Kalra, Goel, Dhawan, & Sharma, 2018)

Dynamic Linearizability Checker (Grossman, et al., 2018)

Deep Learning (Cheng, Wang, Hua, Xu, & Sui, 2021), (Meiying, Xie, Wen, Li, &

Zhou, 2023), (Lutz, et al., 2023), (Fan, Shang, & Ding, 2021),

(Zhuang, et al., 2020), (Merity, Keskar, & Socher, 2017)
Ensemble Learning (Zhang, et al., 2022), (Ding, et al., 2021)

Multi-Modal Decision Fusion (Deng, et al., 2023), (Gao, Jiang, Xia, Lo, & Grundy, 2020)

Sequence Learning (Tann, Han, Gupta, & Ong, 2018)

Transformer Model (Ahmad, Chakraborty, Ray, & Chang, 2020), (Feng, et al., 2020)

Graph Neural Networks (GNNs) (Wang, Wang, Gao, & Wang, 2020), (Tarlow, et al., 2019), (Mi, et

al., 2021), (Wu, et al., 2021), (Suneja, Zheng, Zhuang, Laredo, &

Morari, 2020), (Vytovtov & Chuvilin, 2019), (Nguyen, et al., 2022)

AST-based Approaches (Peng, et al., 2015), (Chakraborty, Krishna, Ding, & Ray, 2020),

(Ding, et al., 2021), (Nguyen, et al., 2022), (Hin, Kan, Chen, &

Babar, 2022)

Other Approaches (Xie, Kersting, & Neider, 2022), (Hellendoorn, Sutton, Singh,

Maniatis, & Bieber, 2020), (Li, Wang, & Nguyen, 2021), (Eshghie,

Artho, & Gurov, 2021), (Dinella, et al., 2020), (Alon, Zilberstein,

Levy, & Yahav, 2019), (Şahin, Özyedierler, & Tosun, 2022),

(Evangelos, Katsadouros and Charalampos, & Patrikakis, 2022),

(Tann, Han, Gupta, & Ong, 2018)

17

CHAPTER 3

RESEARCH GAP

Based on the literature review and previous works, we have identified that

there has been relatively little research on multi-class categorization about Ethereum

smart contract vulnerabilities based on Ethereum Virtual Machine (EVM) bytecode.

Thus, creating multi-class classification models using RNNs and CNNs trained

specifically on smart contract bytecode will be our main goal. We aim to investigate

the following research question in this study.

1. Could EVM bytecode be used as a feature for uncovering smart contract

vulnerabilities?

2. How do RNNs and CNNs trained on EVM bytecode perform compared to

other deep learning solutions?

3.1 Could EVM bytecode be used as a feature for uncovering smart

contract vulnerabilities?

We aim at developing a deep learning model using RNNs or CNNs and

training it on EVM bytecode. Our goal will be to achieve an weighted F1-score,

which is a harmonic mean between precision and recall, higher than 0.85.

The F1 score, shown in Equation 1, is the metric we use to evaluate the

models. It combines two essential performance measures: precision and recall. The

ratio of true positive predictions to the total number of positive predictions (true

positives plus false positives) is known as precision, whereas recall is the ratio of true

positive predictions to the total number of actual positive instances (true positives

plus false negatives). Better performance is indicated by a higher score on the F1

scale, which goes from 0 to 1. A score of 0 indicates that neither precision nor recall

are present, whereas a score of 1 indicates flawless precision and recall.

 (Equation 1)

18

3.2 How do RNNs and CNNs trained on EVM bytecode perform

compared to static analysis tools and other deep learning

solutions?

We aim at comparing two different approaches, deep learning and static

analysis, at how efficient they are in detecting vulnerabilities in a dataset of public

smart contracts. We will develop two models using RNNs and CNNs to observe the

performance of each compared to the current approaches widely used. We will

compare the performance of each model and tool based on the F1-score mentioned

above. Our goal is to understand how well models trained on EVM bytecode can

capture patterns in vulnerability detection.

19

CHAPTER 4

ETHEREUM AND SMART CONTRACTS

4.1 Ethereum as a blockchain

Introduced for the first time by Vitalik Buterin (2013), Ethereum is a public

blockchain network that is distributed and designed to execute any kind of

decentralized application code, as shown in Fig. 1.

Figure 1. Ethereum architecture. (Chittoda, 2019)

Multiple entities make up Ethereum's blockchain network architecture. Every

node in an Ethereum network maintains the most recent version of the Ethereum

blockchain ledger and is connected to every other node via the P2P network protocol.

Through the Ethereum client, which could be a desktop, mobile or web page, a user

can communicate with the Ethereum network. The Ethereum Virtual Machine

(EVM) powers every node in the network, allowing it to carry out its commands. The

nodes then translate the smart contracts into EVM code and carry them out (Wood,

2018).

20

The Ethereum network relies on a modified version of the GHOST protocol

(Greedy Heaviest Observed Subtree) for consensus, which was developed to address

the network's stale block problem. Stale blocks can happen when a mining pool's

aggregate processing power is greater than that of the other groups of miners. This

means that the blocks from the first pool will contribute more to the network, which

will lead to a centralization problem. These outdated blocks are considered by the

GHOST protocol for determining the longest chain

Ethereum can be viewed as a transaction-based state machine with a built-in

Turing-complete programming language (Farnaghi & Mansourian, 2020). It begins

with a genesis state and after each successful transaction, the state is modified. Data

relevant to the physical world is included in the state, along with account balances,

trust agreements, and reputations.

Anyone can design their own ownership structures for transactions and state

transition mechanisms because of Ethereum's abstract layer. Smart contracts, used to

achieve the previous objective, are a collection of cryptographic guidelines that only

act when specific requirements are satisfied (Chittoda, 2019).

4.2 Ethereum key components

We will now examine the essential elements of Ethereum, including the

account, the global state, and the transaction as shown in Fig. 2.

According to the Ethereum Foundation, a core element of Ethereum is the

account (Buterin V. , 2013). Each account contains four important fields that are

nonce, balance, storage hash and code hash.

The nonce is a transaction counter, increased by one for every new

transaction sent by the account. In a similar manner, it indicates the number of

contracts generated by an account that is associated with a code (Chittoda, 2019).

The balance is a scalar number that represents how many Weis the address

owns (Chittoda, 2019).

21

Figure 2. Accounts in Ethereum. (Farnaghi & Mansourian, 2020)

The storage hash is made up of a 256-bit hash of the Merkle Patricia tree's

root node, which encodes the account's storage contents. The encoded values are

mapped from Keccak 256-bit integer values into the tree (Chittoda, 2019).

Finally, the code hash is the hash of the Ethereum Virtual Machine (EVM)

code of this account. This code runs if a message call is made to this address. For

eventual retrieval, all these code snippets are stored in the state database under their

respective hashes (Chittoda, 2019).

The global state is a mapping between addresses, which are 160-bit

identifiers and account states. As stated previously, the global state represents the

current snapshot of account balances, contract storage, and other relevant

information for all accounts and smart contracts on the Ethereum network.

Accounts come in two varieties: contract accounts and external accounts. A

contract account is managed by its code, while an external account is managed by

public-private key pairs held by human account holders. The key difference between

the two is that contract accounts do not have an empty code field as external accounts

do.

22

Actions that modify the EVM's state can only be started by external accounts.

We refer to these actions as transactions. A transaction is a single instruction created

by an actor outside the Ethereum network and cryptographically signed. There are

three transaction types: 0 (legacy), 1 (EIP-2930) and 2 (EIP-1559) (Buterin, et al.,

2019). Furthermore, there are two subtypes of transactions: those which result in

message calls and those which result in the creation of new accounts with associated

code, which as mentioned earlier are the contact accounts. This process is called

contract creation and is described more in depth in the next section.

Each transaction consists of the recipient of the message, a signature

identifying the sender, amount of Wei to be sent, an optional data field, gas amount,

and gas price values (Wood, 2018).

The reason why the last fields are included is because transaction execution is

not always free. This is because energy-intensive processing resources are needed for

the global state change (transaction) that needs to be approved by all (Buterin, 2013).

Gas was developed for smart-contract communication and transaction execution. It

stands for the units that the transaction initiator must pay to have the transaction

executed. The gas price is the amount of Ether that the initiator is willing to pay for

each unit of gas, whereas the gas limit is the highest quantity of gas that the initiator

is ready to pay (Buterin, 2013).

4.3 Smart contracts and their lifecycle

Smart contracts are programs that run on the Ethereum blockchain. They

consist of data and code that is kept on the Ethereum blockchain at a particular

address.

Nonetheless, smart contracts remain a specific type of Ethereum account

known also as contract accounts. As mentioned earlier, these types of accounts have

a balance and can be the target of transactions. However, they are not controlled by a

user, instead they are deployed to the network and run as programmed. Submitting

transactions that carry out a function specified on the smart contract is how user

accounts can then communicate with the contract. Like a traditional contract, a smart

23

contract can specify rules and have the code automatically enforce them. Smart

contract interactions are irreversible and cannot be deleted by default.

As shown in Fig. 3, the four stages of a smart contract are creation,

deployment, execution, and completion (Buterin, 2013).

Figure 3. The lifecycle of Ethereum smart contracts.

4.3.1 Creation Phase

During the creation phase, the smart contract is written in a high-level

programming language, such as Solidity as shown in Code 1. The developer specifies

the rules that will guide the operations. This includes definition of functions and data

storage.

Functions are rules that could include external calls to other smart contracts

or externally owned accounts, arithmetic operations and security checks.

Any contract data needs to be allocated to one of two places: memory or

storage. Memory variables are values that are only kept for the duration of a contract

function's execution. These are far less expensive to use because they are not kept on

the blockchain indefinitely. On the other hand, those that are stored for a longer

period of time are inserted in the global state and called storage values. Changing the

storage is a costly operation and requires more gas.

4.3.2 Deployment Phase

The primary objective of the deployment phase is to transfer the rules defined

in the smart contract during the creation phase to the EVM. However, the Ethereum

Virtual Machine (EVM) understands a low-level, stack-based bytecode language.

24

// Solidity Smart Contract

pragma solidity ^0.8.0;

contract SimpleCounter {

 uint256 public counter;

 function incrementCounter() public {

 counter++;

 }

}

Code 1. Smart contract written in Solidity that implements a counter function.

Consequently, the smart contract must be compiled into opcodes, which are

the EVM's low-level instructions. The EVM bytecode is a set of instructions that the

Ethereum nodes execute. It is a low-level representation of smart contract logic. Each

bytecode instruction corresponds to a specific operation, such as arithmetic, storage

manipulation, conditional branching, etc. The following is an example bytecode of

the simple counter smart contract in Code 1.

606060408181526001815260206004820152601f60248201527f48656c6c6f2c20576f

726c642100000000000000000000000000000000602082015290565b506000819055

505b5060e58061003e6000396000f3fe6080604052600436106049576000357c01000

000900463ffffffff1680

6359d1d3d714604e578063cfae3217146070575b600080fd5b348015605957600080f

d5b506076600480360381019080803590602001909291905050506080565b005b348

015608757600080fd5b50608e60aa565b604051808281526020019150506040518091

0390f35b8060006000508190909055506000600050548156fea165627a7a723058209

a1a2b0f3f1b99708c65c0a0c07ea6f297fa4d1a0712856cf1115dca7cc631a1a0029

The developer starts a transaction that includes the bytecodes kept in the

transaction structure's "init" field during the Deployment phase. This action returns

25

another code fragment that will be saved in the EVM running environment and

executed later. It can be carried out with tools like Truffle.

Figure 4. The workflow of Ethereum smart contract source. (Yiu, 2021)

4.3.3 Execution Phase

When a smart contract is deployed to the Ethereum blockchain, the EVM

ensures the execution of the contract's bytecode in a decentralized and deterministic

manner across all nodes in the network. A smart contract bytecode is a set of

operations that runs similar to a thread or process on a standalone computer. EVM

bytecode is machine-readable and is the language that the Ethereum network nodes

understand and execute. Until the task is completed or the gas limit is reached, the

EVM carries out each instruction one at a time. The moment a new block is mined,

this process takes place.

4.3.4 Completion Phase

In the completion phase, after the transaction has been concluded, states are

modified and documented in blockchains. The new block is mined and distributed to

all the nodes in the network. Finally, the changes in state persist in the global state.

26

CHAPTER 5

ETHEREUM SMART CONTRACT TYPES OF

VULNERABILITIES

5.1 Reentrancy

According to Code 2, reentrancy describes a situation where contract A calls

contract B, but contract B may call A back and carry out A's call again due to

Solidity's fallback mechanism. The fallback function will be called in the event that

calls from other contracts are unable to find a matching function. The callee's

fallback function will be activated if the caller uses the call function without

providing a function signature. In order to re-enter the caller, this function may call

the caller's function.

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract VulnerableContract {

 mapping(address => uint) private balances;

 function deposit() public payable {

 balances[msg.sender] += msg.value;

 }

 function withdraw(uint _amount) public {

 require(balances[msg.sender] >= _amount, "Insufficient balance");

 // imagine an external call here, like calling another contract

 (bool success,) = msg.sender.call{value: _amount}("");

 require(success, "Transfer failed");

 balances[msg.sender] -= _amount;

 }

27

 function getBalance() public view returns (uint) {

 return balances[msg.sender];

 }

}

// an attacker contract that exploits reentrancy

contract AttackerContract {

 VulnerableContract vulnerableContract;

 constructor(address _vulnerableContractAddress) {

 vulnerableContract = VulnerableContract(_vulnerableContractAddress);

 }

 // this function is designed to exploit reentrancy

 function attack() public payable {

 // call the withdraw function of the vulnerable contract

 vulnerableContract.withdraw(1 ether);

 }

 // fallback function to keep the attack going

 receive() external payable {

 if (address(vulnerableContract).balance >= 1 ether) {

 vulnerableContract.withdraw(1 ether);

 }

 }

}

Code 2. An example of smart contract with reentracy vulnerability.

5.2 Arithmetic issues

Overflow and underflow can happen when using integer variables with value

constraints for addition, subtraction, or storing user input, as the examples in Code 3

demonstrate. Variable values will wrap to the other side of the bound if they exceed

either the upper or lower bound.

28

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract SafeMath {

 function unsafeAdd(uint256 a, uint256 b) public pure returns (uint256) {

 return a + b;

 }

 function safeAdd(uint256 a, uint256 b) public pure returns (uint256) {

 require(a + b >= a, "SafeMath: Addition overflow");

 return a + b;

 }

}

Code 3. An example of smart contract implementing safe addition and unsafe

addition.

5.3 Unchecked external calls

Unchecked external calls in Solidity, described by Code 4, are instances in

which calls to external functions are made without properly implementing error

handling methods or verifying the return values. In Solidity, external calls are

interactions with external addresses or other contracts. If not used appropriately, they

can result in many problems. Unchecked external calls are seen as dangerous because

they could malfunction or act strangely, and they could trigger smart contract

vulnerabilities if their results are not adequately verified.

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract Caller {

 uint public value;

 function setValue(address _target, uint _newValue) external {

 // using delegatecall to execute the setValue function of the target contract

 (bool success,) =

_target.delegatecall(abi.encodeWithSignature("setValue(uint256)", _newValue));

 require(success, "Delegate call failed");

29

 }

}

contract Callee {

 uint public value;

 function setValue(uint _newValue) external {

 value = _newValue;

 }

}

Code 4. An example of smart contracts implementing unchecked external calls.

5.4 Access control

“tx.origin” is always an external account that keeps track of the originating

caller's address for a transaction. Bob is “tx.origin” if contract A is being called by

contract B, and contract A is being called by Bob. But contract A's msg.sender is

contract B's. The person who called right away is identified as “msg.sender”. It is

advised never to utilize “tx.origin” for authentication or identity verification.

30

// Contract A

pragma solidity ^0.8.0;

contract ContractA {

 address public originalCaller;

 // Function in Contract A that calls Contract B

 function callContractB(address contractBAddress) external {

 // Save the original caller (Bob)

 originalCaller = tx.origin;

 // Call Contract B

 ContractB(contractBAddress).doSomething();

 }

}

// Contract B

contract ContractB {

 address public actualCaller;

 // Function in Contract B

 function doSomething() external {

 // Save the actual caller (Contract A)

 actualCaller = msg.sender;

 }

Code 5. An example of smart contracts having access control vulnerability.

5.5 Other issues

A smart contract's function is to send and receive ether. A person is

considered in a freezing state if they can only accept ether and cannot send ether out.

The contract might be avaricious and freeze the Ether transferred to its address if it

does not mention any withdrawal functions. The necessary procedure for depositing

Ether is illustrated in the example below; once deposited, it cannot be withdrawn.

The Ether fund is going to be frozen for good.

Solidity contracts and Ethereum lack a real source of entropy. Because

historical blocks never change, attackers can utilize the same random number

31

creation procedure to get the same result if the timestamp or hash of historical blocks

is used for randomness production. The technique could be vulnerable to rogue

miners who could purposefully select transactions and the sequence in which they

are executed if future blocks are used.

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract Example {

 address public owner;

 modifier onlyOwner() {

 require(msg.sender == owner, "Not the owner");

 _;

 }

 function transferOwnership(address newOwner) external onlyOwner {

 (bool success,) =

newOwner.call(abi.encodeWithSignature("acceptOwnership()"));

 // checking the return value and handling it

 require(success, "Ownership transfer failed");

 // update the owner

 owner = newOwner;

 }

}

Code 6. An example of smart contracts implementing freezing ether vulnerability.

32

CHAPTER 6

DATASET

6.1 Data Collection

The dataset used to train and validate the models was created by Martina

Rossini (2022) and is publicly accessible from the HuggingFace repository. The

dataset consists of verified Ethereum smart contracts provided by SmartBugs,

ScrawlID and Smart Contract Sanctuary, which is a repository in Github that collects

smart contracts in different blockchain environments.

The authors of the dataset then used the Slither contract flattener to download

the source code from the repository or via Etherscan (Rossini, 2022). Using INFURA

as their endpoint, they used the web3.eth.getCode() function of the Web3.py module

to extract the bytecode. Finally, the Slither static analysis tool was used to review

every smart contract. After identifying 38 distinct vulnerability types in the gathered

contracts, they were categorized into five groups. These groups represent five

different sorts of vulnerabilities: reentrancy, arithmetic issues, unchecked calls,

access control, and others. Others is a class that groups all other detectors.

The dataset contains 106474 audited smart contracts split into three

categories: train, validation and test. The train split contains 79641 entries, the test

split 15972 entries and the validation split 10861 entries. Every data object has the

address, source code, bytecode, and slither audited output. The address is a

representation of the Ethereum blockchain platform's smart contract address. The

source code is its plain-text code in Solidity. The low-level, machine-readable

hexadecimal code known as bytecode on Ethereum, explains how a smart contract

functions and behaves. Slither consists of a list of vulnerabilities detected by the

Slither static analysis tool.

33

6.2 Data Cleaning

Cleaning the dataset before use was essential. The authors (Rossini, 2022)

mentioned that smart contracts without a bytecode can be recognized by their

bytecode field in the specific row containing only the characters "0x". These symbols

are commonly used to signify a string's hexadecimal format. Consequently, for

training, validating, and testing the model, only the data items with bytecode lengths

longer than 4 are retained. The creators of the dataset also used the number 4 to

represent the security of a contract. As the most secure smart contracts are those that

are impervious to attacks, label 4 was removed from the model to prevent confusion.

The dataset must also be split into two groups, called features and labels. In

this case, the Slither output that pinpoints the vulnerabilities will act as the labels,

and the smart contract bytecode will act as the features. To better understand the

relationships between the Ethereum operation codes, the remaining bytecode is

divided into two characters that are separated by whitespace. The distribution of the

bytecode length on the dataset is shown in Fig. 5.

Figure 5. Distribution of bytecode length in the dataset.

Each data instance's slither output is a list containing a configurable number

of vulnerabilities. The Slither output is first converted to binary format, where the

34

output number, if it exists in the list, is represented as 1 in that index on the new list,

to make the labels uniform. The distribution of the labels is shown in Fig. 6.

Figure 6. Distribution of outputs in the dataset.

The slither output, for one of the data instances, for example, shows that the

smart contract has two vulnerabilities, which are identified as [1, 3]. The highest

number of vulnerabilities that can be found is five, since we previously removed

label 4. The list [1, 3]'s binary output would be [0, 1, 0, 1, 0, 0]. Due to the existence

of vulnerabilities 1 and 3, they are represented by 1 on the binary list. These binary

vulnerabilities are then categorized in a Python dictionary according to the types they

represent.

Finally, “Dataset” is used to create the datasets that will be fed to the model.

To maximize GPU speed, it combines the bytecode and the vulnerability dictionary,

divides them into groups of 32, and utilizes autotuned prefetch.

35

CHAPTER 7

ARCHITECTURE OF OUR MODELS

Both models receive the input EVM bytecode, which is divided into pairs of

characters. This division by pairs allows for a more accurate representation of the

Ethereum opcodes. Contrary to other models that are fed with source code, we feed

these sequences of pairs from the EVM bytecode into our models. Both models are

trained and validated on a GPU T4 with 50 GB of System RAM and 15 GB of GPU

RAM.

7.1 CNNs

The model is a multi-output convolutional neural network (CNN) as shown in

Figure 8. The text vectorizer layer uses 256 tokens as the maximum number of

tokens, an output sequence length of 21041 and splits by whitespace. The embedding

layer uses an input dimension of 256, an input length of 21041 and an output

dimension of 128. The model has three sets of convolutional blocks, each consisting

of two 1D convolutional layers followed by a max-pooling layer. These

convolutional layers are designed to capture different levels of abstraction in the

input data.

 First Block: 2 convolutional layers with 4 filters each, kernel of size 3, stride

of size 1, followed by max pooling.

 Second Block: 2 convolutional layers with 8 filters each, kernel of size 3,

stride of size 1, followed by max pooling.

 Third Block: 2 convolutional layers with 16 filters each, kernel of size 3,

stride of size 1, followed by max pooling.

After each convolutional block, the number of features is doubled to give the

model the chance to forget any of the patterns it may have previously learnt, as

suggested also in the WaveNet (Zhuang et al., 2020). At the end, there is a global

max-pooling layer to capture the most important features from each feature map. A

dense (fully connected) layer follows the global max-pooling layer. It has 32 units

36

and uses the ReLU activation function. There is a distinct dense layer with a single

unit and sigmoid activation for each class (indexed by an index). The loss function

used is binary cross entropy, the learning rate is 0.001 and the optimization function

is Adam. The model is fitted on the training dataset and trained for 35 epochs. It has

36557 trainable parameters in total and each epoch takes about 165 seconds to run.

Figure 7. Architecture of the model with CNNs.

37

7.2 RNNs

The model architecture with RNNs is composed of various layers that

sequentially process input data and produce a multi-output structure as shown in

Figure 8.

The text vectorizer layer splits by whitespace, uses an output sequence length

of 21041 characters, and allows a maximum of 256 tokens. The embedding layer

uses a 256-dimensional input and output, with an input length of 21041. Two Gated

Recurrent Unit (GRU) layers are employed for sequential modeling of the embedded

text data. The first GRU layer has 64 units and is configured to return sequences,

while the second GRU layer has 32 units. The activation function employed is the

hyperbolic tangent.

A dropout layer with a dropout rate of 0.2 is introduced to prevent overfitting,

followed by a fully connected dense layer with 16 units and a hyperbolic tangent

activation function. The final output layer is made up of several sub-layers, each of

which uses sigmoid activation to produce a binary classification result.

The output sub-layer count is equal to the five labels that are supplied. The

loss function used is binary cross entropy, the learning rate is 0.001 and the

optimization function is Adam. The model is fitted on the training dataset and trained

for 20 epochs. It has 80037 trainable parameters, and each epoch takes about 2216

seconds.

38

Figure 8. Architecture of the model with RNNs.

39

CHAPTER 8

RESULTS

This section summarizes the results we were able to get during the training,

validation and testing phase on the dataset mentioned above.

8.1 Results of the CNN model

The visual in Fig. 9 displays the training loss for every single vulnerability. It

is consistently falling, which indicates that the model is accurately representing the

features. On the other hand, the validity loss fluctuates, occasionally increasing and

occasionally decreasing over time.

Figure 9. Training loss during each epoch.

40

Figure 10. Validation loss during each epoch.

Accuracy in training and validation is rising continuously as shown in Figure

11. Accuracy is highest for the first and final flaws, particularly access control and

unchecked calls. The "other" class vulnerabilities have the lowest precision, making

it more difficult for the model to map these vulnerabilities. This is because there is

less data with this kind of vulnerability and there are several bytecode changes that

could be indicative of this issue.

Figure 11. Comparison of training and validation accuracy.

The model was tested on the test dataset and evaluated, as shown in Table 2,

on four metrics, accuracy, precision, recall and weighted f1-score.

41

Table 2. Metrics on the test split of the dataset for the CNN model

 Access control Arithmetic

Issues

Other Reentrancy Unchecked external

calls

Accuracy 90.515671 89.510709 84.730859 88.267069 90.157653

Precision 0.899902 0.891799 0.842886 0.881834 0.901656

Recall 0.905157 0.895107 0.847309 0.882671 0.901577

Weighted F1-score 0.901644 0.881681 0.837517 0.879274 0.901437

8.2 Results of the RNN model

The training loss for each vulnerability is shown in Figure 12. It is steadily

declining, proving that the model is capturing the patterns of EVM bytecode. It is

worth noting that the validity loss with RNNs, shown in Figure 13, is more consistent

over time than CNNs, which experienced fluctuations.

Figure 12. Training loss during each epoch.

42

Figure 13. Validation loss during each epoch.

In Figure 7.2.3, training and validation accuracy are both steadily improving.

The first and last faults, namely access control and unchecked external calls, have the

highest accuracy. The model has a harder time mapping vulnerabilities in the "other"

class since they have the lowest precision.

Figure 14. Comparison of training and validation accuracy.

We used the test dataset to evaluate the model on four metrics such as

accuracy, precision, recall and f1-score. The results are shown in Table 3.

43

Table 3. Metrics on the test split of the dataset.

 Access control Arithmetic

Issues

Other Reentrancy Unchecked external

calls

Accuracy 93.185101 92.337165 88.945418 91.369889 96.815527

Precision 0.928605 0.920718 0.887975 0.913099 0.968689

Recall 0.931851 0.923372 0.889454 0.913699 0.968155

Weighted F1-score 0.928301 0.921411 0.884900 0.912275 0.968094

8.3 Result comparison

The micro F1-score for both our models is an average micro F1-score

calculated across all five vulnerability classes on the validation split of the dataset.

Table 7.3.1 displays the micro F1-scores that different models trained by Rossini,

Zichichi, & Ferret (2022) achieved on the validation split of the dataset. The last two

entries of Table 4 show the micro F1-score that our models achieved on the same

split. They clearly perform better than the other models.

Table 4. Comparison of micro F1-scores between different models.

Model Micro F1-score

ResNet1D 0.8381

ResNet 0.7928

Inception 0.8015

LSTM Baseline 0.7953

Our RNN model 0.93

Our CNN model 0.89

44

CHAPTER 9

CONCLUSIONS

9.1 Conclusions

Based on the results achieved during testing, we conclude that EVM bytecode

is effective in showing smart contract vulnerabilities. We base our conclusion on the

fact that we managed to achieve an average micro F1-score of 0.93 and 0.89 across

all five vulnerabilities for our RNN model and CNN model, respectively.

9.2 Recommendations for future research

For future initiatives, we recommend stepping up data gathering efforts and

convolutional block complexity in the model architecture. The quantity and diversity

of the dataset can be increased to facilitate the model's generalization and to provide

more detailed insights and applications. The auditing of smart contracts could be

performed by experts in the field to ensure the correct labeling of the smart contracts.

Finally, we encourage developing a concatenation between two different types of

inputs in a single model. One input layer would expect the bytecode of the smart

contract and the other input layer would expect the source code of the same smart

contract.

45

REFERENCES

 Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K.-W. (2020). A transformer-

based approach for source code summarization.

Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). code2vec: Learning

distributed representations of code.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,

Kobeissi, N., . . . Zanella-Béguelin, S. (2016). Formal Verification of Smart

Contracts: Short Paper. ACM Workshop on Programming Languages and

Analysis for Security (PLAS), (pp. 91–96).

Bigi, G., Bracciali, A., Meacci, G., & Tuosto, E. (2015). Validation of Decentralised

Smart Contracts Through Game Theory and Formal Methods. In C. Bodei, G.

Ferrari, & C. Priami, Programming Languages with Applications to Biology

and Security.

Brent, L., Grech, N., Lagouvardos, S., Scholz, B., & Smaragdakis, Y. (2020).

Ethainter: A Smart Contract Security Analyzer for Composite Vulnerabilities.

Buterin, V. (2013). Ethereum white paper: a next generation smart contract &

decentralized application platform.

Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., & Bakhta, A. (2019).

EIP1559: Fee market change for eth 1.0 chain.

Chakraborty, S., Krishna, R., Ding, Y., & Ray, B. (2020). Deep learning based

vulnerability detection: Are we there yet?

Cheng, X., Wang, H., Hua, J., Xu, G., & Sui, Y. (2021). “Deepwukong: Statically

detecting software vulnerabilities using deep graph neural network. ACM

Transactions on Software Engineering and Methodology.

Chittoda, J. (2019). Mastering Blockchain Programming with Solidity.

46

Consesys. (2018). Mythril. Retrieved from Github:

https://github.com/ConsenSys/mythril

Deng, W., Wei, H., Huang, T., Cao, C., Peng, Y., & Hu, X. (2023). Smart Contract

Vulnerability Detection Based on Deep Learning and Multimodal Decision

Fusion.

Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., & Wang, K. (2020). Hoppity:

Learning Graph Transformations to Detect and Fix Bugs in Programs.

Ding, Y., Suneja, S., Zheng, Y., Laredo, J., Morari, A., Kaiser, G., & Ray, B. (2021).

VELVET: A novel ensemble learning approach to automatically locate

VulnErable sTatements.

Eshghie, M., Artho, C., & Gurov, D. (2021). Dynamic Vulnerability Detection on

Smart Contracts Using Machine Learning.

Evangelos, D., Katsadouros and Charalampos, Z., & Patrikakis. (2022). A Survey on

Vulnerability Prediction using GNNs.

Fan, Y., Shang, S., & Ding, X. (2021). Smart Contract Vulnerability Detection Based

on Dual Attention Graph Convolutional Network.

Farnaghi, M., & Mansourian, A. (2020). Blockchain, an enabling technology for

transparent and accountable decentralized public participatory GIS.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., . . . Zhou, M. (2020).

CodeBERT: A pre-trained model for programming and natural languages.

Gao, Z., Jiang, L., Xia, X., Lo, D., & Grundy, J. (2020). Checking Smart Contracts

With Structural Code Embedding.

Gogineni, A. K., Swayamjyoti, S., Sahoo, D., & Sahu, K. K. (2022). Multi-Class

classification of vulnerabilities in Smart Contracts using AWD-LSTM, with

pre-trained encoder inspired from natural language processing.

47

Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,

M., & Zohar, Y. (2018). Online detection of effectively callback free objects

with applications to smart contracts. PACMPL 2, POPL. New York, United

States: Association for Computing Machinery.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., & Bieber, D. (2020). Global

relational models of source code.

Hin, D., Kan, A., Chen, H., & Babar, M. A. (2022). LineVD: Statement-level

Vulnerability Detection using Graph Neural Networks.

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text

classification.

Huang, J., Zhou, K., Xiong, A., & Li, D. (2022). Smart Contract Vulnerability

Detection Model Based on Multi-Task Learning.

Huang, T. H.-D. (2018). Hunting the Ethereum smart contract: Colorinspired

inspection of potential attacks.

Kalra, S., Goel, S., Dhawan, M., & Sharma, S. (2018). ZEUS: Analyzing Safety of

Smart Contracts.

Li, Y., Wang, S., & Nguyen, T. N. (2021). Vulnerability detection with finegrained

interpretations. European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (pp. 292–303). Association for

Computing Machinery.

Loi Luu, D.-H. C. (2016). Making Smart Contracts Smarter. ACM SIGSAC

Conference on Computer and Communications Security.

Lutz, O., Chen, H., Fereidooni, H., Sendner, C., Dmitrienko, A., Koushanfar, F., &

Sadeghi, A. R. (2023). ESCORT: Ethereum Smart COntRacTs Vulnerability

Detection using Deep Neural Network and Transfer Learning.

48

Meiying, W., Xie, Z., Wen, X., Li, J., & Zhou, K. (2023). Ethereum Smart Contract

Vulnerability Detection Model Based on Triplet Loss and BiLSTM.

Merity, S., Keskar, N. S., & Socher, R. (2017). Regularizing and optimizing LSTM

language models.

Mi, F., Wang, Z., Zhao, C., Guo, J., Ahmed, F., & Khan, L. (2021). VSCL:

Automating Vulnerability Detection in Smart Contracts with Deep Learning.

Nguyen, V.-A., Nguyen, D. Q., Nguyen, V., Le, T., Tran, Q. H., & Phung, D. (2022).

ReGVD: Revisiting Graph Neural Networks.

Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., & Hobor, A. (2018). Finding The

Greedy, Prodigal, and Suicidal Contracts at Scale.

Peng, H., Mou, L., Li, G., Liu, Y., Zhang, L., & Jin, Z. (2015). Building program

vector representations for deep learning.

Rossini, M. (2022). Slither Audited Smart Contracts Dataset. Retrieved from

HuggingFace: https://huggingface.co/datasets/mwritescode/slither-audited-

smart-contracts

Rossini, M., Zichichi, M., & Ferret, S. (2022). Smart Contracts Vulnerability

Classification Through Deep Learning.

Şahin, S. E., Özyedierler, E. M., & Tosun, A. (2022). Predicting vulnerability

inducing function versions using node embeddings and graph neural

networks.

Shaw, P., Uszkoreit, J., & Vaswani, A. (2018). Self-attention with relative position

representations.

Sun, Y., & Gu, L. (2021). Attention-based Machine Learning Model for Smart

Contract Vulnerability Detection.

Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J., & Morari, A. (2020). Learning to map

source code to software vulnerability using code-as-a-graph.

49

Tann, W. J.-W., Han, X. J., Gupta, S. S., & Ong, Y.-S. (2018). Towards safer smart

contracts: A sequence learning approach to detecting security threats.

Tarlow, D., Moitra, S., Rice, A., Chen, Z., Manzagol, P.-A., Sutton, C., &

Aftandilian, E. (2019). Learning to fix build errors with graph2diff neural

networks.

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., & Veche, M.

(2018). Securify: Practical Security Analysis of Smart Contracts.

Vytovtov, P., & Chuvilin, K. (2019). Unsupervised classifying of software source

code using graph neural networks.

Wang, X., Sun, J., Hu, C., Yu, P., Zhang, B., & Hou, D. (2022). EtherFuzz: Mutation

Fuzzing Smart Contracts for TOD Vulnerability Detection.

Wang, Y., Wang, K., Gao, F., & Wang, L. (2020). Learning semantic program

embeddings with graph interval neural network.

Wood, G. (2018). Ethereum: a secure decentralized generalized transaction ledger,

Byzantium version.

Wu, H., Zhang, Z., Wang, S., Lei, Y., Lin, B., Qin, Y., . . . Mao, X. (2021). Peculiar:

Smart Contract Vulnerability Detection Based on Crucial Data Flow Graph

and Pre-training Techniques.

Xie, X., Kersting, K., & Neider, D. (2022). Neuro-Symbolic Verification of Deep

Neural Networks.

Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2014). Modeling and discovering

vulnerabilities with code property graphs. IEEE Symposium on Security and

Privacy (pp. 590–604). IEEE.

Yiu, N. C. (2021). Toward Blockchain-Enabled Supply Chain Anti-Counterfeiting

and Traceability.

50

Zhang, L., Wang, J., Wang, W., Jin, Z., Zhao, C., Cai, Z., & Chen, H. (2022). A

Novel Smart Contract Vulnerability Detection Method Based on Information

Graph and Ensemble Learning.

Zhuang, Y., Liu, Z., Qian, P., Liu, Q., Wang, X., & He, Q. (2020). Smart Contract

Vulnerability Detection Using Graph Neural Networks.

