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ABSTRACT 

COMPARISON OF LASER AND LIGHT EMITTING DIODE 
ILLUMINATION FOR HIGH RESOLUTION BRIGHT-FIELD 

MICROSCOPY  

Albert Kopaci 

M.Sc., Department of Electronic and Digital Communication Engineering

Supervisor: Dr. Arban Uka 

Medical Imagery, the most popular and challenging imagery techniques which 

have been a point of interest for many studies nowadays. Light microscopy requires 

proper illumination to acquire gigapixel high resolution and wide field of view images 

at the same time. Whereas incandescent light was once the only source of illumination, 

nowadays specialized light sources, such as laser emitting diodes (LED), lasers or arc 

lamps, are now being used. Light-emitting diodes (LEDs) have evolved into a serious 

option for practically all types of illumination in light microscopy due to their great 

efficiency and brightness. They are long-lasting, require no expensive electronics, and 

can be switched in nanoseconds. Aside from that, they have a narrow bandwidth and 

are available across the UV/Vis/NIR spectrum. As a result, they seem to be the most 

suitable illumination for different microscopy techniques. With a color temperature 

spanning from 2,600 to 5,000 K, the white LED is best choice for bright-field 

illumination, with the added benefit of being energy efficient.  

On the other hand, lasers produce dense packets of monochromatic light that 

are extremely collimated and coherent, resulting in a tight beam with a very low rate 

of expansion. The extremely pure wavelength ranges emitted by the laser have a 

bandwidth and phase relationship that is unequalled by tungsten-halogen or arc-

discharge lamps when compared to other light sources. As a result, laser light beams 

can travel long distances and be expanded to span apertures or concentrated to a very 

small, bright spot, which reduces diffraction and maintain the light intensity. In this 
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work we will explain in detail the differences between them using blind image quality 

assessments. 

Keywords: Blind Image Quality Assessments, Light-Emitting Diodes, Laser 

illumination, Brightfield microscopy, Aperture, Bandwidth, Light beam. 
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ABSTRAKT 

KRAHASIMI I NDRICIMIT ME LASER DHE DIODAVE QË 
LËSHOJNË DRITË PËR IMAZHERINË ME FUSHË TË BARDHË 

DHE REZOLUCION TË LARTË   

Kopaci, Albert 

Master Shkencor, Departamenti i Inxhinierisë Elektronike dhe Komunikimit Dixhital 

Udhëheqësi: Dr. Arban Uka 

Imazheria Mjekësore, përfshin teknikat më të njohura dhe sfiduese të 

imazherisë të cilat kanë qenë një pikë interesi për shumë studime në ditët e sotme. 

Mikroskopia kërkon ndriçimin e duhur për të marrë imazhe me rezolucion të lartë 

gigapiksel dhe një fushë të gjerë shikimi në të njëjtën kohë. Ndërsa drita inkandeshente 

dikur ishte burimi i vetëm i ndriçimit, sot po përdoren burime të specializuara të dritës, 

si diodat që lëshojnë dritë (LED), lazerët ose llambat me hark. Diodat që lëshojnë dritë 

(LED) kanë evoluar në një opsion i shumë përdorur për të gjitha llojet e ndriçimit në 

mikroskopi për shkak të efikasitetit dhe shkëlqimit të tyre të madh. Ato janë të 

qëndrueshme, nuk kërkojnë pajisje elektronike të shtrenjta dhe mund të ndërrohen në 

nanosekonda. Përveç kësaj, ato kanë një gjerësi bande të ngushtë dhe janë të 

disponueshme në të gjithë spektrin UV/Vis/NIR. Si rezultat, ato duket se janë ndriçimi 

më i përshtatshëm për teknika të ndryshme mikroskopike. Me një temperaturë ngjyrash 

që shtrihet nga 2,600 në 5,000 K, LED i bardhë është zgjidhja më e mirë për ndriçimin 

në fushë të ndritshme, me përfitimin e shtuar të të qenit efikas në energji. 

Nga ana tjetër, lazerët prodhojnë paketa të dendura drite monokromatike që 

janë jashtëzakonisht të lidhura dhe koherente, duke rezultuar në një rreze të ngushtë 

me një shkallë shumë të ulët zgjerimi. Gama e gjatësisë valore jashtëzakonisht të pastër 

të emetuar nga lazeri ka një lidhje gjerësie brezi dhe faze që është e pabarabartë nga 

llambat tungsten-halogjen ose hark-shkarkuese kur krahasohen me burimet e tjera të 
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dritës. Si rezultat, rrezet e dritës lazer mund të udhëtojnë në distanca të gjata dhe të 

zgjerohen për të shtrirë hapjet ose të përqendrohen në një pikë shumë të vogël dhe të 

ndritshme, e cila redukton difraksionin dhe ruan intensitetin e dritës. Në këtë punim 

do të shpjegojmë në detaje dallimet ndërmjet tyre. 

Fjalët kyçe: Diodat që lëshojnë dritë, Ndriçimi me lazer, Brightfield mikroskopi, 

Apertura, Gjerësia e bandës, Rreze drite.
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CHAPTER 1 

INTRODUCTION 

1.1 Medical Imagery 

Medical image processing is an important technology which plays an important 

role in monitoring, diagnosing, and treating medical problems. Medical imaging is 

ranked as one of the top medical development technologies over the years. This 

technique of diagnosing has helped evolution of treating disease noninvasively. 

Monitoring of disease as cancer has helped a lot of people diagnosing and curing it in 

early stages. Medical imaging is helping doctors to detect cancer in size of a rice. On 

the other hand, combining it with other technological development as Artificial 

Intelligence is detecting diseases which doctors cannot distinguish with naked eyes. 

As we mentioned early the technology of diagnosing and medical imaging is 

improving every day. Image quality becomes sharper and clearer, diagnosing methods 

have evolved and images provide a vast of information into a comprehensive format 

in most efficient way. 

As we know medical imagery is a very wide field used in clinical, laboratories, 

diagnosis, and monitoring but common types of it includes: 

• X-rays

• CT (computed tomography) scan

• MRI (magnetic resonance imaging)

• Ultrasound

• Nuclear medicine imaging, including positron-emission tomography

(PET) 
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These techniques use a technology which is optimized for achieving a goal. 

They differ in how they show the information what is happening in certain cases of 

diseases.  

Overall medical imaging has changed many people’s lives for better helping 

diagnoses and treatments by greatly reducing the amount of guess work done by 

doctors allowing them to deal with patient injuries more efficiently. 

 

 

1.2 Image Quality Assessment 

Image Quality Assessments algorithms have been developed to determine the 

characteristics of an image for a given purpose. In the beginning there were developed 

IQA (Image Quality Assessments) algorithms which determine the quality of an image 

ang its metrics related to: illumination, sharpness, contrast, magnification, and 

resolution. Later, these techniques were used in medicine for diagnostic purposes 

which have emerged more recently (especially to epidemiological studies). Nowadays 

these techniques are combined with deep learning techniques to diagnose various 

disease. 

There are two main algorithms used in IQA to determine the metrices of an 

image to conclude a score corresponding to its resolution. Different from human eye 

which evaluate the image subjectively for example by stating that resolution for a 

given image may be good, bad, very good, very low etc. these algorithms aim to 

equalize this resolution score with a value which is concluded by evaluating its 

metrices, we may say that a low resolution image has a score of 10, another with a 

better quality has a score of 30 and the best resolution has a score of 100. Therefore, 

we avoid subjective scoring. One type of IQA techniques is those which use reference 

image to determine the quality of others, and the other one is called no reference or 

blind image quality assessments. We will discuss different types of these techniques 

which uses deep learning algorithms to calculate weights and scores for an image.  
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1.3 Extended field of view reconstruction in Fourier 

ptychographic microscopy 

Nowadays, microscopy technique is one of the most popular and challenging 

studies around the world. The main porpoise of this studies is to achieve high image 

qualities using alternative microscopes and techniques that provides us the same or 

better results than professional microscopes. This thesis focuses on two methods that 

are widely used to improve analysis quality of cell using bright field microscopes. 

These techniques are called vignetting effect and digital refocusing, it also includes 

extending depth of field (DOF) in Fourier reconstruction. In perspective of geometrical 

optics is easy to understand vignetting effect but how this affect the image quality and 

reconstruction from perspective of wave optics is unexplored. In FPM microscopes 

with low magnification objective and large FOV, the linear space-invariant (LSI) 

model is destroyed by diffraction at the stops or apertures associated with different 

lenses called vignetting. Two common and most used solutions of this effect are: 

Dividing FOV into smaller patches and removing imperfect segments to maintain the 

consistency of FPM. Regarding digital refocusing, an auto focus system increments 

both size and cost and can debase optical execution by misalignment. 
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1.4 Motivation 

The aim of this paper is to evaluate the quality of images which are captured by 

an autonomous conventional microscope with autofocus algorithms increased 

resolution and high field of view (FOV) compared to commercial microscopes. Sample 

is placed on microscope table and then just by initializing the process autonomous 

microscope which is programmed with LabView will move in that position where 

sores for image focus are the highest. These are evaluated using MATLAB metrices 

which determine the focus zone of an image. After that the most in focus image is 

captured. There are different conditions which affect the image and then its resolution. 

All combination which includes the following conditions will be considered to 

enhance the technique and achieve gigapixel images. We will combine Led illuminated 

images (including following color: white, red, blue green, yellow, purple, light/dark 

green, light/dark blue and light/dark red), Laser illumination (including following 

colors: green, red), both techniques with diffuser and without it. 

 

 

1.5 Thesis Structure 

Thesis is organized into 5 chapters. The first chapter gives an overview of the 

field of study, scope, and the motivation of the work. The second chapter is about 

literature review. We will start with IQA and Deep Learning Algorithms to continue 

with the specific technique and code which is used in this work. The third chapter is 

about the methodology of the work and experiments that are done. The fourth chapter 

is about the results gotten from the third chapter experiments. The fifth chapter is about 

conclusions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction   

In this chapter we are going to see some of the techniques used on IQA 

Algorithms. How these algorithms combined with Deep Learning trains datasets and 

then predicts weight to evaluate image quality in a subjective way different and more 

specifically than human evaluation. We also will mention how these techniques can 

be applied to our autonomous microscope for high quality imagery scoring. 

 

 

2.2 Regional-Adaptive Deformable Network for IQA 

Image Quality Assessment (IQA) aims to assess the perceptual quality of 

images in a manner that is consistent with human subjective perception. However, the 

existing IQA methods yield unsatisfactory performance on distortions (such as spatial 

shift and texture noise) introduced by generative adversarial networks (GAN). A 

method is proposed to overcome this problem, called “reference-oriented deformable 

convolution”, which solves the issues faced by current IQA methods, because of their 

low tolerance to spatial misalignment. 

Other proposed solutions include a patch-level attention module, a modified 

residual block, and a Region-Adaptive Deformable Network (RADN). The first serves 

to enhance the interaction among different patch regions, while the second to construct 

a patch-region-based baseline called WResNet. 
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Figure 1. Scatter plots of IQA models. MOS labels and Predicted scores.[1]  

Image quality assessment tasks have the goal of assessing image perceptual 

quality like humans. Although current IQA methods have shown to maintain 

consistency with human subjective evaluation, they also exhibit some limitations. The 

existing algorithms cannot distinguish GAN-generated image textures from noises and 

natural details. For this reason, a new IQA benchmark has been proposed, as well as a 

Space Warping Difference (SWD) layer to compare the features on a small range 

around the corresponding position. This operation, although robust to spatial shifts, 

lacks flexibility and is limited to specific contexts. To deal with the drawbacks 

mentioned before, the Region-Adaptive Deformable Network (RADN) has been 

proposed. The baseline WResNet is built using the modified residual blocks. 

 

For adaptation to images of significant differences, a novel module called 

“reference-oriented deformable convolution” is proposed. Applying this method to 

distorted images can refer images interact with the distorted ones and, as a result, be 

robust to the distortion introduced by generative adversarial networks. 
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Furthermore, a patch-level attention mechanism is proposed to boost the 

information interactions among the patch regions. This, along with other processes, 

tries to improve the information interaction across distinct patches to get more accurate 

picture feature expressions. IQA algorithms are used to assess the quality of photos 

that may have been degraded during the processing process. General quality 

assessment algorithms that resemble human subjective judgment have been developed 

through research. A patch-level attention has been adopted combined with reference-

oriented deformable convolution to handle GAN-based distorted images in a dataset. 

Deformable convolution. Has been proven to be effective for sophisticated vision tasks 

such as object detection and semantic segmentation. It also performs well in low-level 

vision asks such as video super-resolution and video deblurring. Reference-oriented 

deformable convolution has been adopted for FR-IQA (Full Reference IQA). 

Attention mechanism. Attention mechanisms have been widely used in various tasks. 

Figure 2. Reference-oriented deformable convolution. FRM and FDM indicate the 

feature map.[1] 



Figure 2 The patch-level attention block. The feature maps are shown as the shape 

of their tensors, and N is the number of patches.[1] 

A pair of images (reference image, distorted image) are cropped into patches, 

and a series of operations is performed on them. Considering the characteristics of IQA 

tasks and the dataset used, the performance of the classic residual block is improved 

with a more reasonable structure. The modified residual blocks are used to build a 

baseline method named WResNet (where W stands for weighted averaging). With the 

application of this reference-oriented deformable convolution is both reference and 

distorted branches, the model can deal with GAN-based distortion better and learn the 

spatial shift-invariant features from the paired images adaptively. Contrastive 

training 
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is an acceptable wat to take advantage of the labels from the side, given that the MOS 

labels are obtained by manually comparing the image pairs.  Training details. The 

proposed model is trained with a certain patch-based training strategy. For training, 

random samples of 32 patches have been taken from per distorted image and its 

corresponding reference image rather than the whole image. For testing, each pair of 

images are cropped into a certain number M of nonoverlapping patches. These patches 

are then fed into the network to predict the weight and score of each patch. The final 

quality score is calculated as a weighted average of all scores. Data arrangement for 

contrastive pretraining. Considering the gap among various images, distorted images 

have been collected corresponding to the same reference and from the same category 

for contrastive pretraining. Images from the same contrast group have been arranged 

into one batch to avoid the duplicate score computing process. 

The models have been compared with the state-of-the-art FR-IQA methods on the 

NTIRE 2021 IQA challenge validation and testing datasets. In general, deep learning-

based methods achieved better performance than the traditional methods. To make it 

easier to understand the effectiveness of the method used, the weights of patches in 

some images are visualized. Compared with WResNet, the whole RADN model pays 

less attention to the regions with less informative or the texture-less regions. For 

images of different content, RADN perceives the images better and observably stays 

under human’s perception. Despite the diversity and the severe GAN-based 

distortions, RADN yields satisfactory results. 

2.3      MS-UNIQUE: Multi-model and Sharpness-weighted 

Unsupervised Image Quality Estimation 

Multi-model and Sharpness-weighted Unsupervised Image Quality Estimation 

describes the usage of independent linear decoder trained models to estimate the 
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perceived quality of images. The training is carried out on 100,000 image patches from 

the ImageNet database using unsupervised learning. The perception of the quality of 

an image is calculated objectively and this process can be automated using Image 

Quality Assessment (IQA). This focuses on making advancements in the FR model, 

which requires the original image for predicting the quality of the distorted image, 

proposed.[2] The already build model is called UNIQUE, it consists of a shallow 

learning architecture with 1 hidden layer using sparsity criterion. The proposed 

advancement is to improve performance through analyzing the weights learned and 

utilizing the importance of sharpness in measuring quality. The filters used to estimate 

the quality of an image are the weights calculated using a linear decoder. These filters 

are also separated into 2 groups, the first one captures edges or sharpness, and the 

second captures color, and this paper focuses more on sharpness filters. The images 

are firstly transformed into YHCr color space. They found that using a combination of 

luminance, green and chroma brings the best results. The model starts with 1,000 

images retrieved from the ImageNet2013 dataset. After changing the color space, the 

authors extract randomly 100 patches with size 8x3x3 from each image. Each patch is 

reshaped to a column vector and the result is a 192x100000 input patch matrix (10000 

patches with 192 input features each).[3] The adjacent features in the input features 

are then decorrelated using Zero Component Analysis (ZCA) to reduce redundancy. 

The authors didn’t change the structure of the model, meaning that it still is an 

unsupervised neural network framework with one hidden layer. The weights and bias 

are randomly initialized and adjusted iteratively. The response of the hidden layer is 

given by the formula  

 

𝒔 = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝑾𝟏
𝑻 ∗ 𝑷 +  𝒃𝟏)  (Equation 1) 

 

Sigmoid is used as an activation function to introduce non-linearity in the 

model. These hidden layer responses are filtered using another set of weights to obtain 

back a reconstructed version of the input. 

𝑷 =  𝑾𝟐
𝑻 ∗ 𝒔 +  𝒃𝟐  (Equation 2) 
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We initially set the number of neurons in the hidden layer to 81 and trains the 

model for 400 epochs. The process is repeated for greater number of neurons in the 

hidden layer. Increasing the number of neurons increases the sparsity on the patches, 

assuring that we have multiple filters learned from sparsely or compactly representing 

the images. The responses we get from this model are weighted based on the sharpness 

characteristics of corresponding filters. The edge filter response is given in higher 

weightage of 2 while the color responses are lowered by a weight of 0.5. And this 

process is repeated for various number of neurons in the hidden layer. The responses 

in feature vector that are significantly less than the average activation value set during 

training are assigned a zero to mimic the suppression mechanisms in the HVS (used 

for differentiating between sharp and color filters). The feature vectors corresponding 

to the original and distorted images are compared using the 10th power of Spearman 

correlation coefficient to fully utilize the quality estimation range. The quality 

estimator is validated using LIVE image quality and TID 2013 databases. The 

databases have more than 3500 distorted images divided into 7 different categories 

based on distortion type. The performance was evaluated using root mean squared 

error, outlier ratio, Pearson, and Spearman correlation coefficients. The model was 

also compared to 11 other popular quality assessment methods and the results are 

shown in the table below.  
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Table 1. Performance of image quality estimators.[2] 

 

Metho

ds 

PSN

R 

PSN

R 

HA 

[10] 

PSN

R 

HM

A 

[10] 

SSIM 

 

[4] 

MS 

SSI

M 

[11] 

CW 

SSI

M 

[12] 

IW 

SSI

M 

[13] 

SR 

SI

M 

[14] 

FSIM

c 

 

[15] 

PerSI

M 

 

[16] 

UNIQU

E 

 

[1] 

MS- 

UNIQU

E 

 Outlier Ratio 

TID

13 

0.725 0.61
5 

0.67
0 

0.732 0.69
7 

0.855 0.700 0.63
2 

0.727 0.655 0.640 0.611 

 Root Mean Square 

Error 

LIV

E 

8.61 6.93 6.58 7.52 7.43 11.2 7.11 7.54 7.20 6.80 6.76 6.61 

TID

13 

0.87 0.65 0.69 0.76 0.68 1.20 0.68 0.61 0.68 0.64 0.60 0.57 

 Pearson Correlation 

Coefficient 

LIV

E 

0.928 0.95
3 

0.95

8 

0.945 0.94
6 

0.872 0.951 0.94
5 

0.950 0.955 0.956 0.958 

TID

13 

0.705 0.85
0 

0.82
7 

0.789 0.83
2 

0.227 0.831 0.86
6 

0.832 0.854 0.870 0.884 

 Spearman Correlation 

Coefficient 

LIV

E 

0.909 0.93
7 

0.94
4 

0.949 0.95
1 

0.902 0.960 0.95
5 

0.959 0.950 0.952 0.949 

TID

13 

0.700 0.84
7 

0.81
7 

0.741 0.78
5 

0.562 0.777 0.80
7 

0.851 0.853 0.860 0.870 
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Table 2 Distributional difference between subjective scores and objective estimates.  

 
Metric 

Difference-LIVE Difference-TID13 

EM

D 

KL JS HI L2 EM

D 

KL JS HI L2 

PSNR-

HMA 

0.22
6 

0.205 0.0
53 

0.2
26 

0.0
66 

0.3
60 

0.92
7 

0.1
17 

0.360 0.124 

IW-

SSIM 

0.29
7 

0.325 0.0
72 

0.2
97 

0.0
76 

0.5
00 

1.67
8 

0.1
96 

0.500 0.180 

UNIQU

E 

0.23
6 

0.258 0.0
55 

0.2
36 

0.0
69 

0.3
86 

0.85
5 

0.1
20 

0.386 0.109 

MS-

UNIQU

E 

0.20

9 

0.176 0.0

38 

0.2

09 

0.0

57 

0.3

57 

0.73

4 

0.1

08 

0.357 0.103 

 

 

2.4 Blind Image Quality Assessment Using a Deep Bilinear 

Convolutional Neural Network 

This paper focuses on creating a deep bilinear CNN model for a no-reference 

or blind image quality assessment. The bilinear model is used to differentiate between 

synthetic and authentic distortions of images. For synthetic distortions, the authors 

construct a large-scale pretraining set based on Waterloo Exploration Database and 

PASCAL VOC Database where the images are synthesized with 9 different distortions 

and 2-5 distortion levels. For authentic distortions, the authors use a pre-trained CNN 

from ImageNet that contains many realistic natural images of different perceptual 

quality.[3] These 2 CNNs are unified into a representation for final quality prediction. 

 

2.5.1 CNN for Synthetic Distortions 

As before mentioned, the databases used are Waterloo Exploration Database 

and PASCAL VOC Database. In total, the authors have 21,869 source images and to 

these, they apply 9 distortion types, namely: Gaussian blur, White Gaussian noise, 

JPEG compression, JPEG2000 compression, Contrast stretching, pink noise, Image 

color quantization with dithering, Over-exposure, and Under-exposure. The images 
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are synthesized with five distortion levels except for over-exposure and under-

exposure where only 2 levels are generated. As result, the pre-training set contains 

852,891 distorted images. The authors pre-train a CNN to classify distortion types and 

degradation level which offers meaningful initialization of the network. The ground 

truth is formed as an M-class indicator using the distortion type and level. Since they’re 

using 7 distortion types with 5 levels and 2 distortion types with 2 levels, that leads to 

an M=39. The CNN architecture is inspired by VGG-16 and is shown in the picture 

below. 

 

Figure 3 Convolutional layer structure 

 

The image size is 224 x 224 x 3 and the convolution kernel size is 3 x 3 with a 

stride of 2 to reduce the spatial resolution. The features are padded with zeros and the 

non-linear activation function is ReLU. The SoftMax is computed as: 

  

𝐩̂𝐤
(𝐢)(𝐗(𝐢);  𝐖𝐬) =  

𝐞𝐱𝐩 (𝐲𝐤
(𝐢)

(𝐗(𝐢);  𝐖𝐬))

∑ 𝐞𝐱𝐩 (𝐌
𝐣=𝟏 𝐲𝐣

(𝐢)
(𝐗(𝐢);  𝐖𝐬))

 (Equation 8) 

 

and the cross-entropy loss as:      

𝐥𝐬({𝐗(𝐢)}; 𝐖𝐬) =  − ∑ ∑ 𝐩𝐣
(𝐢)

𝐥𝐨𝐠 𝐩̂𝐣
(𝐢)(𝐗(𝐢);  𝐖𝐬)𝐌

𝐣=𝟏
𝐍
𝐢=𝟏  (Equation 9) 
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2.5.2  CNN for Authentic Distortions 

For this CNN, the authors use an already built model because training a model 

to gain meaningful training data with a small number of samples leads to overfitting. 

The model to extract relevant features for authentically distorted images is the VGG-

16 pre-trained for the image classification task on ImageNet. 

 

These 2 CNNs are combined into a bilinear model, creating a DB-CNN. These 

models have been shown to be very effective in modeling two-factor varication, which 

in our case are synthetic and authentic distortions. The bilinear pooling is formulated 

as: B= Y_1^T Y_2 where Y1 and Y2 denote the first and second CNN respectively.[4] 

There are also no problems with combining the images since the CNN for synthetic 

distortions also has similar structure to VGG-16. For the empirical loss, the authors 

use the l2-norm since it has been widely used in previous studies. 

The experiments are conducted in three singly distorted synthetic IQA 

databases, i.e., LIVE, CSIQ and TID2013, a multiply distorted synthetic dataset LIVE 

MD, and the authentic LIVE Challenge Database. The databases contain a wide variety 

of synthetic and authentic distortions on numerous pictures with different qualities. 

The images are randomly split into a train and test size with a ratio of 80 with 20%. 

The metrics to benchmark the model are Spearman rank correlation coefficient 

(SRCC) for prediction monotonicity and Pearson linear correlation coefficient (PLCC) 

for the prediction precision.  

On individual databases, the DB-CNN model achieves superior performance 

compared to other IQA models but that’s because the authors tweak the parameters for 

each database to get the best results. When tested on individual distortion types, the 

results are like other models and the authors notice that the BIQA models fail in three 

distortion types on TID2013. It is also worth mentioning that the model did a great job 

on distortions unseen on the training. When testing the performance across all 

databases, the model did better than the other IQA model in almost all databases. 
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2.5 Automatic image quality assessment 

Automatic image quality assessment is essential in handling low quality 

images to obtain images with high perceptual quality.  Deep learning is used a lot in 

blind image quality assessment. An important step in blind image quality assessment 

is feature identification which is done quite well by the deep learning algorithms. As 

all other methods these methods estimate image quality as the deviation from the 

Natural Scene Statistics Model. In this section we are going to see in detail the Deep 

Learning for BIQ assessment algorithm. This algorithm is relatively new and was 

proposed in 2017.  Training an CNN by yourself is a hard process as big datasets are 

hard to find. Another approach to apply transfer learning, find an already trained CNN, 

and use it as feature extractor or initialization for the forwarding learning process.[5] 

This algorithm uses a trained Convolutional Neural Network, the Caffe neural network 

architecture as a feature extractor. Then an SVR (Support vector regression) with 

linear kernel is applied on top of it to map the CNN features to quality scores perceived.  

4096 is the length of the feature vector.  Below we show the architecture of the 

network.  

Figure 4 Different strategies applied on DeepBiq[5] 

As stated on the publication of DeepBiq, for testing the network different 

strategies were used.  

1- Different pretrained CNN were used
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 2- Different strategies were used for feature and score prediction pooling.  

 3- Fine Tunned CNN for category-based image quality assessment were used.  

  

2.6.1 Experiments and Results  

Experiments were done using three different CNN with same architecture 

trained by different dataset.[6]  

• ImageNet-CNN. 1.2 million images for object recognition of 1000 categories 

were used for training.  

• Places-CNN, here 2.5 million images were used for training. Images were from 

the Places database for scene recognition. In total there were 205 categories.  

• ImageNet + Places CNN composed of 3.5 million images of 1138 different 

categories was used for training. This dataset was obtained by merging two upper 

datasets.   

CNN mostly require a fixed size of image. Science resizing the image would 

mask some artifacts a different design choice was considered, cropping the image. 

Image was cropped to its 21% from 500x500 to 227x227.  The final image quality is 

then obtained by processing the quality of each crop. Also, tests were done using a 

fine-tuned CNN. This is very usefully when the dataset is not very large. Using transfer 

learning proves to be an excellent choice on these cases. The authors replaced the last 

layer of trained CNN with random values. Then layer is trained from scratch and 

updated by back propagation. This new CNN is able now to classify image subregion 

into five classes based on IQA score. bad, poor, fair, good, and excellent. The design 

choices for DeepBIQ were compared with some of the leading assessment algorithms 

at the time which shows the incredible performance of deep BIQ. 

To compare results the median LCC, SROCC and nMAE over the 10 train-test splits 

are reported. Below we show the tables of some of the experiments reported on paper2. 
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Figure 5 Deep BIQ comparing three approaches with otther algorithms. 

 

 

Figure 6  Deep BIQ compare with other algorithms 

Most of the state-of-art BIQA methods learn estimation of image quality from 

human subjective scores.  To take this to next step this section introduces research 

done by Wufeng Xue that tries to remove the human factor and make an algorithm that 

will learn by itself. The proposed method considers on clustering. It tries to identify a 

set of quality-aware centroids for BIQA. The algorithms only need some reference and 

distorted images to be trained. Human subjective scores are not necessary. Disported 
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images are generated by the reference images based on 4 types of distortions, Gaussian 

noise, Gaussian blur, JPEG compression and JPEG2000 compression. At the final step 

a dataset of 10 reference images and 120 distorted images is obtained. All possible 

combinations of distortions are used. Below we show the flowchart of the proposed 

method. 

 

Figure 7 Flowchart of proposed BIQA[7] 

 

A full reference image quality assessment is used to assign a perceptual quality 

to the dataset images.  Let xi be a patch of the distorted image and the di the 

corresponding patch of the reference image. The difference between the reference 

image and the corresponding distorted image is calculated using FSIM. 
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𝒔𝒊 = 𝑺(𝒙𝒊, 𝒅𝒊) =  
𝟐𝑷𝑪(𝒙𝒊)𝑷𝑪(𝒅𝒊)+𝒕𝟏

𝑷𝑪(𝒙𝒊)𝟐+𝑷𝑪(𝒅𝒊)𝟐+𝒕𝟏
 𝑿 

𝟐𝑮(𝒙𝒊)𝑮(𝒅𝒊)+𝒕𝟐

𝑮(𝒙𝒊)𝟐+𝑮(𝒅𝒊)𝟐+𝒕𝟐
  (Equation 10) 

 

Where 𝑃𝑪(𝒙𝒊) and 𝑮(𝒙𝒊) refer to phase congruence and 𝒕𝟏 and 𝒕𝟐 are constants of 

positive numbers.  

The similarity score of the image is evaluated as the mean of all Si of an image. 

Si is normalized for it to be as close to s as possible. The formula below is used for the 

normalization donating that   *** OMEGA** is the set of patch indices of an image 

then: 

 

𝑪 =  
∑ 𝒔𝒊𝒊𝝐𝛀

𝟏𝟎 ∑ 𝒔𝒊𝒊𝝐𝛀𝐩
   (Equation 11) 

 

The next step is quality aware clustering. Normalization of the patch quality in 

the previous step gives a set of patches and their quality scores.  Then clustering is 

applied based on quality score. To enhance clustering accuracy in of each group the 

clustering method should be based on some mineral feature of di[8]. Researchers 

proposed a high pas filter to extract the feature of the patch di. 

 

𝒉𝛔(𝒓) =  𝟏𝒓=𝟎 −
𝟏

√𝟐𝝅𝝈
 𝐞𝐱𝐩 (−

𝒓𝟐

𝟐𝝈𝟐
)   (Equation 12) 

 

Filter outputs of di are merged into a single feature vector as fi. Then the QAC of di 

from Gi is performed using K-Mean clustering algorithm. 

 

𝒎𝒊𝒏𝒎𝒊,𝒌 ∑ ∑ ‖𝒇𝒊 − 𝒎𝒊,𝒌‖
𝟐

𝒅𝒊𝝐𝑮𝟏,𝒌
𝑲
𝒌=𝟏    (Equation 13) 

 

The next step is Blind Quality Pooling. The perceptual quality procedure is 

proceeded in this step. It is composed of two steps, patch partition and feature 
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extraction, cluster assignment on multiple quantity levels, patch quality score 

estimation, and final pooling of all patch’s quality.  

• Patch partition and feature extraction: High pas filter is used to extract features 

from the overlapped regions of patches.  

• Cluster Assignment: In each cluster level we find the nearest centroid to the 

feature vector of the patch. Then the weighted average of the quality levels of these 

centroids expresses the quality of the patch.  

• Patch Quality Estimation. This step is used to evaluate the quality of the patch. 

The final quality score is donated by the formula below. 

 

𝒛𝑖 =  
∑ 𝒒𝒍 𝒆𝒙𝒑(−𝜹𝒍,𝒊/𝝀)𝑳

𝒍=𝟏

∑  𝒆𝒙𝒑(−𝜹𝒍,𝒊/𝝀)𝑳
𝒍=𝟏

  (Equation 14) 

 

• Final Pooling. With the evaluated quality of all patches then we can evaluate 

the quality of the image as arithmetic average of all patches.  

The results of this algorithm were quite impressive. The network was trained 

by 29 images processed by 5 types of distortions producing a dataset of 779 images. 

Below we show the table with the results of the experiment. 
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Figure 8 Results comparing with other methods[9] 

The image below shows computational comparation of this method with other 

methods. 

 

 

Figure 9 Computational Complexity compared to other methods.  
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CHAPTER 3 

METHODOLOGY 

   

In this chapter we will discuss all the steps needed from capturing the sample 

with two types of illuminations, the autofocus MATLAB algorithms and the 

configuration of the Raspberry Pi to drive the Led Matrix and capture the images. Then 

we will continue with the physical design of the microscope and some important parts 

including their features. In the end we will plan our experiment which will be 

conducted in next chapter and the results we got. 

 

3.1 Microscope Preparation 

 

The design of microscopes has evolved over the time. To set up our microscope 

we purchased most of the parts online, starting from optical table and its components 

are bought, lenses, filters, sensors, polarizers, beam splitters, illumination sources 

diffusers and a host of other components. These are professional tools which allows 

us to customize our microscope.  

 

3.1.1 Eyepieces 

 

This part of microscope is needed to produce the base magnification of the 

image. It is located closest to the eye of the sensor magnifies and projects this real 

image and yields a virtual image of the object. Eyepiece magnification vary from 1X 

to 30X but typically they produce a magnification of 10X.[10] 
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𝐦𝐒𝐲𝐬𝐭𝐞𝐦 = 𝐦𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 𝐱 𝐦𝐄𝐲𝐞𝐩𝐢𝐞𝐜𝐞  (Equation 15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10  Microscope  
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3.1.2 Magnification 

Objectives and eyepieces have magnifications which contribute to the system 

magnification. It is usually denoted by X next to numerical aperture. 

 

 

Figure 11 Microscope 

Numerical aperture (NA) of an objective is a function of focal length and pupil 

diameter. It is expressed by the following formula: 

 

𝑵𝑨 =  𝒏 ∗ 𝒔𝒊𝒏(𝒕𝒉𝒆𝒕𝒂)  (Equation 16) 

Large NA objective sometimes requires usage of immersion oils because the 

highest NA[11]  
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that can be achieved within the air is NA=1 (corresponding to 90-degree angle of 

light). To get a larger angle it is necessary to change the refractive index between the 

object and the objective. 

In this setup we are using brightfield microscopy which requires a change in 

opacity throughout the object. The object is surrounded by a dark haze created by the 

illumination. The ultimate result is a picture with a lot of contrast between the object's 

elements and the light source. Unless the object is exceptionally transparent, the 

resulting image usually allows the user to see each part of the object with some clarity. 

 

Backlight illumination is used in many microscopes instead of standard direct 

light illumination because the latter tends to oversaturate the item under investigation. 

Koehler illumination is a form of backlight illumination used in microscopy 

applications. Incident light from an illumination source, such as a light bulb, floods 

the object under investigation with light from behind in Koehler illumination (Figure 

2). The collecting lens and the condenser lens are both convex lenses. It's made to offer 

strong, even illumination on the object plane as well as the image plane, where the 

picture from the objective is reimaged through the eyepiece.[12] This is significant 

because it assures that the user is not visualizing the light bulb filament. 
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Figure 12 Microscpe 

 

3.1.3 Raspberry Pi Configuration 

The whole system is driven by a raspberry pi 4 GB Ram memory and 128 GB 

Rom memory. The project uses a program written in Python 3 (amicro.py) to control 

the microscope and illumination method in in case when we use led matrix.  

 

 

3.1.4 Autofocus Configuration LabView 

The goal of focus measure operators is to determine the sharpness or focus of 

an image or image pixel. The image on the right was acquired by focusing the camera 
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on the backdrop, but the one on the left was captured by focusing the camera on the 

foreground object, as seen below. This data is useful for a variety of applications, 

including autofocusing, image enhancement, and depth estimate based on focus. 

 

Depending on the application, a broad range of techniques and operators have 

been proposed in the literature to measure the degree of focus of an entire image or an 

image pixel. The focus measure operators discussed in this chapter have been divided 

into six major families to make explaining their working principles easier: gradient-

based, Laplacian-based, wavelet-based, statistics-based, DCT-based, and 

miscellaneous operators.[13] 

 

Figure 13  Autofocus configuration via labview 

 

MATLAB code applied is combined with LabView to drive physical parts of 

the microscope to achieve best in focus image. 

Datasets of images are captured in different conditions. We have one dataset 

where we use Laser illumination as light source of the microscope. The parameters 

that are change during the experiment setup will be listed on following diagram 
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Figure 14 Image Capturing Graph 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 
In this section we will discuss the experiments conducted during this work. The 

aim of these experiments was to determine which of the methods had a better image 

quality capturing. In total we captured 35 images for our test. All images were captured 

via microscope using lazer and led illumination source. Some images were also 

captured using diffusers and different illumination. As test image was used the image 

below: 

 

 

Figure 15 Sample image used in this experiments USAF 89 
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4.1 Image Quality Assessment using NIMA Network 

The first experiment was conducted using the Neural Image Asessment NIMA 

network. This network was proposed in 2018 from Hossein Talebi. The network was 

pre trained using the Aesthetic Visual Analysis dataset. This dataset contained over 

250 000 images with a lot of metadata. The dataset contained over 60 categories, 

semantic labels, and many aesthetic scores for all images. This algorithm NIMA can 

be used to automatically detect image quality or as loss function to improve image 

quality, by capturing more images. In this work we use it to evaluate the image quality 

of our captured images. We have two sets of images, those captured using laser and 

those captured using the led. 

 

4.1.2 Laser Image Assessment using NIMA 

In total 8 images were assessed. There were two types of lasers, red and green. 

For each laser 4 images were captured. Below we show the captured images. 

 

     

Figure 16 Sample image used in this experiments USAF 89 illuminated with red and 

green laser. 

 

The NIMA network implemented in python and pretrained by AVA dataset 

was called as a separate process for each image and results were saved in text files. In 



32 

the end these results were obtained as assessment scores from the algorithm by the 

master process that called the algorithm for all images obtained by lazer. 

Table 3 Quality Scores by implementing NIMA network on our dataset. 

Image Score 

Image__2022-05-07__17-47-28.bmp 4.69958 

Image__2022-05-07__17-47-57.bmp 4.37786 

Image__2022-05-07__17-48-11.bmp 4.75105 

Image__2022-05-07__17-48-39.bmp 5.01075 

Image__2022-05-07__17-54-21.bmp 4.00485 

Image__2022-05-07__17-54-35.bmp 3.87227 

Image__2022-05-07__17-54-41.bmp 3.94053 

Image__2022-05-07__17-58-45.bmp 3.68606 

The first four images are captured by green laser while the last remaining via 

red lazer. Overall, what we are interested in here is the mean value of these values. 

Below we show a chart for this case as a better evaluation for this method. The average 

accuracy for images obtained via green lazer is 4.70981. For those obtained via red 

lazer is 3.8759275. 
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Table 4 Mean Image Quality score for green and red laser illumination 

 

As we can see the quality score is higher for the green laser. In total the best 

quality score was 5.01075 for the lazer. The worst was 3.686 while the mean for 

images with lazer was 4.29. 

 

 

4.1.3 Led Image Assessment Using NIMA 

Images obtained with led were also used for image quality assessment. Science 

we were able to leverage the light type we tried to capture images on different 

wavelengths to see how this would affect the quality score and obtain the best results. 

In total were taken 4 images for each wavelength. 6 Wavelength were considered in 

total:  

• Blue  

• Green  
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• Lite Blue  

• Purple  

• Red  

• White  

These are some of the images obtained by led. 

 

   

   

Figure 17 Sample image used in this experiments USAF 89 illuminated with purple, 

red, green, and white laser. 

 

In total 24 images were obtained. We are going to show a table with the mean 

values of scores for images obtained from this led below. 
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Figure 18 Below we show the table for all colors for a better visualization. 

Led Light Mean Score 

Blue 3.79 

Green 3.69 

Light Blue 3.83 

Purple 3.92 

Red 3.62 

White 3.75 

 

 

 

Figure 19 Mean Quality Score for images using different wavelengths. 

 

An interesting point here is that as wavelength decreases the quality score 

increases. From Red to Green to Blue ending with Purple. We still need to test images 

with the other algorithm to define if lower wavelengths give better results or not.  
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Comparing these results with the previous ones we can say that the lazer has a better 

performance in capturing images. Checking the bar, we can see that the green laser has 

the best performance in capturing high quality images. Next is the purple led in led 

imaging capturing.  Then we have the reed lazer followed up by other led images.  

 

 

4.2 BRISQUE Experiment 

Images were also assessed using the brisque algorithm. This would help us to 

compare captured images from different prespectives. We will start with the lazer 

images. Below we show the table of the values obtained by brisque for each of the 

lazer images in table. 

 

Table 5 Below we show the table for all colors for a better visualization. 

Image Brisque Score normalized (divided by 
10) 

Image__2022-05-07__17-47-
28.bmp 

4.2046 

Image__2022-05-07__17-47-
57.bmp 

4.8998 

Image__2022-05-07__17-48-
11.bmp 

4.3268 

Image__2022-05-07__17-48-
39.bmp 

3.7054 

Image__2022-05-07__17-54-
21.bmp 

2.014 

Image__2022-05-07__17-54-
35.bmp 

1.9154 

Image__2022-05-07__17-54-
41.bmp 

2.0233 
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Image__2022-05-07__17-58-
45.bmp 

7.0463 

 

As in the previous case the first four are with green laser while the remaining 

ones are done via red laser. 

 

 

Figure 20 Image Quality Scores for Led Images BRISQUE. 

 
As we can see the lazer images with green lazer have better score with brisque. There 

is a single image with the highest score with red laser, but science is just only one case 

it can also be a coincidence.  We now build the graph for the images obtained by led. 

Below we show the table with image led color and the mean score for each image. We 

divide score by 10 to compare it with the score obtained by the algorithm on the 

previous sections. 
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Table 6 Mean score for images captured with led using BRISQUE 

Led Light Mean Score for Brisque 

Blue  6.853 

Green                              7.5423 

Light Blue                               5.625 

Purple                               7.826 

Red                               7.625 

White                               8.211 

 

In the upper section we show the results for the light captured images.  
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Conclusions 

In this thesis were compared two types of microscopies which are most popular 

one nowdays. Laser and LED illumination microscopy is used to achieve high 

resolution gigapixel images. We compared the quality scores between these two 

techniques using BRISQUE and NIMA image quality assessments. By comparing the 

result, we got earlier both techniques have a good performance in quality assessments 

because we can se similar results between two techniques for the same image, laser 

and LED illuminated. As we can see from results above (figure 4) in laser illuminated 

images, green light has performed quite well compared to red illumination. We can 

defend this definition by mentioning that green light wavelength is between 450-

600nm while red light wavelength is above 650 nm. Which means by havin a narrow 

wavelength green illumination provides better resolution as it hits the sample without 

viggneting the edges. 

Talking about LED illuminated images we can state that for both techniques 

NIMA and BRISQUE purple wavelength performs better than other wavelengths as it 

doesn’t scatter while hitting the sample. Edges are high contrast and not blured. 

Overall, the results of these thesis in comparison of LED and Laser illumination 

techniques, states that Laser illumination has a higher quality assessment score which 

means higher resolution images. 
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Appendix  

Autofocus Algorithm Matlab Function 
 

function FM = fmeasure(Image, Measure, ROI) 

%This function measures the relative degree of focus of 

%an image. It may be invoked as: 

% 

%   FM = fmeasure(IMAGE, METHOD, ROI) 

% 

%Where 

%   IMAGE,  is a grayscale image and FM is the computed 

%           focus value. 

%   METHOD, is the focus measure algorithm as a string. 

%           see 'operators.txt' for a list of focus 

%           measure methods. 

%   ROI,    Image ROI as a rectangle [xo yo width heigth]. 

%           if an empty argument is passed, the whole 

%           image is processed. 

% 

%  Said Pertuz 

%  Jan/2016 

 

 

if nargin>2 && ~isempty(ROI) 

    Image = imcrop(Image, ROI); 

end 

 

WSize = 15; % Size of local window (only some operators) 

 

switch upper(Measure) 

     

    % Measure No. 1 

    case 'GRAE' % Energy of gradient (Subbarao92a) 

        Ix = Image; 

        Iy = Image; 

        Iy(1:end-1,:) = diff(Image, 1, 1); 

        Ix(:,1:end-1) = diff(Image, 1, 2); 

        FM = Ix.^2 + Iy.^2; 

        FM = mean2(FM); 

         

        % Measure No. 2 

    case 'GDER' % Gaussian derivative (Geusebroek2000) 

        N = floor(WSize/2); 

        sig = N/2.5; 

        [x,y] = meshgrid(-N:N, -N:N); 

        G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig); 

        Gx = -x.*G/(sig^2); 

        Gx = Gx/sum(abs(Gx(:))); 

        Gy = -y.*G/(sig^2); 

        Gy = Gy/sum(abs(Gy(:))); 

        Rx = imfilter(double(Image), Gx, 'conv', 'replicate'); 

        Ry = imfilter(double(Image), Gy, 'conv', 'replicate'); 

        FM = Rx.^2+Ry.^2; 
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        FM = mean2(FM); 

         

        % Measure No. 3 

    case 'GRAT' % Thresholded gradient (Snatos97) 

        Th = 0; %Threshold shold be greater than or equal to 0 

        Ix = Image; 

        Iy = Image; 

        Iy(1:end-1,:) = diff(Image, 1, 1); 

        Ix(:,1:end-1) = diff(Image, 1, 2); 

        FM = max(abs(Ix), abs(Iy)); 

        FM(FM<Th)=0; 

        FM = sum(FM(:))/sum(sum(FM~=0)); 

         

        % Measure No. 4 

    case 'GRAS' % Squared gradient (Eskicioglu95) 

        Ix = diff(Image, 1, 2); 

        FM = Ix.^2; 

        FM = mean2(FM); 

         

        % Measure No. 5 

    case 'LAPE' % Energy of laplacian (Subbarao92a) 

        LAP = fspecial('laplacian'); 

        % LAP=[1 1 1; 1 -8 1; 1 1 1]; 

        FM = imfilter(Image, LAP, 'replicate', 'conv'); 

        FM = mean2(FM.^2); 

         

         

        % Measure No. 6 

    case 'LAPM' % Modified Laplacian (Nayar89) 

        M = [-1 2 -1]; 

        Lx = imfilter(Image, M, 'replicate', 'conv'); 

        Ly = imfilter(Image, M', 'replicate', 'conv'); 

        FM = abs(Lx) + abs(Ly); 

        FM = mean2(FM); 

         

         

        % Measure No. 7 

    case 'WAVV' %Variance of  Wav...(Yang2003) 

        [C,S] = wavedec2(Image, 1, 'db6'); 

        H = abs(wrcoef2('h', C, S, 'db6', 1)); 

        V = abs(wrcoef2('v', C, S, 'db6', 1)); 

        D = abs(wrcoef2('d', C, S, 'db6', 1)); 

        FM = std2(H)^2+std2(V)+std2(D); 

         

        % Measure No. 8   

    case 'WAVR' % Wavelet ratio (Xie2006) 

        [C,S] = wavedec2(Image, 3, 'db6'); 

        H = abs(wrcoef2('h', C, S, 'db6', 1)); 

        V = abs(wrcoef2('v', C, S, 'db6', 1)); 

        D = abs(wrcoef2('d', C, S, 'db6', 1)); 

        A1 = abs(wrcoef2('a', C, S, 'db6', 1)); 

        A2 = abs(wrcoef2('a', C, S, 'db6', 2)); 

        A3 = abs(wrcoef2('a', C, S, 'db6', 3)); 

        A = A1 + A2 + A3; 

        WH = H.^2 + V.^2 + D.^2; 
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        WH = mean2(WH); 

        WL = mean2(A); 

        FM = WH/WL; 

         

        % Measure No. 9 

    case 'GLVA' % Graylevel variance (Krotkov86) 

        FM = std2(Image); 

         

         

        % Measure No. 10 

    case 'HISE' % Histogram entropy (Krotkov86) 

        FM = entropy(Image); 

         

         

        % Measure No. 11 

    case 'STD' % standart Deviation 

        FM = std2(Image); 

         

         

        % Measure No. 12 

    case 'HISR' % Histogram range (Firestone91) 

        FM = max(Image(:))-min(Image(:)); 

         

         

        % Measure No. 13 

    case 'CURV' % Image Curvature (Helmli2001) 

        if ~isinteger(Image), Image = im2uint8(Image); 

        end 

        M1 = [-1 0 1;-1 0 1;-1 0 1]; 

        M2 = [1 0 1;1 0 1;1 0 1]; 

        P0 = imfilter(Image, M1, 'replicate', 'conv')/6; 

        P1 = imfilter(Image, M1', 'replicate', 'conv')/6; 

        P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ... 

            -imfilter(Image, M2', 'replicate', 'conv')/5; 

        P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ... 

            +3*imfilter(Image, M2, 'replicate', 'conv')/10; 

        FM = abs(P0) + abs(P1) + abs(P2) + abs(P3); 

        FM = mean2(FM); 

         

        % Measure No. 14 

    case 'SFRQ' % Spatial frequency (Eskicioglu95) 

        Ix = Image; 

        Iy = Image; 

        Ix(:,1:end-1) = diff(Image, 1, 2); 

        Iy(1:end-1,:) = diff(Image, 1, 1); 

        FM = mean2(sqrt(double(Iy.^2+Ix.^2))); 

         

         

    otherwise 

        error('Unknown measure %s',upper(Measure)) 

end 

end 

%******************************************************************* 
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