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ABSTRACT

PREDICTIVE MODELS FOR CATALYST DEVELOPMENT

Kondi, Rebeka
M.Sc., Department of Computer Engineering
Supervisor: Dr. Maaruf Ali

With these hard times that we are living after covid, inflation but also problems
like fertilizer shortage and supply of chain issues, has made everyone turn their
attention to better, more affordable, faster, and organic solution almost in every field
of science and not only.

The inspiration for this project was found on the BioSPRINT project, where the
target reaction is the simultaneous dehydration of multiple C5 and C6 sugars to
produce 5-HMF and FUR. The objective was to find machine learning (ML) models
that would speed up the discovery of catalysts using high-throughput (HTP) screening
techniques. Maximum activity for the conversion of complex sugar combinations is

sought, with the best selectivity for the major products of interest.

The three additional models used are generalised boosted regression modelling,
extreme gradient boosting and boosted generalised additive models for location, scale,

and shape.

The results show that XGBoost has the best performance overall. All the
models performed poorly in the case of Selectivity. Another approach for this response
is to apply a transformation on the response variable. The performance of these models
can be potentially improved by adding new “catalytic-informed” features, that will be

engineered based on the expert knowledge about the problem.

Keywords: Machine Learning, Catalysis, Predictive Modelling, Variable Selection,

Solvent, Gradient Booting.



ABSTRAKT

MODELE PARASHIKUESE PER ZHVILLIMIN E
KATALIZATOREVE

Kondi, Rebeka

Master Shkencor, Departamenti i Inxhinierisé Kompjuterike

Udhéheqési: Dr. Maaruf Ali

Me kéto kohé té véshtira qé po jetojmé pas Covid-it, inflacioni por edhe
problemet si mungesa e fertilizatoréve dhe zinxhiri i furnizimit, ka béré qé té gjithé ta
kthejné vémendjen drejt zgjidhjeve mé té mira, mé té pérballueshme, mé té shpejta

dhe organike pothuajse né ¢do fushé té shkencave dhe jo vetém. .

Frymézimi pér kété projekt erdhi nga projekti BioSPRINT, ku rezultati i synuar
éshté dehidratimi i njékohshém i shegernave C5 dhe C6 pér té prodhuar 5-HMF dhe
FUR. Objektivi ishte gjetja e modeleve té machine learning (ML) qé do té
pérshpejtonin zbulimin e katalizatoréve duke pérdorur teknikat e shqyrtimit me

performancé té larté (HTP).

Tre modelet shtesé té pérdorura jané: generalised boosted regression modelling,
extreme gradient boosting dhe boosted generalised additive models pér vendndodhjen,

shkallén dhe formén.

Rezultatet tregojné se XGBoost ka performancén mé té miré né pérgjithési. Té
gjitha modelet performuan dobét né rastin e Selektivitetit. Njé gasje tjetér pér kété
zgjidhje éshté aplikimi i njé transformimi né variablin te varur. Performanca e kétyre
modeleve mund té pérmirésohet potencialisht duke shtuar vecori té reja né lidhje me

katalizatorét, té cilat duhet te bazohen né njohurité mé eksperte rreth problemit.

Fjalét kyce: Machine Learning, katalizator, modele parashikuese, zgjedhja e

variablave, tretés, Gradient Booting.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The 20s have always been some hard years in the history of mankind, and if we
have learned something from history is that it repeats itself. It looks like this century
too we are passing some hard years. With the pandemic that looks like we passed it,
with this sudden lifting of measurements and the supply chain problem, the
fertilization problem, the shortage on personnel that have started on some of the
biggest companies worldwide and the forecasting of the recession in the horizon in the
upcoming 6-9 months, it looks like it has shifted the human’s perspective, focus, and
aim on finding more fast, affordable, and ecofriendly solutions in any field.

For better understanding of the thesis, it needs to be started first with some

definition of concepts like:

Biomass energy, or energy derived from living things, has been utilized by
humans since the first “cave men" used wood fires for cooking and warmth. Biomass
is organic, which means it is made up of material derived from living beings like plants
and animals. Plants, wood, and garbage are the most frequent biomass sources utilized
for energy. Biomass feedstocks are what they're termed. Biomass energy can be a non-

renewable source of energy.

Biorefining is the process of obtaining various value-added products from the
valorization of biomass, while Process Intensification (PI) is a technique for generating
significant gains in manufacturing and processing by lowering the equipment size to

output ratio, reducing waste, and lowering energy usage.

Catalysis is the use of catalysts to alter chemical processes. For business
reasons, the response is hastened or amplified. Because catalysts reduce the minimum
energy required to initiate a chemical reaction, catalytic reactions are quicker than

uncatalyzed reactions (activation energies).



This thesis details machine learning models that can be used in catalysis and
aim to find relevant descriptors to connect experimental data with desired Figure of
Merit (FOM).

Data analysts use Figures of Merit to describe a method. Precision, accuracy,
sensitivity, linear dynamic range, detection limit, and selectivity are the six figures of
merit that are utilized.

What was studied in this thesis is the selectivity which refers to a catalyst's

tendency to favor favorable reactions over unwanted ones at a faster pace.

It has found inspiration on the BioSPRINT project, where the target reaction is
the simultaneous dehydration of multiple C5 and C6 sugars to produce 5-HMF and
FUR. The thesis builds on the work of, [1] by adding three additional models that were
implemented on the project’s experimental data set. The three additional models used
are generalised boosted regression modelling, extreme gradient boosting and boosted
generalised additive models for location, scale, and shape.

This thesis is divided in 4 chapters. The organization is done as follows:

In Chapter 1, the introduction and model review. Chapter 2 includes the
materials and methods, preprocessing, evaluation metrics and modeling framework.
Chapter 3 consists of the results for each model. In Chapter 4, are the discussion and

future work.

1.2 Models Review

1.2.1 Gradient Boosting

A high-level description is that it is a type of machine learning technique that
utilizes previous models by combining them with the new ones to achieve the smallest
prediction error. They are combined via their target outcomes which are compared
against the other predictions. The impact on the overall prediction error is then

assessed.



For example, a target outcome gets a high value when a small alteration in the
prediction results to the error having a large drop. In the same sense, if a small change
in the prediction does not impact the overall error, then the next target outcome is zero.

The term gradient boosting comes from the gradient of the error against the prediction

1.2.2 Extreme Gradient Boosting

The idea behind this method is to generate decision trees in a sequential manner.
The weights play a crucial role here. All the independent variables are given weights,
which are then put into the decision tree. After that, the forecasts are obtained. The
weight of variables that the tree predicted incorrectly is raised, and the variables are
put into the second decision tree. These various classifiers/predictors are then
combined to create a more powerful and accurate model. It may be used to solve issues

including regression, classification, ranking, and user-defined prediction.

1.2.3 Generalized Additive models for location, scale, and shape

GAMSLSSs are a popular semiparametric modeling approach that regresses
not only the expected mean but also every distribution parameter (e.g., location, scale,
and shape) to a set of covariates, in contrast to conventional generalized additive
models. They were introduced by [2] as a class of statistical models for regression

problem univariate response.

Given a set of variables, GAMSLSS models have the benefit of not requiring
the conditional distribution of the response variable to belong to the exponential
family. Instead, you can choose from a large range of discrete, continuous, and mixed

discrete-continuous distributions.

One further essential feature of GAMLSSs is the fact that every parameter of

the conditional response distribution has its own predictor as well as link function. The



GAMLSS method makes it possible to model the regression of each distribution
parameter on the covariates, in contrast to the normal GAM method, which often can
only be used to model the conditional mean of the response variable (considering other
distributional characteristics as fixed). Location, scale, skewness, and kurtosis are
common distribution parameters, although degrees of freedom (of a -distribution) and
zero inflation probability can also be modeled. The whole conditional distribution of
a multiparameter model is thus tied to a set of predictor variables of interest in the
GAMLSS technique. [3]



CHAPTER 2

MATERIALS AND METHODS

2.1 Data Description and preparation

The following section describes the data used in this project and presents the
pre-processing prior to using it in the modelling part.

2.1.1 Description

In catalyst development, the goal is to link catalyst descriptors to FOMs. FOM
is a quantitative index describing catalyst’s usefulness e.g., selectivity and conversion.
Dataset of catalyst libraries consists of features that explain physicochemical
properties of the materials such as electronic structure properties, physical properties,

atomic properties etc.

The following figure shows the flow from the catalysts to the reaction

conditions and finally to the figures of merit.
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Figure 1: Catalyst Flow

There are no libraries that map the properties of catalysts with the FOM for
simultaneous dehydration reaction of C5 and C6 sugars to 5-HMF and furfural. The
dataset provided for the experiment was obtained from [4] paper (based on
hydrogenation reaction of 5-ethoxymethylfurfural). In addition, a set of properties for

the main metals and promoters were provided. The data set consists of the following:

Conversion and selectivity percentages for two different solvents (diethyl
carbonate and 1,4-dioxane), and three different temperatures (80, 100 and 120 °C).

Eight different main metals (Au, Cu, Ir, Ni, Pd, Pt, Rh, Ru) and six promoters
(Bi, Cr, Fe, Na, Sn, W) that were used as catalysts. For each main metal and promoter,
we have a set of properties that are used as input features to the machine learning

models.

Slater-type orbitals values were obtained from [4]. In order to obtain the data
some additional settings needed to be applied. Those settings are related to the
chemical composition and structure of the elements involved in the experiment. Those

are:



e Aluminium Oxide support in all observations.
e Main metal’s loading of 1 wt% and promoter 10 mol% related to main metal.

e Feedstock composition kept constant in the studied dataset.

Since the chemical properties and structure of the elements is outside the scope

of this project, no further explanation or analysis will be presented.

As mentioned above, the aim is to use machine learning algorithms to predict
the conversion and selectivity for the two solvents, using the properties of main metals
and promoters as input features. The same naming convention for the response

variables is also used:

e Conversion: conversion with diethyl carbonate solvent
e Selectivity: selectivity with diethyl carbonate solvent
e Conversionl: conversion with 1,4-dioxane solvent

e Selectivityl: selectivity with 1,4-dioxane solvent

2.2 Pre-processing

This step was important to understand the properties of the dataset and to format
the data to be used in the machine learning algorithms. It consisted of visual inspection
of the data, handling the missing values, applying any necessary transformations that
would improve the fitting algorithm and remove any data that do not provide any

useful information.

The first step was the inspection of the response variables. All four responses
were percentages and took values in the interval [0,100]. As pointed out in [1], and
from the plots in the diagonal of the figure 1 below, where the histograms with the
densities superimposed for each response variable were plotted, it was seen that they
do not follow normal distribution. Especially in the case of conversion and selectivity
of the 1,4-dioxane solvent, where they were bimodal with most of the density at 0 and
100. Since the assumption of normality did not hold, it was needed to investigate more

flexible regression frameworks, that could model response variables with more



flexible distributions. One such framework is the Generalised Additive Models for
Location Scale and Shape (GAMLSS), where they used a distributional regression
approach, where all the parameters of the conditional distribution of the response
variable were modelled using explanatory variables. GAMLSS could model the
response variable using distributions that can be outside the exponential family.

For each pair of main metal and promoter at different temperatures, the
properties of those elements were used to predict the conversion and the selectivity of
the catalysis. Given this nature of the problem, the input features had many repeated
values that made it hard to model the responses using linear relationships or spline
functions to capture non-linear relationships. Hence, using tree-based methods looked
a more reasonable approach. Also, due to the high dimensionality of the dataset (100+
descriptors and 4 response variables), gradient booting techniques could be used. An
advantage of boosting was that the fitting of the model and the feature selection are

performed simultaneously.

The dataset contained NAs for some values in the input features and for couple
of values in the responses. Specifically, the values for conversion and selectivity of
diethyl carbonate solvent for the pair Ir/W were missing. The corresponding rows were
omitted for the given solvent. In addition, the following features were removed due to

the NA values in some of the observations:

e m_Vickers_Hardness_MPa

m_Mass_Mg_Susc_m3_kg

m_Molar_Mg_Susc_m3_mol

m_Volume_Mg_Susc

m_Van_der_Waals_Radius_pm
e p_Vickers_Hardness_MPa

e p_Poisson_Ratio

e p_Mass_Mg_Susc_m3_kg

e p_Molar_Mg_Susc_m3_mol

e p Volume Mg _Susc

e p_Van_der_Waals_Radius_pm.



A better approach, rather than removing these columns, was to impute the
missing values. However, expert knowledge in the properties of the elements was
needed to check if the imputed values can make a statistically significant impact. Note
that the “p” and “m” in front of the names of the features above corresponds to

promoter and main metal, respectively.

As a last step on the pre-processing of the data is the standardization applied to
the input feature with a personalized function. The numeric features were scaled using

the transformation

x—Xx
Jvar(x)

variance. Also, the response variables were scaled to be between 0 and 1, by dividing
them by 100.

, Where X is the mean of the feature values and var(x) the

The final data set for dioxane solvent consists of 101 input features and 144

observations. For diethyl we have 101 input features and 141 observations.
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Figure 2: The figure shows the histogram of each response variable in the main

diagonal, with the empirical density superimposed to the plot. In the upper diagonal,

we the correlation between each pair of the responses and in the lower diagonal, the

scatter plot.

2.3 Evaluation Metrics

Before starting to implement the models, it is needed to choose the evaluation

method. The method used was the following:

The data was split into training and test set. The idea was to use the training set

to select and train the model and then do the final evaluation on the test set. Thus, the

test set can be considered as completely unknown (or out-of-sample). The data was

split to be 80% for training and 20% for testing.

First, it was used use 5-fold cross-validation on the training set to calculate the

expected prediction error of the model. Having chosen the best model using the

10
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expected prediction error, the test set was used to calculate the prediction error on new
data. It was expected for these two values to be similar, otherwise it would have been
an indication of overfitting. Overfitting means when the model performs good on the
training set but does not do so on the unseen data (training set). So, the model has
learned the data set very good and when is tested on the test set it does not predict

good.

Note that the “RMSE Training” value provided on the tables for each model
below corresponds to the cross-validation error, except for the gamboostLSS models.

In this case it corresponds to the training set error.

The metric that was used to compare the models is the RMSE given by:

n
1
RMSE = ;Z(yl- —5)2,
i=1

where y; and ¥, are the actual and predicted values respectively.

2.4 Modelling framework

The three modelling ideas that are implemented were based on component-wise
gradient boosting; Generalized Boosted Regression Modelling (GBM), eXtreme
Gradient Boosting (XGBoost) and Boosted Generalised Additive Models for location,
scale, and shape (gamboostLSS). Gradient boosting is a machine learning method for
optimizing prediction accuracy and for obtaining statistical model estimates via
gradient descent techniques. A key feature of this method is that it carries out variable

selection during the fitting process.

Given the nature of the problem and the dataset available, the base-learners
used to regression trees were constrained. All the models were implemented in R using

the following packages and their dependencies:

gamboostLSS1, gbm2, xgbootst3

1 https://cran.r-project.org/web/packages/gamboostLSS/index.html
2 https://cran.r-project.org/web/packages/gbm/index.html
3 https://cran.r-project.org/web/packages/xgboost/index.html
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CHAPTER 3

RESULTS

3.1 Generalized Boosted Regression Modelling (GBM)

Using R, generalized boosted regression models for predicting the Conversion
and Selectivity for each solvent were fitted. The basic tuning parameters of the model
were the number of iterations (M) and the size of the constituent trees (/). The model
also had several hyperparameters that also needed tuning. In general, gradient boosting
is a greedy algorithm and regularization techniques are needed to avoid overfitting.
The following parameters corresponds to the regularization techniques used:

Early stopping — to select the optimal number of trees to be added.

Subsampling - the fraction of the training set observations randomly selected

to propose the next tree in the expansion.
Shrinkage parameter () — controls the learning rate of the boosting procedure.
A detailed description of these parameters can be found in [5].

For choosing the optimal values for each of these parameters, the following

approach was followed:

Initialized with many iterations (M) and a small value for the shrinkage
parameter (n). The idea is by keeping the learning rate small will require more rounds
for to converge. For the size of the constituent trees, a maximum depth /] = 2 was used,
which implies that it was allowed up to 2-way interactions. Finally, cross validation
was used to find the approximation of the optimal stopping round or optimal number

of trees to be added.

After specifying the optimal number of trees, the rest of the hyperparameters
were tuned. A hyperparameter search grid was created and searched for the set of

parameters that result in the lowest cross-validation error.

Following the approach described above the following results were obtained:

12



Solvent RMSE Training RMSE Test
Conversion 8.249346 8.209366
Diethyl carbonate
Selectivity 7.344877 6.603622
Conversion 9.228265 6.930663
1,4-dioxane
Selectivity 33.36084 30.72591

Table 1: Results of the Generalized Boosted regression Modelling (GBM)

To get some insights from the model, the variables that have the most influence
need to be understood. For this the relevant influence as described in Hastie et al. 2009
(chapter 10, pages 367 - 370) were used. Figures in the Appendix show the drivers

with the highest relative influence for each of the response.

The important features are derived so to continue the model needs to decipher
how the dependent variable changes based on those features. The partial dependence
plots for the drivers with the highest influence and their interactions can be found in
appendices. Note that the plots are provided using the standardized features. However,

the relationship will be the same on the original scale.

3.2 eXtreme Gradient Boosting (XGBoost)

XGBoost is an optimized distributed gradient boosting library designed to be
highly efficient, flexible, and portable. It implements machine learning algorithms
under the Gradient Boosting framework. Like GBM, XGBoost also follows a gradient

boosting framework and fits regression trees. However, XGBoost has some

13



advantages over GBM. XGBoost uses regularization penalties in the objective function
to control the complexity of the model, which helps to avoid overfitting. Moreover, it
is more efficiently implemented for speed and scalability.

Some additional data preparation was needed for XGBoost, since it takes only
numeric features. We used One-Hot encoding for factors. XGBoost has similar
hyperparameters as GBM, and a similar approach for hyperparameters tuning as used
in the GBM. A detailed description of all the parameters can be found in XGBoost’s

official website4. The results are given in the table below.

Solvent RMSE Training RMSE Test
Conversion 7.73798 8.370523
Diethyl carbonate
Selectivity 6.63216 6.267892
Conversion 9.54526 6.310388
1,4-dioxane
Selectivity 31.87828 30.09495

Table 2: Results of eXtreme Gradient Boosting (XGBoost)

The feature importance for each case and the partial dependence plots are

provided in the Appendix.

4 https://xgboost.readthedocs.io/en/latest/parameter.html
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3.3 Boosted GAMLSS models

GAMLSS use a distributional regression approach, where up to four parameters
of the conditional distribution of the response variable are modelled using independent
variables. GAMLSS can model the response using distributions from a wide range of

available distributions that can be found in Stasinopoulos D. M. et. al. 2017bs.

The first step in using the GAMLSS models, is to choose an appropriate
distribution. Based on an exploratory analysis using distributions from the GAMLSS
package and the available functionality provided to fit the distributions to the data, the
chosen marginal distributions were constrained to be flexible enough to capture the
marginal distribution for each response variable. Note that the distribution given from
the GAMLSS’s built-in function for some of the responses might not be the best. The
reason is, to fit a distribution with four parameters, using a flexible regression model
for each parameter, it is recommended to have ~1000 observations. Since the training
set contains only ~100 observations, a distribution that is flexible and can be fitted

with the given data was chosen.

The approach that was used for fitting the GAMLSS models is gradient
boosting [3]. The base learns used are stumps (regression trees with a single split). The
noncyclic method to fit the model was also used. This means that at every iteration

only one base learner is selected to one of the distribution parameters.

The hyperparameters of the model is the early stopping of the algorithm and
the shrinkage parameter. For tuning these parameters, cross-validation was used,
which was based on the following approach: We choose a small value for the shrinkage
parameter and a large number for the boosting iterations. Then the number of iterations
was chosen based on which gave the smallest cross-validation error. The distributions

chosen for each of the responses are the following:
Conversion: Generalized Beta type 1 (GB1)
Selectivity: Logit Normal distribution (LOGITNO)
Conversionl: Beta Distribution (BE)

Selectivityl: Logit Normal distribution (LOGITNO)

> https://www.gamlss.com/wp-content/uploads/2018/01/DistributionsForModellingLocationScaleandShape.pdf
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The histogram of the responses with the marginal distribution chosen are given

in the appendices.

Following the approach described above the following results are obtained:

Solvent RMSE Training RMSE Test
Conversion 11.8355 12.86876
Diethyl carbonate
Selectivity 12.94835 16.16082
Conversion 9.310062 14.57453
1,4-dioxane
Selectivity 36.07054 39.57918

Table 3: Results of Boosted GAMLSS models
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CHAPTER 4

DISCUSSION

4.1 Summary

XGBoost has the best performance overall. All the models performed poorly
in the case of Selectivity of the 1,4-dioxane solvent. Another approach for this
response is to apply a transformation on the response variable. The performance of
these models can be potentially improved by adding new “catalytic-informed”
features, that will be engineered based on the expert knowledge about the problem.

4.2 Future Work

What there is left to do, is to try other models on the database. To search for
better results and to do the comparison between the models with the database where
the standardization, cross validation, and feature selection is done or not. Like a grid

search to see which of the models would yield the best response.

The modelling done in this thesis was solely centered around gradient descent

models. There are other methodologies that can be used to better fit the available data.

With the current dataset being small, the next step is to leverage ensemble
learning. This technique consists of training multiple machine learning models and
combining their outputs together. Those different models are used as a base to create

one optimal predictive model.

In addition, an Al framework can be utilized. Neural networks can be adjusted

to perform well with small datasets.
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Appendix: Features Importance and Partial Dependence
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1.1.2 Selectivity 1,4-diethyl solvent
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1.1.3 Conversion dioxane solvent
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1.1.4 Selectivity dioxane solvent
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1.2 XGBoost
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1.2.2 Selectivity 1,4-diethyl solvent
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1.2.3 Conversion dioxane solvent
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1.2.4 Selectivity dioxane solvent
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1.3  gamboostL SS
The figure below shows the histogram of each response variable with the

chosen marginal distribution superimposed (red curve).
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Appendix: Code for GBM in R

## Script name: ml_models.R

## Purpose of script: Predictive Models for Catalysis - part of thesis

## Author: Rebeka Kondi

## Date Created: 17/04/2022

## Email: bekakondi@gmail.com

## Notes: To run the script you need to add the data "Databank.xIsx™ and
# script "data_preparation.R™ in the working directory.

#training <- solvent_data[,.SD,.SDcols = c(response_name,num_features,fac_features)]
training <- data.table::copy(solvent_data)

# rename the response to target to avoid code replication

data.table::sethames(x = training, old = response_name, new = "target")

# Split the data to train and validation set
set.seed(1) # set seed for reproducibility
test_ind <- sample(
X = L:nrow(training),
replace = FALSE,
size = nrow(training) * 0.2
)
test_set <- training[test_ind,
.SD,
.SDcols = c¢("target", num_features,
setdiff(fac_features, c("Promoter_fac", "Mainmetal_fac")))]
train_set <- training['test_ind,
.SD,
.SDcols = c¢("target", num_features,
setdiff(fac_features, c("Promoter_fac", "Mainmetal_fac")))]

train_set_with_metals <- training[!test_ind]
test_set with_metals <- training[test_ind]

# Distribution of the response in the training and the validation set
nrow(test_set)
nrow(train_set)
par(mfrow = ¢(1, 2))
hist(
train_set$target,
main = paste0("'Training Set"),
xlab = response_name,

freq = FALSE

)

hist(
test_set$target,
main = pasteO(""Test Set"),
xlab = response_name,
freq = FALSE

)

# Fit a generalized boosted regression models
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# We use cv to determine the optimum number of tress for this learning rate

gb_model <- gbm::gbm(
formula = target ~ .,
data = train_set,
distribution = "gaussian",
#"laplace"
n.trees = 10000,
shrinkage = 0.05,
cv.folds = 5,
bag.fraction = 0.5,
#train.fraction = 0.8, # to use this we need to shuffle the data
interaction.depth = 2,
verbose = FALSE
)
best <-
which.min(ghb_model$cv.error) # optimal stopping time based on cv

# RMSE for training set with the optimal number of iterations
sgrt(gh_model$cv.error[best]) # cv error
sqrt(gb_model$train.error[best]) # training error

# Predictions and RMSE of test set

y_hat <- predict(gb_model, newdata = test_set, n.trees = best)
ModelMetrics::rmse(y_hat, test_set$target)

gbm::gbm.perf(gb_model, method = "cv")

# Tune hyperparameters
hyper_grid <- expand.grid(
shrinkage = 0.05,
n.trees = best,
interaction.depth = ¢(1, 2, 3, 5),
n.minobsinnode = ¢(5, 10, 15),
bag.fraction = ¢(0.5, 0.65, .8, 1),
optimal_trees = 0,
# a place to dump results
min_RMSE =0 # a place to dump results
)
# total number of combinations
nrow(hyper_grid)
# grid search
i <- 1 # for debugging
for (i in L:nrow(hyper_grid)) {
set.seed(123) # reproducibility
gbm.tune <- gbm::gbm(
formula = target ~ .,
distribution = "gaussian",
data = train_set,
n.trees = hyper_grid$n.trees[i],
interaction.depth = hyper_grid$interaction.depth[i],
shrinkage = hyper_grid$shrinkage[i],
n.minobsinnode = hyper_grid$n.minobsinnodel[i],
bag.fraction = hyper_grid$hag.fraction[i],
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#train.fraction = .75,

cv.folds = 5,

n.cores = NULL,

# will use all cores by default

verbose = FALSE
)
# add min training error and trees to grid
hyper_grid$n_trees <- hyper_grid$n.trees[i]
hyper_grid$min_RMSE[i] <-

sgrt((gbm.tune$cv.error[hyper_grid$n.trees[i]]))

}

hyper_grid <-
hyper_grid[order(hyper_grid$min_RMSE), ] # ordered results
gbm.fit.final <- gbm::gbm(
formula = target ~ .,
distribution = "gaussian",
data = train_set,
n.trees = hyper_grid$n.trees[1],
interaction.depth = hyper_grid$interaction.depth[1],
shrinkage = hyper_grid$shrinkage[1],
n.minobsinnode = hyper_grid$n.minobsinnode[1],
bag.fraction = hyper_grid$bag.fraction[1],
#train.fraction = .75,
cv.folds = 5,
# will use all cores by default
verbose = FALSE

)

# Results
train_rmse <- sqgrt(gbm.fit.final$cv.error[hyper_grid$n.trees[1]])
y_hat<-

predict(gbm.fit.final, test_set, n.trees = hyper_grid$n.trees[1])
test_rmse <- ModelMetrics::rmse(y_hat, test_set$target)
res <- data.table::data.table(

Model = "GBM",

Solvent = stringr::str_to_title(solvent),

ResponseName = response_name,

train_rmse = train_rmse * 100,

test_rmse = test_rmse * 100

)

# Get/Plot the relative importance and PDP
vip::vip(gb_model)

rel_inf <- gbm::relative.influence(gb_model, n.trees = best)
rel_inf <- rel_inf[order(rel_inf, decreasing = TRUE)]
names(head(rel_inf))

par(mfrow = ¢(2, 2))

plot(gb_model , i = names(rel_inf)[1], ylab = response_name)
plot(gb_model , i = names(rel_inf)[2], ylab = response_name)
plot(gb_model , i = names(rel_inf)[3], ylab = response_name)
plot(gb_model , i = names(rel_inf)[4], ylab = response_name)

plot(gb_model ,
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i = c(names(rel_inf)[1], names(rel_inf)[2]),
level.plot =T)

plot(gb_model ,
i = c(names(rel_inf)[1], names(rel_inf)[3]),
level.plot =T)

# Plots Predicted Values VS Actual values
# CV in the Training Set
dt2plot <- data.table::copy(train_set_with_metals)
dt2plot$x <- dt2plot$target * 100
dt2plot$y <- gbm.fit.final$cv.fitted * 100
dt2plot[, text := paste0(

"Main Metal: ",

Mainmetal_fac,

"\n",

"Promoter: ",

Promoter_fac,

"\n",

"Temperature: ",

Temperature
)l
# plot_ly
figl <- dt2plot %>%

plot_ly() %>% add_trace(

type = 'scatter’,
mode = 'markers',

X =~X,

y=-y,

marker = list(
size = 15,

color ='rgha(255, 182, 193, .9)',
line = list(color = 'rgha(152, 0, 0, .8)',
width = 2)

),

text = ~ text,

hovertemplate = paste(
"<p>%{text}</b><br><br>",
"%%{yaxis.title.text}: %{y:.2f}%<br>",
"O%{xaxis.title.text}: %{x:.2f}%<br>"

)
) %>% layout(
title = list(

text = paste0(
"GBM Out-of-Sample (CV) Predictions \n",
"Solvent: ",
stringr::str_to_title(solvent),
" & Repsonse: ",
response_name
),
font = list(size = 15)),
xaxis = list(title = "Actual Values", titlefont = list(size = 15)),
yaxis = list(title = "Predicted Values", titlefont = list(size = 15)),
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showlegend = FALSE
) %>%
add_trace(
x = ¢(0, 100),
y =¢(0, 100) ,
type = "scatter",
mode = "lines",
name = 'abline’,
line = list(color = "grey", dash = 'dash")

)

dt2plot <- data.table::copy(test_set with_metals)
dt2plot$x <- dt2plot$target * 100
dt2plot$y <-
predict(gbm.fit.final, test_set, n.trees = hyper_grid$n.trees[1]) * 100
dt2plot[, text := paste0(
"Main Metal: ",
Mainmetal_fac,
"\n",
"Promoter: ",
Promoter_fac,
"\n",
"Temperature: ",
Temperature
)i
# plot_ly
fig2 <- dt2plot %>%
plot_ly() %>% add_trace(
type = 'scatter’,
mode = 'markers’,

X =~X,

y=-y,

marker = list(
size = 15,

color ='rgha(255, 182, 193, .9)',
line = list(color = 'rgha(152, 0, 0, .8)',
width = 2)

),

text = ~ text,

hovertemplate = paste(
"<p>%{text}</b><br><br>",
"%%{yaxis.title.text}: %{y:.2f}%<br>",
"Op{xaxis.title.text}: %{x:.2f}%<br>"

)
) %>% layout(
title = list(

text = paste0(
"GBM Out-of-Sample (Test Set) Predictions \n",
"Solvent: ",
stringr::str_to_title(solvent),
" & Repsonse: ",
response_name

),
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font = list(size = 15)
),
xaxis = list(title = "Actual Values", titlefont = list(size = 15)),
yaxis = list(title = "Predicted Values", titlefont = list(size = 15)),
showlegend = FALSE
) %>%
add_trace(
x = ¢(0, 100),
y =¢(0, 100) ,
type = "scatter",
mode = "lines",
name = 'abline’,
line = list(color = "grey", dash = 'dash")

)

fig_combine <- subplot(fig1,

fig2,

titleX =T,

titleY =T,

shareY = TRUE) %>%

layout(
title = paste0(

"<b>GBM</b> Out-of-Sample Predictions ",
"(Solvent: <b>",
stringr::str_to_title(solvent),
"</b> & Repsonse: <b>",
response_name,

"</b>)",
"<br>",
"<sup>",
"Left: Cross-Validation predictions on the training set, Right: Predictions on the test Set",
"</sup>"
),
margin = list(t = 100, b = 100)
)
save(res,
fig_combine,

file = pasteO(getwd(), '/Plots/gbm_", solvent, '_', response_name, '.Rdata"))
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