

CELL IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL

NETWORKS AND DIFFERENT IMAGE PREPROCESSING TECHNIQUES

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

EDIT DOLLANI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JULY,2021

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “Cell Image Classification

Using Convolutional Neural Networks and Different Preprocessing Techniques”

and that in our opinion it is fully adequate, in scope and quality, as a thesis of Master

of Science.

Assist. Prof. Dr. Arban Uka

Head of Department

Date: August,16,2021

Assist. Prof. Dr. Arban Uka (Computer Engineering) _________________

Dr. Julian Hoxha (Computer Engineering) _________________

Dr. Shkelqim Hajrulla (Computer Engineering) _________________

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name Surname: Edit Dollani

Signature: ______________

iii

ABSTRACT

 CLASSIFICATION OF CELL IMAGES USING CONVOLUTIONAL

NEURAL NETWORKS AND DIFFERENT PREPROCESSING

TECHNIQUES

Dollani, Edit

M. Sc., Department of Computer Engineering

Supervisor: Dr. Arban Uka

Medical image analysis field is highly dependent on good quality research that

can result in time, cost improvements and aid in providing faster and better diagnosis

for patients. Machine learning and especially convolution neural networks has proven

to efficiently achieve the previously mentioned improvements in various medical field

tasks. In this research we will focus on classification of cells based on their health

level using a CNN model and several image preprocessing techniques with the goal of

achieving high accuracy levels of predictions. The dataset used in this study has more

than 20000 images for training and will be tested on two different datasets with each

more than 8000 images. Several preprocessing techniques such as Wavelet denoising,

Sobel filter, sharpening and edge enhancing filters will be tested and compared based

on performance during the classification tasks with graphs and numerical results. The

modified CNN model will be tested to find out the best parameters to use for training

it and efficiently increasing the performance and precision.

Keywords: cell samples, preprocessing, classification, convolutional neural

networks, LeNet, deep learning

iv

ABSTRAKT

KLASIFIKIMI I QELIZAVE DUKE PËRDORUR CONVOLUTIONAL

NEURAL NETWORKS DHE TEKNIKA TE NDRYSHME

PREPROCESIMI

Dollani, Edit

Master Shkencor, Departamenti i Inxhinieri së Kompjuterike.

Udheheqesi: Dr. Arban Uka

Fusha e studimit te imazheve mjekesore eshte shume e varur nga kerkimet

shkencore qe sjellin permiresim ne kosto dhe reduktim ne kohe nderkohe qe sigurojne

nje diagnoze me te shpejte dhe me te sakte per pacientet.Mesimi automatik dhe

specifikisht rrjetat neurale kane provuar qe kane efikasitet te larte per te arritur

permiresimet e permenduara pak me pare.Ne kete studim fokusohemi ne klasifikimin

e qelizave ne baze te shendetit te tyre duke perdorur nje model rrjete neurale se bashku

me disa teknika optimizimi imazhesh me qellimin per te arritur rezultate te larta

saktesie ne parashikim.Grupi i imazheve qe do perdoret ne kete studim ka me shume

se 20000 imazhe qe do perdoren per trajnimin e modelit dhe testimi do te behet ne 2

grupe te tjera imazhesh me me shume se 8000 imazhe.Teknika te ndryshme optimizimi

imazhesh do testohen dhe krahasohen me ane te rezultateve numerike dhe grafikeve.

Modeli i modifikuar cnn do testohet per te identifikuar parametrat e trajnimit qe do te

sjellin rritje te performances dhe precizionin e modelit.

Fjalët kyçe: imazhe qelizash, optimizim imazhesh, klasifikim, rrjetat neurale,

LeNet,mesimi i thelle i strukturuar

v

Dedicated to my lovely family

for their endless support

 and encouragement.

vi

AKNOWLEDGEMENTS

I would like to express the deepest appreciation to my supervisor Assist. Prof.

Dr. Arban Uka who was there to guide me with his expertise, ideas, feedback, and

encouragement during this journey. His experience in the field has proven of great

value, in offering both new insight and even enthusiasm for my work with this thesis,

as well as any potential work, going forward.

vii

TABLE OF CONTENTS

ABSTRACT iii

ABSTRAKT iv

AKNOWLEDGEMENTS vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1 1

INTRODUCTION 1

1.1 Background & Motivation 1

1.2 Thesis Objective 1

1.3 Organization of Thesis 2

CHAPTER 2 3

LITERATURE REVIEW 3

2.1 Deep Learning 3

2.2 Convolutional Neural Networks 3

2.3 Convolution Layers 4

2.3.1 Convolution Layer 4

2.3.2 Pooling Layer 5

2.3.3 Fully Connected Layer 5

2.4 Related Research 6

2.5 Challenges of this research 10

CHAPTER 3 11

METHODOLOGY 11

viii

3.1 Dataset 11

3.2 Image Processing on the dataset 13

3.2.1 Preprocessing Techniques which reached highest accuracies during

classification 13

3.2.2 Not as effective Preprocessing Techniques 18

3.3 Network Architecture 21

CHAPTER 4 23

RESULTS 23

4.1 Reading the results 23

4.2 Experimenting with the parameters of the network 24

4.2.1 Batch Size 24

4.2.2 No. Epochs 31

4.3 Classification with preprocessing 35

4.3.1 Base model A - number of epochs 60 and batch size 32 36

4.3.2 Base model B - number of epochs 45 and batch size 64 46

CHAPTER 5 55

CONCLUSIONS 55

5.1 Conclusions 55

5.2 Future Work 55

REFERENCES 56

APPENDIX 59

ix

LIST OF TABLES

Table 1. Healthy Samples Before & After Preprocessing .. 15

Table 2. Unhealthy Samples Before & After Preprocessing..................................... 16

Table 3. Severely Disintegrated Samples Before & After Preprocessing 17

Table 4. Not as effective preprocessing techniques ... 19

Table 5. Binary Classification- Batch Size 32/Epoch 50 .. 25

Table 6. Binary Classification- Batch Size 64/Epoch 50 .. 26

Table 7. Multiclass Classification- Batch Size 32/Epoch 50 28

Table 8: Multiclass Classification- Batch Size 64/Epoch 50 30

Table 9: Model performance for different epochs .. 32

Table 10. 5 x 5 Laplacian Filter - Training with model 60 ep x 32 bs 37

Table 11. Horizontal Line Detector - Training with model 60 ep x 32 bs 39

Table 12. Sobel - Training with model 60 ep x 32 bs ... 41

Table 13. Sobel Only Healthy- Training with model 60 ep x 32 bs 42

Table 14. Training with model 45 ep x 64 bs.. 46

Table 15. 5 x 5 Laplacian Filter - Training with model 45ep x 64 bs 48

Table 16. Horizontal Line Detector - Training with model 45ep x 64 bs 50

Table 17. Sobel Only Healthy- Training with model 45 ep x 64 bs 52

x

LIST OF FIGURES

Figure 1. Two major stages of CNN .. 4

Figure 2. Convolution Layer ... 5

Figure 3. Pooling Layer .. 5

Figure 4. Fully Connected Layer ... 6

Figure 5. Healthy Samples .. 11

Figure 6. Unhealthy Samples .. 12

Figure 7. 1280 x 1024 sample image ... 12

Figure 8. Crops of 1280 x 1024 sample ... 13

Figure 9. CNN architecture ... 21

Figure 10. Binary Classification- Batch Size 32/Epoch 50 Graph 26

Figure 11. Binary Classification- Batch Size 64/Epoch 50 Graph 27

Figure 12. Binary Classification- Batch Size 64 vs Batch Size 32: Epoch 50 Graph 27

Figure 13. Multiclass Classification- Batch Size 32/Epoch 50 Graph 29

Figure 14. Multiclass Classification- Batch Size 64/Epoch 50 Graph 30

Figure 15. Multiclass Classification- Batch Size 32 vs Batch Size 64: Epoch 50 Graph

 ... 31

Figure 16. Comparison by epoch 50,60,70 .. 33

Figure 17. Classification DS 3 with model 60 ep x 32 bs... 34

Figure 18. Classification DS 2 with model 60 ep x 32 bs... 35

Figure 19. ROC Curve of Model A on dataset without preprocessing 36

Figure 20. ROC Curve of Model A on dataset with 5 x 5 Laplacian Filter 38

xi

Figure 21. ROC Curve of Model A on dataset with Horizontal Line Detector 40

Figure 22. Sobel Only Healthy- DS 3 Classification with model 60 ep x 32 bs 43

Figure 23. Sobel Only Healthy- DS 2 Classification with model 60 ep x 32 bs 43

Figure 24. ROC Curve of Model A on dataset with Sobel on Healthy samples only 44

Figure 25. Comparison Graph using model 60 ep x 32 bs and different preprocessing

techniques ... 45

Figure 26. Training with model 45 ep x 64 bs Graph ... 47

Figure 27. ROC Curve of Model B on dataset without preprocessing 47

Figure 28. ROC Curve of Model B on dataset with 5 x 5 Laplacian Filter 49

Figure 29: ROC Curve of Model B on dataset with Horizontal Line Detector 51

Figure 30. ROC Curve of Model B on dataset with Sobel on Healthy samples only 53

Figure 31. Comparison Graph using model 45 ep x 64 bs and different preprocessing

techniques ... 53

1

CHAPTER 1

INTRODUCTION

1.1 Background & Motivation

Medical field depends heavily on high quality research that can not only result

in time and cost improvements but also provide better and faster diagnosis. Image

processing and machine learning have been of major help in improving healthcare in

terms of making predictions with accuracy and reducing a huge amount of tedious

work that would require many human resources. Recently, deep learning and

especially convolutional neural network is emerging as a prime machine learning

method in computer vision. Over the last few years, several convolutional neural

network architectures have been presented and achieved significant improvement in

results. Contributions such as LeNet-5, AlexNet and other CNN architectures were

proven to be efficient in various tasks including image recognition and image

classification [21]

 An important role in the medical field is the detection, counting and

classification of various types of cells. However, this work can be very difficult

considering the variety of the biological variability and the limitations in quality of cell

samples. [20] In this work the images were obtained using a brightfield microscope

when being in contact with various biomaterials and the classification is done based

on the health level of the cells.

1.2 Thesis Objective

In this research we focus on cells and attaining higher accuracy levels when

classifying the cells into three different classes: Healthy, Unhealthy and severely

disintegrated. Considering the state of the cell samples which are exposed to various

deformations compared to their original form during the image acquisition we will be

using different image preprocessing techniques with the purpose of getting satisfactory

2

results. These results combined with the different assessments made to the deep

learning model will result in the high accuracy predictions that we want to achieve.

1.3 Organization of Thesis

The thesis will be organized as follows. We will start with literature review

from previous research conducted related to the field. Following that we will describe

the dataset used along with the methodology in which will be included the CNN

architecture and different preprocessing techniques used. Later on, the results and

discussions will be reported and, in the end, we will state future objectives.

The details of each chapter are shown below:

− Chapter 1 is about the introduction which includes the motivation behind the

research along with the thesis objectives.

− Chapter 2 explains in more details the previous work done related to the field of

study from other researchers.

− Chapter 3 presents the methodology in which first is introduced the dataset that

will be used for classification, then it is continued with the image preprocessing

techniques used on the dataset along with the before & after sample images and in

the end the model architecture is explained.

− Chapter 4 describes the results of the training and the testing and shows a

comparison of the results.

− Chapter 5 discusses the conclusions of the research and suggests what can be done

as future work.

Furthermore, the thesis contains a list of tables, list of figures, table of contents,

references and the code used for this study.

3

CHAPTER 2

LITERATURE REVIEW

2.1 Deep Learning

Deep Learning is a particular type of supervised learning whose base is artificial

neural networks, inspired by the structure of biological nervous systems.

Every artificial neuron in a network receives several inputs, computes the sum

of those inputs, passes the result through a nonlinear function and uses this result as an

input to other artificial neurons. A deep neural network has 3 or more layers in which

neurons are arranged and do the process of receiving inputs from previous layers,

processing the inputs and passing the output to the next layer. The weights aka

connections between the artificial neurons determine the weight of each feature in the

weighted sum and are the parameters of the model that are trained.

 In a fully connected layer, every neuron receives input from all neurons in the

previous layer while in convolutional layers, every neuron is connected to only a small

portion of the nearby neurons in the previous layer and the weights detect a pattern in

that portion of the neurons. The parameters of a neural network aka the weights

determine how it renders its inputs into outputs so training a neural network means

fixing the weights for each neuron so that the desired output is archived. To adjust

these parameters, a measure of the difference between the current output of the

network and the desired output is calculated, this measure of discrepancy is called the

loss function. [22]

The high accuracy of DL compared to other machine learning techniques makes

it applicable to many complex problems.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is one of the deep learning models

which has greatly contributed to computer vision. CNNs are able to detect certain

features in images, being this way helpful and commonly used in the fields of image

recognition, image classification and medical image analysis.

4

When it comes to image analysis and classification, Convolutional Neural

Networks outperforms most of the deep learning methods. [21] “Convolution” in this

case stands for a mathematical function of convolution, a linear operation in which one

image and one kernel (filter) are pairwise multiplied resulting in an output useful in

extracting features from the image.

The CNN architecture, as it can be seen in Figure 1, is mainly divided into two

parts: Feature Extraction and Classification. Feature Extraction as we mentioned

before is the part that detects the features of the images while the classification part is

the layer which uses the output of the convolution part to predict and classify the

images based on the features extracted previously.

Figure 1. Two major stages of CNN

2.3 Convolution Layers

There are three types of layers that make up the CNN which are the

convolutional layers, pooling layers, and fully-connected (FC) layers. [21] When these

layers are stacked, a CNN architecture will be constructed. In addition to these three

layers, there are two more important parameters which are the dropout layer and the

activation function.

2.3.1 Convolution Layer

The purpose of the convolution layer is to extract the features from a sample or

to be more precise to extract the features from the matrix representing the image. The

process of convolution takes the image matrix and slides a filter matrix called kernel

5

with a step size that depends on the size of the kernel along the image. For a 3x3 filter,

a step size of around 1 pixel is acceptable. By sliding we describe the process of

multiplying the filter values with the image values and summing up the products. This

resulting sum corresponds to a new value that will be allocated at the center of the

kernel. The above-mentioned procedure is represented in the Fig 2 below.

Figure 2. Convolution Layer

2.3.2 Pooling Layer

In CNN-s a pooling layer is generally added amid convolution layers. The

pooling layer’s purpose is to speed up the computation and to reduce the possibility of

overfitting by reducing the size of the parameter matrix and parameters number in the

last fully connected layer. Max pooling is the most used pooling form. In the Fig 3

below we have an example which shows max pooling of a matrix.

Figure 3. Pooling Layer

2.3.3 Fully Connected Layer

The last piece in the CNN is the fully connected layer which gets the outputs of

the layers as inputs and maps them into targets of classification tasks.

Fully connected layers which are often used in classification tasks are the final

part of a convolutional neural network. This layer takes the outputs of the previous

6

layers as inputs, and maps them into the targets of the classification task. As an

example, as seen in Fig 4 below there are 5 outputs from previous layers which are

mapped into three classes to determine which input sample belongs to which class.

Figure 4. Fully Connected Layer

2.4 Related Research

As mentioned in [1] the analysis of the cell images can be affected from

different conditions such as non-uniform illumination, gray shades because of low

contrast, translucency of the cytoplasm of the cell. Another issue is that deep learning

algorithms require a large number of samples which is a restriction for any researcher

since the medical labor to get those samples is a tedious and time-consuming job.

 Other than that, the samples show cells of different sizes and structures which

can be confusing for the training of the deep learning model. These microscopy cell

samples are crucial in the medical field to initially decide the health state of the cell

and later determine the efficacy of various treatments. The dataset they use which is

obtained using brightfield microscopy with no staining is the same one that will be

used in this research. The difference will be augmentation of the dataset and the

addition of one extra class turning this from binary to a multi-class classification. In

this research by using CNN we classify cell samples converted using several

preprocessing techniques with the purpose of achieving high accuracy.

High performance computing based on GPU is crucial for image processing in

the medical field. This is because the most important aspects image processing is based

on are image size, speed and resolution. GPU has data processing capacity that exceeds

that of CPU and makes it easier to work on high-performance computing on ordinary

7

computers. [12] The model was trained in a workstation with high performing units

(GPU) as it is needed to reduce time when training deep learning models. [3,4]

Studying the previous research, we see that other researchers have used LeNet

Convolutional Neural Network (CNN) to classify two different types of bacteria. [2]

LeNet which was originally presented by LeCun et al. in their 1998 paper, Gradient-

Based Learning Applied to Document Recognition entails two sets of convolutional,

activation, and pooling layers, trailed by a fully-connected layer, activation, additional

fully-connected, and lastly a softmax classifier. Other researchers have used multi-

class classification using Support Vector Machine (SVM) with the same purpose of

classifying bacteria sample images and managed to reach an accuracy of 97%. [3]

SVM is a multiclass linear supervised technique used for classification especially in

cases where the number of dimensions is bigger than the number of samples.

 The LeNet-5 convolutional model was also used as a base model for other

convolution neural network models. An example of that is in paper [4] where the

authors added an extra convolutional layer along with a pooling layer to deepen the

network. Another difference made to this model was the connection of the backward

propagation of the first two pooling layers to the last pooling layer through

convolution. The purpose of this modification is to make the most of the low-level

features extracted by the network. The experimental results of the classification were

good.

“Our main motivation was to demonstrate the potential improvement of

exploiting the higher classification accuracy on smaller number of merged classes in

a multi-class scenario and our empirical results have justified these expectations” [5]

In [5] the authors propose the idea of having a CNN multi-class classification

framework used for dermoscopy samples. They use to as an upper hand the fact that

those multiple classes can be later united into two classes and turn the classification

into a binary one. The CNN used in [5] is GoogLeNet Inception-v3 and the results on

the multi-class classification show an impressive increase of accuracy of 7%.

In [17] the authors have reviewed Hep-2 cell classification using different deep

learning methods and compared them on the basis of performance. The classification

as the authors of the paper described is done at two extents, the cell and the specimen.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

8

Furthermore, they also compare existing datasets and look at the possibilities for future

research.

It is recognized the fact that cell datasets are small sized since they are difficult

to obtain and considering deep learning usually requires a large number of samples the

problem in overfitting may arise. A solution for this in the absence of the opportunity

to have a larger dataset is using data augmentation approaches. These techniques

which are simple and effective are more commonly cropping, rotating, and flipping of

sample images. Except for data augmentation, other solutions could be batch

normalizations and dropout. Although having a larger dataset is expensive in

computation time, it accelerates deep learning in terms of development.

In different papers, cells have been classified using different features.Main

features focused on are: color, geometric and texture. Color feature is generally

connected to visual appearance of the cells. In focus are taken characteristics such as

hue, saturation and brightness. A very important technique to consider for this is the

histogram of the sample which shows a graphical representation of the number of

pixels as a function of their intensity. Geometric features are best described by

different characteristics such as area and perimeter of cells, shape of nucleus or

cytoplasm in cells and other details pointed out by medical experts. Textures feature

is focused on patterns of material, color or intensity that can be visually detected. [15]

In [17] the authors focus on the classification based on the pattern feature which

according to them is a difficult task because of the subtle category differences and

since it is a job originally done by specialists who observe cells in slides under the

microscope and detect patterns based on their experience. We should keep in mind that

these results are not consistent.

The authors of [17] present an Optimal Feature Selection for medical images

using deep learning with the purpose of bringing more attention to feature selection

and classification. The aim of their work to attain an optimal feature selection

classification was successfully reached with an accuracy of 95.22%.

In our research we will focus on classifying cells based on their health state:

healthy, Severely Disintegrated and unhealthy. The focus will firstly be on

preprocessing the samples. Different techniques can be used for preprocessing images

such as grayscale, histogram equalization, etc. [8,9]

9

Every image preprocessing technique has its own advantages and

disadvantages. The effectiveness of an image processing technique also varies from

the images of the dataset to be processed and their properties. Different methods of

preprocessing have different resolution or noise levels.

Filters that can be used for image processing can be grouped as nonlinear and

linear. [22]. Nonlinear are the filters whose output is not a linear function of its input.

Examples of nonlinear filters are median filter, bilateral filter, etc. When using Linear

filters, the value of output pixels is expressed as a linear combination of the values of

the pixels in the neighborhood of the input pixel. A disadvantage of linear filters is the

risk that since they act as low pass filters, linear filters can smoothen the edges rather

than enhancing them and amplify the noise. Examples of linear filters are Gaussian

filters.

In previous studies as image preprocessing techniques on cell samples have

been used: soft clustering using Gaussian mixture models, various color components.

Watershed transform application permits the locating of 3 regions of interest: the

nucleus of the cell, the entire cell and the area surrounding it. [17] Often histogram

equalization is exploited to enhance the quality of the input sample. [17]

Edge detection is also a very used and crucial technique in image processing.

However, it is often difficult to use in medical images because of the sample conditions

which vary to the exposure to other aspects. Previous work has been creating a high-

pass filter for edge detection which while it is similar to the conventional edge

detection has a mathematical shape of local variance and is more adaptive. This is

expressed as a quadratic form of the Toeplitz matrix which is more robust to noise and

is able to extract crucial edge features. [16]

Several testing along with different preprocessing techniques were made with

the trained model, with the purpose of reaching the goal of getting the higher accuracy

in classification.

10

2.5 Challenges of this research

A main challenge in this study would be dealing with the difficulties of

unstained images since more often they suffer from nonuniform illumination, low

contrast and transparency of the cytoplasm. To this challenge can be added the fact

that datasets with a large amount of cell data are difficult to find considering they

require a huge amount of work done by the medical staff providing them. Furthermore,

the CNN model should be adapted to deal with the difficulties of unstained images as

mentioned above and should be trained carefully in order to make reliable predictions.

[1]

11

CHAPTER 3

METHODOLOGY

3.1 Dataset

The dataset used in this study is divided into other datasets, this way fulfilling

the need of having different datasets to use for training and testing the classification

task.

The main dataset used for training has sample images of size 128 x 128 pixels.

Initially the dataset is divided into two classes Healthy and Unhealthy cells.

Later on, the paper, the classification will be done for three classes: Healthy,

Unhealthy and Severely Disintegrated. The Severely Disintegrated class represents

cells that are in a really bad condition, disintegrated cells. The training earlier in the

research was done using this dataset with the purpose of the training being done in a

shorter amount of time and to lessen the complexity for the neural network model since

the images are only 128x128 pixels. In most of the 128 x 128 samples there should be

at least one cell. Some samples which contained no cells were removed because later

on during the training they can reduce the accuracy obtained.

Figure 5. Healthy Samples

12

Figure 6. Unhealthy Samples

Later on, to measure the performance of the trained model larger images of size

1280 x 1024 pixels were cropped into 80 sample images of size 128 x 128 pixels and

these crops were tested for accuracy.

Figure 7. 1280 x 1024 sample image

13

Figure 8. Crops of 1280 x 1024 sample

Experiments were done with different datasets with the goal of seeing the

difference in the performance of the model. The ratio of the division was kept 80% for

training and 20% for testing.

3.2 Image Processing on the dataset

3.2.1 Preprocessing Techniques which reached highest accuracies

during classification

Below we will show some of the most effective preprocessing techniques

during this research. Since the samples of the dataset are divided into three classes, we

are showing what each filter does to three example images of each: Healthy, Unhealthy

and Severely Disintegrated classes. The techniques that gave the best results were two

different kernels and the sobel filter. The sobel filter is an image processing filter which

is used for edge detection in images by emphasizing the edges. The way it works is by

calculating the gradient of image intensity at each pixel inside the image and finding

the direction of the transformation from light to dark and the rate of change in that

direction. The sobel filter uses two kernels, one for each direction.

 𝐾𝑥 =[
−1 0 1
−2 0 2
−1 0 1

] and 𝐾𝑦 = [
−1 −2 −1
 0 0 0
 1 2 1

]

14

The convolution between the image which is converted in black and white is

computed along with the kernels giving us for each pixel the values 𝑚𝑎𝑔𝑥 and 𝑚𝑎𝑔𝑦

leaving the current pixel at value as in the equation 1 below:

√𝒎𝒂𝒈²𝒙 + 𝒎𝒂𝒈²𝒚 (Equation 1)

In image processing a kernel, alternatively called a mask or convolution matrix

is a matrix used for purposes of blurring, sharpening edges, smoothening images etc.

The following 2 kernels, a5 x 5 Laplacian Filter and 3 x 3 Horizontal Line Detector

are custom kernels which were effective in increasing the accuracy when applied to

the dataset.

−1 −1 −1 −1 −1
−1 1 2 1 −1
−1 2 4 2 −1
−1 1 2 1 −1
−1 −1 −1 −1 −1

5x5 Laplacian Filter

[
−1 −2 −1
 0 0 0
 1 2 1

]

 Horizontal Line Detector

15

Table 1. Healthy Samples Before & After Preprocessing

Original Image/

Preprocessing

Technique

5 x 5 Laplacian Filter Horizontal Line

Detector

Sobel Filter

16

Table 2. Unhealthy Samples Before & After Preprocessing

Original Image/

Preprocessing

Technique

5 x 5 Laplacian Filter Horizontal Line

Detector

Sobel Filter

17

Table 3. Severely Disintegrated Samples Before & After Preprocessing

Original Image/

Preprocessing

Technique

5 x 5 Laplacian Filter Horizontal Line

Detector

Sobel

18

3.2.2 Not as effective Preprocessing Techniques

Based on previous research, other preprocessing techniques were used to

experiment on the accuracy. Bilateral Filter is a noise-reducing, non-linear filter which

preserves the edges and smoothens the images. It works similarly to the Gaussian Filter

by replacing the pixel intensities with the average of the intensity values from the

nearby pixels. The filter was implemented with a size of 5 for time-saving purposes

since larger filters are very slow and the sigma values for space was set to 75 so that

farther pixels can influence each other for as long as their colors are similar.

The median filter as mentioned previously in the literature review is a non-

linear filter used with the purpose of reducing noise from an image. The median filter

replaces the gray level of each pixel with the median of the gray levels of the pixels

surrounding the input pixel. The area of the median calculation is defined by a

parameter which must be odd and greater than one. In the experiment done the

parameter is set to be 5.

A wavelet denoising filter represents the wavelet representation of the image in

which the noise is represented by small values in the wavelet that are set to 0. The

VisuShrink method employs only one universal threshold to all wavelet coefficients

which removes Gaussian noise with high probability and functions by smoothening

the sample appearance. BayesShrink is another method used for wavelet denoising

where an unique threshold is estimated for each wavelet subband which is considered

better than what can be obtained with only one threshold.

In the table below, there are some randomly selected samples from the Healthy

and Unhealthy class before and after preprocessing.

19

Table 4. Not as effective preprocessing techniques

Sample image After preprocessing Filter name

Bilateral Filter

Kernel 1

Median filter

20

Wavelet denoising

filter: VisuShrink

method

Wavelet denoising

filter: BayesShrink

method

21

3.3 Network Architecture

The model which we use in this paper is a Sequential model. This model is

similar to a stack of layers where each layer has one input and one output. The

Sequential model allows you to easily build a model adding layers one by one. As it

can be seen from the code below to add a layer we simply use the add() function.

 model = Sequential()

inputShape = (height, width, depth)

model.add(Conv2D(20, (5, 5), padding="same", input_shape=inputShape))

model.add(Activation("relu"))

Figure 9. CNN architecture

The structure of the convolutional neural network is shown in Figure 12 above.

The architecture used was the Lenet architecture. Starting with the input layer, the

22

images are resized to be of size 128 x 128 pixels. The network has four convolutional

layers with kernels of size 5x5 applied, followed by maxpooling layers with the

purpose of decreasing the number of weights. The four sets of convolutional layers are

like CONV => RELU => POOL. Dropout is applied to avoid overfitting.

23

CHAPTER 4

RESULTS

4.1 Reading the results

Accuracy is one of the most important and intuitive performance measures and

it represents the ratio of correct predictions to the total observations. Precision is an

important measure to determine how precise the model is by representing the ratio of

the correct predictions of the positive to the total predictions of the positive. High

precision indicates a low false positive which is good.

 The Recall metric represents how many of the true positives are predicted as

positive from the model.

F1 score is a metric which is used to seek for balance between Precision and

Recall so it uses both false positives and false negatives. In cases of uneven class

distribution, it is a better indicator than accuracy.

The performance of the classification model can be displayed using a receiver

operating characteristic curve also known as ROC curve which represents True

Positive Rate vs False Positive Rate. The TCR vs FPR are shown plotted in different

classification thresholds. A lower classification threshold would indicate an increase

in both TP and FP, classifying more objects as positive. AUC is the area under the

24

ROC curve. The higher the AUC score, the better the classifier performs in a

classification task.

4.2 Experimenting with the parameters of the network

4.2.1 Batch Size

The batch size is a hyperparameter that represents the number of samples to

work with before revising the inner model parameters. It works similar to a loop

iterating over the samples and predicting results which when the batch is finished are

compared to the expected output. Furthermore, an error is calculated which is used as

an update algorithm for the model.

There are several types of batch algorithms. Batch gradient descent is for when

all the training samples create one batch. Stochastic gradient descent is used when one

sample is used as the batch size. Mini-batch gradient descent is used when the batch

size is less than the entire training samples and more than one sample. It searches for

a balance between the efficiency of the batch gradient descent and the robustness of

stochastic gradient descent, hence it is most often the best choice in the deep learning

implementation.

Most used mini-batch gradient descent which we are also going to use and test

are: 32,64 and 128. A good default for batch size is 32 so that is the first experiment

we will start with, then we will try batch size 64 and 128.

Binary Classification

For the purpose of comparing the results the experiments on changing the batch

size were done with the number of epochs kept at 50.

● The training was done on a dataset (12520 H + 7582 U)

● The testing was done on two different datasets:

1. Dataset 3 (5607 H + 2641 U)

2. Dataset 2 (5617 H+5464 U)

25

Experiment 1: Batch size 32

The results of the training are found on the table 5 in more details and the graph

plotted from the results is in Figure 13 below.

Table 5. Binary Classification- Batch Size 32/Epoch 50

 Precision Recall F1-score Support

Healthy 0.98 0.94 0.96 2504

Unhealthy 0.91 0.97 0.94 1517

Accuracy

 0.95 4021

 Macro avg 0.95 0.96 0.95 4021

Weighted avg 0.95 0.95 0.95 4021

The graph indicates that the model might be overfitting. The trained model is

tested on both dataset 2 and 3 receiving an overall classification of accuracy of 79%

and 94% respectively.

26

Figure 10. Binary Classification- Batch Size 32/Epoch 50 Graph

Experiment 2: Batch size 64

Table 6. Binary Classification- Batch Size 64/Epoch 50

 precision recall f1-score Support

healthy 0.97 0.97 0.97 2504

unhealthy 0.95 0.95 0.95 1517

accuracy

 0.96 4021

 macro avg 0.96 0.96 0.96 4021

weighted avg 0.96 0.96 0.96 4021

27

Figure 11. Binary Classification- Batch Size 64/Epoch 50 Graph

Similarly, the graph indicates that the model might be overfitting. The trained

model is tested on both dataset 2 and 3 receiving an overall classification of accuracy

of 80% and 94% respectively. As it can be seen the overall accuracy is 1% higher

compared to the trained model with batch size 32 and the testing in dataset 2 resulted

slightly more accurate.

Figure 12. Binary Classification- Batch Size 64 vs Batch Size 32: Epoch 50 Graph

28

Above we can also see in a clearer view the accuracy/loss plotted graphs of the

50-epoch binary classification model with batch size 32 and 64.

Multiclass classification

For the purpose of comparing the results the experiments on changing the batch

size were done with the number of epochs kept at 50.

● The training was done on a dataset (12520 H + 7582 U + 704 N)

● The testing was done on two different datasets:

3. Dataset 3 (5607 H + 2641 U + 176 N)

4. Dataset 2 (5617 H+5464 U + 176 N

Experiment 1: Batch size 32

Table 7. Multiclass Classification- Batch Size 32/Epoch 50

 Precision Recall F1-score Support

Healthy 0.97 0.94 0.96 2504

Severely Disintegrated 1.00 1.00 1.00 141

Unhealthy 0.91 0.95 0.93 1517

Accuracy 0.95 4162

 Macro avg 0.96 0.96 0.96 4162

Weighted avg 0.95 0.95 0.95 4162

29

Figure 13. Multiclass Classification- Batch Size 32/Epoch 50 Graph

The training loss starts increasing around epoch 47 which is an indicator that

45 might be a better option for the number of epochs in this case. The overall accuracy

as 95% of the training model is good but leaves room for improvement. The model

was tested on dataset 2 and achieved 78% while when tested on dataset 3 achieved an

accuracy of 93%.

30

Experiment 2: Batch size 64

Table 8: Multiclass Classification- Batch Size 64/Epoch 50

 Precision Recall F1-score Support

Healthy 0.97 0.94 0.96 2504

Severely Disintegrated 0.95 1.00 0.97 141

Unhealthy 0.91 0.95 0.93 1517

Accuracy

 0.95 4162

 Macro avg 0.94 0.96 0.95 4162

Weighted avg 0.95 0.95 0.95 4162

Figure 14. Multiclass Classification- Batch Size 64/Epoch 50 Graph

31

The same can be said about the number of epochs as for the batch size 32

experiment. The overall accuracy as 95% of the training model is exactly as it was for

the batch size 32 experiment. The model was tested on dataset 2 and achieved 79%

(increased by 1%) while when tested on dataset 3 achieved an accuracy of 93%.

Figure 15. Multiclass Classification- Batch Size 32 vs Batch Size 64: Epoch 50

Graph

Comparison of results

Based on the results for both the binary classification and the three-class

classification we can see that the accuracy results were really similar to each other for

both batch size 32 and 64. The experiments later on will be done with both. It was also

noticeable that the model tended to overfit so there will also be experiments with less

epoch numbers.

4.2.2 No. Epochs

The number of epochs is a hyperparameter that represents the number of times

that the deep learning algorithm will go through the training dataset. The number of

epochs can be a value between one and infinity. It can either be fixed in the algorithm

or the training can stop using some other condition such as the model error over time.

Usually training codes are accompanied with plots called learning curves which show

32

the number of epochs in the x-axis and the accuracy/loss on the y-axis. These plots are

of great help to see if the model has over/under-learned or is fit for the training dataset.

Multiclass classification results

In the table below can be found all the results of the training done for the

number of epochs: 50, 60 and 70. The batch size for each training was 32 and the

dataset was the main dataset we mentioned in the experiments for multiclass

classification above. The dataset contains: 12520 Healthy samples, 7582 Unhealthy

samples and 704 Severely Disintegrated samples.

Table 9: Model performance for different epochs

No. Epochs Precision Recall F1-Score Support

 Epochs 50 Healthy 0.97 0.94 0.96 2504

Unhealthy 0.91 0.95 0.93 1517

Severely

Disintegrated

1.00 1.00 1.00 141

Accuracy 0.95 4162

Macro avg 0.96 0.96 0.96 4162

Weighted avg 0.95 0.95 0.95 4162

 Epochs 60 Healthy 0.97 0.95 0.96 2504

Unhealthy 0.92 0.95 0.93 1517

Severely

Disintegrated

1.00 1.00 1.00 141

Accuracy 0.95 4162

33

Macro avg 0.96 0.97 0.96 4162

Weighted avg 0.95 0.95 0.95 4162

 Epochs 70 Healthy 0.95 0.95 0.95 2504

Unhealthy 0.92 0.92 0.92 1517

Severely

Disintegrated

1.00 1.00 1.00 141

Accuracy 0.94 4162

Macro avg 0.96 0.96 0.96 4162

Weighted avg 0.94 0.94 0.94 4162

Figure 16. Comparison by epoch 50,60,70

Since the performance of the model with number of epochs 60 and batch size

32 showed a good level of accuracy, the base model for the next few experiments will

be using these parameters. As a base overall accuracy of training for the next

experiments to be compared to will be used that of 95% reached by this model. This

34

model tested on the dataset 3 which contains 5607 Healthy samples, 2641 Unhealthy

samples and 176 Severely Disintegrated samples resulted with an accuracy of 94%.

Below are shown some random samples from the testing dataset and the

predicted label.

Figure 17. Classification DS 3 with model 60 ep x 32 bs

The same model is tested on the dataset 2 which contains 5617 Healthy

samples, 5464 Unhealthy samples and 176 Severely Disintegrated samples and results

with an accuracy of 79%.

35

Figure 18. Classification DS 2 with model 60 ep x 32 bs

Our goal is to increase this accuracy using different preprocessing techniques

on the dataset.

4.3 Classification with preprocessing

The preprocessing techniques will be tested on two models with certain

parameters which we will call model A and B. Model A has a batch size of 32 and

number of epochs 60 and model B has a batch size of 64 and number of epochs 45.

36

4.3.1 Base model A - number of epochs 60 and batch size 32

The model using 60 epochs and batch size 32 performed rather well with a

training accuracy of 95%. Tested on the dataset 3 which contains 5607 Healthy

samples, 2641 Unhealthy samples and 176 Severely Disintegrated samples resulted in

an accuracy of 94%.

Tested on the dataset 2 which contains 5617 Healthy samples, 5464 Unhealthy

samples and 176 Severely Disintegrated samples the model results with an accuracy

of 79%. The other experiments done will be compared to this as a base model.

Figure 19. ROC Curve of Model A on dataset without preprocessing

37

5 x 5 Laplacian Filter

Table 10. 5 x 5 Laplacian Filter - Training with model 60 ep x 32 bs

 Precision Recall F1-score Support

Healthy 0.96 0.97 0.97 2504

Severely

Disintegrated

0.99 1.00 0.99 141

Unhealthy 0.94 0.94 0.94 1517

Accuracy

 0.96 4162

 Macro avg 0.97 0.97 0.97 4162

Weighted avg 0.96 0.96 0.96 4162

Testing on dataset 3 results in a model accuracy of: 95% so we have an increase

in the accuracy compared to the base model by 1%.

38

Figure 20. ROC Curve of Model A on dataset with 5 x 5 Laplacian Filter

In the plotted ROC Curve of the model there is a slightly difference in

improvement of precision compared to the base model for the Healthy and Unhealthy

class. The Severely Disintegrated class stands in ideal values which reflect the small

number of samples for that class.

39

Horizontal Line Detector

Table 11. Horizontal Line Detector - Training with model 60 ep x 32 bs

 Precision Recall F1-score Support

Healthy 0.96 0.95 0.96 2504

Severely

Disintegrated

1.00 1.00 1.00 141

Unhealthy 0.92 0.94 0.93 1517

Accuracy

 0.95 4162

 Macro avg 0.96 0.96 0.96 4162

Weighted avg 0.95 0.95 0.95 4162

Similar to 5 x 5 Laplacian Filter, when testing on dataset 3 the model accuracy

reaches 95%, increasing just slightly compared to the base model.

40

Figure 21. ROC Curve of Model A on dataset with Horizontal Line Detector

In the plotted ROC Curve of the model we see a similar improvement as the

previous model with preprocessing of of 5 x 5 Laplacian Filter. There is a slightly

difference in improvement of precision compared to the base model for the Healthy

and Unhealthy class while the Severely Disintegrated class stands in same precision

values.

41

Sobel filter on the whole dataset

Table 12. Sobel - Training with model 60 ep x 32 bs

 Precision Recall F1-score Support

Healthy 0.94 0.97 0.96 2504

Severely Disintegrated 0.71 1.00 0.83 141

Unhealthy 0.94 0.86 0.90 1517

Accuracy

 0.93 4162

 Macro avg 0.86 0.94 0.90 4162

Weighted avg 0.94 0.93 0.94 4162

The overall accuracy in this experiment with the whole dataset preprocessed

with the sobel filter is actually lower than the accuracy of the classification without

preprocessing. However, the accuracy of the healthy class is good considering the F1

score which in some cases, especially in uneven datasets can be a better indicator than

the accuracy. This leads to the next experiment which is classification with only the

healthy images preprocessed with the sobel filter.

42

Sobel filter only on healthy images

Table 13. Sobel Only Healthy- Training with model 60 ep x 32 bs

 Precision Recall F1-score Support

Healthy 1.00 1.00 1.00 2504

Severely

Disintegrated
0.64 0.99 0.98 141

Unhealthy 1.00 0.95 0.97 1517

Accuracy

 0.98 4162

 Macro avg 0.88 0.98 0.92 4162

Weighted avg 0.99 0.98 0.98 4162

Judging by the table above of the results we can see that the model performed

greatly. The F1 score is 1.00,0.97 and 0.98 for the healthy, unhealthy and severely

disintegrated respectively. The overall training accuracy results in 98% which is so far

the highest accuracy reached during these experiments. The model is tested on both

datasets 2 and 3 and some random images of each dataset are shown labelled with the

predicted result. Testing on dataset 3 results in a model accuracy of: 99% which

indicates that the performance of the model is greatly improved.

43

Figure 22. Sobel Only Healthy- DS 3 Classification with model 60 ep x 32 bs

Figure 23. Sobel Only Healthy- DS 2 Classification with model 60 ep x 32 bs

44

The very same can be said for testing on dataset 2 which results again in a model

accuracy of: 99% which is a huge improvement considering the testing accuracy for

the original model with no preprocessing which was only 79%.

Figure 24. ROC Curve of Model A on dataset with Sobel on Healthy samples only

45

Comparison of results

Figure 25. Comparison Graph using model 60 ep x 32 bs and different preprocessing

techniques

As it can be seen from the graph the most stable values of accuracy and loss are

those of 5 x 5 Laplacian Filter although the sobel preprocessing method was the one

with the highest accuracy achieved. Overall the three preprocessing techniques show

an improvement in the model accuracy. This can clearly be seen in the graph since

each of the models with preprocessing reach higher accuracy and smaller loss values

in comparison with the base one.

46

4.3.2 Base model B - number of epochs 45 and batch size 64

This model was picked as a base model based on the testing of the parameters

done previously in the study where we mentioned that the accuracy was slightly higher

for batch size 64 compared to 32 and the model was overfitting so the number of

epochs was lowered to 45. The results can be seen in the table below. The overall

training accuracy is that of 96%.

Table 14. Training with model 45 ep x 64 bs

 Precision Recall F1-score Support

Healthy 0.96 0.97 0.96 2504

Severely

Disintegrated

1.00 1.00 1.00 141

Unhealthy 0.94 0.94 0.94 1517

Accuracy

 0.96 4162

 Macro avg 0.97 0.97 0.97 4162

Weighted avg 0.96 0.96 0.96 4162

47

Figure 26. Training with model 45 ep x 64 bs Graph

As it can be seen in Figure 22 the problem in overfitting is solved and the

inconsistent val_loss is more stable now. When tested on dataset 3 the accuracy of the

model is 95% while on dataset 2 is 79% which is to some extent better compared to

Model A.

Figure 27. ROC Curve of Model B on dataset without preprocessing

48

5 x 5 Laplacian Filter

Table 15. 5 x 5 Laplacian Filter - Training with model 45ep x 64 bs

 Precision Recall F1-score Support

Healthy 0.97 0.94 0.96 2504

Severely Disintegrated 0.95 1.00 0.98 141

Unhealthy 0.91 0.95 0.93 1517

Accuracy

 0.95 4162

 Macro avg 0.94 0.96 0.95 4162

Weighted avg 0.95 0.95 0.95 4162

The training classification task accuracy is 95% which compared to the Base

model A is lower when applied 5 x 5 Laplacian Filter mask.

49

Figure 28. ROC Curve of Model B on dataset with 5 x 5 Laplacian Filter

50

Horizontal Line Detector

Table 16. Horizontal Line Detector - Training with model 45ep x 64 bs

 Precision Recall F1-score Support

Healthy 0.97 0.95 0.96 2504

Severely

Disintegrated

0.99 1.00 1.00 141

Unhealthy 0.93 0.95 0.94 1517

Accuracy

 0.96 4162

 Macro avg 0.96 0.97 0.97 4162

Weighted avg 0.96 0.96 0.96 4162

The training model accuracy is 96% which is just a little better than Base model A.

51

Figure 29. ROC Curve of Model B on dataset with Horizontal Line Detector

52

Sobel filter only on healthy images

Table 17. Sobel Only Healthy- Training with model 45 ep x 64 bs

 Precision Recall F1-score Support

Healthy 1.00 1.00 1.00 2504

Severely

Disintegrated
0.77 1.00 0.87 141

Unhealthy 1.00 0.97 0.99 1517

Accuracy

 0.99 4162

 Macro avg 0.92 0.99 0.95 4162

Weighted avg 0.99 0.99 0.99 4162

The training accuracy 99% in this experiment is really good, it outperforms the

model A’s accuracy of 98% in the training of the model with sobel preprocessing on

only the healthy images.When tested on dataset 2 classification the accuracy reached

is 99.9% which is the highest accuracy so far in the study.

53

Figure 30. ROC Curve of Model B on dataset with Sobel on Healthy samples only

Comparison of results

Figure 31. Comparison Graph using model 45 ep x 64 bs and different preprocessing

techniques

54

From the figure above, we can see the training conducted with the base Model

B which was not preprocessed and the models which were filtered with 5 x 5 Laplacian

Filter, Horizontal Line Detector and Sobel only on healthy which have a higher

accuracy in comparison. The highest accuracies are indicated by the largest accuracy

and lowest validation loss which seems to be that of Sobel filter and 5 x 5 Laplacian

Filter.

55

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

The accuracy of medical image analysis relies heavily on the availability of

large datasets to be analyzed and on the results to be predicted in a short time. The

medical image classification field is one that is in need for large amounts of sample

data to be analyzed and predicted in a short time. An important part of this is the cell

classification task which determines the health level of the cell. This research was

focused on the combination of convolutional neural networks with several

preprocessing techniques with the purpose of obtaining high classification accuracy.

The study started with binary classification of cells into two groups Healthy and

Unhealthy but since the accuracy reached for that was really good, the research was

extended into a multiclass classification to predict three different cell health levels.

The model was trained on a dataset with more than 20000 images and tested on two

different datasets with each more than 8000 images. While without preprocessing the

dataset, the highest accuracy reached was 95%, with the dataset preprocessed using

several methods, there was a clear improvement in the classification accuracy of the

model. The highest resulting accuracy after preprocessing only the healthy part of the

dataset with the sobel filter was that of 99%.

5.2 Future Work

The next research goal would be extending the classification model so it uses 5

classes. By European standards the cell health is classified in 5 classes with a gradual

decrease in condition. This could be implemented as future work along with different

preprocessing techniques which increased the accuracy results. More changes could

be made to the model to improve its performance and precision. Furthermore, data

augmentation techniques could be used on the non-healthy class to increase the number

of samples and the classification could be tested after that.

56

REFERENCES

[1] B. Harangi, A. Baran and A. Hajdu, "Assisted deep learning framework for

multi-class skin lesion classification considering a binary classification support,"

Biomedical Signal Processing and Control, vol. 62, p. 102041, 2020.

[2] B. A. Mohamed and H. M. Afify, "Automated classification of Bacterial Images

extracted from Digital Microscope via Bag of Words Model," in 2018 9th Cairo

International Biomedical Engineering Conference (CIBEC), 2018.

[3] T. Go, J. Kim and K. Byeon, "Machine learning-based in-line holographic

sensing of unstained malaria-infected red blood cells," Journal of Biophotonics,

vol. 11, 2018.

[4] T. Treebupachatsakul and S. Poomrittigul, "Bacteria Classification using Image

Processing and Deep learning," in 2019 34th International Technical Conference

on Circuits/Systems, Computers and Communications (ITC-CSCC), 2019.

[5] E. Chen, X. Wu, C. Wang and Y. Du, "Application of Improved Convolutional

Neural Network in Image Classification," in 2019 International Conference on

Machine Learning, Big Data and Business Intelligence (MLBDBI), 2019.

[6] A. Uka, X. Polisi, J. Barthes, A. N. Halili, F. Skuka and N. E. Vrana, "Effect of

Preprocessing on Performance of Neural Networks for Microscopy Image

Classification," in 2020 International Conference on Computing, Electronics

Communications Engineering (iCCECE), 2020.

[7] K. F. Haque, F. F. Haque, L. Gandy and A. Abdelgawad, "Automatic Detection

of COVID-19 from Chest X-ray Images with Convolutional Neural Networks,"

in 2020 International Conference on Computing, Electronics Communications

Engineering (iCCECE), 2020.

[8] Z. Huang, Q.Li, J.Lu, J.Feng, J.Hu and P.Chen, "Recent Advances in Medical

Image Processing.," in Acta cytologica, 1–14, 2020.

[9] A. Uka, A. Halili, X. Polisi, A. Topal, G. Imeraj and NE.Vrana, "Basis of Image

Analysis for Evaluating Cell Biomaterial Interaction Using Brightfield

Microscopy.," in Cells, tissues, organs, 210, 2021.

57

[10] C. Lai, T. Liu, R. Mei, H. Wang and S. Hu, "The Cloud Images Classification

Based on Convolutional Neural Network," in 2019 International Conference on

Meteorology Observations (ICMO), 2019.

[11] L.Cai, J.Gao and D.Zhao, "A review of the application of deep learning in

medical image classification and segmentation," Annals of translational

medicine, vol. 8, 2020.

[12] R. J. S. Raj, S. J. Shobana, I. V. Pustokhina, D. A. Pustokhin, D. Gupta and K.

Shankar, "Optimal Feature Selection-Based Medical Image Classification Using

Deep Learning Model in Internet of Medical Things," IEEE Access, vol. 8, pp.

58006-5801, 2020.

[13] I. Mocan, R. Itu, A. Ciurte, R. Danescu and R. Buiga, "Automatic Detection of

Tumor Cells in Microscopic Images of Unstained Blood using Convolutional

Neural Networks," in 2018 IEEE 14th International Conference on Intelligent

Computer Communication and Processing (ICCP), 2018.

[14] J.Rodellar, S.Alférez, A.Acevedo, A.Molina and A.Merino, "Image processing

and machine learning in the morphological analysis of blood cells.," 2018.

[15] W. Lin and J. Wang, "Edge detection in medical images with quasi high-pass

filter based on local statistics," Biomed. Signal Process. Control., vol. 39, pp.

294-302, 2018.

[16] S. Rahman, L. Wang, C. Sun and L. Zhou, "Deep learning based HEp-2 image

classification: A comprehensive review," Medical Image Analysis, vol. 65, p.

101764, 2020.

[17] N.Meng, E. Lam, K. TSia and H. So, "Large-Scale Multi-Class Image-Based

Cell Classification With Deep Learning," IEEE Journal of Biomedical and

Health Informatics, 2018.

[18] K. Yao, N. D. Rochman and S. X. Sun, "Cell type classification and unsupervised

morphological phenotype identification from low-res images with deep

learning," 2019.

[19] A. Uka, A. Tare, X. Polisi and I. Panci, "FASTER R-CNN for cell counting in

low contrast microscopic images," in 2020 International Conference on

Computing, Networking, Telecommunications \& Engineering Sciences

Applications (CoNTESA), 2020.

58

[20] A. Uka, X. Polisi, A. Halili, C. Dollinger and N. E. Vrana, "Analysis of cell

behavior on micropatterned surfaces by image processing algorithm," in IEEE

EUROCON 2017 -17th International Conference on Smart Technologies, 2017.

[21] F. Yellin, B. D. Haeffele, S. Roth and R. Vidal, "Multi-Cell Detection and

Classification Using a Generative Convolutional Model," in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[22] M. S. Norouzzadeh, D. Morris, S. Beery, N. Joshi, N. Jojic and J. Clune, "A deep

active learning system for species identification and counting in camera trap

images," Methods in Ecology and Evolution, vol. 12, pp. 150-161, 2021.

59

APPENDIX

customLenet.py

import the necessary packages

from keras.models import Sequential

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation

from keras.layers.core import Flatten

from keras.layers.core import Dense

from keras.layers.core import Dropout

from keras import backend as K

class LeNetCustom:

 @staticmethod

 def build(width, height, depth, classes):

 # initialize the model

 model = Sequential()

inputShape = (height, width, depth)

 # if we are using "channels first", update the input

shape

 if K.image_data_format() == "channels_first":

inputShape = (depth, height, width)

 # first set of CONV => RELU => POOL layers

model.add(Conv2D(20, (5, 5), padding="same",

input_shape=inputShape))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Dropout(0.1)) # adding new keras.layer

 # second set of CONV => RELU => POOL layers

model.add(Conv2D(50, (5, 5), padding="same"))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Dropout(0.2)) # adding new keras.layer

 # third set of CONV => RELU => POOL layers for 64x64

model.add(Conv2D(50, (5, 5), padding="same"))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

60

model.add(Dropout(0.3)) # adding new keras.layer

 # fourth set of CONV => RELU => POOL layers for 128 x

128

model.add(Conv2D(50, (5, 5), padding="same"))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Dropout(0.4)) # adding new keras.layer

 # first (and only) set of FC => RELU layers

model.add(Flatten())

model.add(Dense(500))

model.add(Activation("relu"))

 # softmax classifier

model.add(Dense(classes))

model.add(Activation("softmax"))

 # return the constructed network architecture

 return model

binary classification: trainn_model.py

USAGE

python trainn_model.py --dataset datasets/cells/Q4 --model

output/lenet_t1.hdf5 --model_jsonoutput_to_json/model_t1.json

--excel Q_t1ep.xlsx

import the necessary packages

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from keras.preprocessing.image import img_to_array

from keras.utils import np_utils

from pyimagesearch.nn.conv.lenet import LeNet

from pyimagesearch.nn.conv.customLenet import LeNetCustom

from imutils import paths

import matplotlib.pyplot as plt

import numpy as np

import argparse

import imutils

import cv2 as cv

import os

import PIL

os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

61

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required=True,

 help="path to input dataset of faces")

ap.add_argument("-m", "--model", required=True,

 help="path to output model")

ap.add_argument("-mj", "--model_json", required=True,

 help="path to output model to json")

ap.add_argument("-ex", "--excel", required=True,

 help="path to output excel")

args = vars(ap.parse_args())

initialize the list of data and labels

data = []

labels = []

loop over the input images

for imagePath in

sorted(list(paths.list_images(args["dataset"]))):

 # load the image, pre-process it, and store it in the data

list

 # Read PNG

 # image = cv.imread(imagePath)

 # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

 # Read in tiff

pil_image = PIL.Image.open(imagePath).convert('RGB')

open_cv_image = np.array(pil_image)

open_cv_image = open_cv_image[:, :, ::-1].copy() # Convert

RGB to BGR

 image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY)

 # image = imutils.resize(image, width=28)

 # image = imutils.resize(image, width=64) # change

between this line and the one below if input is 64 vs 128

 image = imutils.resize(image, width=128)

 image = img_to_array(image)

data.append(image)

 # extract the class label from the image path and update

the

 # labels list

 label = imagePath.split(os.path.sep)[-2]

 # label = "smiling" if label == "positives" else

"not_smiling"

 label = "healthy" if label == "healthy" else "unhealthy"

62

labels.append(label)

scale the raw pixel intensities to the range [0, 1]

data = np.array(data, dtype="float") / 255.0

labels = np.array(labels)

convert the labels from integers to vectors

le = LabelEncoder().fit(labels)

labels = np_utils.to_categorical(le.transform(labels), 2)

account for skew in the labeled data

classTotals = labels.sum(axis=0)

classWeight = classTotals.max() / classTotals

partition the data into training and testing splits using

80% of

the data for training and the remaining 20% for testing

(trainX, testX, trainY, testY) = train_test_split(data,

 labels,

test_size=0.20, stratify=labels, random_state=42)

initialize the model

print("[INFO] compiling model...")

model = LeNet.build(width=28, height=28, depth=1, classes=2)

model = LeNet.build(width=64, height=64, depth=1, classes=2)

model = LeNetCustom.build(width=128, height=128, depth=1,

classes=2)

model.compile(loss="binary_crossentropy", optimizer="adam",

 metrics=["accuracy"])

train the network

print("[INFO] training network...")

H = model.fit(trainX, trainY, validation_data=(testX, testY),

class_weight=classWeight, batch_size=64, epochs=2, verbose=1)

history = model.fit()

evaluate the network

print("[INFO] evaluating network...")

predictions = model.predict(testX, batch_size=64)

print(classification_report(testY.argmax(axis=1),

predictions.argmax(axis=1), target_names=le.classes_))

save the model to disk

print("[INFO] serializing network...")

63

model.save(args["model"])

model_json = model.to_json()

with open(args["model_json"], 'w') as json_file:

json_file.write(model_json)

import xlsxwriter

workbook = xlsxwriter.Workbook(args["excel"])

worksheet = workbook.add_worksheet()

worksheet.write(0, 0, "No.Epochs")

worksheet.write(0, 1, "Accuracy")

worksheet.write(0, 2, "Val_accuracy")

worksheet.write(0, 3, "Loss")

worksheet.write(0, 4, "Val_loss")

row = 1

col = 0

for i in range(1,50):

worksheet.write(i, 0, i)

for item in H.history['accuracy']:

worksheet.write(row, col, item)

 row += 1

row = 1

col = 1

for item in H.history['val_accuracy']:

worksheet.write(row, col, item)

 row += 1

row = 1

col = 2

for item in H.history['loss']:

worksheet.write(row, col, item)

 row += 1

row = 1

col = 3

for item in H.history['val_loss']:

worksheet.write(row, col, item)

 row += 1

workbook.close()

64

#######

plot the training + testing loss and accuracy

plt.style.use("ggplot")

plt.figure()

plt.plot(np.arange(0, 50), H.history["loss"],

label="train_loss")

plt.plot(np.arange(0, 50), H.history["val_loss"],

label="val_loss")

plt.plot(np.arange(0, 50), H.history["accuracy"],

label="accuracy")

plt.plot(np.arange(0, 50), H.history["val_accuracy"],

label="val_accuracy")

plt.title("Training Loss and Accuracy")

plt.xlabel("Epoch #")

plt.ylabel("Loss/Accuracy")

plt.legend()

plt.show()

multiclass: trainn_model.py

USAGE

python trainn_model.py --dataset datasets/cells/Q6_sobel_nrm

--model output/lenet_t36.hdf5 --

model_jsonoutput_to_json/model_t36.json --excel Q6_t36.xlsx

import the necessary packages

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from keras.preprocessing.image import img_to_array

from keras.utils import np_utils

from pyimagesearch.nn.conv.lenet import LeNet

from pyimagesearch.nn.conv.customLenet import LeNetCustom

from imutils import paths

import matplotlib.pyplot as plt

import numpy as np

import argparse

import imutils

import cv2 as cv

import os

import PIL

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

65

ap.add_argument("-d", "--dataset", required=True,

 help="path to input dataset of faces")

ap.add_argument("-m", "--model", required=True,

 help="path to output model")

ap.add_argument("-mj", "--model_json", required=True,

 help="path to output model to json")

ap.add_argument("-ex", "--excel", required=False,

default="res_excel.xlsx",

 help="path to output excel")

args = vars(ap.parse_args())

initialize the list of data and labels

data = []

labels = []

loop over the input images

for imagePath in

sorted(list(paths.list_images(args["dataset"]))):

 # load the image, pre-process it, and store it in the data

list

 # Read PNG

 # image = cv.imread(imagePath)

 # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

 # Read in tiff

pil_image = PIL.Image.open(imagePath).convert('RGB')

open_cv_image = np.array(pil_image)

open_cv_image = open_cv_image[:, :, ::-1].copy() # Convert

RGB to BGR

 image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY)

 # image = imutils.resize(image, width=28)

 # image = imutils.resize(image, width=64)

 image = imutils.resize(image, width=128)

 image = img_to_array(image)

 #image = np.resize(image, (128,128))

data.append(image)

 # extract the class label from the image path and update

the

 # labels list

 label = imagePath.split(os.path.sep)[-2]

 if label == "healthy":

 label = "healthy"

elif label == "nonhealthy":

66

 label = "nonhealthy"

 else:

 "unhealthy"

labels.append(label)

scale the raw pixel intensities to the range [0, 1]

data = np.array(data, dtype="float") / 255.0

labels = np.array(labels)

convert the labels from integers to vectors

le = LabelEncoder().fit(labels)

labels = np_utils.to_categorical(le.transform(labels), 3)

account for skew in the labeled data

classTotals = labels.sum(axis=0)

classWeight = classTotals.max() / classTotals

partition the data into training and testing splits using

80% of

the data for training and the remaining 20% for testing

(trainX, testX, trainY, testY) = train_test_split(data,

 labels,

test_size=0.20, stratify=labels, random_state=42)

initialize the model

print("[INFO] compiling model...")

model = LeNet.build(width=28, height=28, depth=1, classes=2)

model = LeNet.build(width=64, height=64, depth=1, classes=2)

model = LeNetCustom.build(width=128, height=128, depth=1,

classes=3)

model.compile(loss="binary_crossentropy", optimizer="adam",

 metrics=["accuracy"])

model.summary()

print("Number of layers : ",len(model.layers))

train the network

print("[INFO] training network...")

print(trainX.shape)

classWeight=dict(enumerate(classWeight))

H = model.fit(trainX, trainY, validation_data=(testX, testY),

class_weight=classWeight, batch_size=32, epochs=60, verbose=1)

history = model.fit()

evaluate the network

67

print("[INFO] evaluating network...")

predictions = model.predict(testX, batch_size=32)

print(classification_report(testY.argmax(axis=1),

predictions.argmax(axis=1), target_names=le.classes_))

save the model to disk

print("[INFO] serializing network...")

model.save(args["model"])

model_json = model.to_json()

with open(args["model_json"], 'w') as json_file:

json_file.write(model_json)

import xlsxwriter

workbook = xlsxwriter.Workbook(args["excel"])

worksheet = workbook.add_worksheet()

worksheet.write(0, 0, "No.Epochs")

worksheet.write(0, 1, "Accuracy")

worksheet.write(0, 2, "Val_accuracy")

worksheet.write(0, 3, "Loss")

worksheet.write(0, 4, "Val_loss")

row = 1

col = 0

for i in range(1,60):

 worksheet.write(i,0, i)

row = 1

col = 1

for item in H.history['accuracy']:

worksheet.write(row, col, item)

 row += 1

row = 1

col = 2

for item in H.history['val_accuracy']:

worksheet.write(row, col, item)

 row += 1

row = 1

col = 3

for item in H.history['loss']:

worksheet.write(row, col, item)

68

 row += 1

row = 1

col = 4

for item in H.history['val_loss']:

worksheet.write(row, col, item)

 row += 1

workbook.close()

#######

plot the training + testing loss and accuracy

plt.style.use("ggplot")

plt.figure()

plt.plot(np.arange(0, 60), np.array(H.history["loss"]),

label="train_loss")

plt.plot(np.arange(0, 60), np.array(H.history["val_loss"]),

label="val_loss")

plt.plot(np.arange(0, 60), np.array(H.history["accuracy"]),

label="accuracy")

plt.plot(np.arange(0, 60),

np.array(H.history["val_accuracy"]), label="val_accuracy")

plt.title("Training Loss and Accuracy")

plt.xlabel("Epoch #")

plt.ylabel("Loss/Accuracy")

plt.legend()

plt.show()

binary classification: RunCustomLeNetModel.py

USAGE

python RunCustomLeNetModel.py --dataset

dataset_old/cells/Q3_new31

python RunCustomLeNetModel.py --dataset datasets/img_crops -

-model output/lenet_t9.hdf5 --

model_jsonoutput_to_json/model_t9.json

import the necessary packages

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from keras.preprocessing.image import img_to_array

from keras.utils import np_utils

from pyimagesearch.nn.conv.lenet import LeNet

from pyimagesearch.nn.conv.customLenet import LeNetCustom

from imutils import paths

import matplotlib.pyplot as plt

from keras.models import model_from_json

import numpy as np

import argparse

69

import imutils

import cv2 as cv

import os

import PIL

from keras import backend as K

os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required=True,

 help="path to input dataset of faces")

ap.add_argument("-m", "--model", required=True,

 help="path to output model")

ap.add_argument("-mj", "--model_json", required=True,

 help="path to output model to json")

args = vars(ap.parse_args())

initialize the list of data and labels

data = []

labels = []

a = 0

for imagePath in

sorted(list(paths.list_images(args["dataset"]))):

 # load the image, pre-process it, and store it in the data

list

 # Read PNG

 # image = cv.imread(imagePath)

 # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

 # Read in tiff

pil_image = PIL.Image.open(imagePath).convert('RGB')

open_cv_image = np.array(pil_image)

open_cv_image = open_cv_image[:, :, ::-1].copy() # Convert

RGB to BGR

 image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY)

 # image = imutils.resize(image, width=28)

 # image = imutils.resize(image, width=64)

 image = imutils.resize(image, width=128)

 image = img_to_array(image)

data.append(image)

 # extract the class label from the image path and update

the

70

 # labels list

 label = imagePath.split(os.path.sep)[-2]

 label = "healthy" if label == "healthy" else "unhealthy"

labels.append(label)

 a += 1

scale the raw pixel intensities to the range [0, 1]

data = np.array(data, dtype="float") / 255.0

labels = np.array(labels)

convert the labels from integers to vectors

le = LabelEncoder().fit(labels)

labels = np_utils.to_categorical(le.transform(labels), 2)

account for skew in the labeled data

classTotals = labels.sum(axis=0)

classWeight = classTotals.max() / classTotals

trainX = data

trainY = labels

Load trained CNN model

#json_file =

open('output_to_json/modelQ4_128x128_customLenet.json', 'r')

json_file = open(args["model_json"], 'r')

loaded_model_json = json_file.read()

json_file.close()

model = model_from_json(loaded_model_json)

#model.load_weights('output/lenetQ4_128x128_customLenet.hdf5')

model.load_weights(args["model"])

trainLabels = list(le.inverse_transform(trainY.argmax(1)))

size = len(trainLabels)

predicted = 0

images = []

x = 0

for i in np.random.choice(np.arange(0, len(trainY)),

size=(size,)):

 probs = model.predict(trainX[np.newaxis, i])

 # print(probs)

 prediction = probs.argmax(axis=1)

 label = le.inverse_transform(prediction)

 if label[0] == trainLabels[i]:

 predicted += 1

71

 # extract the image from the testData if using

"channels_first"

 # ordering

 if K.image_data_format() == "channels_first":

 image = (trainX[i][0] * 255).astype("uint8")

 # otherwise we are using "channels_last" ordering

 else:

 image = (trainX[i] * 255).astype("uint8")

 # merge the channels into one image

 image = cv.merge([image] * 3)

 image = cv.resize(image, (128, 128),

interpolation=cv.INTER_LINEAR)

 # show the image and prediction

 x += 1

 position = str(x)

 text = position + ' ' + label[0]

cv.putText(image, str(text), (5, 10),

cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)

 print("[INFO]:{} Predicted: {}, Actual: {}".format(x,

label[0],

trainLabels[i]))

images.append(image)

print('Accuracy: ',

 predicted / size)

img = cv.imwrite('images.png', images)

images = np.concatenate(images, axis=1)

cv.imshow("Cell", images)

cv.waitKey(0)

fig = plt.figure(figsize=(14, 14))

columns = 8

rows = 3

for i in range(0, columns * rows):

fig.add_subplot(rows, columns, i + 1)

plt.imshow(images[i])

plt.show()

multiclass: RunCustomLeNetModel.py

72

USAGE

python RunCustomLeNetModel.py --dataset

dataset_old/cells/Q3_new31

#python RunCustomLeNetModel.py --dataset datasets/cells/Q3_add

--model output/lenet_t10.hdf5 --

model_jsonoutput_to_json/model_t10.json

python RunCustomLeNetModel.py --dataset

datasets/cells/Q3_sobel_nrm --model output/lenet_t36.hdf5 --

model_jsonoutput_to_json/model_t36.json

import the necessary packages

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from keras.preprocessing.image import img_to_array

from keras.utils import np_utils

from pyimagesearch.nn.conv.lenet import LeNet

from pyimagesearch.nn.conv.customLenet import LeNetCustom

from imutils import paths

import matplotlib.pyplot as plt

from keras.models import model_from_json

import numpy as np

import argparse

import imutils

import cv2 as cv

import os

import PIL

from keras import backend as K

os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required=True,

 help="path to input dataset of faces")

ap.add_argument("-m", "--model", required=True,

 help="path to output model")

ap.add_argument("-mj", "--model_json", required=True,

 help="path to output model to json")

args = vars(ap.parse_args())

initialize the list of data and labels

data = []

labels = []

a = 0

73

for imagePath in

sorted(list(paths.list_images(args["dataset"]))):

 # load the image, pre-process it, and store it in the data

list

 # Read PNG

 # image = cv.imread(imagePath)

 # image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

 # Read in tiff

pil_image = PIL.Image.open(imagePath).convert('RGB')

open_cv_image = np.array(pil_image)

open_cv_image = open_cv_image[:, :, ::-1].copy() # Convert

RGB to BGR

 image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY)

 # image = imutils.resize(image, width=28)

 # image = imutils.resize(image, width=64)

 image = imutils.resize(image, width=128)

 image = img_to_array(image)

data.append(image)

 # extract the class label from the image path and update

the

 # labels list

 label = imagePath.split(os.path.sep)[-2]

 # label = "smiling" if label == "positives" else

"not_smiling"

 if label == "healthy":

 label = "healthy"

elif label == "nonhealthy":

 label = "nonhealthy"

 else:

 "unhealthy"

labels.append(label)

 a += 1

scale the raw pixel intensities to the range [0, 1]

data = np.array(data, dtype="float") / 255.0

labels = np.array(labels)

convert the labels from integers to vectors

le = LabelEncoder().fit(labels)

labels = np_utils.to_categorical(le.transform(labels), 3)

account for skew in the labeled data

classTotals = labels.sum(axis=0)

74

classWeight = classTotals.max() / classTotals

trainX = data

trainY = labels

Load trained CNN model

#json_file =

open('output_to_json/modelQ4_128x128_customLenet.json', 'r')

json_file = open(args["model_json"], 'r')

loaded_model_json = json_file.read()

json_file.close()

model = model_from_json(loaded_model_json)

#model.load_weights('output/lenetQ4_128x128_customLenet.hdf5')

model.load_weights(args["model"])

trainLabels = list(le.inverse_transform(trainY.argmax(1)))

size = len(trainLabels)

predicted = 0

images = []

x = 0

for i in np.random.choice(np.arange(0, len(trainY)),

size=(size,)):

 probs = model.predict(trainX[np.newaxis, i])

 # print(probs)

 prediction = probs.argmax(axis=1)

 label = le.inverse_transform(prediction)

 if label[0] == trainLabels[i]:

 predicted += 1

 # extract the image from the testData if using

"channels_first"

 # ordering

 if K.image_data_format() == "channels_first":

 image = (trainX[i][0] * 255).astype("uint8")

 # otherwise we are using "channels_last" ordering

 else:

 image = (trainX[i] * 255).astype("uint8")

 # merge the channels into one image

 image = cv.merge([image] * 3)

 image = cv.resize(image, (128, 128),

interpolation=cv.INTER_LINEAR)

 # show the image and prediction

 x += 1

75

 position = str(x)

 text = position + ' ' + label[0]

cv.putText(image, str(text), (5, 10),

cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)

 print("[INFO]:{} Predicted: {}, Actual: {}".format(x,

label[0],

trainLabels[i]))

images.append(image)

print('Accuracy: ',

 predicted / size)

fig = plt.figure(figsize=(14, 14))

columns = 8

rows = 3

for i in range(0, columns * rows):

fig.add_subplot(rows, columns, i + 1)

plt.imshow(images[i])

plt.show()

Preprocessing dataset: sobel.py

import os

import numpy as np

from scipy import ndimage

from PIL import Image

import cv2

from PIL import Image, ImageDraw

from math import sqrt

for filename in

os.listdir('datasets/cells/Q6_add/unhealthy/'):

 path='datasets/cells/Q6_add/unhealthy/'+filename

 input_image = Image.open(path).convert('RGB')

 input_pixels = input_image.load()

 intensity = [[sum(input_pixels[x, y]) / 3 for y in

range(input_image.height)] for x in range(input_image.width)]

 kernelx = [[-1, 0, 1],

 [-2, 0, 2],

 [-1, 0, 1]]

 kernely = [[-1, -2, -1],

 [0, 0, 0],

 [1, 2, 1]]

 output_image = Image.new("RGB", input_image.size)

 draw = ImageDraw.Draw(output_image)

76

 for x in range(1, input_image.width - 1):

 for y in range(1, input_image.height - 1):

 magx, magy = 0, 0

 for a in range(3):

 for b in range(3):

 xn = x + a - 1

 yn = y + b - 1

magx += intensity[xn][yn] * kernelx[a][b]

magy += intensity[xn][yn] * kernely[a][b]

 color = int(sqrt(magx ** 2 + magy ** 2))

draw.point((x, y), (color, color, color))

 new_path = 'datasets/cells/Q6_sobel/unhealthy/' +

filename + '.PNG'

output_image.save(new_path)

Preprocessing dataset: preprocess.py

import os

import skimage.io

import matplotlib.pyplot as plt

import numpy as np

from scipy import ndimage

from PIL import Image

import cv2

for filename in

os.listdir('datasets/cells/Q6_add/nonhealthy/'):

 path='datasets/cells/Q6_add/nonhealthy/'+filename

 im = Image.open(path).convert('L') #shtova L vtm per

nonhealthy

 data = np.array(im, dtype=float)

 kernel = np.array([[-1, -1, -1],

 [-1, 8, -1],

 [-1, -1, -1]])

 highpass = ndimage.convolve(data, kernel)

 new_path = 'datasets/cells/Q6_k1/nonhealthy/' + filename

+ '.PNG'

 cv2.imwrite(new_path, highpass)

Preprocessing dataset: denoise_wavelet.py

import os

from PIL import Image

import numpy as np

from scipy import ndimage

import matplotlib.pyplot as plt

77

import imutils

import cv2

import numpy as np

from matplotlib import pyplot as plt

from skimage.restoration import

(denoise_wavelet,estimate_sigma)

from skimage.util import random_noise

from skimage.metrics import peak_signal_noise_ratio

import skimage.io

cnt = 0

for filename in

os.listdir('datasets/cells/Q6_add/nonhealthy/'):

 cnt =cnt+1

 path='datasets/cells/Q6_add/nonhealthy/'+filename

img=skimage.io.imread(path)

 img=skimage.img_as_float(img)

 sigma_est = estimate_sigma(img, average_sigmas=True)

img_visushrink=denoise_wavelet(img,method='VisuShrink',mode='s

oft',sigma=sigma_est/3,wavelet_levels=1,wavelet='bior6.8',resc

ale_sigma=True)

#img_visushrink=denoise_wavelet(img,method=’BayesShrink’,mode=

'soft',sigma=sigma_est/3,wavelet_levels=1,wavelet='bior6.8',re

scale_sigma=True)

 new_path = 'datasets/cells/Q6_wt2/nonhealthy/'+ filename

+'.PNG'

 cv2.imwrite(new_path, img_visushrink*255.0)

Preprocessing dataset: median.py

import os

from PIL import Image

import numpy as np

from scipy import ndimage

import matplotlib.pyplot as plt

import imutils

import cv2

import numpy as np

from matplotlib import pyplot as plt

cnt = 0

for filename in

os.listdir('datasets/cells/Q6_add/nonhealthy/'):

 cnt =cnt+1

 path='datasets/cells/Q6_add/nonhealthy/'+filename

 img = cv2.imread(path)

 kernel = np.ones((5, 5), np.float32) / 25

 median = cv2.medianBlur(img, 3)

78

 new_path = 'datasets/cells/Q6_median/nonhealthy/'+

filename +'.jpg'

 cv2.imwrite(new_path, median)

into_80.py

import cv2 as cv

import os

for filename in os.listdir('datasets/cells/nonhealthy_lg/'):

imagePath = 'datasets/cells/nonhealthy_lg/' + filename

img = cv.imread(imagePath)

i = 0

 for r in range(0, img.shape[0], 128):

 for c in range(0, img.shape[1], 128):

cv.imwrite(f"datasets/cells/Q6_add/nonhealthy/{filename}_{i}.p

ng", img[r:r + 128, c:c + 128, :])

i+=1

prediction_crops.py

python prediction_crops.py --dataset

datasets/single_cell_crops/ --model output/lenet_t9.hdf5 --

model_jsonoutput_to_json/model_t9.json

import numpy as np

import cv2 as cv

import os

import PIL

import tensorflow as tf

import argparse

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required=True,

 help="path to input dataset of images")

ap.add_argument("-m", "--model", required=True,

 help="path to output model")

ap.add_argument("-mj", "--model_json", required=True,

 help="path to output model to json")

args = vars(ap.parse_args())

#'output_to_json/model_t9.json'

json_file = open(args["model_json"], 'r')

loaded_model_json = json_file.read()

json_file.close()

model = tf.keras.models.model_from_json(loaded_model_json)

#'output/lenet_t9.hdf5'

model.load_weights(args["model"])

width = 128

79

height = 128

data = []

from skimage import transform

#'datasets/img_crops/'

cnt_healthy = 0

cnt_unhealthy = 0

for filename in os.listdir(args["dataset"]):

 #imagePath = 'datasets/img_crops/'+filename

imagePath = args["dataset"] + filename

pil_image = PIL.Image.open(imagePath)

open_cv_image = np.array(pil_image)

open_cv_image = open_cv_image[:, :, ::-1].copy() # Convert

RGB to BGR

 image = cv.cvtColor(open_cv_image, cv.COLOR_BGR2GRAY)

 image = transform.resize(image, (width, height))

 image = image.astype("float32") / 255.0

 image = np.expand_dims(image, axis=2)

 image = np.expand_dims(image, axis=0)

preds = model.predict(image)

 if preds[0][0] <= 0.7:

 prediction = 'Unhealthy'

cnt_unhealthy += 1

 else:

 prediction = 'Healthy'

cnt_healthy += 1

print('Image: ', filename, '- Prediction: ', preds[0][0], ' -

', prediction)

print('Total no. : ', cnt_unhealthy+cnt_healthy)

print('Healthy : ', cnt_healthy)

print('Unhealthy : ', cnt_unhealthy)

