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ABSTRACT 

 

USING FASTER RCNN FOR CELL IMAGE DETECTION  

 

Gjerazi, Ari 

M.Sc., Department of Computer Engineering 

Supervisor: Dr. Arban Uka 

 

There is an ever-growing need for automated detection (and classification) of 

microscopic images containing cellular samples. To this end, the focus of this work is 

to provide a method of performing this detection: through the implementation of a 

Faster RCNN model. The .tiff images for training and testing are fed to the network, 

with various hyperparameter adjustments between runs, and the anchors/bounding 

boxes are calculated by FRCNN. Four separate output loss functions are calculated 

and then unified for a final metric. The network utilized an underlying VGG-16 

architecture, and a RPN (Region Proposal Network) which is responsible for the 

aforementioned bounding boxes. The architecture is run on keras (tensorflow 

backend). 

 

Keywords: cell images, detection, classification, Faster-RCNN, bounding box, Region 

Proposal Network. 
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ABSTRAKT 

 

PERDORIMI I FASTER-RCNN PER DETEKTIMIN E QELIZAVE 

 

Gjerazi, Ari 

Master Shkencor, DepartamentiiInxhinierisëKompjuterike 

Udhëheqësi: Dr. Arban Uka 

 

Ekziston nje nevoje gjithmone e me ne rritje, per detektim te automatizuar te 

imazheve mikroskopike te cilat konsistojne ne mostra qelizore. Per kete qellim, fokusi 

i kesaj pune eshte te ofroje nje menyre per te kryer kete lloj detektimi: permes 

implementimit te nje modeli Faster-RCNN. Imazhet .tiff per trajnim dhe testim, i 

jepen rrjetit neural, me optimizime te hiperparametrave midis testimeve, dhe 

spirancat/kutite kufizuese llogariten nga FRCNN-ja. Kater funksione te ndryshme ne 

lidhje me outputet llogariten dhe me pas bashkohen per nje metrike te fundit. Rrejta 

neurale perdor nje arkitekture VGG-16 nen pjeset e tjera, dhe nje RPN (Rrjet 

Propozimesh Regjionale) i cili eshte pergjegjes per kutite kufizuese te permendura me 

pare. Arkitektura perdor keras (tensorflow backend).   

 

Fjalëtkyçe: imazheqelizash, detektim, klasifikim, Faster-RCNN, kutikufizuese, RPN 



v 

 

This thesis, I dedicate to my family, for their appreciation and support, to all of my 

professors who have guided and advised me during my time as a student, and to my 

friends and colleagues, who have shared in the same experience.   



vi 

 

ACKNOWLEDGEMENTS 

 

I would like to, first and foremost, thank my thesis supervisor, Assist. Prof. Dr. 

Arban Uka. Not only has his guidance been invaluable, but he has also offered me 

advice on the best scientific material to peruse for references, as well as instructed 

me carefully and to great effect, on how to properly assemble the numerous pieces 

and put together my thesis, for which I am once again, most grateful. 



vii 

 

TABLE OF CONTENTS 

 

 
ABSTRACT ........................................................................................................... iii 

ABSTRAKT ............................................................................................................iv 

ACKNOWLEDGEMENTS .....................................................................................vi 

LIST OF FIGURES .................................................................................................ix 

CHAPTER 1 ............................................................................................................. 1 

INTRODUCTION .................................................................................................... 1 

1.1 Background and Motivation ........................................................................ 1 

1.2 Objectives ................................................................................................... 1 

1.3 Organization of the thesis............................................................................ 2 

CHAPTER 2 ............................................................................................................. 3 

LITERATURE REVIEW .......................................................................................... 3 

2.1 Techniques used for Image Gathering ......................................................... 3 

2.1.1. MRI ......................................................................................................... 3 

2.1.2  CT scan ................................................................................................... 5 

2.1.3 Diffuse Optical Imaging (DOI) ................................................................. 7 

2.1.4 Event Related Optical Signal (EROS) ....................................................... 8 

2.1.5 Functional Magnetic Resonance Imaging (fMRI) ..................................... 8 

2.1.6 Magnetoencephalography (MEG) ............................................................. 9 

2.1.7  Near Infrared Spectroscopy (NIRS) ......................................................... 9 

2.1.8  Positron emission tomography (PET)..................................................... 10 

2.2 Optical Microscopy................................................................................... 11 

2.2.1  Brightfield Microscopy .......................................................................... 12 

2.2.2  Darkfield Microscopy ............................................................................ 13 



viii 

 

2.2.3  Cross-polarized light microscopy ........................................................... 14 

2.2.4  Phase-contrast microscopy ..................................................................... 14 

2.3 Learning Models ....................................................................................... 16 

2.3.1 Introduction to Machine Learning ........................................................... 16 

2.3.2 Learning Rate ......................................................................................... 16 

2.3.3 Error Function ........................................................................................ 17 

2.3.4 Backpropagation ..................................................................................... 17 

2.3.5 Supervised Learning Paradigm ............................................................... 18 

2.3.6 Unsupervised Learning Paradigm ........................................................... 20 

2.4 Convolutional Neural Networks ................................................................ 20 

2.4.1 Convolutional Neural Networks Basics................................................... 20 

2.4.2 Convolutional Layer ............................................................................... 21 

2.4.3 Pooling Layer ......................................................................................... 22 

2.4.4 Fully Connected Layer ........................................................................... 23 

2.5 FRCNN .................................................................................................... 24 

CHAPTER 3 ........................................................................................................... 29 

METHODOLOGY ................................................................................................. 29 

CHAPTER 4 ........................................................................................................... 34 

RESULTS AND DISCUSSIONS............................................................................ 34 

CHAPTER 5 ........................................................................................................... 38 

CONCLUSIONS .................................................................................................... 38 

5.1 Conclusions ................................................................................................... 38 

5.2 Recommendations for future research ............................................................ 39 

References .............................................................................................................. 40 

APPENDIX ............................................................................................................ 43 

 

 



ix 

 

 

 

LIST OF FIGURES 

Figure 1. MRI Diagram ............................................................................................ 4 

Figure 2.T1 and T2 Weighted Cells .......................................................................... 4 

Figure 3.Various CT head images ............................................................................. 6 

Figure 4. fmRI Images .............................................................................................. 9 

Figure 5. Transmittance and wavelength relation .................................................... 10 

Figure 6. PET Scan ................................................................................................. 11 

Figure 7. Brightfield microscopy on paper fiber ...................................................... 12 

Figure 8. Dark field microscopy on paper fiber ....................................................... 13 

Figure 9. Cross polarized light microscopy on paper fiber ...................................... 14 

Figure 10. Phase  contrast microscopy workings ..................................................... 15 

Figure 11. Phase Contrast Microscopy on Paper Fiber ............................................ 15 

Figure 12. Back Propagation Layer ......................................................................... 18 

Figure 13. Classification ......................................................................................... 19 

Figure 14. Regression ............................................................................................. 20 

Figure 15. Classification ......................................................................................... 21 

Figure 16. Max and average pooling ....................................................................... 23 

Figure 17. Fully Connected Layer ........................................................................... 24 

Figure 18. FRCNN schematic ................................................................................. 25 

Figure 19. RPN schematic ...................................................................................... 26 



x 

 

Figure 20. Base Cell Image ..................................................................................... 29 

Figure 21 Library Loading ...................................................................................... 30 

Figure 22. VGG implementation ............................................................................. 31 

Figure 23. RPN implementation ............................................................................. 31 

Figure 24. Classifier Layer ..................................................................................... 32 

Figure 25. IoU Calculation ..................................................................................... 32 

Figure 26.RPN Calculation ..................................................................................... 33 

Figure 27. Mean overlapping boundaries and accuracies ......................................... 34 

Figure 28. RPN loss ................................................................................................ 34 

Figure 29. Loss Class ............................................................................................. 34 

Figure 30. Total loss ............................................................................................... 35 

Figure 31. Bounding Boxes with 35 epochs ............................................................ 35 

Figure 32. 70 epoch metrics .................................................................................... 36 

Figure 33. Total Loss at 70 epochs.......................................................................... 36 

Figure 34. Final epoch output ................................................................................. 36 

Figure 35. Bounding Boxes .................................................................................... 37 

Figure 36.Box overlap and class accuracy............................................................... 37 

Figure 37. Train Loss Metrics ................................................................................. 38 

Figure 38. Final train metric ................................................................................... 38 

  



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

As we move further towards the development of artificial intelligence and its 

varied subfields, we entrust more and more data to such artificial networks, which 

allow us to swiftly analyze, classify or detect information (a particularly rare aspect 

for automation), from images that are fed to the network in question [1]. In fact, it is 

the convolutional neural network that is most suitable for treating these  problems 

(image analysis). Building off this point, it is understandable that a body of work 

which takes into account cell detection, would quickly turn to CNNs for answers.  

 

One such alternative is found in the FRCNN model, which is the focus of this 

thesis. This is not a work without challenges: images can have various innate 

problems, such as improperly displaying cells, overlapping nuclei (which are the 

cusp of our detection algorithm as we try to focus them: this is based  on the notion 

that each cell has a single nucleus, and thus a cell count would correspond to a 

nucleus count), bad quality of the images in question and even challenges with the 

network itself, when it comes to optimizing and running the network model as well, 

or even fitting it to one’s own needs. [2]Thus, the approach to take is two-pronged, 

both on the front of image retrieval and  processing and also on the neural network 

model that is to be utilized here. 

. 

 

1.2 Objectives 

This project focuses on training a neural network model, to derive a total cell 

count out of what is present in an image, having been trained with such images prior. 

Following its training phase, it will be possible for the network to determine the cell 

count on its own. Before reaching this point, the project also aims to optimize image 
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pre-processing as well as select an appropriate (or optimal with the given 

circumstances) network model.  

 

 

1.3 Organization of the thesis 

The thesis is separated into several subsections. The first section goes over the 

introduction to the thesis, outlining a brief intro, objectives and this very paragraph 

on thesis organization. The second section details the literature review, going from 

macro and microscopic imaging techniques, to the intricacies of neural networks, and 

finally to the specific model to be used (FRCNN). The third chapter details the 

methodology: the exact approach utilized and further in the fourth chapter, results are 

derived from the work done. Lastly, a discussion of the results derived in section four, 

is displayed in the fifth section.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Techniques used for Image Gathering 

This section will outline various technologies used to acquire  medical images 

for the purposes of this thesis. Some of these technologies are based around taking 

photographs of specific organs, while others focus on the microscopic imaging aspect, 

and this thesis will eventually veer towards that for its research aspects.  

 

2.1.1. MRI 

Various imaging methods can be applied to retrieve data from a specific part 

of the body. For brain imaging we have two primary methods: MRI and CT scans. 

MRI stands for Magnetic Resonance Imaging which involves the use of magnetic 

fields to retrieve images of human anatomy. [3] 

The way this works involves hydrogen nuclei (known to consist of a single 

proton) sending  out signals, which are collected and processed in terms of a density 

mapping of these nuclei in a certain region of the body. It must be noted that these 

hydrogen nuclei also interact with other atoms, and in turn separate the hydrogen 

respounces in specific compounds.  
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Figure 1.MRI Diagram 

 

 

The above figure schematizes the inner workings of an MRI scanner. There 

are certain settings that a MRI image can be derives, T1 and T2 weighted, which 

involves the display below: 

 

 

Figure 2.T1 and T2 Weighted Cells 

 

By focusing various cell types and liquids, we can obtain a different view of 

various parts of human anatomy, as in the above example, the human brain. The 

selection of these weights is likely up to the specific application, and it is possible 

that several different weights may be needed. [1] 

 

One of the MRI-using studies mentioned in the papers collected for reference, 

lists the following methods: “Imaging studies were conducted on 1.5- or 3-Tesla 

MRI. The multicenter nature of the study and the various clinical presentations did 
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not allow standardization of sequences. The most frequently sequences performed 

were:  

 

 - 3D T1-weighted spin-echo with and without contrast-enhanced imaging 

 - Diffusion-weighted imaging (DWI) 

 - Gradient Echo T2 or Susceptibility-weighted imaging  

- 2D or 3D FLAIR postcontrast  

- 3D TOF MR angiography of the circle of Willis 

 

There are a number of conditions that MRI is known to be able to discover 

multiple forms of cancer. Among them are various brain cancers, rectal cancers, 

prostate cancers, soft tissue tumors and more. Other conditions that can be detected 

are joint diseases, myocardial ischemia, cardiomyopathies, other vascular conditions, 

demyelination, dementia, cerebrovascular disease, Alzheimer’s and epilepsy.  

 

2.1.2  CT scan 

CT stands for computer tomography, known more commonly as a CAT scan, 

Computed Axial Tomography. CT scan makes use of a multitude of X-ray images, 

taken at different angles and then followed by a computation of a combined image, a 

tomography (cross-section) of the body. One of the functions of this technology is of 

course, the ability to perform a tomography of the head. In fact, it is the fusion of our 

two goals: X-Ray imaging and brain imaging. While skull injuries and similar cases 

do not particularly interest us, brain imagery is something we would like to observe 

and analyze: 
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Figure 3.Various CT head images 

As we can observe in this picture, there are a multitude of various images we 

can derive from the head alone.Now, there is a certain comparison to be made 

between the two imaging methods. MRI is typically preferred over CT Scans, for a 

variety of reasons: 

● MRI will prove itself to be better at deriving tissue contrast than CT scans. 

● It produces fewer artifacts when viewing brainstem  

● It is superior when it comes to pituitary imaging. 

● It is somewhat less effective at detecting early cerebritis  

● In a case of concussion, MRI is best avoided, unless symptoms grow more 

severe. 

● MRI will prove superior to CT scanning when it comes to headaches, as well 

as various other conditions, such as neoplasm or vascular disease presence.  

● Typically, traumatic brain injuries will involve a preference for CT.  

● CT scanning will prove better in the evaluation of intracerebral calcifications.  

 

The above weighted methods for brain MRI are also listed below: 

 

● T1 weighted images will show cerebrospinal fluid as dark. Useful for the 

visualization of otherwise normal anatomy.  
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● T2 weighted images will show the cerebrospinal fluid as white, but fat in a 

darker color. This includes white brain matter. Pathology is best viewed with 

T2 weighted images. 

● Diffusion Weighted Images: contrast generation via the diffusion caused by 

water molecules. 

● Proton Density (PD) images: Cerebrospinal fluid which is dense in protons, 

will appear brighter. Grey matter will also appear brighter than white matter.  

● FLAIR (Fluid Attenuation Inversion Recovery): Demyelination is best 

detected using this method. 

Beyond this, it is likely that most brain images will involve MRI scanning, 

however if the need arises, both methods can be used. One particular function of CT 

scans is in covid detection. CT scans There are indeed a number of other techniques 

used for neuroimaging (another term for brain imagery). They will be briefly 

described below for the sake of reference, although their use may not be as 

prominent in the context of this research. 

 

2.1.3 Diffuse Optical Imaging (DOI) 

The acronym DOI refers to this technique. It is a method that employs Near-

Infrared Spectroscopy (NIRS. More on it further). The methods used here are 

fluorescence-based. The specific terms used for 3D and 2D images (volumetric in the 

case of three-dimensional imaging) are respectively diffuse optical tomography and 

diffuse optical topography. This is mostly a semantic issue. The basis for Diffuse 

Optical Imaging techniques is the observation of changes of hemoglobin, both 

oxygenated and deoxygenated. If needed, it may take a measure of redox states (of 

cytochromes).  There are other terms for DOI techniques, the above tomography, as 

well as near-infrared optical tomography (which was referenced earlier, and features 

as a separate technology) as well as FDOT (Fluorescent Diffuse Optical 

Tomography), although the exact term varies based on the type of usage.  

Depending on these measurements however, it is possible the aforementioned 

techniques may be folded in with functional Near Infrared Spectroscopy (fNIRS) 

discussed further below. 
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2.1.4 Event Related Optical Signal (EROS) 

EROS makes use of infrared light, transmitted through the optical fibers in 

order to measure alterations in the optical properties of various regions in the 

cerebral cortex. The basic principle involves the detection of infrared light scattering, 

which is of course associated with neural activity.  

 

There is a difference between EROS as well as DOI and NIRS techniques: 

DOI and NIRS will make use of the optical absorption property of hemoglobin, 

which necessitates a measurement based on the cerebral blood flow, EROS instead 

focuses on the scatter property of the neurons themselves.While this does make 

EROS a good provider of precise information and also good spatial and temporal 

resolution: being able to pinpoint activity down to millimeters or milliseconds, it still 

proves difficult to obtain images from more than a few centimeters of depth. EROS 

has a few practical advantages: it is inexpensive, non-invasive and it also works well 

together with other techniques, such as fNIRS or fMRI.  

 

2.1.5 Functional Magnetic Resonance Imaging (fMRI) 

A method of measuring brain activity by making use of the change in blood 

flow (and its subsequent detection). The basis of fMRI is the coupling of blood flow 

and neuron activity: the neuron activity signifies use of that region of the brain, 

which further leads to blood flowing into that same region.  

 

A key concept related to the working of fMRI is BOLD (Blood-Oxygen Level 

Dependent) contrast: a technique that involves mapping neural activity through the 

relation of hemodynamic response and energy used by individual brain cells.  

 

One reason why it is viewed as particularly effective or desirable to use, 

relates to the lack of invasive procedures and especially the lack of introduction to 

ionizing radiation (a common concern with CT scanning). Beyond this, fMRI is 

attractive to use in research and is further complementary with EEG and NIRS. It 

also attracts a lot of research itself, into various optimizations related to spatial and 

temporal resolution.  

 



9 

 

 

Figure 4. fmRI Images 

 

These fMRI images are from a study showing parts of the brain lighting up on 

seeing houses and other parts on seeing faces. The 'r' values are correlations, with 

higher positive or negative values indicating a stronger relationship (i.e., a better 

match). 

 

2.1.6 Magnetoencephalography (MEG) 

A functional neuroimaging technique, MEG uses the magnetic fields which 

are produced through the electric  currents naturally occurring in the brain. There are 

certain technologies involved in MEG, such as SQUID (superconducting quantum 

interference devices) forming an array are considered a popular choice. Another 

variant is the SERF (Spin Exchange Relaxation-Free) magnetometer which is still 

under investigation for future use.  

 

One of MEG’s primary uses is research into cognitive and perceptual 

functions of the brain. Other functions involve simple measurements of brain activity, 

or searching for specific abnormalities, which finds more application in a medical 

setting. 

 

2.1.7  Near Infrared Spectroscopy (NIRS) 

NIRS makes use of the near infrared region of the electromagnetic spectrum 

(780~2500 nm). The theoretical foundation for NIRS is that molecular overtone and 

combination bands seen in the near-IR are typically very broad, leading to complex 
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spectra. Assigning specific features to specific chemical components however, does 

prove difficult.  

 

Some of the main techniques for extracting the desired chemical information 

involve multivariate calibration. Once more, the same concept of brain activity being 

associated with increased blood flow (the neural activity - blood flow coupling). As 

mentioned above, it serves as a key component for the functionality of other 

technologies.[1] 

 

 

 

Figure 5. Transmittance and wavelength relation 

 

2.1.8  Positron emission tomography (PET) 

“PET is a functional imaging technique that uses radioactive substances 

known as radiotracers to visualize and measure changes in metabolic processes, and 

in other physiological activities including blood flow, regional chemical composition, 

and absorption. Different tracers are used for various imaging purposes, depending 

on the target process within the body.” 

https://en.wikipedia.org/wiki/Functional_imaging
https://en.wikipedia.org/wiki/Radiotracer
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Physiological
https://en.wikipedia.org/wiki/Blood_flow
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Figure 6. PET Scan 

2.2 Optical Microscopy 

 

Beyond the typical medical imaging technologies, we also have to consider 

imaging for microscopic organisms, such as cells. The focus of this work is indeed 

based on cellular observation, and therefore microscopic imaging is particularly 

important. 

 

Lighting in optical microscopy also differs: transparent objects are usually lit 

from underneath, whereas for solids there is a choice between brightfield and dark 

field imaging, the two of which will be examined below. Further still, there are 

several different types of microscopy to be covered here also.In general, optical 

microscopy involves the usage of lenses and light of the visible spectrum, to produce 

magnified imaging of a specific sample. It includes placing the object on top of a 

stage, and then viewed directly under magnification from the microscope. 

 

One of the more significant aspects that are taken into  account are the 

different illumination techniques available. 
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2.2.1  Brightfield Microscopy 

Brightfield Microscopy is comparatively straightforward. The image produced 

will have a white background and the sample within it will be black. The process 

involves the emission of bright light from underneath the sample, to reach the 

microscope and then be magnified and visible. Technically, it is one of the simplest 

variations possible for illumination. The light pathing is also largely unaltered from 

the typical setup of an optical microscope. A light source, the condenser and 

objective lenses as well as the device (such as a camera) with which to view the 

sample. [2] 

 

It shares a few advantages such as being fairly simple to set up and produce  

images with, as well as having fairly good visibility for most kinds of living cells, 

useful in the field of medical imaging. On the other hand, it also comes with certain 

disadvantages, such as contrast being quite low, as well as magnification having a 

cap of sorts, which means that more precise imaging is sadly, beyond the scope of 

this technology. Other issues include problems with resolution being low, as well as 

the fact that it does not properly (or at all) display transparent samples, based on the 

straightforward method of illumination behind it (although this can be fixed to some 

extent,  with artificial coloring of the  samples). [1] 

 

 

Figure 7. Brightfield microscopy on paper fiber 
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2.2.2  Darkfield Microscopy 

Dark-field Microscopy is also applicable to electron microscopy. The base 

concept behind it is the exclusion of the unscattered light beam from the image, 

producing a different type of image, which  should look somewhat like an inversion 

of the brightfield alternative.Components that are a part of a darkfield microscope 

include a special disc or patch which prevents some of the light from going through, 

and producing a ring-shaped perimeter of light around the image, the condenser lens 

as usual for optical microscopy, and then the filtering between the scattered and 

unscattered light occurs, following the entrance of the light through the sample.The 

ultimate result is that only scattered light makes it into the image itself. 

 

Dark Field Microscopy is also very functional when it comes to live samples, 

such as the ones involved in medical imaging cases. One advantage it shares with 

brightfield microscopy is the simplicity behind it’s setup. Certain artifacts are 

entirely eliminated, although as will be demonstrated below, this does imply certain 

other disadvantages. Being the reverse (process) of brightfield microscopy, it acts as 

a sort of high-pass alternative, regarding the structure behind the image. Note, that a 

dark field image is not exactly a negative of the brightfield image, mostly in regards 

to the formation of shadows.  

 

 

 

Figure 8. Dark field microscopy on paper fiber 
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2.2.3  Cross-polarized light microscopy 

Cross-polarized light microscopy is another option to work with. The basic 

idea is, as the name suggests, illumination of the sample using any variation of 

polarized light. Other variations of this technique exist, which are, however, more 

complex. [1] 

 

It does not have tremendous application in the medical field, being more 

common in mineralogy. The nature of the sample being viewed is also of great 

importance, the index of refraction being of a specific range and kind, which is 

affected by polarization (a property known as birefringence).  

 

 

Figure 9. Cross polarized light microscopy on paper fiber 

 

2.2.4  Phase-contrast microscopy 

Phase-Contrast Microscopyis the fourth main method to be considered here. It 

tends to operate under the principle of converting phase shifts regarding the specimen 

into brightness changes. Normally, operators do not perceive phase shifts (as they are 

invisible), however this method highlights their contrast by displaying them as 

brightness changes instead.This working principle proceeds with the separation of 

the background illumination and the light scattered by the sample, and then 

proceeding with image manipulation (done differently for each).  
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Figure 10. Phase  contrast microscopy workings  

 

One of the most significant applications of phase-contrast microscopy is 

related to biology and medical imaging. It is, in certain aspects, superior to bright-

field microscopy, being able to reveal certain image aspects that do not normally 

appear in the former technique. This technique has made possible many discoveries 

in the field of cell observation, including the observation of cell division. It is an 

accepted method that does not make use of fluorescence, yet is able to observe 

various cellular formations nonetheless.  

 

Figure 11. Phase Contrast Microscopy on Paper Fiber 
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2.3 Learning Models 

The idea of learning when applied to a neural network (or any machine 

learning-capable model) involves the constant improvement over a number of 

iterations that eventually lead to an optimized output, towards either regression or 

classification (although the exact desired output is to be adjusted to one’s needs). 

[Error! Reference source not found.] 

 

To this end, there are a number of parameters and paradigms that we must 

consider. First and foremost, the main ‘components’ of learning. [2] 

 

2.3.1 Introduction to Machine Learning 

One of the primary questions to ask when approaching any particular method 

for research, is that of purpose. Why is machine learning useful? Why are these 

models implemented? There is a combination of large datasets, and an extensive 

study regarding the interconnection between human perception and image analysis, 

and the same analytical concept carried out by machine intelligence. [Error! 

Reference source not found.] 

 

There exists a wealth of learning models that have been developed and 

continue to be developed for the express purpose of conducting fast, precise and 

efficient image analysis. The paragraphs below will look over the various features of 

such models and how they interact. 

 

2.3.2 Learning Rate 

Learning Rate is a value which determines the exact quantity of correction 

incurred between each step of training a model. The main measures of learning rate 

tend to be speed and accuracy. A higher learning rate will lead to a quicker 

convergence and the final output is derived sooned. On the other hand, a smaller 

learning rate will consume more time and likely more computational resources, but 
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with it comes a more accurate final prediction (as the threshold for correctness is 

shrunk closer towards the expected result). There are many ways through which 

optimization occurs.Some optimizations tend to focus on one aspect or the other: 

either quickening the rate of error minimization or otherwise attempting to make 

faster predictions also more reliable. A middle-ground is found with adaptive 

learning rate: increasing and decreasing as necessary. A further refinement involves 

weighing the collective of previous learning (gradient) and the most recent change: 

assigning priority towards one or the other. This concept is also known as momentum. 

[Error! Reference source not found.] [[2] 

 

2.3.3 Error Function 

The error function is an important part of training a neural network. Also 

known as a loss function or cost function. The purpose of such a function is mapping 

the inputs  presented to a numerical weight. From the perspective of the one running 

the model, the error function must be minimized.The exact nature of the loss function 

varies based on the problem: it generally follows the specifications of the problem 

(what is required to be optimized).Typical choices for loss are squared and absolute 

loss functions. As the loss function is preferred to be continuous (as we need data on 

any point) and differentiable (for maximization/minimization), absolute loss has one 

minor issue, of not being differentiable at the 0 point. [Error! Reference source not 

found.] 

 

On the other hand, particularly large values of loss in the square function will 

likely influence the total sum more than may be necessarily indicative of the true 

situation regarding loss. [2] 

 

2.3.4 Backpropagation 

Another important concept is that of backpropagation. Backpropagation 

assists in the fitting (aligning the classification the model makes, to best classify test 

data). Backpropagation functions by computing a gradient for the error function 

(taking weights  into account) for a single pair of input and output.  
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Figure 12. Back Propagation Layer 

There are several components to a backpropagation algorithm. They are denoted 

below: 

 

- Input, expressed as a vector 

- Output (a series of probabilities in the case of classification) 

- The error function 

- The number of layers 

- The weights between the current and previous layer, as well as between 

specific nodes  in each layer 

- The activation function at the present layer. [2] 

 

If we are to consider a feed-forward NN, then we can view backpropagation 

through the lens of matrix multiplication. In this situation,  backpropagation derives 

the derivative of the error function, proceeding opposite to the layer  progression (so 

left to right),  the gradient calculated in the process also known as backwards 

propagated error.[10][2] 

 

2.3.5 Supervised Learning Paradigm 

One of the main learning paradigms is the one known as supervised learning. 

It consists of having an existing input with the associated correct outputs, which 

allows the model to learn over time through the observation of its own outputs and 

the correct ones. There are two main purposes to Supervised Learning. 
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Classification is a process which separates the input data according to certain 

categories. To this end, the output is a probability which assigns the input a certain 

likelihood to being within a certain class. There are several important classification 

algorithms, from linear classifiers, to SVMs (Support Vector Machines), KNNs (K-

Nearest Neighbors) and even random forest classifiers. 

 

 

Figure 13. Classification  

 

Regression on the other hand is a process which focuses on determining the 

relationship between variables. Rejection is used to make future predictions 

regarding a certain output given the trends displayed by prior inputs. There are 

different kinds of regressors: linear, logistical and polynomial regression. 
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Figure 14. Regression 

 

2.3.6 Unsupervised Learning Paradigm 

The unsupervised learning paradigm consists of feeding the network a set of 

inputs, some output, a function of the input data as well as the error function. The 

core concept associated is that the machine should be able to determine a connection 

between inputs and outputs, clustering the data along a certain model. [7] 

 

 

2.4 Convolutional Neural Networks 

One of the methods employed involves machine learning, specifically the use 

of neural networks to detect the presence of cellular matter in an image and further 

still to be able to properly account for the number of cells visible. [3] 

 

2.4.1 Convolutional Neural Networks Basics 

Convolutional Neural Networks are a form of Neural Network that is often 

applied to image classification. Conceptually, it is a model that attempts to align the 

perception of images by the machine, to that of humans. This can be witnessed in the 

general nature of CNNs, the very name (neural) referring to the structure of the 

human brain.Indeed, Neural Networks in general attempt to simulate the connections 

(and pattern) of neurons in the human brain. As a basis, it takes an image input and 

by weighting the importance of certain aspects and mapping out spatial/temporal 
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relationships between said aspects as well, it provides detection or classification 

functionality. [4] 

 

Normally, we have to consider the alternative that  is, simpler Neural 

Networks (feed forward for example). It must be noted however that such networks 

would turn a nxn array into a n2x1 column vector and analyze the data as is. This 

would compromise a lot of the features of an image that are used for classification, 

such as the positioning of various elements for example, that would likely be entirely 

lost for more complex images (with the associated pixel values). A feed forward NN 

would fail to properly detect the necessary features or dependencies of an image, 

which a CNN can. [5] 

 

 

 

 

Figure 15. Classification 

2.4.2 Convolutional Layer 

A CNN will receive an input image, of a certain height x width set of 

dimensions and the input channels as well (keep in mind an image also has to have a 

consideration of the three primary colors as separate channels: each image within its 

own channel is of course, in grayscale). For example a square RGB image would be 

of the parameters n x n x 3 where n corresponds to the height/weight of the image in 

pixels. [3] 

 

This input is convolved with a feature map. A feature map is also of the same 

types of parameters, height x width x channels. The name convolutional layer comes 
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thus, from the interaction of this feature map (also called an activation map) and the 

base image itself, as the later is convolved with the former. [3] 

 

The map ‘slides’ over the input image, the corresponding (positionally) pixel 

values undergoing matrix multiplication, and the final output being the convolved 

image (across multiple channels, depending on the image itself).This is also called a 

Kernel or filter. Other than the specific height and width parameters of both the 

image and the filter, there are other parameters to take into consideration as well, for 

example stride, padding or even dilation. Stride represents the amount of pixels the 

kernel moves after each multiplication (1 at default, although it can be different). 

Padding is another such parameter. It can have an effect on the dimensionality of the 

input image (and its changes following convolution). One consideration would be a 

type of padding where only one row and column is added, taking a n x n (without 

channels considered) image to (n+1) x (n+1). When convolved with a m x m matrix, 

it will produce an n x n image in turn. Note that in say, a n x n x m convolution, m 

corresponds to the number of kernels the image is convolved with. One of the 

primary functions of this process is extraction of significant features (edges come to 

mind). This is mostly noticeable within the first layer, however it is notable that 

CNNs are not limited to a single convolutional layer, and further convolution can 

expose a number of other, more complex features as well as the base ones. [3] 

 

2.4.3 Pooling Layer 

The purpose of the Pooling Layer is to reduce dimensionality of the inputs 

produced at the prior layer. The reason for this is that collecting these inputs into 

lower dimensional ones, leads to less computational power requirements, making the 

aforementioned computation proceed faster and with less resource consumption as 

well.Certain features are also invariant (in regards to rotation or even positioning) 

and thus, will prove to be retained even following the pooling process. Pooling will 

thus reduce the number of neurons, from the n total of  a cluster, to one per cluster 

following the process. To this end, there are two main modes through which the 

Pooling Layer functions: maximum pooling and average pooling. 
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Maximum pooling will look over a m x m region of the n x n array of inputs 

and select the maximum input out of the region. Average pooling will instead, select 

the average of the values in the region. Max pooling also has the benefit of acting as 

a mechanism for noise suppression. While Average Pooling can perform the same 

function through dimensionality reduction, it does not perform as well since the 

ultimate result is likely to be affected by noise (through the process of deriving the 

average value).Thus, it is preferable to use maximum pooling over average pooling 

for most intents and purposes. 

 

Figure 16. Max and average pooling 

2.4.4 Fully Connected Layer 

The presence of a FC Layer adds certain benefits. One of them is the ability to 

connect any neuron in any one layer to any neuron in any other layer (hence the 

name). It is at this phase that the above mentioned flattening/linearization can be 

performed safely, converting the n x n input to a n2  x 1.In this case what is produced 

is little but a classical MLP (Multi-Layer Perceptron), an Artiicial Neural Network 

that follows the above precepts of linearizing input data and producing a classified 

output. Normally, in broad strokes a MLP contains three layers, an input, output and 

a hidden layer in between, the number of which is variable. 

 

Following the feed-forward step, we apply another one: backpropagation. 

Backpropagation as defined above, enables the use of gradient methods for the 

training of multi-layer neural networks. It does so by deriving (computing) a gradient 

from the model’s loss function, while taking into accounts the respective weights. 
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This allows for the weights to be continuously recalculated and updated to a more 

accurate value that will eventually also lead to a higher accuracy. 

 

 

Figure 17. Fully Connected Layer 

 

2.5 FRCNN 

 

FRCNN is said, by its creators (Shaoqing Ren, Kaiming He, Ross Girshick, 

Jian Sun) to depend on region proposal algorithms to hypothesize object locations. 

[13] 

According to their work, the region proposal has been exposed as a bottleneck 

of research through advancements in various neural network technologies, including 

the related Fast R-CNN. Faster-RCNN is greatly improved by the introduction of the 

Region Proposal Network (RPN). It shares the convolutional features (of the full 

image) with the detection network. The benefit presented is a highly reduced region 

proposal cost. A Region Proposal Network operates as a proper convolutional neural 

network, both predicting object bounds and scores at every individual position. [4] 

The training process for RPN is end-to-end. Its main function is to generate 

high-quality RPs, which are then processed by FRCNN for purposes of detection.The 

above mentioned sharing of features leads to the merging of the Region Proposal 

Network and Fast R-CNN which is done through the so-called ‘attention’ 

mechanisms. The RPN component guides the entirety of the unified network in its 

search. RPN and Fast R-CNN are merged into a single network by sharing their 

https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=He%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Girshick%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Sun%2C+J
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convolutional features---using the recently popular terminology of neural networks 

with 'attention' mechanisms, the RPN component leads the unified network where to 

look. For the very deep VGG-16 model, this detection system has a frame rate of 

5fps (including all steps) on a GPU, while achieving state-of-the-art object detection 

accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 

proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and 

RPN are the foundations of the 1st-place winning entries in several tracks. [5] 

 

 

Figure 18. FRCNN schematic 

 

- From the base image, we want to obtain: i) A list of bounding boxes, ii) A 

label assigned to each bounding box, iii) A probability for each label and 

bounding box. 

 

The representation of input images is through height x width x depth tensors. 

These are then passed through a pre-trained CNN (Convolutional Neural Network), 

into an intermediate layer, and then a convolutional feature map. This is utilized as a 

feature extractor for the next step.Another part of the above architecture is the one 

labelled RPN. RPN stands for Region Proposal Network. Its use is in locating a 

number of predetermined regions which could contain objects. One of the key issues 

faced with this part, is the creation of variable length lists of bounding boxes, a 

problem solved by the implementation of anchors. 

 

 

Anchors are fixed bounding boxes that are placed throughout the image with 

different sizes and ratios that are going to be used for reference when first predicting 

object locations. [1][10] 



26 

 

 

In order to choose the set of anchors we usually define a set of sizes (e.g. 64px, 

128px, 256px) and a set of ratios between width and height of boxes (e.g. 0.5, 1, 1.5) 

and use all the possible combinations of sizes and ratios.  

 

 

 

Figure 19. RPN schematic 

 

The RPN retrieves all anchors and proceeds to output a set of proposals 

(preferably good ones in regards to the objects in question). To this end, each anchor 

(reference box) has two separate outputs.The first output concerns itself with the 

probability that the anchor refers to an object. It is simply a score that rates how 

likely this anchor is to represent an object. The separation here is between objects 

and  background: this first output only concerns itself with the aforementioned 

separation, rather than classifying objects according to some criterion. This score 

also serves another role: it can filter bad predictions made on the second phase  of the 

FRCNN training process. The second output involves the bounding box regression. It 

adjusts the reference boxes to fit the prediction better. 

 

As mentioned before, a convolutional feature map will be returned by the base 

network, and that helps set up the Region Proposal Network in turn, in a fully 

convolutional manner. The first step involves a convolutional layer. It has 512 

channels and a kernel size of 3x3. Following this, there are two parallel convolution 

layers with a 1x2 channel, with the channel number varying based on the number of 
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reference boxes/anchors per point. RPN itself contains two different types of 

predictions: binary classification and bounding box regression adjustment. Training 

involves taking all the anchors and separating them into two categories. The 

overlapping (with a ground-truth object) ones with an Intersection over Union bigger 

than 0.5 are considered as part of the foreground, while the ones that are not part of 

this category, or have an IoU of less than 0.1, are classified as background.  

 

Then, we randomly sample those anchors to form a mini batch of size 256 — 

trying to maintain a balanced ratio between foreground and background anchors.The 

RPN uses all the anchors selected for the mini batch to calculate the classification 

loss using binary cross entropy. Then, it uses only those minibatch anchors marked 

as foreground to calculate the regression loss. When calculating the regression targets, 

we utilize the foreground reference and then the closest ground-truth object to 

calculate a correct Δ. This Δ is needed to perform a transformation on the anchor, 

into a full object. Instead of using L1 or L2 loss for calculating regression error, 

another suggestion is to use smooth L1 loss.  

 

Smooth L1 is a less restrictive L1, which upon finding a small enough L1 

error, defined by a set σ, the consideration is ‘almost correct’ and the diminishing of 

loss happens at a faster rate. Originally, faster R-CNN was trained with a multi step 

approach. Parts were trained independently and the trained weights were merged, 

followed by a full final training. After this, it was found that end-to-end joint training 

led to superior results. Putting a complete model together provides 4 different losses. 

Two of them correspond to the Region Proposal Network and two to the R-CNN. 

The trainable layers exist  in both the RPN and R-CNN and there is also the base 

network which can be fine tuned (trained) or not. 

 

Whether we want to train the base network or not depends on the nature of the 

objects we want to study and the computing power we have available. If the objects 

being detected are similar to the contents of the original base network training dataset, 

therein’t really a need to train, other than to improve performance to the finer ends. 

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss
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However, the base network training can be expensive, both in terms of time elapsed 

and hardware resources, needing to fit  all the complete gradients.  

 

The four different losses come together through a weighted sum. The reason 

for this is that we may want to give certain weight to, for example, classification 

losses over regression losses, or R-CNN losses over RPN losses. Apart from these 

regular losses, there  are the regularization losses. They can be defined in both the 

RPN and R-CNN. L2 regularization is used for some layers  and depending on the 

base network at hand or whether it is trained, there may be regularization. 

 

Training uses Stochastic Gradient Descent (SGD) with momentum. The 

momentum value is set to 0.9. A Faster R-CNN can be trained with any other 

optimizer, without running into significant problems. The learning rate starts at 0.001 

and then eventually goes down to 0.0001 after 50.000 steps. This hyperparameter is 

one of the most significant ones. The evaluation done uses mAP (Mean Average 

Precision) at a specific Intersection-over-Union threshold (for example mAP at 0.5). 

This metric comes from information retrieval. It is commonly used to calculate error 

in problems that involve ranking or object detection. 

 

These types of metrics are a more difficult subject to discuss in full, however 

the conclusion is that mAP invokes a penalty when missing a box that should have 

been detected, or when detecting something not existing and detecting the same thing 

repeatedly. [9] 
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CHAPTER 3 

METHODOLOGY 

 

The images on which we use FRCNN have to be processed in various means, 

through the use of certain techniques. Below, the procedure for labelling the image 

with the cells contained within is shown.[6][7] 

 

 

Figure 20. Base Cell Image 

 

 

This is the original image that we are going to use for purposes of cell 

detection. In this state, it offers us little in the way of making our work easier. 

Annotation (labelling) is needed. We can use various services that enable annotation, 

such as Apeer, as is the case with our work here.  [5][7]The aim is to retrieve all of 

these nuclei and to enable the machine learning model used to be trained to the best 

accuracy possible. [18] 

The result of our annotation is a mask that does not look quite clear or even 

useful for detection. The varying quality of the labelled nuclei and the uneven 

distribution of color means that it will not be very effective. A way to deal with this 

involves the use of image editing software, although programs can also be utilized to 

retrieve a proper image.  
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By either selecting the color (if distribution is uniform) and converting it to 

white (or any other desired color) or alternatively, setting a threshold directly above 

pure black (000000) we can retrieve a fully black and white mask, as displayed 

below. [4][18] 

The steps to set up this model are simple. Our primary configuration involves 

importing a number of machine learning libraries (given that the code is 

fundamentally Python-based), and then configuring the anchor box properties.  

We follow this with the annotation parsing (from the related files) and then 

the definition of the pooling layer. We proceed with the vgg16 model definition, the 

RPN layer, classifier and then the calculation of the Intersection over Union. The 

next few steps look over RPN calculation, image augmentation and generating 

ground truth anchors. Loss function is defined, and then training begins 

properly. [15] 

 

Figure 21 Library Loading 
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Figure 22. VGG implementation 

 

The above structure defines the neural network base. Note that there are five 

of the above blocks, and the number of kernels increases by a factor of two, until the 

fourth block (512), and doesn’t change for the fifth. [21] 

 

Figure 23. RPN implementation 

 

Here, the RPN layer can be  observed. As the comments suggest, it begins by 

going over the feature map of the base layer, to the convolutional layer (3x3) of 512 

channels. [15] 

 

Following this step, we have two (1,1) conv. layers that replace the fully 

connected layer. Beyond the structuring of the RPN layer, there is also the classifier 

layer, which has the following properties:  
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Figure 24. Classifier Layer 

 

The base layer here is vgg. It takes as input the ROI list and number, and will 

return the output of the regression and classifier layers. [15] 

 

 

Figure 25. IoU Calculation 

 

In this fragment of the model we look at the union and intersection definitions. 

In the IoU module we see how the intersection is calculated and the output is fed to 

the union, before performing the necessary division for IoU. [9] 
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Figure 26.RPN Calculation 

 

The RPN calculation takes in certain arguments: the configuration, augmented 

image data, height and width of the original image, the same parameters for the 

resized image as well as the function which calculates the finalized image’s feature 

map. [10] 

 

In turn, the rpn calculation module will return: the rpn class, whether the 

boxes are valid or not and similarly whether they overlap (as boolean/binary values) 

as well as the bounding box coordinates for the rpn regression.  

 

The next step before training of the data can begin, is resizing the images to fit 

with the  outcome of the model. Beyond this, the model will proceed with the 

training phase. [5] 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

At this part, the implementation of a FRCNN model is needed. By taking into 

account the various layers present within FRCNN, the code will need to reflect these 

features, in particular, the rpn layer. Following this stage, training proceeds, for 32 

epochs, at 80 parts on average (adjustments were made to attempt to get a better 

result). The final results of the training, are charted in the below graphs 

 

  

 

Figure 27. Mean overlapping boundaries and accuracies 

 

Figure 28. RPN loss 

 

Figure 29. Loss Class 
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Figure 30. Total loss 

 

 

Figure 31. Bounding Boxes with 35 epochs 

  

This does not appear to be a very acceptable (accuracy-wise) outcome. The 

training proceeds, so that we may obtain a more optimal accuracy read. We proceed 

to increase the number of epochs by another 70. It must be noted that it is not always 

training time that influences the final accuracy. 

In fact, as has been shown, it is entirely possible that excessive training will 

lead to suboptimal accuracy. Adjustments will need to be made for a fixed training 

time/epoch split (which in our case is mostly a matter of multiplication: total time 

equals the product of epochs multiplied by parts). 
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We proceed to train it further, to 70 epochs. The outcomes here appear a bit 

better. 

 

Figure 32. 70 epoch metrics 

 

Figure 33. Total Loss at 70 epochs 

 

Figure 34. Final epoch output 
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Figure 35. Bounding Boxes 

As we can see, the loss is fairly low for each individual classifier. Testing 

phase commences afterward, taking into account the model definition from the 

training step (which is loaded into the testing framework) and then we test for 

individual images. The following losses are retrieved.  

 

Figure 36.Box overlap and class accuracy 
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Figure 37. Train Loss Metrics 

 

Figure 38. Final train metric 

 

 

 

CHAPTER 5 

CONCLUSIONS 

5.1 Conclusions 

As work on this thesis began, multiple approaches were considered. 

Originally the subject of the detection algorithm were not microscopic images, and 

originally different considerations were made for using LeNet and the UNet 

architecture as well, the latter leaving a mark through the presence of annotations that 
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were ultimately unused. Eventually, Faster-RCNN was chosen as the model for 

detection.  

The total number of images utilized is 84. The number of cells to be counted 

in each image, is variable, and tends to vary, but averages out in between 100~200.  

The final averaged precision with the increased number of epochs hovers 

around 80%, for the total number of cells found across all images. The improvement 

is displayed through the bounding boxes: note that they attempt to focus on the 

nucleus. A key concept to work with is the fact that each cell has a single nucleus and 

thus, what is actually being counted are cell nuclei: easier to detect due to their 

circular membrane and their inner, darker coloration (depicted as several smaller 

black dots).  

Among the challenges experienced were the above-mentioned difficulties 

with the images, where there is some lack of clarity, that can prove difficult even if 

one is to manually annotate the cells. Overlapping nuclei, poor contrast and even the 

presence of mitosis (marked by a brightly glowing area), as the cells split in two, can 

prove to make work difficult, for human operators and obviously enough for the 

machine as well.  

Beyond this, there are the standard challenges of implementing a neural 

network. Proper training is needed to ensure  that the testing phase proceeds 

smoothly. Furthermore, adjustment of the input dataset to better fit with the present 

model is also needed, not to mention adjustment of many parameters to ensure 

optimal training: this is often time consuming and rarely set-in-stone, so it requires 

some amount of trial and error.  

 

5.2 Recommendations for future research 

Future work could be directed at improving the average precision to better 

values. Alternatively, adjustments in the model could also be introduced, that  make 

it more fit for medical imaging (in fact, this was one of the considerations/upsides 

UNet had). Another direction to be possibly taken, is that of augmenting the dataset 

in various ways, either by introducing greater contrast, or using different imaging 

technology (if/where possible), that makes cell detection easier. Ultimately, the 
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contribution of this work lies in providing a reasonably efficient and capable tool for 

detecting large numbers of cells within a set of images: a task that automatization has 

yet to widely grasp. 
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https://colab.research.google.com/drive/1l2nP709X4PkkaAqwSEleCwHNQVTSVljW 
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