
BETTER CONFORMANCE CHECKING FROM PROCESS MODEL 

GENERATED BY PROCESS TREE 

  

  

  

A THESIS SUBMITTED TO  

THE FACULTY OF ARCHITECTURE AND ENGINEERING 

OF  

EPOKA UNIVERSITY  

  

  

  

BY 

  

HEGI GJOKA 

  

  

  

  

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR  

THE DEGREE OF MASTER OF SCIENCE 

IN 

COMPUTER ENGINEERING 

  

  

  

  

APRIL, 2021



 

i 

 

Approval sheet of the Thesis 

 

This is to certify that we have read this thesis entitled “Better conformance checking 

from process model generated by process tree” and that in our opinion it is fully 

adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 

______________________ 

        Assoc. Prof. Dr. Ali Osman Topal 

Head of Department 

           Date: February, 20, 2021 

 

 

 

Examining Committee Members: 

 

Assoc. Prof. Dr. Name Surname  (Computer Engineering) __________________ 

Assist. Prof. Dr. Name Surname  (Computer Engineering) __________________ 

Dr. Name Surname    (Computer Engineering) __________________ 

 

  



 

ii 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 

 

   Name Surname: Hegi Gjoka 

 

Signature: ______________  



 

iii 

 

ABSTRACT 

  

BETTER CONFORMANCE CHECKING FROM PROCESS MODEL 

GENERATED BY PROCESS TREE 

  

Hegi Gjoka 

M.Sc., Department of Computer Engineering 

Supervisor: Dr. Igli Hakrama 

 

Process mining field is massively used nowadays by medium and large size 

enterprises, in order to have a better understanding of the processes that occurs and it 

helps them in the decision-making aspect by presenting the workflow of the 

organization as a whole and evidencing bottlenecks and unknown procedures that 

before were unknown or irrelevant. This study aims to check conformance and to 

analyze bottleneck of these processes by means of process mining techniques. To 

check conformance and to do bottleneck analyzes, an Enterprise resource planning 

system (ERP) was taken into consideration. A custom technique of data gathering 

(system event logs) was used for this information system (IS), based on an aspect 

oriented programming (AOP) technique. Also there was the need for robotic process 

automation (RPA) technique application, due to COVID-19 pandemic, which made 

data gathering difficult due to the enterprise lockdown. The result showed a better 

conformance checking after usage of the inductive miner algorithm and Petri net 

representation of the process model. The result showed a better conformance checking 

by means of fitness and precision. As for bottleneck analyze, the only conclusion was 

due to operator delay during processes. 

 

Keywords: Process Mining, Process Models, Petri nets, Process tree, Inductive miner, 

Software logs, ERP, Bottleneck analysis 



 

iv 

 

ABSTRAKT 

 

KONTROLL ME I MIRE KONFORMANCE SE PROCESS MODELS 

QE JANE GJENERUAR NGA PROCESS TREE 

  

Hegi Gjoka 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Dr. Igli Hakrama 

 

Fusha e process mining përdoret masivisht në ditët e sotme nga ndërmarrjet e 

përmasave të mesme dhe të mëdha, në mënyrë që të kenë një kuptim më të mirë të 

proceseve që ndodhin dhe i ndihmon ata në aspektin e vendimmarrjes duke paraqitur 

rrjedhën e punës së organizatës si një e tërë dhe duke evidentuar pengesat dhe 

procedurat e panjohura që më parë ishin të panjohura ose të parëndësishme. Ky studim 

synon të kontrollojë konformitetin dhe të analizojë vonesta e këtyre proceseve me anë 

të teknikave të process mining. Për të kontrolluar konformitetin dhe për të bërë analiza 

të vonesave, u mor në konsideratë një sistem i planifikimit të burimeve të ndërmarrjes 

(ERP). Një teknikë e personalizuar e mbledhjes së të dhënave (loget e sistemit) u 

përdor për këtë sistem informacioni (IS), bazuar në një teknikë të programimit të 

orientuar drejt aspekteve (AOP). Gjithashtu ishte nevoja e zbatimit të teknikës së 

automatizimit te proceseve me robote (RPA), për shkak të pandemisë COVID-19, e 

cila e bëri të vështirë mbledhjen e të dhënave për shkak të bllokimit të ndërmarrjes. 

Rezultati tregoi një kontroll më të mirë të konformitetit pas përdorimit të algoritmit 

inductive miner dhe paraqitjes me anë të Petri nets të modelit të procesit. Rezultati 

tregoi një kontroll më të mirë të konformitetit me anë të përshtatshmërisë dhe saktësisë. 

Sa i përket analizës së vonesave, përfundimi i vetëm ishte për shkak të vonesës së 

operatorit gjatë proceseve. 

Fjalët kyçe: Process Mining, Process Models, Petri nets, Process tree, Inductive 

miner, Software logs, ERP, Bottleneck analysis 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to express my special thanks to my supervisor Prof. Dr. Igli Hakrama for 

his continuous guidance, encouragement, motivation and support during all the stages 

of my thesis. I sincerely appreciate the time and effort he has spent to improve my 

experience during the last year of my graduate studies. Also a special thanks to “Our 

Lady of Good Counsel Foundation” for letting me use their ERP system, that I also 

took part in the development, that it is used as a case study.



 

vi 

 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................ iii 

ABSTRAKT ................................................................................................................ iv 

ACKNOWLEDGEMENTS ......................................................................................... v 

LIST OF TABLES .................................................................................................... viii 

LIST OF FIGURES .................................................................................................... ix 

CHAPTER 1 ................................................................................................................ 1 

INTRODUCTION ....................................................................................................... 1 

1.1 Thesis Objective ............................................................................................ 2 

1.2 Organization of the thesis .............................................................................. 3 

CHAPTER 2 ................................................................................................................ 5 

LITERATURE REVIEW............................................................................................. 5 

2.1 Introduction ................................................................................................... 5 

3.2 Background ................................................................................................... 5 

3.3 Summary of the work that has been done ................................................... 11 

3.4 Summary of unsolved problems and future work ....................................... 11 

3.5 Research gap ................................................................................................ 12 

CHAPTER 3 .............................................................................................................. 13 

METHODOLOGY ..................................................................................................... 13 

3.6 Methodology approach ................................................................................ 13 

CHAPTER 4 .............................................................................................................. 15 

Analyses of the ERP .................................................................................................. 15 

CHAPTER 5 .............................................................................................................. 20 

DATA GATHERING ................................................................................................ 20 

5.1 Introduction ................................................................................................. 20 

5.2 Interceptor ................................................................................................... 20 

5.3 NestJs framework and Postgres database .................................................... 21 

5.4 Implementation of interceptor and Log service........................................... 22 

5.5 Reasoning for this implementation .............................................................. 25 

5.6 Creation of a new backend in nestjs ............................................................ 26 

5.7 Reason for new backend implementation ................................................... 28 

5.8 Future work ................................................................................................. 30 

CHAPTER 6 .............................................................................................................. 31 

EXPERIMENT AND ALANYSIS ............................................................................ 31 

6.1 Formatting event logs .................................................................................. 31 

6.2 Event log analysis ........................................................................................ 32 

6.3 Evaluations .................................................................................................. 34 

CHAPTER 7 .............................................................................................................. 37 

CONCLUSION AND FUTURE WORK .................................................................. 37 



 

vii 

 

7.1 Limitation and future work .......................................................................... 38 

REFERENCES ........................................................................................................... 39 

APPENDIX ................................................................................................................ 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

LIST OF TABLES 

Table 1: Conformance checking for Petri nets model…………………………... 35 

Table 2: Conformance checking for BPMN……………………………………... 36 

Table 3: Conformance checking for inductive miner process tree…………….. 36 

 

  



 

ix 

 

LIST OF FIGURES 

Figure 1: Process mining as the bridge between Data science and Process science [1]

 ...................................................................................................................................... 2 

Figure 2: Process model discovery flow [1] ............................................................... 2 

Figure 3: Alpha algorithm footprint table [1] ............................................................. 6 

Figure 4: Petri net diagram [1] .................................................................................... 7 

Figure 5: Petri net and the tree representation by Inductive miner [1] ....................... 8 

Figure 6: F2R approach in RPA [2] ............................................................................ 9 

Figure 7: Classes & Aspects ..................................................................................... 10 

Figure 8: Aspect class ............................................................................................... 10 

Figure 9: Odonto web app dashboard ....................................................................... 16 

Figure 10: Odonto booking calendar ........................................................................ 17 

Figure 11: Odonto poltron standalone web app 10” ................................................. 18 

Figure 12: Odonto workflow diagram ...................................................................... 19 

Figure 13: Interceptor diagram ................................................................................. 21 

Figure 14: Controller class example ......................................................................... 22 

Figure 15: Interceptor implementation ..................................................................... 23 

Figure 16: LoggerService class setRequest method ................................................. 24 

Figure 17: LoggerService class pushLog method ..................................................... 25 

Figure 18: LogEntity columns that will be persist into the Postgres database ......... 27 

Figure 19: Data gathering technique workflow ........................................................ 29 

Figure 20: Event logs in csv format .......................................................................... 32 

Figure 21: ProM tool XES format convert................................................................ 32 

Figure 22: Petri Net representation of the event logs................................................ 33 

Figure 23: BPMN representation of event logs ........................................................ 34 

Figure 24: Pareto front for process models ............................................................... 35 

Figure 25: Transaction table ..................................................................................... 41 

Figure 26: Stock item table ....................................................................................... 41 

Figure 27: Supplier table ........................................................................................... 42 

Figure 28: Adding booking appointment panel ........................................................ 42 

Figure 29: Patient table ............................................................................................. 43 

Figure 30: Doctor table ............................................................................................. 43 



1 

 

CHAPTER 1 

INTRODUCTION 

  

Process mining is a field that is first created and developed by Professor Will 

van der Aalst in the Einthoven University of Technology in 1999 and the first book 

edition for this field was released after 14 years of research and development, in 2013 

and the second edition in 2016. This field is present as a sub-field in two of the most 

dominant sciences that are present today, like Data Science and Process Science.  

Data Science is an inter-disciplinary field that make use of algorithms and 

processes to extract knowledge and insights from structured and unstructured data [1]. 

Some of it sub fields are Data mining, Big data, Statistics, and among of them is 

Process mining.  

Process Science in an inter-disciplinary field that it main purpose is to turn data 

into value. Value is then provided in different forms as automated decision making, 

predictions, data visualization, etc. [1] Also this science is decomposed in it sub fields 

that are Stochastics, Optimization, Process automatization, Business process 

management (BPMN) and among of them is also presented Process Mining. Since this 

field is presented in both sciences is also referred as the “bridge” between Data science 

and Process science, best described by the Figure 1 [1]. 

Process mining find usage in big and medium size enterprises/businesses 

software’s and departments, like Customer Relation Management (CRM), Supply 

Chain Management (SCM), and Enterprise Resource Planning (ERP). Process mining 

consists in representing the business processes by a process model. This process model 

is created by algorithms like (alpha algorithm, rapid miner, heuristic miner, petri nets, 

etc.) and tools like ProM (developed by Professor Aalst and its colleagues at Einthoven 

University) and Disco. This tools uses algorithms and event logs generated business 

processes (softwares). The flow of process model discovery is best represented by the 

Figure 2 [1]. 

 



 

2 

 

 

 

Figure 1: Process mining as the bridge between Data science and Process science [1] 

 

 

Figure 2: Process model discovery flow [1] 

 

1.1   Thesis Objective 

The primary objective in every study is to investigate the literature, in order to 

find related problems or lack of application in practice of your field of study. In this 



 

3 

 

thesis, will be presented an application of process mining in one business ERP system. 

By applying this technique to this system we will be able to discover a process model 

in order to compare it with the real one and to analyses bottlenecks and discover new 

processes that aren’t present in the real planned process design. This is pretended to 

be achieved by means of the Disco and Prom tool and the logs will be generated in an 

asynchronous way by means of request interceptors since the ERP that is going to be 

taken in consideration is a web application.  

 

1.2   Organization of the thesis 

This thesis is divided in 7 chapters including this first one. The organization is 

done as follows: 

The second chapter includes the literature that I have taken in consideration in 

order to state the objectives for this thesis and to achieve its purpose. It is going to be 

treated the main relevant works that are going to be crucial in the understanding the 

problems and the subject in order to applied it on a real software. 

The third chapter consist on the methodological approach that is presented in 

this thesis in order to achieve the final purpose. Since this is the application of process 

mining techniques in a real ERP system, the method used in this thesis is an empirical 

methodology in order to analyze quantitative data gathered from a case study. 

The fourth chapter consist in the description in detail of the ERP system that is 

taken into consideration that in our case is Odonto. This system has different usage in 

the company, since it serves as an inventory warehouse where all the transaction, 

purchases and inventory movements are registered in this system. Also it serves as 

virtual register for patients and their medical cartel. The reception operators use it to 

book dates for patients. 

The fifth chapter describes all the work that it is done for gathering data in order 

to turn them into event logs. After wards this event logs will be screened and 

preprocessed in order to be then consumed by the process mining tools available. Also 

in this chapter is going to be treated an uncompleted work. 



 

4 

 

The sixth chapter will represent the part of the analysis made in this thesis. 

Some of them are bottleneck analysis of the software, process model discovery of 

unknown paths and conformance checking using different algorithms. 

The seventh chapter will present the conclusion of the application of the 

methodology used in this thesis, a brief summary of the analysis section. In this session 

is mention also a future work.  



 

5 

 

CHAPTER 2 

LITERATURE REVIEW 

  

2.1  Introduction   

The literature chapter is the most valuable chapter of this thesis as at this section 

will be defined the title and the reason of it. This chapter will briefly describe the 

background I have in terms of existing and gained knowledge during the research of 

papers and scientific articles to define the main motivation of the study and the work 

that these materials have left unsolved. This chapter will be divided into four parts 

which will be, the background, the works that are solved in the materials that have 

been considered, and the works that these materials have left unsolved to reach the 

definition of this thesis by defining the last section of this chapter that is going to be 

the research gap.  

 

3.2  Background 

In this section are going to be treated the four main elements of this thesis, which 

are process mining, alpha algorithm, petri nets, and inductive miner. These materials 

are taken from papers and scientific articles, as well as from the second volume of 

Professor Aalst's book "Process Mining". 

Process Mining, is the field of analyzing data to recreate (discover) the processes 

or the workflow of that the data may contain. This field as is presented in the book of 

Process mining [1] as the gap between two field of science, which are Data science 

and Process science best described by the Figure 1 in the introduction chapter. In both 

of them process mining appears, but in different approaches. In the field of Data 

Science, its subfield process mining has a process agnostic approach whereas in the 

field of Process Science, its subfield process mining has a more workflow approach 



 

6 

 

omitting its other data that it might contain [1]. Process mining has firstly started in 

1999 in Eindhoven University of Technology and its first mining algorithm that has 

used was alpha algorithm that was responsible of discovering concurrency in event 

logs which was and is the most important source of the process of discovering process 

models. When the data in the entire environment of the internet increases 

exponentially, process mining reached the boom of its development and usage in 

academic and commercial systems e.g. CRMs, ERPs, SCMs, etc. Process mining 

open-source tool ProM it is used in many companies now day’s in order those to 

analyze its processes, behaviors of workflow and customers, bottlenecks, and hidden 

processes. This tool helped them to optimized their enterprise and be more productive 

and more low-cost in resources. Process mining works like in the Figure 2 in the first 

chapter, were the software that it is used in the company by the employees generated 

logs for each event of the company environment that the user inputs to it. This logs are 

stored into a database of event logs and from this the logs are formatted into XES, 

XML, MXML, CSV, etc. files in order to run algorithms upon this files and discover, 

conform, and enhance the process model derived by the event logs. 

Alpha algorithm, is the first algorithm that is responsible to discover concurrency 

in the event logs that are faded in it. It works by recreating a footprint table of the event 

logs that have special relations between processes e.g. L = [<a,b,c,d>3, <a,c,b,d>2, 

<a,e,d>], where the sequence a,b,c,d is shown 3 times in the event logs and so the 

others as in the Figure 3. 

 

Figure 3: Alpha algorithm footprint table [1] 



 

7 

 

Petri Nets, are an UML representation of any kind of processes, represented by 

a group of placeholders, arcs, and tokens that moves into these placeholders. It consist 

of places, transitions, and arcs. Arcs connects places and transitions together to form 

the petri net. The phase from which the place runs to a transition is called input place 

transition and the phase from which the transition runs to a place is called output place 

of the transition. In petri nets we also see the usage of tokens which is the state that 

follow the path among places and transitions from the start of the petri net to the end. 

If a transition placeholder has one input arc it require a token consumption from the 

previous place to create one token of its own, in the case it has two or more input arcs 

it needs that the previous places to consume their tokens in order to create its own. In 

the other hand, if the transition has one output or more output arcs, it is necessary to 

consume its token in order that the process to flow. This workflow representation 

technique is best represented by an example diagram that is shown in Figure 4. 

 

Figure 4: Petri net diagram [1] 

Inductive Miner, is the technique based on alpha algorithm process model. In 

additional to the alpha algorithm that creates the model based on the footprint table, 

the inductive miner technique for the first time introduces the tree representation of 

the model by divide into branches the processes based on their relation shown in the 



 

8 

 

footprint table. Afterward, the process model can be represented in any view as Petri 

Net, BPMN, etc. derived from the tree, Figure 5. 

 

Figure 5: Petri net and the tree representation by Inductive miner [1] 

 

Robotic process automation, is like business process automation softwares and 

techniques, which is main difference and advantage is the metaphorical word robot. 

This technique or software is used to automate the manual processes it performs in 

businesses. This technique consists of instructions given by the user to perform a 

certain task. RPA now have a variety of tools that are equipped with various commands 

which can be translated into instructions. RPAs are used in both the academic and the 

industrial part. In one of the papers considered for this thesis is used RPA's with Form-

to-Rule F2R which creates a continuous cycle of changing instructions which are 

improved by the logs of the RPA system [2]. In the Figure X below is described this 

technique in use. 



 

9 

 

 

Figure 6: F2R approach in RPA [2] 

 

Aspect-Oriented Programming (AOP) is a programming paradigm that aim to 

increase modularity by allowing the separation of cross-cutting concerns [3]. AOP add 

additional behavior to classes, methods, and functions without touching (modifying) 

their code, by pointcut specification e.g. log method called with a numeric parameter 

and a currency parameter, as “Transaction made $1000”. This king of programming 

doesn’t affect the business logic of the code and it can be added at the very end or in 

an existing code without mutating it. Cases that I have observed with this kind of 

programming is in java spring framework were the instance of an object is created by 

a factory code that allow the usage of aspect functions. Aspect functions are mainly 

logging function that uses pointcut and cross-cutting methodology without affecting 

the code and its business logic. AOP is best described by the Figure 7 where are shown 

3 Objects A, B, and C with their on functions (business logic) and Aspect 

Configuration, Logging Aspect, and Transaction Aspect Functions. 



 

10 

 

 

Figure 7: Classes & Aspects 

 

In java spring framework code of aspect is like shown in the Figure 8. @Before is used 

to log aspect before the function or method is called, and there are many annotations 

and parameters catchers like @After, @AfterReturning, @AfterThrowing, @Around, 

@Pointcut, pointcut, JointPoints, returning, and throwing. 

 

Figure 8: Aspect class 

 

 

 



 

11 

 

3.3  Summary of the work that has been done 

In this section are shown all the problems that are resolved in the 

papers/journal/article that we found from different conferences and also in Research 

Gate. Metamodeling of reusable templates for process modelling in some platforms 

like BPM IE to improve company productivity [4]. Applying process mining into 

different software like Microsoft Power BI in order to use multidimensional data 

(event logs) [5]. Filtering logs without any trade of in the 4 forces that are applied in 

the process model, by filtering infrequent logs or paths [6] or divide big event logs into 

small subset with sampling strategies to gain time [7]. Dealing with flat Object Centric 

event logs [8] [9] and to use that by turning it into the right format (e.g. XES and CSV) 

in order to be recognized by the tools that are in this moment being. Fast conformance 

checking by abstracting event logs and turning them into tables (footprint) to reduce 

the time of evaluating the process model discovered [10]. Designed framework (tool) 

for process mining like ProM, Disco, Rapid Miner, and others. 

 

3.4  Summary of unsolved problems and future work 

Here, in this section are mentioned to you the problems that aren’t solved yet and 

future works. Some of the problems are dealing with multi sources event logs that are 

generated by different software [11] where it is unable to tell if the log of the other 

software is the other part remaining of the previews log in the other software even if 

they are consecutive in the chronological time space. Dealing with a single case 

notation in the event logs with only one column “flattened event data”. Extracting 

meaningful and valuable event logs from all kind of software in the right format in 

order to be processed by the existing process mining tools [8] and also from different 

sources (software) [12]. 

Integrating process modelling methodology with business process modelling 

methodology with the requirements for enterprise development in Web APIs [4]. 

Integrating process mining analysis, conformance checking, and bottleneck analysis 

into Power BI [5].  Handling problematic event logs, e.g. event logs with missing logs, 



 

12 

 

isolating behavior event logs [6], finding out the best subset when we are dealing with 

big event logs [7], filtering event logs that do not contain business activities e.g. 

logging into the software or changing password [12], detecting high level service with 

correlated event logs [9]. 

 

3.5  Research gap 

In this section of this chapter we is the part that is define as missing or that is 

shown in the future work part in the other works that we have read in the literature 

review part. Some possible research gaps which are in the future work part and another 

one that I, with the advice of my supervisor of my master thesis, have formulated: 

 Dealing with multi source event logs. 

 Extracting meaningful and valuable event logs from software. 

 Filtering out non business logs from event logs. 

 Optimizing business workflow using process mining techniques. 

 

 

 

 

 

 

 



 

13 

 

CHAPTER 3 

METHODOLOGY 

  

In this chapter, will be described the main methodology approach of the thesis 

based on the most relevant methodology techniques and the methodology to approach 

the applied case that is going to be taken into consideration. 

 

3.6  Methodology approach 

  The methodology that will be used in this thesis is a “Case Study Method”, 

because it will be taken into consideration an ERP system of a dental clinic. This ERP 

manage a big size clinic with 10 armchair and 12 dentists, 4 receptionists, and 3 

accountants. This dental clinic is also the main internship provider for dental students. 

There are more than 100 students every year that finish their internship in order to take 

their diploma. The technique that is applied in this system for gathering data is going 

to be categorized as a “Quantitative Method”, because process mining in order to 

generate process model needs to be feed with event logs.  

The first step was to choose a very big software, which in this thesis is chosen 

an ERP that is used to in managing the resources of the business. This system will be 

described in detail in the next chapter of this thesis, so you can skip the rest of the 

methodology description if you are interested only in the case that it is taken into 

account.  

The second step of this work was to gather data in a quantitative method, 

because event logs are the main resource of process mining and process model 

discovery. In this part there will be a parallelism between the comprehended technique 

in the above chapter, which is AOP and the technique applied in this case study. AOP 

is mainly used in some frameworks like Java Spring, Groovy, PHP, Python, .Net, etc. 



 

14 

 

Since none of the frameworks used in this case study belong to the above list, a new 

way of implementing this technique will be needed. This new way will be combined 

with interceptors in the front part of the application which is written in Angular, the 

framework which has as core feature a wide range of concepts and among them are 

the interceptors. Interceptors as they serve to monitor or add metadata to the request, 

which is done by the front in terms of backend and response, which is done vice versa. 

This method is similar to the AOP technique as it does not interfere with the business 

logic of the application. For this step, is taken in account asynchronous event log 

generation from this interceptor, which is mentioned above for performance reason, 

because the system is very big and find 90% usage in all departments of the dental 

clinic. Also in this part will be mentioned in detail the use of RPA in the part of 

generating event logs, because in the period that this thesis has been completed, all 

humanity has passed the COVOD-19 pandemic, which brought many loss of life, 

closure of businesses , and economic downturn. Business closures led to this thesis 

event logs to be generated in an automated way by RPA, as the business in which this 

ERP operated was closed for a period of 4-5 months. 

And last but not least is the third step, which will be the essence of this thesis 

because will be analyses of process mining techniques that result in a more conformant 

model of the process made in this ERP as whole. This will be presented in Chapter 6 

of this thesis. Three techniques are considered in it which are Petri Net, BPMN, and 

Inductive miner. Petri Net and BPMN are two techniques used in process mining to 

generate process models from event logs generated by system usage. While Inductive 

miner performs the same process as in the two techniques above, but the only 

difference between this technique and the above-mentioned techniques is the 

generation of a process tree. This process tree can then be turned into a process model 

by combining it with event logs. This leads to the creation of a better process model, 

as the process tree is flexible and its connections can be interpreted in several ways 

depending on the event logs. 

  



 

15 

 

CHAPTER 4 

Analyses of the ERP  

 

In this chapter we will explain in details the ERP that is taken into consideration 

in this thesis. The ERP system is property of the “Dental Clinic Our Lady of Good 

Counsel” and is referred by the name of “Odonto” since in Italian the dentistry clinic 

is called “Clinica Odontoiatrica”.  

A brief explanation of the ERP system. This system is built by the IT Office of 

the “Our Lady of Good Counsel Foundation” in 2016 and is still in development (in 

2020 I also took part in the development). The frontend part is built in Angular 5 

framework and uses PrimeNg and Ultima 5.2.0 template. The backend in the other 

hand is built in Java, and uses Rest Jax and Postgres Database.  

The application that has been considered is divided into several menus and sub-

menus. The first panel we encounter is the dashboard where all the stock items are 

listed. At the top of this panel we have cards which show us an overview of inventory 

status, services, patients, doctors, departments and products near the expiration date. 

Also at the top we notice 4 buttons which are the purchase button, material 

consumption button, movements’ button and inventory regulation button as shown at 

Figure 9 below.  

 



 

16 

 

 

Figure 9: Odonto web app dashboard 

Top menus are the warehouse, booking, clinic, and armchair section. In the 

warehouse menu we notice the respective sub-menus which are transactions, stock 

items, suppliers, and flow.  

In the transactions section we can look at any transaction that we can, which 

can be purchase, material consumption, inventory adjustment, or transfer of stock 

items from one warehouse to another. We also look at the date of the transaction, the 

inventory that participated in this transaction along with all its settings such as 

expiration date, quantity purchased or consumed, unit of measurement and unit price. 

If we click on a row the application will open a side panel in which I will show every 

detail of the transaction. All transactions are in chronological order from the latest to 

the earliest. This panel also has the relevant filters. In the appendix section there is 

Figure 25.  

In the warehouse menu we also find the stock item sub-menu. This panel 

contains all the products which are registered in the application. Also as in the previous 

panel we have the ability to filter the inventory. In this panel we will be able to see the 

name of the product, its category, stock status, minimum stock, final price and supplier. 

In the appendix section there is Figure 26. 

Also in the warehouse menu is the sub-menu of the supplier which is composed 

of filters and supplier settings as shown at the Figure 27 at the appendix section. In 

this panel, if we click on the row, a side panel opens where there is the possibility to 



 

17 

 

modify the supplier which is selected or a new panel opens in which appears in 

chronological order all the tax invoices that have been made by this supplier. 

 In the booking menu is the calendar of the clinic where all the doctors who are 

staff of the clinic are displayed. In this panel the reception operator can book a calendar 

for a patient by clicking on the date on which the patient will appear at the clinic as 

shown at Figure 10 below. 

 

Figure 10: Odonto booking calendar 

After clicking on the date in the calendar, a side panel opens where the booking 

data must be filled in, such as the clinic department, the doctor who will perform the 

medical examination, the patient, the booking schedule and a comment. Also in this 

side panel the operator can add the services that the patient requires such as teeth 

whitening as shown in the appendix section Figure 28. 

The clinic menu contains sub-menus such as services, offers, patients and 

doctors. The panel of patients and doctors is almost identical as the relevant filters and 

data of each patient / doctor are displayed. If we click on a row we have the opportunity 

to modify the person, delete him, and look at his medical file in the case of the patient 

and his card with services in the case of the doctor respectively described by Figure 29 

and Figure 30 at the appendix section. In this side panel the doctor also has the 

opportunity to see his booking calendar, the materials he has consumed, the services 

he has performed in chronological order, he can also access the armchair panel which 

will be explained below.  



 

18 

 

In the menu of the clinic is also located the sub-menu of services. The service 

panel has the relevant filters and service settings such as service name, service 

department, service cost, and recent performance of this service. 

The newest menu added to this application is the armchair menu in which a 

panel opens which can be called otherwise as a standalone application as it is adapted 

to be used on a 10 inch tablet. This panel is divided into two sub-panels where one of 

them contains the list in chronological order of all bookings of the day and the other 

panel contains the details of the booking, which means that it contains the patient data, 

the booking data and the list of services required by the patient as shown in the Figure 

11 below. The doctor from here can manage all his daily schedules and performing the 

necessary services for each patient. According to this way of work that the doctor 

performs, shows transparency with patients and working hours. 

 

Figure 11: Odonto poltron standalone web app 10” 

This ERP system is best described by the Figure 12 below that shows the whole 

workflow of the application. This information system manage the whole clinic 

departments as the warehouse, reception, therapy, orthodontics, surgery, etc. In the 

warehouse department it manages the stock items, the individual magazines of 

dentists, the suppliers, this system performs CRUD operations for purchases, inventory 

regulations, consumptions, and others. In the reception department it manages the 

dentists, their calendar for appointments, and they register patients. This ERP manages 

the medical cartel of each patients, which consist of their services that they have done, 



 

19 

 

the dentist list that have performed their services, and others. The second most 

important department, after the warehouse, is the armchair of the dentists. With a 10 

inch tablet the dentist manages his patients and the services that the patients needs. 

 

Figure 12: Odonto workflow diagram 

The following chapter will explain the implementation of interceptors on the 

frontend to perform asynchronous requests in the direction of a backend application 

which is able to store logs in the database to be then analyzed, in order to achieve the 

purpose of the thesis. 

  



 

20 

 

CHAPTER 5 

DATA GATHERING 

5.1  Introduction 

In this chapter is going to be explained in detail all the work that is done in order 

to gather meaningful data from the software that is taken into consideration. To achieve 

this goal in order that the application is not affected by the performance and actions, it 

is intended to create an interceptor in the frontend. This interceptor is able to intercept 

request and response. Since the request and the response are all that the application 

performs and displays, there is no need to intervene more and in other parts such as 

the backend. In order to achieve the purpose of the thesis this interceptor must process 

this data and store it in chronological and tabular manner. This is supported by a 

backend application created in the newest NestJs framework, whose task is to process 

the data coming in the form of an asynchronous request from the interceptor located 

on the frontend. After processing the data this application will save the log in the 

database which is created in Postgres. 

 

5.2  Interceptor  

In the Angular (framework in which the frontend part of the application is created) 

the concept of interceptor is widely used to manage the part of errors such as 401 

unauthorized status code, 403 forbidden, 404 not found, etc. This example shows that 

the interceptor can capture the response of a request and can view its details. The 

interceptor is also used in the composition of a request, for example if an action needs 

to have a authorization token as its header, in order for the server to verify the 

authenticity of the action and the operator performing it. According to the above 

sentence it is understood that the interceptor can mutate the request. Interceptors in 

angular are best described by Figure 13 below. 



 

21 

 

 

Figure 13: Interceptor diagram 

 

5.3  NestJs framework and Postgres database 

NestJs is a new framework similar with Angular, which is built on top of node.js 

and uses http server framework like express (which is default). Nest it is used for 

backend application, micro services, or both. Since I as the writer of this thesis have 

experience as a frontend developer with Angular framework, it was easy to create a 

backend in this technology. This framework uses typescript and combines Object 

Oriented Programming (OOP), Functional Programming (FP), and Functional 

Reactive Programming (FRP). In order to achieve the goal of creating a backend in 

this framework, it is needed a database that communicate with backend. Since this 

framework uses OOP it is divided into modules and classes. The structure is same as 

the structure of Angular with modules, pipe, services, and components, but instead of 

components NestJs uses controllers. Controllers are represented by a class with an 

annotation of @Controller as shown at Figure 14. The class is a single tone that means 

that it is initialized in the beginning of the application start. Inside this class contains 

methods that may or may not been annotated with @Get, @Post, @Put, @Delete, etc. 

for intercepting request that uses this methods. The rest work the same as in Angular. 

NestJs framework has lots of tools when it comes to database connection. This 

tools are used for relational and no relational databases, even GraphQL. 



 

22 

 

  

Figure 14: Controller class example 

Postgres is an open source relational database that in 2020 was on top three 

databases used. Since in this thesis the backend application uses Object Relational 

Mapping (ORM), the database knowledge is not needed. 

 

5.4  Implementation of interceptor and Log service 

In this part will be presented step by step the implementation of the interceptor in 

the frontend application. Apart of the interceptor it is needed also a service in order to 

send request in the backend.  

Step one is to create an interceptor class that with intercept every single request 

made by the interaction with the frontend application and the responses that the server 

will return. The interceptor consist of intercepting the request and intercepting the 

response from the server without making any changes to it to not affect the application 

consistency. First the Figure 15 below with show a visualization of the code that it is 

used in the interceptor and is going to be explained in details. 



 

23 

 

 

Figure 15: Interceptor implementation 

The interceptor class is decorated with the @Injectable decorator which turn 

the class into a singleton class that is injected into any request that is made. The first 

argument “req” of type HttpRequest is the request composed by angular that is passed 

through the network to the backend server. The argument “next” of type HttpHandler 

helps to pass the request and intercept its response.  LoggerService class is the service 

that will make the request to our backend in NestJs as form of an event log. As we see 

the request that passes through the handle function and the event (response) is not 

mutated. The pipe function accepts functions as a real pipeline and passes the argument 

to each one, for example tap function which is main idea is to tap into a stream and 

only read the information without mutating it.   

Step two is to create a service class that will serve to make asynchronous 

request to our backend in order to generate event logs. This class will not be a singleton 

as all service class are because in the development state, I as a researcher encountered 

problems as the interceptor implicitly uses httpClient and this argument injected into 

the interceptor cannot been passed to the service constructor. So I pass the httpClient 

argument to the service in the app module via a static method and store it in a static 

parameter in the service class. Having the advantage that an angular project creates a 

new instance in each browser that the client opens, the static method does not create 



 

24 

 

performance and functionality issues. This service has two main methods, which are 

setRequest and pushLog. The setRequest method gets the request object as an 

argument from the interceptor and store it in a parameter called req of type IRequest 

tha is a siple object that contains the url of the request, the method which can be GET, 

POST, PUT, and DELETE, and the request body in case it is a POST or PUT request. 

The setRequest method after storing the request to the parameter, it then returns the 

original request back to the interceptor. The other method pushLog check if the request 

is defined and make an asynchronous POST request to our backend. This class also 

contains the initLoggerService static method that its main purpose is to assign the 

httpClient argument to the static paramenter, in order to make available to the pushLog 

method the possibility to make an asynchronous request. The Figure 16 will be shown 

the implementation of setRequest method and Figure 17 will be shown the 

implementation of the pushLog method. 

 

Figure 16: LoggerService class setRequest method 

 



 

25 

 

 

Figure 17: LoggerService class pushLog method 

The whole respective code for this class will be shown into the appendix section of 

this thesis.  

 

5.5  Reasoning for this implementation 

In this section will be described in details the reasons that this technique is used 

and its advantages and disadvantages. This methodology technique for extracting 

request and responses in the frontend was due to performance reasons. Since the 

interceptors in angular intercepts the request toward the server and the server response 

back to the client without affecting or mutating them. An angular project after it has 

been built and deploy to a specific server and host. The application for each request 

from the client creates a new instance in the browser where it is requested. While the 

application in the backend after it is built and deploy to the server, an instance is 

created once and only once in that server to handle the client requests which in our 

case is the client's interaction with the frontend application. If the interceptor used was 

implemented in the backend application, it would create issues in terms of 

performance, since this application as a whole is an ERP and has millions of 

interactions and communications with the database. For this reason this 



 

26 

 

implementation is done in the frontend, as the angular supports the usage of 

interceptors. 

 

5.6  Creation of a new backend in nestjs 

In this section will be explain in detail the creation and implementation of a log 

handler backend application in order to receive request from the interceptor and the 

log service that is previously implemented into the frontend application. 

The first step was to create a new NestJs project using the command “nest new 

<project-name> (in our case log-generator)” from the command line. After creating 

the project the other step is to create a new log module, since nest has the same 

architecture as angular.  

The second step is to create a log module with the command “nest generate 

module <module-name> (in our case logger)” and the following commands are for 

creating the controller and the service of this module “nest generate controller logger” 

and “nest generate service logger”. After this set of commands the next step is to install 

from node package manager (npm) the ORM that will be used to create table and 

handle insert, update, and delete request toward the database. In the command line we 

type “npm install @nestjs/typeorm typeorm pg” and “pg” stands for the type of the 

database that tis ORM will handle which in our case is a Postgres database.  

The third step is to create an entity which is a class annotated with the @Entity 

annotation and will extend BaseEntity class provided by NestJs ORM, in order to 

enhance the functionalities of our class in order to handle insert row to the database, 

update row, and delete row. The entity stands for the table in the database, which in 

our case will be “log” table. The entity will have an auto increment column that serve 

also as a primary key with the name of “processId” of type number. The other columns 

will be “caseAction”, “casePatient”, and “caseStockItem” of type string, “action”, 

“timestamp” of type timestamp, “requestUrl”, “requestMethod”, “requestBody”, 



 

27 

 

“responseBody”, and “tokenOrUser” of type string. The Figure 18 below will best 

describe this entity. 

 

Figure 18: LogEntity columns that will be persist into the Postgres database 

This entity also contain the main method for persisting into the database the event log. 

This method is defined as setData which accept as arguments data, save, and 

throwHandler. The data argument is of type ILogSetter which is an interface that has 

required 5 parameters that are “requestUrl”, “requestMethod”, “requestBody”, 

“responseBody”, and “tokenOrUser”. The save argument is of type Boolean and if is 



 

28 

 

true will persist the changes into the database, and last is the argument throwHandler 

which take a class exception and throws in case of issue occurring in the persisting 

step. The setData method fills the properties of this entity from the data argument and 

makes the preprocessing of the raw data into an understandable event log.  

The first step for the preprocessing is to convert the requestUrl and 

requestMethod into an action for example GET 

“odonto/clinic/person/PERS00000000001/financial” to “getClinicPersonFinancial”. 

With this set we have a self-descriptive action, which refers the process of getting the 

financial record of a specific person.  

The next preprocessing occurs in the moment of defining a case for the log 

which can be a person id or a stock item id. To do that we can take into consideration 

the requestUrl, and in case of it has an id that starts with PERS that refers to a person 

and with PATB that refers to a patient booking event, will be inserted into casePatient 

column, if this id will not be present into the requestUrl we are going to parse the 

requestBody and search there if it has a key of personId. Also for the column 

caseStockItem we take into account the requestUrl in case it has an id that starts with 

SITM that refers to stock item, otherwise we parse the requestBody and then find if it 

has any matching key with itemId. 

 

5.7  Reason for new backend implementation 

This section will describe in detail the reason for implementing a new backend 

application. As mentioned above, this backend application consists of preprocessing 

the data coming from the interceptor which is implemented in the frontend, and stores 

them in a single table in a postgres database. The only reason this is a standalone 

application is for performance reasons. If we had implemented this logic, even if 

simple in the existing backend, we would have doubled the connections to the database 

as for each action a request is made, and this reduces performance by 50% or even 

worse we could hit the connection limits with the database and have a major issue. 

Even if this implementation were done in a more efficient way in the existing backend, 



 

29 

 

we would still have performance losses of up to 20%, as resources would be consumed. 

The other reason is, to make this technique as general as possible, so that it can be used 

in other systems as well. The only problem lies in the part of changing some parameters 

and the way of preprocessing some of the data coming to us from the interceptor, but 

anyway this is a shorter way than to be implemented from scratch in a new system. 

The Figure 19 best describes the flow of gathering data.  

 

Figure 19: Data gathering technique workflow 

Here we look at what the workflow of this data collection technique is like. The 

frontend application performs its functionality as normal, and the only thing is that it 

performs an extra request in our backend for every functionality it performs, but since 

this request is performed asynchronously it does not affect the performance part of the 

frontend application. We also see that the existing backend has nothing added, so its 

performance does not change. Connected to the interceptor is the new backend which 

performs preprocessing of the data coming from it. 

In conclusion for this section we can say that we have found a very good 

alternative to get the logs we want and the way we want them from any system. This 

generalized technique can be suggested in other studies that will be conducted in this 

field such as process mining. 

 



 

30 

 

5.8  Future work 

In this last section of this chapter is possible to be proposed as a future work for 

us or for other researchers in this field. Due to lack of time and unwillingness to 

overload this thesis with other techniques that are not directly related to this thesis. We 

propose the use of robotic process automation (RPA) to test the functionality of the 

system in development stage. Since RPA are somewhat related to the topic of process 

mining, you can use our technique to analyze not only the system processes in the 

production stage but also in the development phase, also using RPA you can propose 

the elimination of repetitive testing for any new changes made at this stage. 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 

 

CHAPTER 6 

EXPERIMENT AND ALANYSIS 

 

This chapter will explain step by step the methodology followed during the 

development of the technique applied in this thesis. This chapter like any other chapter 

of this thesis will be divided into several sections. A chronological explanation will be 

given from the moment after data gathering, formatting them in the required format, 

log analysis with some of the process mining techniques, analysis of processes that are 

used frequently and those which cause major delays. The process mining techniques 

that will be applied in this phase are the techniques of Fuzzy Miner, Inductive Miner, 

Conformance checking. 

 

6.1  Formatting event logs 

This section presents the formatting part of event logs generated and collected in 

our database. From our postgraduate database we can download the table in csv format. 

To achieve the purpose of development and research, in this thesis is used for the 

analysis part ProM tool. ProM is a process mining tool which contains a variety of 

plugins which use some of the algorithms mentioned in a section above also in the 

literature chapter. To use this tool and all its techniques, event logs that have been 

collected and downloaded in csv format (e.g. Figure 20) must be converted to XES 

format. XES stands for extensive event stream and is a format based on the extended 

manipulation language XML format. This format is very simplistic and contains all 

event logs in a simple way to be later manipulated by ProM plugin algorithms. This 

format also contains meta-tags such as the timestamp format, who are the departments, 

the actions performed, the people involved in these actions, and other resources located 

in the event logs. This part is easily performed by ProM tool as shown in Figure 21 as 

it consumes logs in csv format and transforms them in XES format, requiring the tool 

user to specify a meta-tag for each column when converting the file. 



 

32 

 

 

Figure 20: Event logs in csv format 

 

Figure 21: ProM tool XES format convert 

The minimum required meta-tags that are needed to be specified are case, action, and 

timestamp. The meta-tag case specifies the case that is taken into consideration and 

the processes it goes through during its journey through the system. Action specifies 

the column where the action is described and the timestamp column that has the time 

when each log occurred. We can also specify other meta-tags such as start time and 

end time of an action, we can specify the people who participate in this action or 

departments, etc. 

 

6.2  Event log analysis 

In this session will be feature some of the process mining techniques, such as 

Inductive Miner, business process modeling notation BPMN, Petri Nets, and process 



 

33 

 

tree. After the phase of converting event logs to XES format we can use this new file 

to generate process models.  

Since each process model discovery algorithm is part of a plugin. We will first use 

the Petri Net plugin. This plugin aims to create a representation of a simple process 

model like in the Figure 22. After this process we select the XES file and the newly 

created Petri net and pass it to a plugin called "Petri net instance replay", which aims 

to pass each event of the event logs to process model to make an analysis of the 

compliance or approximation of the process model with each case presented in the 

event logs. 

  

Figure 22: Petri Net representation of the event logs 

BPMN representation is also a ProM tool plugin that is very similar to Petri 

net, but differs in connections. BPMNs have Boolean operators as 'and', 'or', and 'xor' 

operators. This presentation makes the process model as clear as possible for the 



 

34 

 

reader, having the legend of Boolean operators for what they serve. Figure 23 shows 

the BPMN generated by event logs. 

 

Figure 23: BPMN representation of event logs 

And the last but most important plugin we will consider will be Inductive miner. 

Unlike the previous two plugins, this plugin does not generate a process model, but a 

process tree, and then this tree-like representation is converted to Petri net and BPMN. 

Also having a structure in the form of a tree, we have the advantage to be more 

conforming to event logs as a process tree can have some representations as process 

models. Also as the presentation of the BPMN process model that had represented the 

connections with the Boolean operator. As well as inductive miner process tree has its 

connections represented with Boolean operator with a slight change as there is also an 

arrow which indicates the sequence. The presentation in tree form is more complicated 

than all the other presentations, but the advantage of this kind of complicated 

presentation is that we should not display it this way for the simple user, but transform 

it into a BPMN which is very clear and self-explanatory. 

 

6.3  Evaluations 

This section will show the results and also the conformance checking three 

techniques used. After performing and repeating the part of the process model 

discovery by tweaking the data, we tested all the obtained models for conformance 

checking. In Figure 24 below you will see each of the selected cases to be tested for 



 

35 

 

conformance checking. The figure shows a scattered graph with two dimensions which 

are fitness and precision, where each point represents a model process and based on 

Pareto front [1] we consider the red points. 

 

Figure 24: Pareto front for process models 

Process models that passed for the second phase will be tested once again with 

these event logs and new event logs that even we in this thesis have not used or 

mentioned. Table 1 shows the records showing the tests performed for the Petri Nets 

process model generated by event logs. I notice that two out of 5 have had fitness and 

high precision in conformance checking with existing logs and new logs. In the figure 

above there is only a red dot located on the bottom right.  

Table 1: Conformance checking for Petri nets model 

 Conformance checking 

 Event logs New event logs 

Petri Net model 01 0.9947 0.9543 

Petri Net model 02 0.9901 0.9484 

Petri Net model 03 0.9857 - 

Petri Net model 04 0.9742 - 

Petri Net model 05 0.9107 - 



 

36 

 

Table 2 shows the records showing the tests performed for BPMN process 

models generated by event logs. In this case we have four models taken into 

consideration where one of them is part and the graph above in Figure 6.5 as a red dot 

on the top left. The red dot indicates that it has passed the tests with the new logs. 

Table 2: Conformance checking for BPMN 

 Conformance checking 

 Event logs New event logs 

BPMN 01 0.9273 0.9008 

BPMN 02 0.8997 - 

BPMN 03 0.8823 - 

BPMN 04 0.8816 - 

 

 While Table 3 shows the tests performed for Inductive miner process tree 

which has been converted into two Petri nets process models and two in BPMN. The 

test was passed by 2 Petri nets process models and 1 BPMN. 

Table 3: Conformance checking for inductive miner process tree 

 Conformance checking 

Process tree converted: Event Logs New event logs 

Petri net model 11 1.0 0.9867 

Petri net model 12 0.9998 0.9802 

BPMN 13 0.9641 0.9211 

BPMN 14 0.9212 - 

 

 

 

 



 

37 

 

CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

In this last chapter are stated all the achievements of the thesis, as well as about 

the problems were encountered during the development and work that will be proposed 

to be performed in the future by the researcher. 

The main achievement was the implementation of a very generalized and 

efficient technique, to extract logs from any kind of system and in the right way, 

containing the basic elements to be analyzed by process mining tools. As explained in 

the previous chapters, the ERP system consist of two parts, frontend in angular and 

backend in java. In the IS, very little was intervened in the frontend by introducing a 

single interceptor which performs asynchronous requests for each functionality of the 

system in a new backend in order to generate logs. The new backend which was 

implemented as standalone application for performance reasons, processes the data 

coming from the frontend, turning them into event logs which are being used by 

process mining tools. For the visual part and analyzes it is used the ProM tool. In this 

study are implemented several techniques to discover the process model of the system. 

Among a series of techniques, the inductive miner technique proved to be the most 

effective and the reasons why are explained below. The first is that the inductive miner 

creates a process tree which can then be represented visually by Petri nets or BPMNs, 

thus giving us the advantage of visualizing the process in several versions. The second 

advantage using process tree was that it can represent process models of different 

shapes. This process tree advantage helped us in the phase of bottleneck analyzing and 

conformance checking. In terms of fitness and precision process model generated by 

process tree, reached an accuracy of 98.67%, which means that the process model was 

visually simple and précised, and all the patterns occurring in event logs found 

themselves in the model. In terms of bottleneck analysis, the only inhibitory factor was 

the time it took the operator to complete the processes. 



 

38 

 

7.1  Limitation and future work 

In this last section we will mention two limitations that we have encountered and 

tried to resolve. The first limitation occurred due to the COVID-19 pandemic which 

brought many people to their knees, as well as many businesses which were closed for 

more than 3 months. The business, in which was this operating system, unfortunately 

closed for a period of 4-5 months and made data collection impossible. This limitation 

turned into a possibility, as we thought that part of the data would be generated by a 

RPA. RPA generated 18% of the data that needed to be collected. Also in this regard 

we had our difficulties due to the complexity of the system. So our thesis leaves 

research space on the implementation of RPA intertwined with process mining to 

achieve automatic data generation and analysis. An example might be in the part of 

testing that takes place during software development. 

 

 

 

 

 

 

 

 

 

 



 

39 

 

REFERENCES 

 

[1]  W. M. P. van der Aalst, Process Mining, Data science in action, Springer, 2016.  

[2]  J. Gao, S. J. van Zelst, X. Lu and W. M. P. van der Aalst, "Automated Robotic 

Process Automation: A Self-Learning Approach," 2019.  

[3]  A. Restivo, A. Aguiar and A. Moreira, "An Incremental Approach to Testing 

AOP," Communications in Computer and Information Science, vol. 743, 2017.  

[4]  R. Yamamoto, K. Yamamoto, K. Ohashi, J. Inomata and M. Aoyama, "A 

Metamodel-Driven Business Process Modelling Methodology and Its Integrated 

Environment for Reusing Business Processes," Journal of Software Engineering 

and Applications, pp. 363-382, 2018.  

[5]  H. Nik, M. Reza and W. M. P. van der Aalst, "BIpm: Combining BI and Process 

Mining," in Proceedings of the 8th International Conference on Data Science, 

Technology and Applications, 2019.  

[6]  R. Conforti, M. La Rosa and A. Ter, "Filtering out Infrequent Behaviour from 

Business Process Event Logs," IEEE Transactions on Knowledge and Data 

Engineering, vol. 29, pp. 300-314, 2017.  

[7]  M. F. Sani, S. van Zelst and W. M. P. van der Aalst, "The Impact of Event Log 

Subset Selection on the Performance of Process Discovery Algorithms," 

Communications in Computer and Information Science, vol. 1064, 2019.  

[8]  W. M. P. van der Aalst, "Object-Centric Process Mining: Dealing With 

Divergence and Convergence in Event Data," in Software Engineering and 

Formal Methods, Springer International Publishing, 2019, pp. 3-25. 

[9]  G. Li, R. M. de Carvalho and W. M. P. van der Aalst, "Configurable Event 

Correlation for Process Discovery from Object-Centric Event Data," in 2018 

IEEE International Conference on Web Services (ICWS), 2018.  

[10]  P. Dixit, H. M. W. Verbeek and W. M. P. van der Aalst, "Fast Conformance 

Analysis based on Activity Log Abstraction," in 2018 IEEE 22nd International 

Enterprise Distributed Object Computing Conference (EDOC), 2018.  



 

40 

 

[11]  A. Jalali, F. M. Maggi and H. A. Reijers, "A hybrid approach for aspect-oriented 

business process modelling," Journal of Software: Evolution and Process, vol. 

125, p. 28, 2018.  

[12]  A. Jalali, "Weaving of Aspects in Business Process Management," 2018.  

[13]  M. Fernández-Ropero, H. A. Reijers13, R. Pérez-Castillo and M. Piattini, 

"Repairing Business Process Models as Retrieved from Source Code," vol. 147, 

pp. 94-108, 2013.  

[14]  D. DeMatteo, K. Heilbrun and E. A. Zillmer, Essentials of Research Design and 

Methodology, Hoboken, N.J. : John Wiley & Sons, 2005, p. 290. 

[15]  P. Wiśniewski, K. Kluza and A. Ligęza, "An Approach to Participatory Business 

Process Modelling: BPMN Model Generation Using Constraint Programming 

and Graph Composition," 2018.  

 

 

 

 

 

 

 

 

 

 

 



 

41 

 

APPENDIX 

 

 

Figure 25: Transaction table 

 

Figure 26: Stock item table 



 

42 

 

 

Figure 27: Supplier table 

 

 

Figure 28: Adding booking appointment panel 

 



 

43 

 

 

Figure 29: Patient table 

 

 

Figure 30: Doctor table 


