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ABSTRACT 

 

 

 

 

A REVIEW ON OPERATING SYSTEM FINGERPRINTING WITH 

MACHINE LEARNING USING TCP/IP AND TLS INFORMATION 
 

 

 

 

Kristjan Pashollari 

M.Sc., Department of Computer Engineering 

Supervisor: Dr. Ali Osman Topal 

 

 

It is an issue of both security and management for all network administrators 

to determine the Operating Systems (OS) that are using their network. Identification 

of Operating Systems in any kind of network has been a real challenge due to the rapid 

changes of the encryption protocols and the quick enlargement of the data.  

In order to solve this problem, there are plenty active and passive 

fingerprinting methods than can lead to finding the real OS behind the traffic, but on 

top of these outdated methods, the one that has a great interest from all researchers is 

undoubtfully using Machine Learning (ML). The difficulties in this field starts from 

building the dataset, to choosing the best algorithm to find the OS from some simple 

features of TCP/IP packets or from TLS handshake information. 

In this thesis we will show how can OS fingerprinting can be achieved with 

machine learning and what are the tools that one may need to do this task. We will 

state also different methods of OS fingerprinting using network traffic. 

 

Keywords: OS fingerprinting, Operation System detection, Machine Learning, 

Classification, Encrypted Network Traffic 
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ABSTRAKT 

 

RISHIKIM MBI GJURMIMIN E SISTEMEVE TW OPERIMIT ME 

“MACHINE LEARNING” DUKE PERDORUR PAKETAT TCP/IP 

DHE NDERLIDHJEN TLS 
 

Kristjan Pashollari 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Dr. Ali Osman Topal 

 

 

Është një çështje sa menaxhimi po aq edhe sigurie për të gjithë administratorët 

e rrjeteve për sa I përket gjetjes së sistemit të operimit të pajisjeve që ndodhen në atë 

rrjet. Identifikimi I Sistemit të Operimit në cfarëdolloj rrjeti është bërë një sfidë e 

vërtetë me zhvillimet jashtëzakonisht të shpeshta të protokolleve te enkriptimit dhe të 

zgjerimit të tejskajshëm të të dhënave. 

Për të zgjidhur këtë problem aktualisht kemi shumë metoda qoftë ato active 

apo pasive të cilat mund të na cojnë deri në gjetjen e sistemit të operimit të pajisjes qe 

përdor rrjetin, por pavarësisht këtyre metodave të prapambetura padyshim qe zgjidhjet 

me anë të “Machine Learning” janë më të kërkuarat dhe më të preferuarat nga të gjithë 

kërkuesit shkencorë. Vështirësitë në këtë fushë fillojnë që nga gjetja e datasetit deri 

në zgjedhjen e algoritmës që ka rezultatet më të mira për gjetjen e sistemit të operimit 

në bazë të paketave TCP/IP ose të ndërveprimit fillestar TLS. 

Në këtë punim diplome ne do të shfaqim sesi mund të bëhet gjetja e sistemit 

të operimit me anë të teknikave “Machine Learning” dhe se cilat janë mjetet e 

nevojshme për këtë problem. Gjithashtu ne do të paraqesim edhe disa metoda të tjera 

duke analizuar në brendësi ato. 

 

Fjalët kyçe: Gjurmimi I Sistemit të Operimit, Gjetja e Sistemit të Operimit, Machine 

Learning, Klasifikim, Trafik I enkriptuar në rrjet
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Internet of Things (IOT) is now part of everyone's life and inevitably many 

kinds of devices use the same network. This emerging use of internet in the other hand 

must rely on a dynamic network administration. Aksoy and M. Gunes say that Network 

managers adopt multiple security mechanisms to protect the network from malicious 

activities. An important step in securing a network is to be aware of the devices that are 

attached to the network. [1] 

Starting from older research [2] [3] we can obviously see the attraction to the 

Machine Learning (ML) approaches and its benefits. Lately, some researchers from 

Ariel University [4] have shown that by using the HTTP headers in an encrypted traffic 

the users OS, Browser and Application can be retrieved. M. Lastovicka and S. Spacek 

at [5]  have proven that by taking Transport Layer Security (TLS) handshake 

information between a client and a server OS detection can be achieved using a trained 

model. 

 

1.1. Operation System Detection in closed network 

OS detection in closed network is very useful for network administrators to 

easily manage and secure their network from intruders or from devices with low level 

of security, which can be a bridge on failing a complete network. In the last decade, due 

to the emerging size of devices, OS detection methods have been in radar for 

researchers and we see that many kinds of methods are available. There exist two main 
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methodologies explained at [2] or approaches to OS detection, active and passive 

fingerprinting.   

By “fingerprinting” we mean finding some useful traces that could lead back to 

the real OS and detect it. Both mentioned methods have their own prons and cons which 

will be discussed in this work in the upcoming chapters. Briefly we will explain here 

these two approaches.  

Active OS fingerprinting is basically achieved by sending a stimulus to the 

flagged OS. This stimulus usually is a kind of packet that after being sent, the network 

administrator waits for responses. The response of the OS determines it in a very 

approximate way. There are some mature tools that have proven to be solid and accurate 

in active fingerprinting such as Nmap [6] and Xprobe [7]. 

 

Figure 1. Active OS fingerprinting illustration 

Passive OS fingerprinting is simply monitoring the traffic in a network with 

different tools and gather data that are available to the network administrator. By using 

this method, users (clients) do not have a clue on what is happening in the background. 

Although accuracy of this method is not as higher as active methods, still is more 

preferred. For passive fingerprinting we can mention a couple of tools that are available 

for use such as p0f [6] and SinFP [8]. 
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Figure 2. Passive OS fingerprinting illustration 

 

1.2. Structure of the Thesis 

The structure of this thesis will be composed of 5 chapters. In the first chapter 

we will show the main problems regarding OS detection in a closed network. The 

importance of researching in this filed will be also briefly explained along with a short 

introduction to the main approaches to this problem.  

In Chapter 2 we give an overview of what is the current status of researches in 

the field of OS detection in closed networks, mainly using the passive fingerprinting 

approach. Our focus will be on explaining the current researches that include ML 

techniques. By the end of this chapter, we will also explain the datasets that have been 

used for this research and their respective description.  

In Chapter 3 we explain our methodology and the approach we have regarding 

this problem. As this thesis will be somewhat review oriented, we will explain the 

reasons of the used methodology. In this chapter the datasets will be explained in detail 

from the process of data acquisition to the final state. 

Chapter 4 will be a showcase of our experiments and their results. Here we will 

show statistically the prons and cons of the actual solutions.  

Our last Chapter is Chapter five where we conclude this our work and give some 

future recommendations prior to the results of the experiments. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

OS detection during the years is a matter of discussion on using active or passive 

fingerprinting, each of which possesses some nice benefits. In this chapter we will 

explain which is the right choice according to the literature and then will dive into 

passive fingerprinting in details. In this section we will show the datasets and features 

that have been used from the previous researchers, and at the end will conclude on 

evaluating the approaches.  

 

2.1. Fingerprinting/Detection methods 

2.1.1. Active Fingerprinting 

As it was explained earlier in this research, there exist two main approaches to 

OS detection (fingerprinting), Active and Passive fingerprinting.  We explained briefly 

in the first chapter that active fingerprinting happens by stimulating the OS and 

analyzing its response. This method is usually applied manually by the network 

administrator towards suspicious users/clients.  

A thorough research [9] conducted on active fingerprinting methods and tools 

gives a better view on how this method deals with OS detection problem. Fingerprinting 

is generally composed of 4 steps or components:  

1. Data acquisition in a network. 

2. Finding fingerprints from the acquired data. 

3. Fingerprints database where each of them is labelled. 
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4. Getting results by matching fingerprints with the database using an algorithm. 

In the Figure 3 the above process is shown graphically. 

 

Figure 3. OS fingerprinting components 

Data acquisition in a network varies from the method that a network 

administrator or an intruder follows to fingerprint a device. Most commonly we see the 

combination of Transmission Control Protocol (TCP) and Internet Protocol (IP) 

information. Another type of fingerprinting is by using Hypertext Transfer Protocol / 

Secure (HTTP/S) header information that clients send or receive to each other. 

The person behind the device that probes actively the user’s device must be in 

the same network. At this point we should mention that by probing an OS we can be 

detected or caught by that OS Firewall, and by doing so we may fail on detecting the 

OS. The accuracy of this method is very high and if we can successfully probe and get 

an observable response from the OS, then with an accuracy of more than 99% OS will 

be detected. Due to its drawback, we will not consider it for further studies and research 

in our work. It is worth mentioning here that this method is quite mature and can be 

used for some other use cases. 

 

2.1.2. Passive Fingerprinting 

While active methods and tools fail on being hidden and consistent, passive 

methods give more reliability when it comes to gathering data. In other words, passive 

fingerprinting happens by sniffing network packets from other devices in the same 

network. It is quite common that sniffing is not as accurate as actively acquiring 

something. In this case, we do not have all information that we need to precisely detect 
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an OS. Though, we still use and prefer passive methods for being more stable and 

sustainable. 

Most commonly, in Passive fingerprinting we use the information from these 

protocols: 

• TCP/IP [3] [1] [10] 

• HTTP options [1]  

• TLS handshake [5] [4] 

 

2.1.3. Network Layers  

In order to have a better view on how we can fingerprint an OS, firstly we must 

know how our data travels in the network. Generally, the data transportation from a 

device to another in a network is divided into 7 main layers where each of which 

encrypts or decrypts the data and sends to the layer after it. [11]  This is the 

representation of Open Systems Interconnection Model (OSI), a conceptual framework 

that organizes a network system. 
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Figure 4. Network Layers in OSI model 

 

In Figure 4 we see that HTTP, TCP, IP and TLS or Secure Socket Layer (SSL) 

are placed in the 7th,6th,5th, 4th and 3rd layers. The top 3 of them can be grouped into 

Application Layer for ease of use as their functionality is almost same. The question at 

this point would be, how these layers communicate with each other and what is the 

information that we need to get from this communication in order to find some OS 

fingerprints there? 

HTTP information 

Well, the first protocol that we see from top to bottom of Figure 4, is the HTTP 

protocol. All HTTP requests or responses have a header that stores information for that 

request. HTTP requests in fact do not hold too much information regarding the fact that 

is a top layer protocol. User-agent is a field that is stored in the headers of HTTP request 

and that is the most relevant feature to detecting OS. That feature stores the information 
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where the request comes from and what are the details of the browser. It is important to 

note here that not all requests must have a user agent. This method gives a very accurate 

result, but it is not consistent. [5] 

 

 

Figure 5. HTTP request/response Headers 

 

Figure 6. User-Agent example 

 

TLS/SSL 

Transport Layer Security (TLS) is the updated and the last version of Secure 

Socket Layer (SSL) certificates. Usually, we hear the term SSL much more than TLS, 
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due to its being more popular, but as mentioned above TLS is the newest version of 

SSL certificates. 

TLS or SSL protocols are placed in the Presentation Layer of OSI stack. This 

protocol encrypts the data according to an algorithm so that only sender and receiver 

must know how to decrypt and retrieve all information. The communication between 

two end-users or client and server, if it is done in a secure way then TLS has been used. 

As shown in the figure 7, Client makes a request to server and after receiving 

acknowledgment from the server that everything is settled, the encryption 

communication proceeds. [5] Dotted arrows represent encrypted communication while 

simple arrows represent plain text communication. 

 

Figure 7. TLS handshake - negotiation of encrypted session 

 

TCP/IP 

Computers have similar rules they must follow when communicating over a 

network, the most common of which is the TCP/IP suite of protocols. IP is a method of 

assigning and managing logical addresses for each host on the network, while TCP 

ensures that all packets are delivered correctly. These protocols must be implemented 

in any operating system that wants to talk on the Internet. Both protocols are described 



  

10 

in their respective Request For Comment’s (RFC)s, [ RFC-791 [12] and RFC-793 [13] 

for IP and TCP respectively] 

Transmision Control Protocol is the protocol in Transport Layer of OSI stack 

and its main functionality is to take care of all data shared from client to server and 

vice-versa. The sender and receiver communicate by sending packets and waiting for 

acknowledgements, responses, for each sent packet. This protocol is wisely used from 

applications to ensure data sustainability. 

 

Figure 8. TCP packet header structure 

 

From Figure 8 we can have a look on what are the most important parameters 

and how a TCP packet is structured. Table 1 shows in detail on what TCP Flags are and 

what is their functionality. 

 

Table 1. TCP Header Flag fields [14] 

TCP Flags Full Names Descriptions 

URG Urgency pointer Indicates the TCP priority of the packets. 

ACK Acknowledgment 
Designates this packet as an acknowledgment of 

receipt. 

PSH Push Flushes queued data from buffers. 
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RST Reset 
Resets a TCP connection on completion or being 

aborted. 

SYN Synchronization Synchronizes a connection. 

FIN Finished Finishes a transmission. 

 

In the literature we see that the parameters of TCP are taken and analyzed along 

with those of IP protocol. [1] [10] [4] It seems like TCP and IP together have a match 

on the OS to be detected. Below (Figure 9) shows how TCP protocol synchronizes 

client and server for the packet transmission. 

 

Figure 9. Simple representation of Client-Server Syncronization using TCP protocol. 

 

Each OS structures differently the TCP and IP parameters on the packets that 

are sent. Features such as Time To Live (TTL), Window Size (WS), Don’t Fragment 

bit (DF), SYN flag, FIN flag, and some others give a clue on what the OS could be. We 

should note here that TTL may be same when we access something on a Windows or 

Linux, but in many cases the combination of all or many TCP/IP features results in a 

very accurate detection, which is 99.1% reached by Aksoy and Gunes at [1] 

 

2.2. Classification using TCP/IP packet header information. 

Aksoy and Gunes at their work [1] used Genetic Algorithm to populate a set of 

rules from which will be decided which features will be selected to perform the 

experiment. They applied many Machine Learning algorithms into their dataset to see 

which of them fits well into this problem. Experiments conducted in full set of features 
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are no good than those conducted in a particular set of features which was selected from 

the Genetic Algorithm. 

In another work one year later, Aksoy and Gunes again represented the same 

approach and experiments with a higher number of devices and Operating Systems. 

Their second work is almost the same with the first one and the experiments were 

conducted in a virtual environment. 

The accuracy at this scale is quite an achievement and proves that OS can be 

detected using TCP/IP parameters, but this study is tested in a closed network of virtual 

machines which leaves the option of Wireless connection untested. Even though TCP 

connection does not differ whether the machine is real or virtual and the network is 

wired or wireless, it is a future work testing this approach in real life. 

In another work by R. Tyagi and T. Paul at [15] we see a similar approach by 

analyzing TCP/IP header flags and options. Their intention is to deny access to the 

unauthorized OS’es in the enterprise network. In figure 10 the proposed system is 

shown. 

 

Figure 10. Unauthorized OS detection in enterprise network 

In their work they have also shown the TCP options and IP header options for 

popular Operating Systems until 2015. The table below (Table 2) shows precisely these 

data and noticeably you can see the difference between OS’s.  
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Table 2. Popular OS's IP and TCP Header options [15] 

OS TTL 

Packet 

size 

(bytes) 

NOP (No 

Operation) 

Selective 

acknowledgme

nt (SACK OK) 

Don’t 

Fragmen

t (DF) 

Time 

stamp 

Linux 64 60 1 1 1 1 

OpenBSD 64 64 1 0 1 1 

AIX 4.3 64 44 0 0 1 0 

Windows 

2000 
128 48 1 1 1 0 

Windows 7 128 52 1 1 1 0 

Windows 8 128 52 1 1 1 0 

Cisco IOS 255 44 0 1 0 0 

Solaris 7 255 44 0 1 1 0 

MAC 64 60 1 0 1 1 

 

 

2.3. Classification using TLS handshake information. 

In a work presented by M. Husak and M. Cermak at [16] HTTPS traffic has 

been analyzed in order to detect the Operating System. TLS handshake has been 

monitored and the unencrypted data has been taken. As explained earlier in this chapter, 

when client and server want to communicate through a secured connection, firstly they 

negotiate the parameters of the encrypted connection. These plain text parameters have 

been processed and results are not so satisfactory. Authors in this work tried to explain 

these three questions: 

1. Which parameters of a SSL/TLS handshake can be used for client 

identification? 

2. Can we pair selected SSL/TLS handshake parameters and HTTP header 

fields? 

3. Can we utilize the SSL/TLS fingerprinting in network security monitoring 

and intrusion detection? 

Experiments based on only TLS/SSL handshake options and messages tells us 

that those are not enough to correctly identify the client and that we do need some extra 

information for this task. 
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Another work [5] have used TLS and SSL parameters to fingerprint OS but in 

their case additional options have been processed from TCP and IP headers. Their 

results are quite impressive, and this suggests us that a combination of protocols leads 

into an accurate OS detection. In the table below (Table 3) are listed all features 

processed in this work 

Table 3. Features extracted from network data in [5] 

Protocol Feature Name 

TCP SYN packet size 

TCP TTL of TCP SYN packet 

IP Windows Size (WS) 

HTTP User Agent 

HTTP Hostname 

TLS Server Name Indication (SNI) 

TLS Client version 

TLS Cipher suites 

TLS Extension types 

TLS Extension length 

TLS Supported groups 

TLS Elliptic curves point formats 

 

In their work they have found that TLS is responsible for more than 97% of 

network traffic and this indicates that TLS features must be considered for analyzation. 

Independently they analyzed TCP/IP, TLS handshake, Specific Domain and User-

Agent methods and results for each of them tell us that only a combination of all of 

them leads into perfect results. Below, in figure 11 you can find the results. 
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Figure 11. Independent micro averages for each method experimented at [5] 

 

 

2.4. Evaluation of Features and Methods 

The results and literature conducted until now shows us that protocols 

independently do not hold precise information in order to make a perfect OS detection 

and fingerprinting. The only safe method that we should use is that of combining 

different options and parameters from different protocols such as TCP/IP, TLS and 

HTTP. In the next chapters we will conduct two experiments for 2 different datasets by 

combining as much features as possible to get acceptable results. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

 

3.1. Methodology 

In this thesis we use both methodologies the Qualitative research and the 

Quantitative research. The thesis aim is to go deeper and dive in the field of OS 

fingerprinting and to have a better understanding on what needs to be improved. In the 

other hand we will tend to prove or suggest methods and approaches on solving this 

problem. For this reason, here you will find implemented both types of research. 

 

Qualitative Research 

Qualitative Research is considered to be particularly suitable for exploratory 

research (e.g., during the pilot stage of a research project, for example). It is primarily 

used to discover and gain an in-depth understanding of individual experiences, 

thoughts, opinions, and trends, and to dig deeper into the problem at hand. [17] 

For this reason, we indeed need to include Qualitative Research design in this 

work to have a better representation of the facts and methods used in this field. 

 

Quantitative Research 

Quantitative research is all about numbers and figures. It is used to quantify 

opinions, attitudes, behaviors, and other defined variables with the goal to support or 

refute hypotheses about a specific phenomenon, and potentially contextualize the 

results from the study sample in a wider population (or specific groups). As quantitative 
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research explicitly specifies what is measured and how it is measured in order to 

uncover patterns. [17] 

 

 

 

3.2. Datasets used and Challenges. 

In this work we will compare two types of datasets each of which acquired and 

built in a different way with different features. Devices are connected in a network in 

too many ways where each of them uses different application and protocols. To make 

a simple comparison we created a dataset in a virtual environment where each machine 

was connected virtually vie ethernet to the network and the second dataset was built by 

some research in a university campus. Both datasets will be explained more in the 

following subsection. 

3.2.1. Dataset-1 (Virtual Environment) 

This dataset contains packets from 4 different Operating Systems running in a 

virtual machine. We created these virtual machines by using VMware software [18] 

which serves us to create Virtual Machines which run the same as in real life. Operating 

Systems used are: Windows 10, Windows 7, Xubuntu, RaspBerry Pi. 
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Figure 12. VMware Software 

 

After successfully installing and setting up these Virtual Machines, in each of 

them we installed Wireshark Software. Wireshark is the world’s foremost and widely 

used network protocol analyzer. It lets you see what is happening on your network at a 

microscopic level and is the de facto (and often de jure) standard across many 

commercial and non-profit enterprises, government agencies, and educational 

institutions. [19]  
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Figure 13. Wireshark software interface 

  

In each of devices we started Wireshark packet tracing options to gather all 

incoming or outcoming packets from the virtual network adapter. In each of devices we 

ran some simple tasks such as accessing same websites, opening some minutes of 

YouTube video, sharing files etc., in order to test as much as possible, the network in 

many different protocols. At the end of this process, Wireshark itself has the feature to 

export all gathered packets in a single file named with the extension “.pcap”.  

The pcap files do not have a meaning in their own without reading them with 

the proper software. We indeed do need something to convert them into a meaningful 

and applicable set of data, which for us would be Comma Separated Values (CSV) file 

type. After some research on how to extract features from .pcap file types we found a 

community solution written in python that extracts the following features: [20] 

 

Table 4. PCAP features extracted using python script. [20] 

Feature Description 
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Avg_syn_flag 
 

Avg_urg_flag 
 

Avg_fin_flag 
 

Avg_ack_flag 
 

Avg_psh_flag 
 

Avg_rst_flag 
 

Avg_DNS_pkt The average pf DNS packets in a window of packets 

Avg_TCP_pkt 
 

Avg_UDP_pkt 
 

Avg_ICMP_pkt 
 

Duration_window_flow The time from the first packet to last packet in a window 

of packets. 

Avg_delta_time The average of delta times in a window of packets. Delta 

time is the time from a packet to the next packet 

Min_delta_time The minimum delta time in a window of packets 

Max_delta_time The maximum delta time in a window of packets 

StDev_delta_time The Standard Deviation of delta time in a window of 

packets 

Avg_pkts_lenght The average of packet leghts in a window of packet 

Min_pkts_lenght 
 

Max_pkts_lenght 
 

StDev_pkts_lenght 
 

Avg_small_payload_pkt 
 

Avg_payload 
 

Min_payload 
 

Max_payload 
 

StDev_payload 
 

Avg_DNS_over_TCP The average of ration DNS/TCP in a window of packets 

Label 0|1 respectively if pcap is legitimate or malware 
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At the end of this process, we had 4 CSV files each of them for its respective 

Operating System. We labelled each of them from 0 to 3 for the respective OS show 

below in Table 5. 

Table 5. Dataset-1, Labelling Operating Systems 

Label Operating System 

0 Windows 10 

1 Raspberry Pi 

2 Windows 7 

3 Xubuntu 

 

 

3.2.2. Dataset-2 (Real Environment – University Campus) 

In a late research from M. Lastovicka [5] the authors have created a huge dataset 

of packets shared from a network in their University campus. This dataset is interesting 

due to its being only on a Wireless network and all packets generated in the network 

are sent using mobiles, tablets or computers by using wireless connection of the campus 

for approximately 2 days. 

 Features of this dataset are shown below in table 6 but not all of them have 

descriptive data for the Operating System behind the packet. Some of them, such as 

time initiated, or time finished will not be considered at all. 

Table 6. Features in 2nd Dataset 

1 Date flow end 

2 Src IPv4 

3 sPort 

4 Dst IPv4 

5 dPort 

6 SYN size 

7 TCP win 
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8 TCP SYN TTL 

9 TLS SNI 

10 TLS SNI length 

11 TLS Client Version 

12 Client Cipher Suites 

13 TLS Extension Types 

14 TLS Extension Lengths 

15 TLS Elliptic Curves 

16 TLS EC Point Formats 

17 HTTP Host 

18 HTTP UA OS 

19 HTTP UA OS MAJ 

20 HTTP UA OS MIN 

21 HTTP UA OS BLD 

22 SSH Client Version 

23 SSH Client Application 

24 SSH Client Encryption 

25 SSH Client MAC 

26 SSH Client Compression 

27 Session ID 

28 Ground Truth OS 

 

A short analysis in this dataset would be to see the TLS or SSL versions used 

by devices. We thought that this may reveal some information regarding the OS too but 

that was not the case. TLS version 1.2 is used the most and for more than 95% of the 

devices are making the secure connection via this version. SSL as can bee seen from 

figure 14 below, is insignificant and thus that is something irrelevant to this problem. 
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Figure 14. TLS versions share in dataset-2 

 

 

3.3. Dataset Comparison 

In both datasets we have 4 labels, ground truths. The OS share in each dataset 

is as shown below on figures 15 and 16. In  

 

Figure 15. OS share in dataset-1 

 

Figure 16. OS share in dataset-2 
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Table 7. Dataset detail comparison 

 Dataset 1 Dataset 2 

Nr. of rows 26587 35654 

Train set 21269 70% 

Test set 5318 30% 

Nr of Features 24 28 

Processed Features 24 13 

 

 

3.3.1. Libraries and Tools 

 

The experiments in this thesis are done using Python Scripting Language 

because of its benefits regarding AI. All the experiments can be done in pure Python 

Language but since It provides many packages libraries which make the code short, 

understandable and organized, we have chosen the shortest path. 

Below are listed the main packages used and a short explanation for the main 

packages used in this project:   

Numpy - When we work with Images, we always convert them into 

multidimensional arrays, in 1 or 2 dimensional arrays. In order to do this conversion 

and to work with arrays we use the Numpy package. 

Pandas - We use this package for data manipulation and analysis. It is very 

helpful when our data is in .csv format.  

Matplotlib - This library helps us with image visualizations. All the graphics 

and visualizations in this thesis are created using Matplotlib.  

Seaborn – It is almost same as MatplotLib but kind of more advanced.  
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Sklearn – Scikit-learn (formerly scikits.learn and also known as sklearn) is a 

free software machine learning library for the Python programming language. It 

features various classification, regression and clustering algorithms including support 

vector machines, random forests, gradient boosting, k-means and DBSCAN, and is 

designed to interoperate with the Python numerical and scientific libraries NumPy and 

SciPy. 

Tensorflow/Keras - Keras is a Neural Network library which is built on top of 

Tensorflow and is easier to use when we compare it with TF.  All the layers of our 

Network are composed by Keras API.  

Since we have done many experiments and we have tried to choose the best 

system and working environment for this project we used two Integrated Development 

Environment (IDE): 

PyCharm is a very good choice when the code is organized in different 

files/modules and directories. It is a professional IDE and requires firstly to setup 

python and all libraries that we will use.  

Google Colaboratory is very useful, powerful and handy IDE which can be 

accessed through Google Apps. It is the perfect choice for no-setup use and that’s why 

we chose to use that. 

 

3.4. Types of Learning 

In Deep Learning there are three types of learning: Unsupervised Learning, 

Supervised learning and Semi-Supervised Learning. 
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Figure 17. Three types of Learning 

Unsupervised learning is used mainly to discover patterns and detect outliers 

in data. Unsupervised learning is the training of machine using information that is 

neither classified nor labeled and allowing the algorithm to act on that information 

without guidance. Here the task of machine is to group unsorted information according 

to similarities, patterns and differences without any prior training of data. Unsupervised 

Learning has two main categories of algorithms: Clustering and Association. 

Semi-supervised learning learning is a combination of supervised and 

unsupervised machine learning methods. In this type of learning, the algorithm is 

trained upon a combination of labeled and unlabeled data. Typically, this combination 

will contain a very small amount of labeled data and a very large amount of unlabeled 

data. The basic procedure involved is that first, the programmer will cluster similar data 

using an unsupervised learning algorithm and then use the existing labeled data to label 

the rest of the unlabeled data. 

Supervised learning consists of target or outcome variable (dependent 

variable). That target variable is to be predicted from given independent variables 

(Predictors). With the help of these variables, we generate a function that maps to 

desired outputs. We need to train this process until we get the desired level of accuracy 

on training data. The algorithm modifies according to the pattern it perceives in the 

input and output received. Supervised Learning has two categories of algorithms: 

Classification and Regression. 



  

27 

Supervised learning always has a clear objective and can be easily measured for 

accuracy. The training of the machine is also tightly controlled, which leads to very 

specific behavioral outcomes. 

On the downside, it is often very labor-intensive, as all data needs to be labeled 

before the model is trained, which can take hundreds of hours of specialized human 

effort. The costs can become astronomical. This creates an overall slower training 

process and may also limit the data that it can work with. 

3.5. Multi-Layer Perceptron (MLP) of Artificial Neural Network 

(ANN) 

Multi-layers perceptrons are the most important and used type of neural 

networks, that is a single neuron model, precursor to larger neural networks. 

Neural networks learn the representation in the training data and how to best 

relate it to the output variable that is to be predicted. This means that neural networks 

learn a mapping. Neural networks have a hierarchical or multi-layered structure, that 

makes them very good predictors. They learn to represent features at different scales or 

resolutions and combine them into higher-order features. 

The artificial neurons are the computational units with weighted input signals 

which serve as building block for neural network. They produce an output signal using 

a function, which is called activation function.  

The figure below shows a model of a simple neuron. 
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Figure 18. Model of a Simple Neuron 

The activation function does a mapping of the sum of the weighted input to the 

neuron’s output. It controls the threshold where the neuron is activated and the strength 

of the output. 

Non-linear activation functions make possible that the network combines in 

complex ways the inputs and then provide a stronger capability in the functions that 

they model. They are also called the sigmoid function. Their output is a value between 

0 and 1 with an s-shaped distribution, and the hyperbolic tangent function, called tanh 

outputs the same distribution over the range -1 to +1. 

3.5.1. Multi-Layer Perceptron Architecture 

Input or Visible Layers 

The visible layer is the bottom layer that takes input from your dataset, being 

the exposed part of the network. Mostly, a neural network is drawn with a visible layer 

with one neuron per input value or column in the dataset. These pass the input value 

through the next layer, so they are not neurons. 

Hidden Layers 

Hidden layers are after the input layer and are not directly exposed to the input. 

The simplest network structure has a single neuron in the hidden layer which outputs 

the value directly. Very deep neural networks can be constructed with increases in 
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computing power and efficient libraries. Having many hidden layers can be described 

as Deep Learning. They take seconds or minutes to train using modern techniques and 

hardware. 

Output Layer 

The output layer is the final hidden layer, responsible for outputting a value or 

vector of values that correspond to the format required for the problem. Choosing the 

activation function in the output layer is constrained by the type of problem. Below, we 

list some points to take into consideration: 

• Having a regression problem is related to a single output neuron and the neuron 

may have no activation function. 

• Having a binary classification problem is related to a single output neuron and it 

can use a sigmoid activation function, that outputs a value between 0 and 1, which 

represents the probability of predicting a value for the class 1.  

• Having a multi-class classification problem is related to multiple neurons in the 

output layer, one for each class. An activation function, called softmax may be used 

to output a probability of the network predicting each of the class values. 
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CHAPTER 4 

 

 

IMPLEMENTATION AND RESULTS 

 

4.1. Experiments 

In this section we will explain whats and hows of our experiments and show the 

main problems and solutions in this area. We firstly started by experimenting the first 

dataset, the one that we built ourselves using Virtual Machines and Wireshark to trace 

packets.  This section will be divided into 2 where for each sub-section we will show 

the steps for each experiment. 

Dataset – 1 

Firstly, we built a Multi-Layer Perceptron model with the following layers and 

activation functions shown in figure 19. In each trial we change the epochs and batch 

size to see if there is a difference in the model or not.  

 

Figure 19. MLP first Model for dataset-1 

With the model shown previously we tested the dataset 3 times with the 

respective batch size: 128, 64, 8. The accuracies that we received from these tests are 
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respectively: 81.3%, 82.4%, 82.3%. It is quite common that lowering the batch size for 

small datasets produces a better outcome. In this case we did not see a great 

optimization but still it is acceptable. 

 

 

Figure 20. Precision, 

Recall, F1score (batch=8) 

 

Figure 21. Precision, 

Recall, F1score (batch=64) 

 

Figure 22. Precision, 

Recall, F1score 

(batch=128) 

 

The results just for TCP/IP packet tracing are not so desirable. Along with this 

Accuracy and Loss curves tells us that the model does a good job on a training set but 

fails a bit in the test set. Which means that we have a small overfitting the data and this 

could be from many reasons, some of which: 

• There are so many identical packets that model overfits. 

• For such task 25000 rows may not be enough. 

• Problems with model design. 
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Figure 23. Accuracy and 

Loss (batch=8) 

 

Figure 24 Accuracy 

Train & Test (batch=8) 

 

Figure 25 Loss Train & 

Test (batch=8) 

 

 

Figure 26 Accuracy and 

Loss (batch=64) 

 

 

Figure 27 Accuracy 

Train & Test (batch=64) 

 

 

Figure 28 Loss Train & 

Test (batch=64) 

 

 

Figure 29 Accuracy and 

Loss (batch=128) 

 

 

Figure 30 Accuracy 

Train & Test (batch=128) 

 

 

Figure 31 Loss Train & 

Test (batch=128) 
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As can be seen from the pictures above, we must improve those accuracy and 

loss curves between test and trains.  The accuracy is not a problem because 83% for 

this task is quite enough due to TCP/IP features processed only. Below you can see the 

Receiver Operating Characteristics (ROC) for our multi-class classifier. The ROC 

seems to be very stable. In the figures are shown Area Under Curve (AUC) values too. 

For a matter of visualization, we have also shown the Confusion Matrix for each 

Operating System.  

 

 

 

 

 

Figure 32 ROC & AUC (batch=8) 
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Figure 33 Confusion Matrix (batch=8) 

 

 

 

Figure 34 ROC & AUC (batch=64) 
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Figure 35 Confusion Matrix (batch=64) 

 

 

Figure 36 ROC & AUC (batch=128) 
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Figure 37 Confusion Matrix (batch=128) 

 

 

To overcome the problem of that small overfitting of the model, we added two 

dropout layers. The results are quite impressive in terms of reducing over fitness but 

still the accuracy remains at the same levels, 83%. Figure 38 show the model with the 

dropout layers: 

 

Figure 38. New model for dataset-1 with Dropout layers 
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From the figures below you may see how overfitting is reduced and the train 

and test accuracies are almost same. This tells us that the learning curve is good and the 

model is stable, however is not perfect due to its accuracy. 

 

Figure 39. Loss Curve (train & test) with dropout layers 

 

Figure 40. Accuracy Curve (train & test) with dropout layers
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Dataset – 2 

Same as we did in the first Dataset, we will proceed with this one too. The 

second dataset has features from TCP/IP, HTTP and TLS handshake. We do expect this 

to have a higher accuracy and to be more stable. The model is the same due to both 

datasets have the same number of labels (Ground truths).  

 

Figure 41. Model for the second dataset 

 

For this model in the second dataset, we received for each batch size 8, 64, 128 

an accuracy of 93.4%, 92.6%, 92.5% respectively. Notably we can observe from these 

numbers that decreasing the batch size improves a bit on accuracy. Comparing these 

results to the first one we indeed have a better outcome. The main reason of this is the 

type of dataset, which contains more features than in the first one. Below in the Figures 

42, 43 and 44 you can see how different scores apply for each label, one vs all scores. 
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Figure 42. Precision, 

Recall, F1score 

(batch=8) 

 

Figure 43. Precision, 

Recall, F1score 

(batch=64) 

 

Figure 44. Precision, 

Recall, F1score 

(batch=128) 

 

 

From the above figures we clearly see that Windows and Android have better 

scores while iOS and Mac OS are not as good as the first two. This may result from iOS 

and Mac OS being the Operating System of the same company and the parameters they 

generate for both TCP and TLS could be similar. This is a hypothesis that arouses from 

these results and would be nice to research on. 

Different from the first dataset, accuracies and loss curves are almost same for 

train and test sets, which make this model perfect for the dataset. Thus, this model does 

not over fit in any case. Below you can see the figures that show accuracy and loss 

curves for 8, 64 and 128 batch size tests, respectively. 
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Figure 45. Accuracy and Loss Curves (train & test) with batch=8 

 

 

Figure 46. Accuracy and Loss Curves (train & test) with batch=64 
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Figure 47. Accuracy and Loss Curves (train & test) with batch=128 

 

As this model performs perfectly and we did not not have any overfit, we did 

not make any further improvements with dropout layers. 



  

41 

 

 

 

 

 

 

Figure 48 ROC & AUC (batch=8) 

 

Figure 49 Confusion Matrix (batch=8) 
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Figure 50 ROC & AUC (batch=64) 

 

 

 

Figure 51 Confusion Matrix (batch=64) 
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Figure 52 ROC & AUC (batch=128) 

 

 

Figure 53 Confusion Matrix (batch=128) 

 

From ROC Curves we observe that are quite near to the top left corner, which 

tells us that model perform very well. AUC values are 0.98 and above which is 

relatively a very high score. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

Conclusions 

In this thesis we aimed to compare the two most used types of datasets in the 

field OS detection using Machine Learning approach. We firstly described what’s and 

how’s of OS detection and fingerprinting and what are the basics of network 

communication.  

In this thesis we applied Multi-Layer Perceptron, an Artificial Neural Network 

deep learning algorithm. Other ML algorithms may be used for this task, but as far as 

we have seen on testing, MLP outperforms them with at least 3-4%. 

The field of OS fingerprinting is quite huge and emerging because the devices 

are now running different OS’s and the network protocols change by time. Until now 

the most used parameters for OS Classification with ML are TCP/IP, HTTP and TLS 

parameters whereas we proved that TCP in its own cannot achieve more than 84%. At 

the other side, the combination of multiple parameters from multiple protocols can have 

a much higher accuracy, of at least 10% more the first one. 

 

Future Work 

Firstly, as a future work we suggest on researching further if there is a difference 

in a packet sent from wireless or wired connection. These two methods may enforce the 

way that OS prepares the packets and makes the connection in network. 

Another task that needs a lot of effort, is building a Web Application Firewall 

(WAF) software that will use the model suggested in this thesis to automatically detect 

and not authorize some old and insecure Operating Systems. 
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