

i

A REVIEW ON OPERATING SYSTEM CLASSIFICATION WITH MACHINE

LEARNING USING TCP/IP AND TLS INFORMATION

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

KRISTJAN PASHOLLARI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

FEBRUARY, 2021

ii

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name: Kristjan Pashollari

 Signature:

iv

ABSTRACT

A REVIEW ON OPERATING SYSTEM FINGERPRINTING WITH

MACHINE LEARNING USING TCP/IP AND TLS INFORMATION

Kristjan Pashollari

M.Sc., Department of Computer Engineering

Supervisor: Dr. Ali Osman Topal

It is an issue of both security and management for all network administrators

to determine the Operating Systems (OS) that are using their network. Identification

of Operating Systems in any kind of network has been a real challenge due to the rapid

changes of the encryption protocols and the quick enlargement of the data.

In order to solve this problem, there are plenty active and passive

fingerprinting methods than can lead to finding the real OS behind the traffic, but on

top of these outdated methods, the one that has a great interest from all researchers is

undoubtfully using Machine Learning (ML). The difficulties in this field starts from

building the dataset, to choosing the best algorithm to find the OS from some simple

features of TCP/IP packets or from TLS handshake information.

In this thesis we will show how can OS fingerprinting can be achieved with

machine learning and what are the tools that one may need to do this task. We will

state also different methods of OS fingerprinting using network traffic.

Keywords: OS fingerprinting, Operation System detection, Machine Learning,

Classification, Encrypted Network Traffic

v

ABSTRAKT

RISHIKIM MBI GJURMIMIN E SISTEMEVE TW OPERIMIT ME

“MACHINE LEARNING” DUKE PERDORUR PAKETAT TCP/IP

DHE NDERLIDHJEN TLS

Kristjan Pashollari

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Dr. Ali Osman Topal

Është një çështje sa menaxhimi po aq edhe sigurie për të gjithë administratorët

e rrjeteve për sa I përket gjetjes së sistemit të operimit të pajisjeve që ndodhen në atë

rrjet. Identifikimi I Sistemit të Operimit në cfarëdolloj rrjeti është bërë një sfidë e

vërtetë me zhvillimet jashtëzakonisht të shpeshta të protokolleve te enkriptimit dhe të

zgjerimit të tejskajshëm të të dhënave.

Për të zgjidhur këtë problem aktualisht kemi shumë metoda qoftë ato active

apo pasive të cilat mund të na cojnë deri në gjetjen e sistemit të operimit të pajisjes qe

përdor rrjetin, por pavarësisht këtyre metodave të prapambetura padyshim qe zgjidhjet

me anë të “Machine Learning” janë më të kërkuarat dhe më të preferuarat nga të gjithë

kërkuesit shkencorë. Vështirësitë në këtë fushë fillojnë që nga gjetja e datasetit deri

në zgjedhjen e algoritmës që ka rezultatet më të mira për gjetjen e sistemit të operimit

në bazë të paketave TCP/IP ose të ndërveprimit fillestar TLS.

Në këtë punim diplome ne do të shfaqim sesi mund të bëhet gjetja e sistemit

të operimit me anë të teknikave “Machine Learning” dhe se cilat janë mjetet e

nevojshme për këtë problem. Gjithashtu ne do të paraqesim edhe disa metoda të tjera

duke analizuar në brendësi ato.

Fjalët kyçe: Gjurmimi I Sistemit të Operimit, Gjetja e Sistemit të Operimit, Machine

Learning, Klasifikim, Trafik I enkriptuar në rrjet

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Dr. Ali Osman Topal for his

encouragement and motivation throughout my studies and especially during my

thesis. He, untiredly helped me to surpass all obstacles and to achieve the most out of

myself.

I am also thankful to all professors of Epoka University. Each of them in their

own way helped me to walk further.

I am deeply thankful to my family. They made me who I am and continuously

motivated to see further and further. Thankful for having you!

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ABSTRAKT .. v

ACKNOWLEDGEMENTS ... vi

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1. Operation System Detection in closed network .. 1

1.2. Structure of the Thesis... 3

CHAPTER 2 .. 4

LITERATURE REVIEW .. 4

2.1. Fingerprinting/Detection methods... 4

2.1.1. Active Fingerprinting .. 4

2.1.2. Passive Fingerprinting .. 5

2.1.3. Network Layers ... 6

2.2. Classification using TCP/IP packet header information. 11

2.3. Classification using TLS handshake information. 13

2.4. Evaluation of Features and Methods ... 15

CHAPTER 3 .. 16

METHODOLOGY .. 16

3.1. Methodology ... 16

3.2. Datasets used and Challenges. .. 17

3.2.1. Dataset-1 (Virtual Environment) .. 17

3.2.2. Dataset-2 (Real Environment – University Campus) 21

3.3. Dataset Comparison .. 23

viii

3.3.1. Libraries and Tools ... 24

3.4. Types of Learning ... 25

3.5. Multi-Layer Perceptron (MLP) of Artificial Neural Network (ANN) 27

3.5.1. Multi-Layer Perceptron Architecture .. 28

CHAPTER 4 .. 30

IMPLEMENTATION AND RESULTS .. 30

4.1. Experiments ... 30

Dataset – 1... 30

Dataset – 2... 37

CHAPTER 5 .. 44

CONCLUSION AND FUTURE WORK .. 44

Conclusions .. 44

Future Work ... 44

References .. 45

ix

LIST OF FIGURES

Figure 1. Active OS fingerprinting illustration 2

Figure 2. Passive OS fingerprinting illustration 3

Figure 3. OS fingerprinting components 5

Figure 4. Network Layers in OSI model 7

Figure 5. HTTP request/response Headers 8

Figure 6. User-Agent example 8

Figure 7. TLS handshake - negotiation of encrypted session 9

Figure 8. TCP packet header structure 10

Figure 9. Simple representation of Client-Server Syncronization using TCP protocol.

 11

Figure 10. Unauthorized OS detection in enterprise network 12

Figure 11. Independent micro averages for each method experimented at [5] 15

Figure 12. VMware Software 18

Figure 13. Wireshark software interface 19

Figure 14. TLS versions share in dataset-2 23

Figure 15. OS share in dataset-1 23

Figure 16. OS share in dataset-2 23

Figure 17. Three types of Learning 26

Figure 18. Model of a Simple Neuron 28

Figure 19. MLP first Model for dataset-1 30

Figure 20. Precision, Recall, F1score (batch=8) 31

Figure 21. Precision, Recall, F1score (batch=64) 31

Figure 22. Precision, Recall, F1score (batch=128) 31

Figure 23. Accuracy and Loss (batch=8) 32

Figure 24 Accuracy Train & Test (batch=8) 32

Figure 25 Loss Train & Test (batch=8) 32

Figure 26 Accuracy and Loss (batch=64) 32

Figure 27 Accuracy Train & Test (batch=64) 32

x

Figure 28 Loss Train & Test (batch=64) 32

Figure 29 Accuracy and Loss (batch=128) 32

Figure 30 Accuracy Train & Test (batch=128) 32

Figure 31 Loss Train & Test (batch=128) 32

Figure 32 ROC & AUC (batch=8) 32

Figure 33 Confusion Matrix (batch=8) 33

Figure 34 ROC & AUC (batch=64) 33

Figure 35 Confusion Matrix (batch=64) 34

Figure 36 ROC & AUC (batch=128) 34

Figure 37 Confusion Matrix (batch=128) 35

Figure 38. New model for dataset-1 with Dropout layers 35

Figure 39. Loss Curve (train & test) with dropout layers 36

Figure 40. Accuracy Curve (train & test) with dropout layers 36

Figure 41. Model for the second dataset 37

Figure 42. Precision, Recall, F1score (batch=8) 1

Figure 43. Precision, Recall, F1score (batch=64) 1

Figure 44. Precision, Recall, F1score (batch=128) 1

Figure 45. Accuracy and Loss Curves (train & test) with batch=8 39

Figure 46. Accuracy and Loss Curves (train & test) with batch=64 39

Figure 47. Accuracy and Loss Curves (train & test) with batch=128 40

Figure 32 ROC & AUC (batch=8) 41

Figure 33 Confusion Matrix (batch=8) 41

Figure 34 ROC & AUC (batch=64) 42

Figure 35 Confusion Matrix (batch=64) 42

Figure 36 ROC & AUC (batch=128) 43

Figure 37 Confusion Matrix (batch=128) 43

xi

LIST OF ABBREVIATIONS

TLS Transport Layer Security

TCP Transfer Control Protocol

IP Internet Protocol

HTTP HyperText Transfer Protocol

OSI Open System Interconnection

SSL Secure Socket Layer

RFC Request For Comment

TTL Time To Live

WS Window Size

DF Don't Fragment bit

SNI Server Name Indication

CSV Comma Seperated Values

IDE Integrated Development Environment

ROC Receiver Operating Characteristics

AUC Area Under Curve

IOT Internet of Things

OS Operating System

ML Machine Learning

ANN Artificial Neural Network

MLP Multi-Layer Perceptron

1

CHAPTER 1

INTRODUCTION

Internet of Things (IOT) is now part of everyone's life and inevitably many

kinds of devices use the same network. This emerging use of internet in the other hand

must rely on a dynamic network administration. Aksoy and M. Gunes say that Network

managers adopt multiple security mechanisms to protect the network from malicious

activities. An important step in securing a network is to be aware of the devices that are

attached to the network. [1]

Starting from older research [2] [3] we can obviously see the attraction to the

Machine Learning (ML) approaches and its benefits. Lately, some researchers from

Ariel University [4] have shown that by using the HTTP headers in an encrypted traffic

the users OS, Browser and Application can be retrieved. M. Lastovicka and S. Spacek

at [5] have proven that by taking Transport Layer Security (TLS) handshake

information between a client and a server OS detection can be achieved using a trained

model.

1.1. Operation System Detection in closed network

OS detection in closed network is very useful for network administrators to

easily manage and secure their network from intruders or from devices with low level

of security, which can be a bridge on failing a complete network. In the last decade, due

to the emerging size of devices, OS detection methods have been in radar for

researchers and we see that many kinds of methods are available. There exist two main

2

methodologies explained at [2] or approaches to OS detection, active and passive

fingerprinting.

By “fingerprinting” we mean finding some useful traces that could lead back to

the real OS and detect it. Both mentioned methods have their own prons and cons which

will be discussed in this work in the upcoming chapters. Briefly we will explain here

these two approaches.

Active OS fingerprinting is basically achieved by sending a stimulus to the

flagged OS. This stimulus usually is a kind of packet that after being sent, the network

administrator waits for responses. The response of the OS determines it in a very

approximate way. There are some mature tools that have proven to be solid and accurate

in active fingerprinting such as Nmap [6] and Xprobe [7].

Figure 1. Active OS fingerprinting illustration

Passive OS fingerprinting is simply monitoring the traffic in a network with

different tools and gather data that are available to the network administrator. By using

this method, users (clients) do not have a clue on what is happening in the background.

Although accuracy of this method is not as higher as active methods, still is more

preferred. For passive fingerprinting we can mention a couple of tools that are available

for use such as p0f [6] and SinFP [8].

3

Figure 2. Passive OS fingerprinting illustration

1.2. Structure of the Thesis

The structure of this thesis will be composed of 5 chapters. In the first chapter

we will show the main problems regarding OS detection in a closed network. The

importance of researching in this filed will be also briefly explained along with a short

introduction to the main approaches to this problem.

In Chapter 2 we give an overview of what is the current status of researches in

the field of OS detection in closed networks, mainly using the passive fingerprinting

approach. Our focus will be on explaining the current researches that include ML

techniques. By the end of this chapter, we will also explain the datasets that have been

used for this research and their respective description.

In Chapter 3 we explain our methodology and the approach we have regarding

this problem. As this thesis will be somewhat review oriented, we will explain the

reasons of the used methodology. In this chapter the datasets will be explained in detail

from the process of data acquisition to the final state.

Chapter 4 will be a showcase of our experiments and their results. Here we will

show statistically the prons and cons of the actual solutions.

Our last Chapter is Chapter five where we conclude this our work and give some

future recommendations prior to the results of the experiments.

4

CHAPTER 2

LITERATURE REVIEW

OS detection during the years is a matter of discussion on using active or passive

fingerprinting, each of which possesses some nice benefits. In this chapter we will

explain which is the right choice according to the literature and then will dive into

passive fingerprinting in details. In this section we will show the datasets and features

that have been used from the previous researchers, and at the end will conclude on

evaluating the approaches.

2.1. Fingerprinting/Detection methods

2.1.1. Active Fingerprinting

As it was explained earlier in this research, there exist two main approaches to

OS detection (fingerprinting), Active and Passive fingerprinting. We explained briefly

in the first chapter that active fingerprinting happens by stimulating the OS and

analyzing its response. This method is usually applied manually by the network

administrator towards suspicious users/clients.

A thorough research [9] conducted on active fingerprinting methods and tools

gives a better view on how this method deals with OS detection problem. Fingerprinting

is generally composed of 4 steps or components:

1. Data acquisition in a network.

2. Finding fingerprints from the acquired data.

3. Fingerprints database where each of them is labelled.

5

4. Getting results by matching fingerprints with the database using an algorithm.

In the Figure 3 the above process is shown graphically.

Figure 3. OS fingerprinting components

Data acquisition in a network varies from the method that a network

administrator or an intruder follows to fingerprint a device. Most commonly we see the

combination of Transmission Control Protocol (TCP) and Internet Protocol (IP)

information. Another type of fingerprinting is by using Hypertext Transfer Protocol /

Secure (HTTP/S) header information that clients send or receive to each other.

The person behind the device that probes actively the user’s device must be in

the same network. At this point we should mention that by probing an OS we can be

detected or caught by that OS Firewall, and by doing so we may fail on detecting the

OS. The accuracy of this method is very high and if we can successfully probe and get

an observable response from the OS, then with an accuracy of more than 99% OS will

be detected. Due to its drawback, we will not consider it for further studies and research

in our work. It is worth mentioning here that this method is quite mature and can be

used for some other use cases.

2.1.2. Passive Fingerprinting

While active methods and tools fail on being hidden and consistent, passive

methods give more reliability when it comes to gathering data. In other words, passive

fingerprinting happens by sniffing network packets from other devices in the same

network. It is quite common that sniffing is not as accurate as actively acquiring

something. In this case, we do not have all information that we need to precisely detect

6

an OS. Though, we still use and prefer passive methods for being more stable and

sustainable.

Most commonly, in Passive fingerprinting we use the information from these

protocols:

• TCP/IP [3] [1] [10]

• HTTP options [1]

• TLS handshake [5] [4]

2.1.3. Network Layers

In order to have a better view on how we can fingerprint an OS, firstly we must

know how our data travels in the network. Generally, the data transportation from a

device to another in a network is divided into 7 main layers where each of which

encrypts or decrypts the data and sends to the layer after it. [11] This is the

representation of Open Systems Interconnection Model (OSI), a conceptual framework

that organizes a network system.

7

Figure 4. Network Layers in OSI model

In Figure 4 we see that HTTP, TCP, IP and TLS or Secure Socket Layer (SSL)

are placed in the 7th,6th,5th, 4th and 3rd layers. The top 3 of them can be grouped into

Application Layer for ease of use as their functionality is almost same. The question at

this point would be, how these layers communicate with each other and what is the

information that we need to get from this communication in order to find some OS

fingerprints there?

HTTP information

Well, the first protocol that we see from top to bottom of Figure 4, is the HTTP

protocol. All HTTP requests or responses have a header that stores information for that

request. HTTP requests in fact do not hold too much information regarding the fact that

is a top layer protocol. User-agent is a field that is stored in the headers of HTTP request

and that is the most relevant feature to detecting OS. That feature stores the information

8

where the request comes from and what are the details of the browser. It is important to

note here that not all requests must have a user agent. This method gives a very accurate

result, but it is not consistent. [5]

Figure 5. HTTP request/response Headers

Figure 6. User-Agent example

TLS/SSL

Transport Layer Security (TLS) is the updated and the last version of Secure

Socket Layer (SSL) certificates. Usually, we hear the term SSL much more than TLS,

9

due to its being more popular, but as mentioned above TLS is the newest version of

SSL certificates.

TLS or SSL protocols are placed in the Presentation Layer of OSI stack. This

protocol encrypts the data according to an algorithm so that only sender and receiver

must know how to decrypt and retrieve all information. The communication between

two end-users or client and server, if it is done in a secure way then TLS has been used.

As shown in the figure 7, Client makes a request to server and after receiving

acknowledgment from the server that everything is settled, the encryption

communication proceeds. [5] Dotted arrows represent encrypted communication while

simple arrows represent plain text communication.

Figure 7. TLS handshake - negotiation of encrypted session

TCP/IP

Computers have similar rules they must follow when communicating over a

network, the most common of which is the TCP/IP suite of protocols. IP is a method of

assigning and managing logical addresses for each host on the network, while TCP

ensures that all packets are delivered correctly. These protocols must be implemented

in any operating system that wants to talk on the Internet. Both protocols are described

10

in their respective Request For Comment’s (RFC)s, [RFC-791 [12] and RFC-793 [13]

for IP and TCP respectively]

Transmision Control Protocol is the protocol in Transport Layer of OSI stack

and its main functionality is to take care of all data shared from client to server and

vice-versa. The sender and receiver communicate by sending packets and waiting for

acknowledgements, responses, for each sent packet. This protocol is wisely used from

applications to ensure data sustainability.

Figure 8. TCP packet header structure

From Figure 8 we can have a look on what are the most important parameters

and how a TCP packet is structured. Table 1 shows in detail on what TCP Flags are and

what is their functionality.

Table 1. TCP Header Flag fields [14]

TCP Flags Full Names Descriptions

URG Urgency pointer Indicates the TCP priority of the packets.

ACK Acknowledgment
Designates this packet as an acknowledgment of

receipt.

PSH Push Flushes queued data from buffers.

11

RST Reset
Resets a TCP connection on completion or being

aborted.

SYN Synchronization Synchronizes a connection.

FIN Finished Finishes a transmission.

In the literature we see that the parameters of TCP are taken and analyzed along

with those of IP protocol. [1] [10] [4] It seems like TCP and IP together have a match

on the OS to be detected. Below (Figure 9) shows how TCP protocol synchronizes

client and server for the packet transmission.

Figure 9. Simple representation of Client-Server Syncronization using TCP protocol.

Each OS structures differently the TCP and IP parameters on the packets that

are sent. Features such as Time To Live (TTL), Window Size (WS), Don’t Fragment

bit (DF), SYN flag, FIN flag, and some others give a clue on what the OS could be. We

should note here that TTL may be same when we access something on a Windows or

Linux, but in many cases the combination of all or many TCP/IP features results in a

very accurate detection, which is 99.1% reached by Aksoy and Gunes at [1]

2.2. Classification using TCP/IP packet header information.

Aksoy and Gunes at their work [1] used Genetic Algorithm to populate a set of

rules from which will be decided which features will be selected to perform the

experiment. They applied many Machine Learning algorithms into their dataset to see

which of them fits well into this problem. Experiments conducted in full set of features

12

are no good than those conducted in a particular set of features which was selected from

the Genetic Algorithm.

In another work one year later, Aksoy and Gunes again represented the same

approach and experiments with a higher number of devices and Operating Systems.

Their second work is almost the same with the first one and the experiments were

conducted in a virtual environment.

The accuracy at this scale is quite an achievement and proves that OS can be

detected using TCP/IP parameters, but this study is tested in a closed network of virtual

machines which leaves the option of Wireless connection untested. Even though TCP

connection does not differ whether the machine is real or virtual and the network is

wired or wireless, it is a future work testing this approach in real life.

In another work by R. Tyagi and T. Paul at [15] we see a similar approach by

analyzing TCP/IP header flags and options. Their intention is to deny access to the

unauthorized OS’es in the enterprise network. In figure 10 the proposed system is

shown.

Figure 10. Unauthorized OS detection in enterprise network

In their work they have also shown the TCP options and IP header options for

popular Operating Systems until 2015. The table below (Table 2) shows precisely these

data and noticeably you can see the difference between OS’s.

13

Table 2. Popular OS's IP and TCP Header options [15]

OS TTL

Packet

size

(bytes)

NOP (No

Operation)

Selective

acknowledgme

nt (SACK OK)

Don’t

Fragmen

t (DF)

Time

stamp

Linux 64 60 1 1 1 1

OpenBSD 64 64 1 0 1 1

AIX 4.3 64 44 0 0 1 0

Windows

2000
128 48 1 1 1 0

Windows 7 128 52 1 1 1 0

Windows 8 128 52 1 1 1 0

Cisco IOS 255 44 0 1 0 0

Solaris 7 255 44 0 1 1 0

MAC 64 60 1 0 1 1

2.3. Classification using TLS handshake information.

In a work presented by M. Husak and M. Cermak at [16] HTTPS traffic has

been analyzed in order to detect the Operating System. TLS handshake has been

monitored and the unencrypted data has been taken. As explained earlier in this chapter,

when client and server want to communicate through a secured connection, firstly they

negotiate the parameters of the encrypted connection. These plain text parameters have

been processed and results are not so satisfactory. Authors in this work tried to explain

these three questions:

1. Which parameters of a SSL/TLS handshake can be used for client

identification?

2. Can we pair selected SSL/TLS handshake parameters and HTTP header

fields?

3. Can we utilize the SSL/TLS fingerprinting in network security monitoring

and intrusion detection?

Experiments based on only TLS/SSL handshake options and messages tells us

that those are not enough to correctly identify the client and that we do need some extra

information for this task.

14

Another work [5] have used TLS and SSL parameters to fingerprint OS but in

their case additional options have been processed from TCP and IP headers. Their

results are quite impressive, and this suggests us that a combination of protocols leads

into an accurate OS detection. In the table below (Table 3) are listed all features

processed in this work

Table 3. Features extracted from network data in [5]

Protocol Feature Name

TCP SYN packet size

TCP TTL of TCP SYN packet

IP Windows Size (WS)

HTTP User Agent

HTTP Hostname

TLS Server Name Indication (SNI)

TLS Client version

TLS Cipher suites

TLS Extension types

TLS Extension length

TLS Supported groups

TLS Elliptic curves point formats

In their work they have found that TLS is responsible for more than 97% of

network traffic and this indicates that TLS features must be considered for analyzation.

Independently they analyzed TCP/IP, TLS handshake, Specific Domain and User-

Agent methods and results for each of them tell us that only a combination of all of

them leads into perfect results. Below, in figure 11 you can find the results.

15

Figure 11. Independent micro averages for each method experimented at [5]

2.4. Evaluation of Features and Methods

The results and literature conducted until now shows us that protocols

independently do not hold precise information in order to make a perfect OS detection

and fingerprinting. The only safe method that we should use is that of combining

different options and parameters from different protocols such as TCP/IP, TLS and

HTTP. In the next chapters we will conduct two experiments for 2 different datasets by

combining as much features as possible to get acceptable results.

16

CHAPTER 3

METHODOLOGY

3.1. Methodology

In this thesis we use both methodologies the Qualitative research and the

Quantitative research. The thesis aim is to go deeper and dive in the field of OS

fingerprinting and to have a better understanding on what needs to be improved. In the

other hand we will tend to prove or suggest methods and approaches on solving this

problem. For this reason, here you will find implemented both types of research.

Qualitative Research

Qualitative Research is considered to be particularly suitable for exploratory

research (e.g., during the pilot stage of a research project, for example). It is primarily

used to discover and gain an in-depth understanding of individual experiences,

thoughts, opinions, and trends, and to dig deeper into the problem at hand. [17]

For this reason, we indeed need to include Qualitative Research design in this

work to have a better representation of the facts and methods used in this field.

Quantitative Research

Quantitative research is all about numbers and figures. It is used to quantify

opinions, attitudes, behaviors, and other defined variables with the goal to support or

refute hypotheses about a specific phenomenon, and potentially contextualize the

results from the study sample in a wider population (or specific groups). As quantitative

17

research explicitly specifies what is measured and how it is measured in order to

uncover patterns. [17]

3.2. Datasets used and Challenges.

In this work we will compare two types of datasets each of which acquired and

built in a different way with different features. Devices are connected in a network in

too many ways where each of them uses different application and protocols. To make

a simple comparison we created a dataset in a virtual environment where each machine

was connected virtually vie ethernet to the network and the second dataset was built by

some research in a university campus. Both datasets will be explained more in the

following subsection.

3.2.1. Dataset-1 (Virtual Environment)

This dataset contains packets from 4 different Operating Systems running in a

virtual machine. We created these virtual machines by using VMware software [18]

which serves us to create Virtual Machines which run the same as in real life. Operating

Systems used are: Windows 10, Windows 7, Xubuntu, RaspBerry Pi.

18

Figure 12. VMware Software

After successfully installing and setting up these Virtual Machines, in each of

them we installed Wireshark Software. Wireshark is the world’s foremost and widely

used network protocol analyzer. It lets you see what is happening on your network at a

microscopic level and is the de facto (and often de jure) standard across many

commercial and non-profit enterprises, government agencies, and educational

institutions. [19]

19

Figure 13. Wireshark software interface

In each of devices we started Wireshark packet tracing options to gather all

incoming or outcoming packets from the virtual network adapter. In each of devices we

ran some simple tasks such as accessing same websites, opening some minutes of

YouTube video, sharing files etc., in order to test as much as possible, the network in

many different protocols. At the end of this process, Wireshark itself has the feature to

export all gathered packets in a single file named with the extension “.pcap”.

The pcap files do not have a meaning in their own without reading them with

the proper software. We indeed do need something to convert them into a meaningful

and applicable set of data, which for us would be Comma Separated Values (CSV) file

type. After some research on how to extract features from .pcap file types we found a

community solution written in python that extracts the following features: [20]

Table 4. PCAP features extracted using python script. [20]

Feature Description

20

Avg_syn_flag

Avg_urg_flag

Avg_fin_flag

Avg_ack_flag

Avg_psh_flag

Avg_rst_flag

Avg_DNS_pkt The average pf DNS packets in a window of packets

Avg_TCP_pkt

Avg_UDP_pkt

Avg_ICMP_pkt

Duration_window_flow The time from the first packet to last packet in a window

of packets.

Avg_delta_time The average of delta times in a window of packets. Delta

time is the time from a packet to the next packet

Min_delta_time The minimum delta time in a window of packets

Max_delta_time The maximum delta time in a window of packets

StDev_delta_time The Standard Deviation of delta time in a window of

packets

Avg_pkts_lenght The average of packet leghts in a window of packet

Min_pkts_lenght

Max_pkts_lenght

StDev_pkts_lenght

Avg_small_payload_pkt

Avg_payload

Min_payload

Max_payload

StDev_payload

Avg_DNS_over_TCP The average of ration DNS/TCP in a window of packets

Label 0|1 respectively if pcap is legitimate or malware

21

At the end of this process, we had 4 CSV files each of them for its respective

Operating System. We labelled each of them from 0 to 3 for the respective OS show

below in Table 5.

Table 5. Dataset-1, Labelling Operating Systems

Label Operating System

0 Windows 10

1 Raspberry Pi

2 Windows 7

3 Xubuntu

3.2.2. Dataset-2 (Real Environment – University Campus)

In a late research from M. Lastovicka [5] the authors have created a huge dataset

of packets shared from a network in their University campus. This dataset is interesting

due to its being only on a Wireless network and all packets generated in the network

are sent using mobiles, tablets or computers by using wireless connection of the campus

for approximately 2 days.

 Features of this dataset are shown below in table 6 but not all of them have

descriptive data for the Operating System behind the packet. Some of them, such as

time initiated, or time finished will not be considered at all.

Table 6. Features in 2nd Dataset

1 Date flow end

2 Src IPv4

3 sPort

4 Dst IPv4

5 dPort

6 SYN size

7 TCP win

22

8 TCP SYN TTL

9 TLS SNI

10 TLS SNI length

11 TLS Client Version

12 Client Cipher Suites

13 TLS Extension Types

14 TLS Extension Lengths

15 TLS Elliptic Curves

16 TLS EC Point Formats

17 HTTP Host

18 HTTP UA OS

19 HTTP UA OS MAJ

20 HTTP UA OS MIN

21 HTTP UA OS BLD

22 SSH Client Version

23 SSH Client Application

24 SSH Client Encryption

25 SSH Client MAC

26 SSH Client Compression

27 Session ID

28 Ground Truth OS

A short analysis in this dataset would be to see the TLS or SSL versions used

by devices. We thought that this may reveal some information regarding the OS too but

that was not the case. TLS version 1.2 is used the most and for more than 95% of the

devices are making the secure connection via this version. SSL as can bee seen from

figure 14 below, is insignificant and thus that is something irrelevant to this problem.

23

Figure 14. TLS versions share in dataset-2

3.3. Dataset Comparison

In both datasets we have 4 labels, ground truths. The OS share in each dataset

is as shown below on figures 15 and 16. In

Figure 15. OS share in dataset-1

Figure 16. OS share in dataset-2

24

Table 7. Dataset detail comparison

 Dataset 1 Dataset 2

Nr. of rows 26587 35654

Train set 21269 70%

Test set 5318 30%

Nr of Features 24 28

Processed Features 24 13

3.3.1. Libraries and Tools

The experiments in this thesis are done using Python Scripting Language

because of its benefits regarding AI. All the experiments can be done in pure Python

Language but since It provides many packages libraries which make the code short,

understandable and organized, we have chosen the shortest path.

Below are listed the main packages used and a short explanation for the main

packages used in this project:

Numpy - When we work with Images, we always convert them into

multidimensional arrays, in 1 or 2 dimensional arrays. In order to do this conversion

and to work with arrays we use the Numpy package.

Pandas - We use this package for data manipulation and analysis. It is very

helpful when our data is in .csv format.

Matplotlib - This library helps us with image visualizations. All the graphics

and visualizations in this thesis are created using Matplotlib.

Seaborn – It is almost same as MatplotLib but kind of more advanced.

25

Sklearn – Scikit-learn (formerly scikits.learn and also known as sklearn) is a

free software machine learning library for the Python programming language. It

features various classification, regression and clustering algorithms including support

vector machines, random forests, gradient boosting, k-means and DBSCAN, and is

designed to interoperate with the Python numerical and scientific libraries NumPy and

SciPy.

Tensorflow/Keras - Keras is a Neural Network library which is built on top of

Tensorflow and is easier to use when we compare it with TF. All the layers of our

Network are composed by Keras API.

Since we have done many experiments and we have tried to choose the best

system and working environment for this project we used two Integrated Development

Environment (IDE):

PyCharm is a very good choice when the code is organized in different

files/modules and directories. It is a professional IDE and requires firstly to setup

python and all libraries that we will use.

Google Colaboratory is very useful, powerful and handy IDE which can be

accessed through Google Apps. It is the perfect choice for no-setup use and that’s why

we chose to use that.

3.4. Types of Learning

In Deep Learning there are three types of learning: Unsupervised Learning,

Supervised learning and Semi-Supervised Learning.

26

Figure 17. Three types of Learning

Unsupervised learning is used mainly to discover patterns and detect outliers

in data. Unsupervised learning is the training of machine using information that is

neither classified nor labeled and allowing the algorithm to act on that information

without guidance. Here the task of machine is to group unsorted information according

to similarities, patterns and differences without any prior training of data. Unsupervised

Learning has two main categories of algorithms: Clustering and Association.

Semi-supervised learning learning is a combination of supervised and

unsupervised machine learning methods. In this type of learning, the algorithm is

trained upon a combination of labeled and unlabeled data. Typically, this combination

will contain a very small amount of labeled data and a very large amount of unlabeled

data. The basic procedure involved is that first, the programmer will cluster similar data

using an unsupervised learning algorithm and then use the existing labeled data to label

the rest of the unlabeled data.

Supervised learning consists of target or outcome variable (dependent

variable). That target variable is to be predicted from given independent variables

(Predictors). With the help of these variables, we generate a function that maps to

desired outputs. We need to train this process until we get the desired level of accuracy

on training data. The algorithm modifies according to the pattern it perceives in the

input and output received. Supervised Learning has two categories of algorithms:

Classification and Regression.

27

Supervised learning always has a clear objective and can be easily measured for

accuracy. The training of the machine is also tightly controlled, which leads to very

specific behavioral outcomes.

On the downside, it is often very labor-intensive, as all data needs to be labeled

before the model is trained, which can take hundreds of hours of specialized human

effort. The costs can become astronomical. This creates an overall slower training

process and may also limit the data that it can work with.

3.5. Multi-Layer Perceptron (MLP) of Artificial Neural Network

(ANN)

Multi-layers perceptrons are the most important and used type of neural

networks, that is a single neuron model, precursor to larger neural networks.

Neural networks learn the representation in the training data and how to best

relate it to the output variable that is to be predicted. This means that neural networks

learn a mapping. Neural networks have a hierarchical or multi-layered structure, that

makes them very good predictors. They learn to represent features at different scales or

resolutions and combine them into higher-order features.

The artificial neurons are the computational units with weighted input signals

which serve as building block for neural network. They produce an output signal using

a function, which is called activation function.

The figure below shows a model of a simple neuron.

28

Figure 18. Model of a Simple Neuron

The activation function does a mapping of the sum of the weighted input to the

neuron’s output. It controls the threshold where the neuron is activated and the strength

of the output.

Non-linear activation functions make possible that the network combines in

complex ways the inputs and then provide a stronger capability in the functions that

they model. They are also called the sigmoid function. Their output is a value between

0 and 1 with an s-shaped distribution, and the hyperbolic tangent function, called tanh

outputs the same distribution over the range -1 to +1.

3.5.1. Multi-Layer Perceptron Architecture

Input or Visible Layers

The visible layer is the bottom layer that takes input from your dataset, being

the exposed part of the network. Mostly, a neural network is drawn with a visible layer

with one neuron per input value or column in the dataset. These pass the input value

through the next layer, so they are not neurons.

Hidden Layers

Hidden layers are after the input layer and are not directly exposed to the input.

The simplest network structure has a single neuron in the hidden layer which outputs

the value directly. Very deep neural networks can be constructed with increases in

29

computing power and efficient libraries. Having many hidden layers can be described

as Deep Learning. They take seconds or minutes to train using modern techniques and

hardware.

Output Layer

The output layer is the final hidden layer, responsible for outputting a value or

vector of values that correspond to the format required for the problem. Choosing the

activation function in the output layer is constrained by the type of problem. Below, we

list some points to take into consideration:

• Having a regression problem is related to a single output neuron and the neuron

may have no activation function.

• Having a binary classification problem is related to a single output neuron and it

can use a sigmoid activation function, that outputs a value between 0 and 1, which

represents the probability of predicting a value for the class 1.

• Having a multi-class classification problem is related to multiple neurons in the

output layer, one for each class. An activation function, called softmax may be used

to output a probability of the network predicting each of the class values.

30

CHAPTER 4

IMPLEMENTATION AND RESULTS

4.1. Experiments

In this section we will explain whats and hows of our experiments and show the

main problems and solutions in this area. We firstly started by experimenting the first

dataset, the one that we built ourselves using Virtual Machines and Wireshark to trace

packets. This section will be divided into 2 where for each sub-section we will show

the steps for each experiment.

Dataset – 1

Firstly, we built a Multi-Layer Perceptron model with the following layers and

activation functions shown in figure 19. In each trial we change the epochs and batch

size to see if there is a difference in the model or not.

Figure 19. MLP first Model for dataset-1

With the model shown previously we tested the dataset 3 times with the

respective batch size: 128, 64, 8. The accuracies that we received from these tests are

31

respectively: 81.3%, 82.4%, 82.3%. It is quite common that lowering the batch size for

small datasets produces a better outcome. In this case we did not see a great

optimization but still it is acceptable.

Figure 20. Precision,

Recall, F1score (batch=8)

Figure 21. Precision,

Recall, F1score (batch=64)

Figure 22. Precision,

Recall, F1score

(batch=128)

The results just for TCP/IP packet tracing are not so desirable. Along with this

Accuracy and Loss curves tells us that the model does a good job on a training set but

fails a bit in the test set. Which means that we have a small overfitting the data and this

could be from many reasons, some of which:

• There are so many identical packets that model overfits.

• For such task 25000 rows may not be enough.

• Problems with model design.

32

Figure 23. Accuracy and

Loss (batch=8)

Figure 24 Accuracy

Train & Test (batch=8)

Figure 25 Loss Train &

Test (batch=8)

Figure 26 Accuracy and

Loss (batch=64)

Figure 27 Accuracy

Train & Test (batch=64)

Figure 28 Loss Train &

Test (batch=64)

Figure 29 Accuracy and

Loss (batch=128)

Figure 30 Accuracy

Train & Test (batch=128)

Figure 31 Loss Train &

Test (batch=128)

32

As can be seen from the pictures above, we must improve those accuracy and

loss curves between test and trains. The accuracy is not a problem because 83% for

this task is quite enough due to TCP/IP features processed only. Below you can see the

Receiver Operating Characteristics (ROC) for our multi-class classifier. The ROC

seems to be very stable. In the figures are shown Area Under Curve (AUC) values too.

For a matter of visualization, we have also shown the Confusion Matrix for each

Operating System.

Figure 32 ROC & AUC (batch=8)

33

Figure 33 Confusion Matrix (batch=8)

Figure 34 ROC & AUC (batch=64)

34

Figure 35 Confusion Matrix (batch=64)

Figure 36 ROC & AUC (batch=128)

35

Figure 37 Confusion Matrix (batch=128)

To overcome the problem of that small overfitting of the model, we added two

dropout layers. The results are quite impressive in terms of reducing over fitness but

still the accuracy remains at the same levels, 83%. Figure 38 show the model with the

dropout layers:

Figure 38. New model for dataset-1 with Dropout layers

36

From the figures below you may see how overfitting is reduced and the train

and test accuracies are almost same. This tells us that the learning curve is good and the

model is stable, however is not perfect due to its accuracy.

Figure 39. Loss Curve (train & test) with dropout layers

Figure 40. Accuracy Curve (train & test) with dropout layers

37

Dataset – 2

Same as we did in the first Dataset, we will proceed with this one too. The

second dataset has features from TCP/IP, HTTP and TLS handshake. We do expect this

to have a higher accuracy and to be more stable. The model is the same due to both

datasets have the same number of labels (Ground truths).

Figure 41. Model for the second dataset

For this model in the second dataset, we received for each batch size 8, 64, 128

an accuracy of 93.4%, 92.6%, 92.5% respectively. Notably we can observe from these

numbers that decreasing the batch size improves a bit on accuracy. Comparing these

results to the first one we indeed have a better outcome. The main reason of this is the

type of dataset, which contains more features than in the first one. Below in the Figures

42, 43 and 44 you can see how different scores apply for each label, one vs all scores.

1

Figure 42. Precision,

Recall, F1score

(batch=8)

Figure 43. Precision,

Recall, F1score

(batch=64)

Figure 44. Precision,

Recall, F1score

(batch=128)

From the above figures we clearly see that Windows and Android have better

scores while iOS and Mac OS are not as good as the first two. This may result from iOS

and Mac OS being the Operating System of the same company and the parameters they

generate for both TCP and TLS could be similar. This is a hypothesis that arouses from

these results and would be nice to research on.

Different from the first dataset, accuracies and loss curves are almost same for

train and test sets, which make this model perfect for the dataset. Thus, this model does

not over fit in any case. Below you can see the figures that show accuracy and loss

curves for 8, 64 and 128 batch size tests, respectively.

39

Figure 45. Accuracy and Loss Curves (train & test) with batch=8

Figure 46. Accuracy and Loss Curves (train & test) with batch=64

40

Figure 47. Accuracy and Loss Curves (train & test) with batch=128

As this model performs perfectly and we did not not have any overfit, we did

not make any further improvements with dropout layers.

41

Figure 48 ROC & AUC (batch=8)

Figure 49 Confusion Matrix (batch=8)

42

Figure 50 ROC & AUC (batch=64)

Figure 51 Confusion Matrix (batch=64)

43

Figure 52 ROC & AUC (batch=128)

Figure 53 Confusion Matrix (batch=128)

From ROC Curves we observe that are quite near to the top left corner, which

tells us that model perform very well. AUC values are 0.98 and above which is

relatively a very high score.

44

CHAPTER 5

CONCLUSION AND FUTURE WORK

Conclusions

In this thesis we aimed to compare the two most used types of datasets in the

field OS detection using Machine Learning approach. We firstly described what’s and

how’s of OS detection and fingerprinting and what are the basics of network

communication.

In this thesis we applied Multi-Layer Perceptron, an Artificial Neural Network

deep learning algorithm. Other ML algorithms may be used for this task, but as far as

we have seen on testing, MLP outperforms them with at least 3-4%.

The field of OS fingerprinting is quite huge and emerging because the devices

are now running different OS’s and the network protocols change by time. Until now

the most used parameters for OS Classification with ML are TCP/IP, HTTP and TLS

parameters whereas we proved that TCP in its own cannot achieve more than 84%. At

the other side, the combination of multiple parameters from multiple protocols can have

a much higher accuracy, of at least 10% more the first one.

Future Work

Firstly, as a future work we suggest on researching further if there is a difference

in a packet sent from wireless or wired connection. These two methods may enforce the

way that OS prepares the packets and makes the connection in network.

Another task that needs a lot of effort, is building a Web Application Firewall

(WAF) software that will use the model suggested in this thesis to automatically detect

and not authorize some old and insecure Operating Systems.

45

References

[1] A. Aksoy and M. H. Gunes, "Operating System Classification Performance of

TCP/IP Protocol Headers," in IEEE 41st Conference on Local Computer

Networks Workshops (LCN Workshops), Dubai, 2016.

[2] F. Gagnon and B. Esfandiari, "A hybrid approach to operating system discovery

based on diagnosis," International Journal of Network Management, March 2011.

[3] Al-Shehari, Taher & Shahzad, Farrukh, "Improving Operating System

Fingerprinting using Machine Learning Techniques.," in International Journal of

Computer Theory and Engineering. 6., 2014.

[4] Muehlstein, Jonathan & Zion, Yehonatan & Bahumi, Maor & Kirshenboim, Itay

& Dubin, R. & Dvir, Amit & Pele, Ofir. , "Analyzing HTTPS Encrypted Traffic

to Identify User Operating System, Browser and Application," in IEEE Annual

Consumer Communications & Networking Conference (CCNC), 2017.

[5] M. Laštovička, S. Špaček, P. Velan and P. Čeleda, "Using TLS Fingerprints for

OS Identification in Encrypted Traffic," in NOMS 2020 - 2020 IEEE/IFIP

Network Operations and Management Symposium, Budapest, 2020.

[6] G. Lyon, Nmap Network Scanning: The Official Nmap Project Guide to Network

Discovery and Security Scanning, 2009.

[7] Arkin O, Yarochkin F., Xprobe, 2010.

[8] P. Auffret, "SinFP, unification of active and passive operating system

fingerprinting," Journal in Computer Virology, 2010.

[9] Joao Paulo S. Medeiros, Agostinho de Medeiros Brito Junior,, "A Qualitative

Survey of Active TCP/IP," Computational Intellingence in Security for

Information Systems, 2011.

46

[10] A. Aksoy, S. Louis and M. H. Gunes, "Operating system fingerprinting via

automated network traffic analysis," in IEEE Congress on Evolutionary

Computation (CEC), San Sebastian, 2017.

[11] James Kurose, Keith W. Ross, Computer Networking: A Top-Down Approach,

6th Edition, Brooklyn: Pearson, 2013.

[12] RFC 791, "Request For Comment," IETF, [Online]. Available:

https://tools.ietf.org/html/rfc791. [Accessed 09 02 2021].

[13] RFC 793, "Request For Comment," IETF, [Online]. Available:

https://tools.ietf.org/html/rfc793. [Accessed 10 02 2021].

[14] RFC website, "ietf.org," IETF, [Online]. Available:

https://tools.ietf.org/html/rfc793#page-15. [Accessed 10 02 2021].

[15] Tyagi, R., Paul, T., Manoj, B. S., & Thanudas, B., " Packet Inspection for

Unauthorized OS," IEEE Security & Privacy, 2015.

[16] Martin Husák, Milan Cermák, Tomáš Jirsík and Pavel Celeda, "HTTPS traffic

analysis and client identification," EURASIP Journal on Information Security,

2016.

[17] Bonnie Kaplan and Dennis Duchon, "Combining Qualitative and Quantitative

Methods in Information Systems Research: A Case Study".

[18] VMware, "VMware," VMware, [Online]. Available: https://www.vmware.com/.

[Accessed 08 10 2020].

[19] Wireshark, "Wireshark," [Online]. Available: https://www.wireshark.org/.

[Accessed 08 09 2020].

[20] L. D. Vita, "Github," [Online]. Available:

https://github.com/lucadivit/Pcap_Features_Extraction. [Accessed 16 01 2021].

47

