

A REVIEW STUDY ON THE USE OF HIGH-LEVEL SYNTHESIS FOR

IMPLEMENTING DEEP LEARNING ALGORITHMS IN FPGAs

A THESIS SUBMITTED TO

THE FACULTY OF ARCHITECTURE AND ENGINEERING

OF

EPOKA UNIVERSITY

BY

DANJELA RUÇI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

OCTOBER, 2020

i

Approval sheet of the Thesis

This is to certify that we have read this thesis entitled “A Review Study On The Use

Of High-Level Synthesis For Implementing Deep Learning Algorithms In FPGAs”

and that in our opinion it is fully adequate, in scope and quality, as a thesis for the

degree of Master of Science.

Dr. Ali Osman Topal

Head of Department

Date: October 02, 2020

Examining Committee Members:

Dr. Ali Osman Topal (Computer Engineering)

Dr. Arban Uka (Computer Engineering)

Dr. Julian Hoxha (Computer Engineering)

ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Danjela Ruçi

iii

ABSTRACT

A REVIEW STUDY ON THE USE OF HIGH-LEVEL SYNTHESIS FOR

IMPLEMENTING DEEP LEARNING ALGORITHMS IN FPGAs

Ruçi, Danjela

M.Sc. Department of Computer Engineering

Supervisor: Dr. Julian Hoxha

Because of the high precision that they offer, CNNs represent a very important model for

systems that do image identification. However, such a task has high costs. For this reason,

the current goal is to implement designs that are fast, but at the same time not costly. GPUs

are an alternative, but they do not offer the best solution due to their large power

consumption. FPGAs on the other hand, suit more with CNNs systems because they

consume less energy and have a flexible structure. The difficult part for FPGA

architectures is implementing CNN systems using HDL, which is not a platform on which

to program; it is simply hardware-level code to describe components of hardware like

registers and counters. With HLS, designers are now capable of using high-level languages

like C or C++ to implement CNNs into FPGAs, because HLS “translates” or synthesizes

the codes written in high-level languages into hardware-level code or RTL parameters.

This thesis represents a review on the previous work done on the CNNs implementation

on FPGAs using HLS and summarize the results obtained.

Keywords: Convolutional Neural Networks (CNNs), FPGA, High-Level Synthesis,

 Hardware Description Language, power consumption

iv

ABSTRAKTI

NJË STUDIM TEORIK MBI PËRDORIMIN E SINTEZËS SË NIVELIT

TË LARTË PËR ALGORITMET DEEP LEARNING NË FPGA

Ruçi, Danjela

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike

Udhëheqësi: Dr. Julian Hoxha

Për shkak të saktësisë së lartë që ofrojnë, rrjetet neurale CNN përfaqësojnë një model

shumë të rëndësishëm për sistemet që identifikojnë dhe klasifikojnë imazhe. Sidoqoftë,

një detyrë e tillë ka kosto të larta. Për këtë aryse, qëllimi kryesor aktual lidhet me

implementimin e modeleve që ofrojnë shpejtësi të lartë dhe kosto të ulët. Procesorët GPU

janë një alternivë e mirë kundrejt këtyre kërkesave, por ato nuk ofrojnë zgjidhjen më të

mire të mundshme për shkak të konsumit të lartë të energjisë. Nga ana tjetër, modulet

FPGA përshtaten më së miri me rrjetet CNN sepse konsumojnë më pak energji se

procesorët GPU dhe kanë një arkitekturë fleksibël. Vështirësia për dizenjuesit e moduleve

FPGA është përdorimi i gjuhës HDL për implementimin e rrjeteve CNN. HDL nuk është

një platformë mbi të cilën mund të programohet; ajo përfaqëson kod të nivelit hardware

për të përshkruar komponentët hardware-ikë, siç janë regjistrat. Sinteza e nivelit të lartë

(HLS) mundëson përdorimin e gjuhëve të nivelit të lartë, siç është gjuha C apo C++, për

të implementuar rrjetet CNN në FPGA, pasi është HLS ajo që kujdeset për konvertimin e

kodit të shkruar në gjuhë të nivelit të lartë, në kod të nivelit hardware. Ky punim

përfaqëson një përmbledhje të punës që është studiuar dhe zhvilluar deri tani për

implementimin e rrjeteve CNN në FPGA duke përdorur HLS.

Fjalë kyçe: rrjetet neurale (CNN), FPGA, sinteza e nivelit të lartë (HLS), gjuhë

 përshkruese hardware-ike (HDL), konsumim i energjisë

v

Dedicated to my family.

vi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God Almighty for giving me the ability and

knowledge to successfully complete this research study. Without His blessings, this

achievement would not have been possible.

I would like to express my deep gratitude to my supervisor, Dr. Julian Hoxha, for his

continuous guidance and useful suggestions throughout all the process of learning and

writing this master thesis.

I am also thankful to the committee members for their thoughtful comments and

recommendations on this master thesis.

My acknowledgement would not be complete without thanking my family, the forever

biggest source of my strength. I would like to thank them for their great love and their

continuous support throughout this entire process. I will always be grateful for you being

my family.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ABSTRAKTI ... iv

ACKNOWLEDGEMENTS ... vi

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Introduction ... 1

1.2. Aim of the study .. 2

1.3. Thesis Organization ... 3

CHAPTER 2 ... 4

INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING 4

2.1. Machine Learning Background .. 4

2.1.1. Methods of Machine Learning .. 5

2.2. Deep Learning .. 6

2.3. Neural Networks .. 6

2.3.1. Neural network components ... 7

2.3.2. Training and Inference .. 8

2.3.3. Types of Neural Networks .. 9

2.4. Convolutional Neural Networks ... 10

2.4.1. Architecture of CNNs ... 10

2.5. Field-Programmable Gate Arrays (FPGAs) ... 15

2.5.1. FPGAs over GPUs .. 15

viii

2.5.2. FPGAs over ASICs ... 16

2.5.2. FPGAs and Neural Networks .. 16

CHAPTER 3 ... 17

HIGH-LEVEL SYNTHESIS DESIGN... 17

3.1. Introduction ... 17

3.2. High-Level Synthesis .. 18

3.2.1. Historical background on HLS ... 18

3.3. Methodology of HLS ... 20

3.3.1. Objectives of HLS ... 21

3.3.2. Constraints of HLS ... 22

3.3.3. Benefits of HLS .. 23

3.4. HLS for FPGAs ... 24

3.4.1. HLS Phases ... 25

3.4.2. Synthesis of C code .. 26

3.5. The concept of hls4ml package ... 27

3.6. Vivado HLS ... 31

CHAPTER 4 ... 32

LITERATURE REVIEW.. 32

4.1. Methodology ... 32

4.2. Related work .. 32

CHAPTER 5 ... 37

CONCLUSIONS ... 37

5.1. Conclusions ... 37

REFERENCES .. 38

APPENDIX ... 40

ix

LIST OF FIGURES

Figure 1. Schematic representation of a neural network ... 7

Figure 2. Sigmoid and Tanh activation functions ... 8

Figure 3. Softmax activation function ... 8

Figure 4. A visual representation of CNN architecture building blocks 10

Figure 5. An illustration of the convolution process ... 12

Figure 6. Convolution operation using the zero-padding technique 13

Figure 7. ReLU nonlinear activation function ... 13

Figure 8. An example illustration of max pooling .. 14

Figure 9. The role of HLS in FPGA systems .. 25

Figure 10. hls4ml workflow for translating a model into a FPGA implementation 28

Figure 11. A visual representation of a deep neural network .. 30

Figure 12. The “role” of Vivado HLS tool in the Synthesis process 31

Figure 13. Design of the high-level of the CNN Accelerator.. 34

Figure 14. FPGA tool flow with HLS and the proposed ML models 36

x

LIST OF ABBREVIATIONS

HLS High-Level Synthesis

RTL Register-Transfer Level

SoC System on a Chip

ASICs Application-Specific Integrated Circuits

FPGAs Field-Programmable Gate Arrays

HDL Hardware Description Language

IC Integrated Circuit

IP Intellectual Properties

ML Machine Learning

AI Artificial Intelligence

DL Deep Learning

NN Neural Networks

CPU Central Processing Unit

GPU General Purpose Processing Unit

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

In the past decades, deep learning (DL) has demonstrated its effectiveness and

efficacy in resolving several problems related to real-world issues. The reason why DL is

so useful and needed is related to its possibility to automatically adjust itself to new

circumstances, as well as learn and improve itself. Convolutional neural networks (CNNs)

are considered to be the state-of-the-art for DL algorithms.

Nowadays, CNNs are being used in numerous fields for several actions, like

classifying images or identifying and recognizing objects. CNN approaches usually operate

on a cloud server. Nevertheless, there exists a need for introducing CNNs to embedded

systems, due to IoT emerging each day more. Such a task is particularly required for

systems that collect huge amounts of data in real time. While CNNs are continuously being

implemented to complex challenges, there are some difficulties regarding to low

performance, latency and power consumption that are present on integrated systems that

have CPUs or GPUs.

GPU architectures, due to their good performance and memory space, are

considered as one of the most efficient tools in terms of the improvement of CNNs

processes like training and classification. Still, their power consumption, which is a crucial

metric for evaluating the throughput, is large. ASIC architectures on the other hand, have

reached better performance consuming less power, but the time and costs needed for

implementing them is high (Chen, Krishna, Emer, & Sze, 2016).

FPGAs have many favorable characteristics, which make them the most

promising architectures for accelerating CNNs hardware, like good performance and low

power consumption at a reasonable cost. Their highly efficient and flexible architecture

enables managing various computing algorithms by the same time they try to accommodate

2

the device’s memory resources. FPGAs are programmable modules which, in terms of

efficiency, provide countless benefits. They also have characteristics like high velocity and

low power consumption, that make them a good option for machine learning applications.

While NNs are being transformed to reach out to more industries, it is helpful to have the

flexibility that FPGAs offer. CNNs require high computational techniques and FPGAs

offer a reasonable compromise between three parameters: cost efficiency, performance and

power efficiency. FPGAs are also beneficial as large quantities of computing are being

moved to Cloud, since FPGAs can be modified to different requirements users have

FPGAs provide better performance compared to CPUs. Regarding to power

consumption, FPGAs offer higher efficiency in comparison with both CPUs and GPUs.

However, the long time required for designing have restricted the utilization of FPGAs.

Lately, the HLS tools have provided an automatic “translation” from high-level languages,

like C or C++, into hardware description languages (HDL).

1.2. Aim of the study

For computers, image comprehension is a hard action. However, the task of

image classification has a great importance on several applications for systems used almost

every day, like security or medical field. Over the last several years, great improvement

has been achieved in this field. Nowadays, CNNs provide the most successful solution to

image understanding and classification.

Numerous systems have been proposed for achieving CNNs implementations

that have effective performance. While CNNs require high computational techniques,

FPGAs offer a reasonable compromise between three parameters: cost efficiency,

performance and power efficiency.

The aim of this study is to develop a better understanding on the High-Level

Synthesis implementation on FPGA architectures for Convolutional Neural Networks.

Hardware description languages (HDL), like Verilog and VHDL, are an option for

realizing this implementation, but coding for complex NNs is extremely complicated since

3

they are at a low abstraction level. Fortunately, the use of High-Level Synthesis simplifies

all this process.

1.3. Thesis Organization

This master thesis is organized in five chapters.

In the first chapter, a brief introduction and the aim of the study is given.

In the second chapter, it is given a theoretical background on machine learning,

deep learning, neural networks as well as a detailed description on convolutional

neural networks. FPGA architecture is also described.

In the third chapter, it is documented a detailed introduction on High-Level

Synthesis and a description of the hls4ml package.

In the fourth chapter, the literature review related to this work is given.

In the fifth chapter, there are given conclusions and future work.

4

CHAPTER 2

INTRODUCTION TO MACHINE LEARNING AND DEEP

LEARNING

In this chapter is given a brief overview of machine learning and deep learning,

as well as a description on Neural Networks. A detailed explanation on Convolutional

Neural Networks is also included, followed by a paragraph that describes the FPGA

architecture. Lastly, some reasons why FPGA technology is ideal for Neural Network

implementations are listed.

2.1. Machine Learning Background

Machine learning (ML) is an artificial intelligence (AI) technology which allows

different machines to implicitly learn and develop from experience without being

programmed. ML is focused on the creation and development of programs which access

content and information with the aim of learning for themselves. In other words, the general

goal of ML is to recognize the data structure and integrate it into models that people can

understand and use.

Even though ML is a branch of computer science, it is different from traditional

existing techniques for computing. Algorithms used in traditional computing are

collections of coded instructions that computers use for calculating or solving problems.

Machine learning algorithms on the other hand are designed to permit computers to analyze

input data and utilize statistical analysis to generate results which are within a particular

range. Therefore, ML allows computers and machines to build structures through sample

data so that processes like decision-making are done automatically based on input data.

Machine learning is a field which is evolving constantly. It has helped almost

every user of technology nowadays. The technology of facial recognition makes social

5

media sites help users tag or share friends’ images. The technology of optical character

recognition (OCR) transforms text images into movable forms. Based on users’ interests

and using ML algorithms, recommendation mechanisms suggest what shows or movies to

watch next.

2.1.1. Methods of Machine Learning

Tasks in machine learning are usually divided into broad categories, which are

based on the way how the learning process is obtained or how the system gets a feedback

on the learning.

Two of the most commonly accepted methods of machine learning are

supervised learning, that “teaches” algorithms based on human-labeled sample data for

input and output, and unsupervised learning, that does not “offer” labeled data to the

algorithm to help it identify structure in the input data (Tagliaferri, 2017).

1. Supervised Learning

In this type of learning, example inputs which are marked with their ideal output,

are introduced to the computer. The goal of this approach is to enable the algorithm

to “learn” and adjust the model by making a comparison between the real output

and the “taught” one. For this reason, supervised learning utilizes patterns on

certain data that is unlabeled in order to predict label values. A typical scenario of

supervised learning is the use of past data to foresee future events that are likely to

happen: tagged images of dogs are used to identify untagged images of dogs.

2. Unsupervised Learning

In unsupervised learning, the algorithm is responsible for finding similarities

between the input data. Unlabeled data is the ideal type of input for unsupervised

learning. The aim of unsupervised learning is simple: finding hidden patterns within

the same dataset and allowing the machine to explore the required representations

for automatic data identification. Unsupervised learning is widely used in data

transactions.

6

2.2. Deep Learning

Deep learning (DL) is an important method of ML that tries to imitate the way

that human brains transform light and sound input into vision and hearing output. A deep

learning model is similar to biological neural networks, which consist of many layers. In

order to obtain data features, DL requires processing layers in cascade, where the output of

one layer acts as input for the following one. Algorithms in DL are either supervised, which

help to classify data, or unsupervised, which do pattern analysis.

Deep learning algorithms collect the most data among all machine learning

algorithms that are developed. They have also beaten humans in certain tasks regarding to

cognitive tasks. Due to these features, DL is now a potential approach in the field of

artificial intelligence.

2.3. Neural Networks

Neural networks (NN) could be considered as the human brain’s machine

implementation. Similar to the way human brains are trained to learn, complete different

tasks and produce things, like differentiating cats from dogs, neural networks can also

“train” or learn and complete a task. In Figure 1 is shown a schematic representation of a

neural network (Rao, 2020).

7

Figure 1. Schematic representation of a neural network

2.3.1. Neural network components

- Neurons: The spheres colored in green, blue and purple in Figure 1 represent

the “neurons”. Their goal is to process data which is transmitted to the neural network.

- Layers: There are at least three layers in a simple neural network: one input

layer, one hidden layer and one output layer. More complex and deeper networks might

have many hidden layers.

- Weights and Biases: The weights are represented by the arrows shown in

Figure 1. They define the relative proportion of the relation among neurons. The

mathematical relation that exists between the input, weights, biases and activation

functions within a neural network are shown in Equation 1.

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠) (Equation 1)

where f is the activation function.

- Activations: The activation functions consist of tanh, sigmoid, softmax and

others. These functions help in maintaining the values in the neural network within a

limited range.

8

a) Sigmoid activation function gives an output that varies from 0 to 1, for

any given input (as shown in Figure 2).

b) Tanh (hyperbolic tangent) activation function generates an output that

has values from -1 to 1, for any given input. In comparison to the

Sigmoid function, it has a steeper gradient (as shown in Figure 2).

c) Softmax activation function, in case of a network model that is focused

in classification, produces a probability distribution as output (as shown

in Figure 3).

Figure 2. Sigmoid and Tanh activation functions

Figure 3. Softmax activation function

2.3.2. Training and Inference

One of the most effective approaches for neural network trainings is to provide

it with a dataset, each input of which goes along with the expected output. For instance, a

set of data that is composed of classified images of cats and dogs can be provided to a

9

network. The images of the dataset go from the input layer of the NN to the output layer of

the NN, going via all the hidden layers. The value obtained in the output is compared to

the expected value that has been made known to the network. An error that must be

minimized to support the neural network foresee values as close as possible to the expected

values, is calculated. It is of a great importance to emphasize that a NN is a mathematical

model and the layers can communicate within only via numbers (Rao, 2020).

A common algorithm used in training NN is the backpropagation algorithm.

This algorithm calculates a cost function (error function) depending on the comparison

between the expected output and the obtained output, which is then utilized to modify the

weights and the biases so that, for a given input, the obtained output is similar to the

expected output. The method of going back to adjust the weights and the biases is called

backpropagation. Its aim is to minimize the error as much as possible. If the NN is trained,

the algorithm’s prediction accuracy can be tested through the inference process. In the

previous example, an unlabeled dog/cat image is given as input and it is tested the accuracy

of output prediction.

2.3.3. Types of Neural Networks

There exist several categories of neural networks. Specific NNs deal with

specific applications and operate with specific datasets. Many use images as inputs,

whereas many others may choose a series of inputs.

The types of NNs are:

1. Deep Neural Networks (DNN), which have two or more hidden layers (more than

1).

2. Recurrent Neural Networks (RNN), which are helpful in context-relaying data

prediction, like text generation.

3. Convolutional Neural Networks (CNN), whose ideal inputs are images.

10

2.4. Convolutional Neural Networks

A convolutional neural network is a category of the deep learning design that is

responsible for analyzing data with grid patterns, like image data.

A CNN is a mathematical model which usually consists of three layer types:

convolution layers, pooling layers and connected layers (Yamashita, Nishio, Do, &

Togashi, 2018). The pooling and convolution layers are responsible for feature extractions,

while connected layers are responsible for mapping the features extracted into a final

output. The convolution layer has a crucial function in CNNs, which in fact consist of a

stack of mathematical functions, like the convolution function, a specific linear operation.

2.4.1. Architecture of CNNs

As mentioned above, the architecture of CNN has many blocks: convolution

layers, pooling layers and fully connected layers (Yamashita, Nishio, Do, & Togashi,

2018). A standard CNN architecture is composed of many layers of convolution followed

by a pooling layer, which are then followed by one or many fully connected layers, as

presented in Figure 4. The phase in which the data input is converted into an output via

these layers is named forward propagation. Based on forward propagation and a loss

function, the performance of a design under specific kernels and weights is determined.

Figure 4. A visual representation of CNN architecture building blocks

11

2.4.1.1. Convolution layer

The convolution layer is a crucial element of the CNN architecture that extracts

features, usually consisting of a combination of operations that might be linear

(convolution operations) or nonlinear (activation function).

- Convolution operation is used for extracting features, with the application of a

kernel (which represents a small array of numbers) in the input (which represents a

numbers’ array, called a tensor). An element-wise production is computed for each

component of the kernel and the input tensor; and the value of the output is

calculated as the sum of those products at the corresponding locations of the output

tensor, known as a feature map. This process is illustrated in Figure 5 (Yamashita,

Nishio, Do, & Togashi, 2018) and is redone with the use of multiple kernels to

create an arbitrary amount of feature maps representing various input tensor

characteristics, so that different kernels are seen as different extractors for the

features.

12

Figure 5. An illustration of the convolution process

There are two important hyperparameters that characterize the convolution process:

the number of the kernels and their dimensions. The typical kernel size is 3 × 3, but

it might also be 5 × 5 or 7 × 7. In the reported convolution operation, kernels’

centers do not overlap the outermost input tensor element. The dimensions of the

feature map are reduced in contrast to the input tensor. Better result is received by

applying the zero-padding technique (columns and rows with 0s are added around

the input tensor), as illustrated in Figure 6.

13

Figure 6. Convolution operation using the zero-padding technique

- Nonlinear activation function receives as input the output of the linear operation.

The most used activation function is the ReLU (rectified linear unit). It calculates

𝑓(𝑥) = max⁡(0, 𝑥) and is represented in Figure 7. Other activation functions are the

sigmoid function and the hyperbolic tangent (tanh) function, which are shown in

Figure 2.

Figure 7. ReLU nonlinear activation function

2.4.1.2. Pooling layer

A pooling layer offers a standard subsampling procedure which decreases the

dimensions of the feature maps, so that a translation invariance is added to minor shifts and

the amount of corresponding trainable parameters is reduced.

14

The most common method of pooling processes is max pooling. Its job it to

extract patches from the feature maps of the input in order to output the greatest value of

each patch discarding other values. Figure 8 shows the process of max pooling. A widely

used max pooling is the one with a filter of dimensions 2 × 2.

Figure 8. An example illustration of max pooling

2.4.1.3. Fully connected layer

The output of the convolution and the pooling layer, which are represented by

feature maps, are usually flattened and linked to at least one fully connected layer. In every

fully connected layer, each input has a corresponding output, to which it is connected by a

trainable weight. As soon as the convolution layers’ features are extracted and pooling

layers’ features are produced, they map with the resulting outputs of the neural network. A

nonlinear function (sigmoid, tanh or ReLU) follows every fully connected layer, except

from the last layer: its activation function is softmax (shown in Figure 3) and is different

from activation functions that follow all the other layers.

2.4.1.4. Cost function

A cost function is also known as a loss function and evaluates the accuracy

among the neural network’s output predictions based on forward propagations. A widely

used cost function is cross entropy.

15

2.4.1.5. Forward propagation and Backpropagation

The forward propagation represents the prediction phase. After the input data is

read and processed by the network, an output value is obtained. The mathematical

operation behind this process is given through Equation 1.

The backpropagation represents the training phase. In order to obtain a better

performance, the network updates its parameters by making comparisons between the

predictions or outputs of the network and the true values.

2.5. Field-Programmable Gate Arrays (FPGAs)

FPGAs are electronic devices that consist of an array which has customizable

logical blocks. These logic blocks are linked through programmable connectors, that

consist of packets of wires which run among the logic pieces in a vertical and in a horizontal

way. New FPGA versions provide thousands logical blocks that can be configured, and at

the same time, they have an amount of hardened operational modules that permit specific

operations to be implemented quickly and effectively (Gschwend, 2020).

CNNs provide greater levels of accuracy compared to existing algorithms.

However, they need enormous quantities of computing resources as well as memory access

because of the huge amounts of parameters required by the convolution process. This leads

to large power consumption and as a result, a computing obstacle for the CPUs (General

Purpose Processors) (Hassan & Mostafa, 2020). As a consequence, hardware accelerators,

like GPUs, FPGAs and ASICs, are being used in order to optimize the CNNs performance.

2.5.1. FPGAs over GPUs

General-Purpose Processor (GPU) architectures, due to their good performance

and memory space, are considered as one of the most efficient tools in terms of the

improvement of CNNs processes like training and classification. Still, their power

consumption, which is a crucial metric for evaluating the throughput, is large.

16

2.5.2. FPGAs over ASICs

ASIC architectures have reached better performance than GPUs consuming less

power, but the time and costs needed for implementing them is still high (Chen, Krishna,

Emer, & Sze, 2016).

2.5.2. FPGAs and Neural Networks

FPGAs remain one of the most important technologies regarding to the CNN

implementation since they offer a good performance and consume less power at a

reasonable cost. Their highly efficient and flexible architecture enables managing various

computing algorithms by the same time they try to accommodate the device’s memory

resources. FPGAs are programmable modules which, in terms of efficiency, provide

countless benefits. They also have characteristics like high velocity and low power

consumption, that make them a good option for machine learning applications. While NNs

are being transformed to reach out to more industries, it is helpful to have the flexibility

that FPGAs offer.

In the deep learning field, FPGAs are favored due to their task of inference. The

training process helps a NN to determine the collection of weights and biases to best

connect specific sets of inputs to their corresponding sets of outputs. The inference process

is responsible for predicting an output based on the weights and biases, which are defined

in the training process. While CNNs require high computational techniques, FPGAs offer

a reasonable compromise between three parameters: cost efficiency, performance and

power efficiency. FPGAs are also beneficial as large quantities of computing are being

moved to Cloud, since FPGAs can be modified to different requirements users have

(Majumder & Bondhugula, 2019).

With so many advantages that the implementation of neural networks or

machine learning algorithms on FPGAs has, a question arises: what is the best way to do

this implementation? Hardware description languages (HDL), like Verilog and VHDL, are

an option, but coding for complex NNs is extremely complicated since they are at a low

abstraction level. Fortunately, the use of High-Level Synthesis simplifies all this process.

17

CHAPTER 3

HIGH-LEVEL SYNTHESIS DESIGN

In this chapter it is given a short paragraph on Synthesis, which is then followed

by a theoretical background on the High-Level Synthesis basics and benefits. Later in

the chapter is described the hls4ml package and what Xilinx offers.

3.1. Introduction

The synthesis is a task which specifies the required behavior of a system, as well

as the collection of objectives and constraints to satisfy. By behavior we refer to the way

that the system and its elements cooperate with the environment they are in. Synthesis can

occur at different levels of abstraction since structures can be represented in different levels

of detail. By structure we refer to the collection of the elements that are interconnected to

create the whole system. (McFarland, Parker, & Camposano, 1998). To recognize a

specific behavior, there can be used various structures.

One of the main responsibilities that synthesis has, is to discover the structure

that satisfies the best the constraints, such as power, cycle time limitations and area, while

the other costs are significantly reduced. The aim might be, for example, to mitigate area

while trying to attain the processing rate at its minimum.

There are different types of synthesis, each of which operates at a different level

on the design hierarchy.

18

3.2. High-Level Synthesis

High-Level Synthesis (HLS) is an automated design process that will take an

algorithmic definition as its input, so that it can construct the digital hardware that will

implement the required function, (McFarland, Parker, & Camposano, 1998). For this

reason, HLS is also called the algorithmic level of the design hierarchy. These algorithms

are written in programming languages that are high-level languages. This level uses integer

or/and bit strings and arrays as primary data types, rather than Boolean variables. The

specifications of the input provide the necessary mappings from input sequences to output

sequences.

There has been a movement towards automated synthesis in recent years, which

aims to place the automated synthesis into higher levels of the design hierarchy. There are

some considerable improvements that the implementation of HLS offers:

1. Shorter design cycle

The more the design process is automated, the faster the company is able to reach

the design’s market window. In addition, the automation of processes reduces costs

significantly, as much of the chip’s cost is being developed during design.

2. Less errors

By the time that the synthesis process is validated as correct, the probability that

the final design will respond to the initial specification is very high. For new chips,

this means less errors and less time for debugging.

3. Self-documentation of the design process

A special feature of an automated system is that it keeps record of the decisions

made and the reasons why, as well as the effects that those decisions had.

3.2.1. Historical background on HLS

HLS systems were first developed in the 1900s. The early generations of these

systems resulted into a failure. However lately, due to the following reasons, we are seeing

a progressively rising demand for innovative HLS solutions (Cong, et al., 2011):

19

1. Nearly every SoC seems to have embedded processors

With the implementation of multiple micro-processors, memories and other units

on a single chip, more and more software components are being included in the

development of new embedded systems and devices. An automatic HLS flow helps

designers to define the features of designs for embedded systems as well as SoC

hardware logic in high-level languages, like C or C++. Thus, they can rapidly test

various boundaries regarding hardware and software and explore trade-offs

between area, power rand performance.

2. A greater level of abstraction is required for the capacity of Huge Silicon

Abstraction of design is one of the most efficient strategies to control the

complexity and to improve the performance of the design.

3. The productivity of designs is improved by the reuse of behavioral IP

Behavioral synthesis has reduced the line-count in design parameters and at the

same time, has the extra value of enabling an effective reuse of intellectual

properties (IPs). Unlike RTL IP that has both well-defined interface protocols and

micro-architecture, behavioral IP can be replaced by various implementing

technologies and/or system requirements.

4. Acceptance of high-level requirements is driven by verification

Transaction-level modeling (TLM) with C or C++ seems to be a common method

for system-level verifications.

An increasing amount of FPGA and ASIC models and designs are being

developed via HLS tools. This happens for two main reasons, which are listed as follows:

1. Less formal verification pressure is required when using HLS tools than in normal

integrated circuits.

2. HLS tools are ideal for synthesis based on platforms as they help in achieving a

higher quality of results (QoR).

Compilers for languages of high-level have had great success in practice since

back to 1950s. The concept of automatic generation from high-level behavioral

20

requirements of circuit implementations rises inevitably with the growing complexity of

integrated circuits (ICs) designs. Around the 1980s, the first efforts on HLS mostly

consisted in research projects, where several tools were designed to attract attention to the

technique and to try and work with different algorithms. However, almost all those tools

made fairly simple predictions about the targeted platform and were not commonly used.

Early marketing campaigns in the 1990s attracted significant interest among designers, but

they struggled to achieve widespread acceptance due to low QoRs. Later HLS efforts have

strengthened the use of it by increasing coverage of the input language and incorporation

of the platform, as well as enhancing QoRs.

After 2000, both industry and academia have built a new generation of HLS

tools (Cong, et al., 2011). Almost all these HLS tools concentrate on using C or C++

languages for design intent capturing. Compared to previous tools which recognize only

HDL languages, the use of C or C++ languages makes the designers of algorithms and

systems more open HLS tools. However, due to the fact that the C and C++ languages have

complicated structures, like pointers and dynamic memory, that contribute to difficulty in

synthesis, there have been continuous discussions on whether they are the best choice for

HLS.

3.3. Methodology of HLS

HLS, usually referred to as behavioral synthesis, automatically compiles a high-

level description of a design into a Register Transfer Level (RTL) implementation which

matches several design constraints defined by the user. In comparison to RTL, the

definition of HLS design is ‘high level’ in two aspects: design abstraction and specification

language (Sun, Wang, Yin, Cavallaro, & Ly, 2012):

1. High level of abstraction

The input of HLS is usually a design specification of the data flow. This level is

higher than RTL since it gives the HLS tools the freedom to determine which tasks

21

to complete in each cycle of the clock and does not define one exact behavior at a

cycle.

2. High level of specification language:

The input of HLS is defined in languages such as C, C++, Java, Python or Matlab,

allowing so the use of advanced data structures such as loops, arrays, classes,

inheritance, overloading, polymorphism and so on. RTL, on the other hand, is

represented by description languages.

RTL models produced by HLS are generally not human-readable. Despite this

fact, there is a collection of reports provided by HLS tools that express in a quantitative

way the predicted performance, timing and use of resources of RTL design. These reports

are critical, and sometimes the only evidence in which designers are based on to change

models and designs to produce more favorable results (Dai, et al., 2018).

3.3.1. Objectives of HLS

HLS’s goal is not only to execute the description of the input, but also to discover

parallelism from it and create a faster and cheaper small (micro) architecture. The micro

architecture includes a datapath which is pipelined, as well as a description of the way data

is processed through the datapath.

The HLS’s output might consist of (Sun, Wang, Yin, Cavallaro, & Ly, 2012):

1. Implementation of RTL

It contains the RTL netlist that includes the datapath, I/O, host and memory

interfaces, the control logic and the libraries, scripts and synthesis constraints that

are needed to synthesize the netlist of RTL.

2. Feedback of the analysis

It contains GUI and performance bottleneck reports, high-level mapping of the

source code to RTL, costs of hardware and so on. The aim is to help users in

understanding and improving the micro architectures.

22

3. Artifacts verification

It contains simulations on the reference model (test bench) to encourage users build

and debug high-level language tests and use them again to verify RTL.

3.3.2. Constraints of HLS

There are some limitations/constraints which are user-specified, that help HLS

create the wanted micro architecture. These limitations include (Sun, Wang, Yin,

Cavallaro, & Ly, 2012):

1. Target hardware

It contains all the tools that the design is developed for, such as the platform,

frequency of the clock and the library of the technology. This information is used

by the HLS to predict the timing of the sub-cycle and the datapath costs.

2. Constraints on performance

These limitations consist of sampling rate of the input, production rate of the output,

latency from input to output, intervals for loop initiation and latency of loops.

3. Memory architecture

It defines how memory and its interfaces are mapped to multi-dimensional arrays,

enabling HLS to build micro architectures that consist of multi-bank, multi-port

and memories: internal and external.

4. Constraints on interface

This contains the necessary logic to develop ports, protocols and handshake process

on every host, input, output, and external memory interface. HLS produces the

elements mentioned above in the netlist of RTL. This way, it is easily combined

with different hardware components.

5. Hierarchy of the design

23

It helps to divide a design by implementing the concept of hierarchy in the

description of the high-level input. This way, HLS can handle the complexity of

the design by divide-and-conquer.

3.3.3. Benefits of HLS

To identify the ideal micro architecture behind a range of constraints, HLS is

designed to explore through various algorithms and architectures. The key benefits of HLS

arise from its use of languages of high abstraction and high specification level (Sun, Wang,

Yin, Cavallaro, & Ly, 2012):

I. The advantages of modeling/designing at a high abstraction level:

a. Authorizes focus to design essential features. Easy to explore other

architectures.

b. Easy to assess changes or modifications on algorithms.

c. Easy to create the interfaces of memory, I/O and host, and the logic behind

the pipeline and handshake.

d. Easy to retarget constraints or performance of various hardware from the

same description of the input.

II. The advantages of confirming at a high abstraction level:

a. Easy to debug and test input definition features.

b. Rapid simulation and available for free.

c. Test suite can be reused to verify the RTL.

d. Easy to obtain the coverage of the code.

III. The advantages of high-level specification language:

a. Reuse of the existing code for confirmation and for design.

b. The possibility to use different tools to develop software (such as Visual

Studio).

c. Offers various features of the advanced language, such as polymorphism.

The main benefits that HLS provides are listed as follow (XILINX, 2020):

1. Greater efficiency for hardware designers

24

Designers of hardware components can work on higher abstraction levels focusing

on achieving a hardware high-performance.

2. Greater system efficiency for software designers

Designers of software can optimize their algorithms’ intensive parts on FPGAs.

3.4. HLS for FPGAs

FPGAs can generate circuits which have millions of memory units only for

computing. The architecture of FPGA is adaptable, allowing greater optimizations for

improved throughput. FPGAs consume less power and are considered efficient for

embedded applications. The difficult part for FPGA architectures is implementing ML

systems that are written in languages of higher level, like Python. HDL is not a platform

on which to program; it is simply code to describe components of hardware like registers

and counters. The main problem that arises is the lack of a direct translation from a high-

level language to HDL.

An option to “fix” the issue of programming is by using HLS tools to build and

develop programs for deployment in HDL. HLS tools permit the designers to use high-

level languages instead of writing HDL code. So, HLS offers the ability to transform the

descriptions of untimed software into optimized hardware designs that are cycle-accurate.

As a result, it was identified as an important way to enhance the hardware design

productivity. Through HLS, designers do not need to continuously deal with the details of

low-level hardware description language (HDL) anymore. Instead, they can concentrate on

choosing the best tradeoff between algorithm and microarchitecture from a single source

of software design.

A significant distinction between the HLS tools of the current generation and

their predecessors is that several tools are developed aiming FPGA implementation. In

recent times, FPGAs have had a continuous improvement in speed and capacity, making

25

them an excellent platform for signal processing and communication applications. For this

reason, several HLS tools are explicitly designed for FPGAs.

HLS tools’ role in FPGA is presented in Figure 9. They translate the code written

in a high-level language such as C, C++ or SystemC into HDL code. HDL code allows the

RTL synthesis into a digital circuit, to finally deploy it on an FPGA.

Figure 9. The role of HLS in FPGA systems

3.4.1. HLS Phases

The High-Level Synthesis process consists of three main phases (XILINX,

2020):

1. Scheduling

This step decides the operations that will happen during every clock cycle relying

on three components:

- Clock cycle length

- The needed time for completing an operation

26

- Optimization instructions specified by the users

For a longer duration of the clock, more operations are performed within a clock

cycle and all operations could be performed in one clock cycle. On the other hand,

for shorter durations of the clock, more clock cycles are required to perform all the

operations. In other words, the high-level synthesis makes an automatic schedule

for the operations to complete.

2. Binding

The binding phase specifies the hardware resources that will implement every

scheduled operation.

3. Extraction of control logic

This phase makes the extraction of the control logic in order to construct a finite

state machine (FSM) which will sequence each operation in RTL.

3.4.2. Synthesis of C code

The way in which HLS makes the C code synthesis is described as follows

(XILINX, 2020):

- Synthetizing function arguments of highest level into RTL input/output ports

- Synthetizing C functions into blocks to fit in the hierarchy of RTL

For C codes that contain a sub-functions hierarchy, the resulting RTL

architecture will include a hierarchical structure of models and entities which

will have a one-to-one relationship with the initial hierarchy of C functions.

- Keeping as rolled by default the loops in the C functions

Once the loops are rolled, the logic for one loop iteration is generated by the

synthesis process and the design of RTL uses this logic for all other iterations.

Loops can also be unrolled with the use of optimization directives that will

allow a parallel execution of all iterations. Also, loops may be pipelined by

implementing a finite state machine.

27

- Synthetizing the C code arrays into RAM blocks for the final design of FPGA

Arrays which are on the interface of the top-level, are implemented as access

ports to RAM blocks that are located outside the design.

Depending on the defined default actions, constraints and optimizing directives,

HLS generates an efficient implementation. Optimizing directives may be used in order to

change and manage the default actions of the inner input/output ports and inner logic. This

helps in the generation on different variants of the hardware architecture using a single C

code.

To decide if the proposed architecture satisfies all the criteria, the HLS

performance metrics may be obtained in the form of a synthesis report (XILINX, 2020).

This report includes details for the metrics of performance that are listed as follows:

- Area: represents the quantity of hardware tools which are needed for

implementing the design depending on the provided resources in FPGA.

- Latency: represents the amount of clock cycles needed for each value in the

output to be calculated by the function.

- Initiation Interval (II): represents the total amount of clock cycles until the

operation could allow new incoming input.

- Loop iteration latency: represents the total amount of clock cycles required for

the completion of a loop iteration.

- Loop initiation interval: represents the total amount of clock cycles until the

following loop iteration begins the data-processing.

- Loop latency: represents the total amount of clock cycles needed for executing

all loop iterations.

3.5. The concept of hls4ml package

hls4ml is a software package to create HLS implementations of neural networks.

The purpose of hls4ml package is to make an easy and accurate translation for machine

28

learning designs. In other words, hls4ml package is responsible for automatically

converting a trained neural network into HLS code. The generated HLS design can either

be used to develop an IP that can be inserted into more complicated structures, or can be

used to build a kernel for CPU co-processing (Duarte, et al., 2018). Figure 10 illustrates a

scheme of a typical workflow.

The section of the workflow evidenced in red shows the workflow of the regular

software that is needed for a particular task to build a neural network. Before setting up a

final model, this normal workflow includes a training phase and potential compression

steps with tools like Keras and PyTorch. The blue part of the workflow represents the

hls4ml section that transforms a design into HLS code which can later be run on an FPGA.

Figure 10. hls4ml workflow for translating a model into a FPGA implementation

At a higher level, the algorithm of FPGA design is unique from CPU

programming, allowing individual operations to run in full parallel. This way, FPGAs can

complete billions of instructions per second at lower power cost respective to CPUs and

GPUs. But such operations use devoted resources and therefore they cannot be remapped

in a dynamic way while running. The aim in designing an optimized implementation on

FPGA is to balance the use of FPGA resources with reaching the desired algorithm’s

latency and throughput objectives. Important metrics for implementing FPGA include

(Duarte, et al., 2018):

29

1. Latency: the overall time represented in units of “clocks” that is necessary

to complete a particular iteration of the algorithm.

2. Initiation interval: often referred to as “II”, expresses the amount of clock

cycles needed before a new input is accepted by the algorithm. The initiation interval and

the inference rate are inversely proportional of each other. As a result, input can be

pipelined into the algorithm with a frequency of the initiation interval.

3. Resource usage: categories of FPGA resources are as follow: memory of

onboard FPGA (BRAM), blocks of digital signal processing (arithmetic DSPs), registers

and programmable logic (flip-flops and lookup tables).

The hls4ml tool consists of a variety of parameters that are configurable and

might help users to discover and optimize their applications’ latency space, initiation

interval and usage of resources. The aim of hls4ml package is to enable the user to achieve

this optimization via the FPGA design iteration and the translation of neural networks.

Practically, the time needed to accomplish the translation of neural networks via hls4ml is

reduced compared to the necessary time to develop a particular neural network model on

an FPGA. At the same time, it can be used to quickly test machine learning (ML)

algorithms lacking the need for dedicated support for the implementation of FPGA.

First, some terms and principles for deep and completely connected neural

networks are introduced. In Figure 11 it is shown a neural network which has M layers.

Each layer m has Nm neurons.

The input layer has N1 input neurons and the output layer has NM output neurons.

The values of the output neurons vector are defined by xm on each layer. For the mth layer

which is fully connected (m > 1) (Duarte, et al., 2018),

 𝑥𝑚 =⁡𝑔𝑚⁡(𝑾𝑚,𝑚−1⁡𝒙𝑚−1 +⁡𝒃𝑚) (Equation 2)

where 𝑾𝑚,𝑚−1 represents the weights matrix among layer m and layer m-1 of dimensions

Nm × Nm-1, 𝒃𝑚 represent the bias values and 𝑔𝑚 represents the function of activation for

layer m. Nm × Nm-1 multiplications are required to calculate the values of layer m neurons.

30

Figure 11. A visual representation of a deep neural network

In hls4ml, each layer xm is calculated in an independent and sequent way.

Following its initiation interval, the inference pipelined and allows a new set of data as its

input. The overall number of multiplications that a certain neural network requires to infer

is:

 𝑁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =⁡∑ 𝑁𝑚−1 ×⁡𝑁𝑚
𝑀
𝑚−1 (Equation 3)

For a number of input values, activation functions that are non-trivial like

hyperbolic tangent, sigmoid and softmax are precomputed and stored in BRAMs (Duarte,

et al., 2018). The activation function of ReLU is applied in programmable logic. For any

specified task, the impact of neural networks focuses on latency, throughput and usage of

resource.

31

3.6. Vivado HLS

Vivado HLS (VHLS) is among the most known compilers for high-level

synthesis. Produced by Xilinx Inc., it allows the designers to use features of high-level

programming languages (even OO programming), to write the wanted codes. VHLS

instantly converts the codes into languages of low level of abstraction, that describe

features like registers, counters or state machines. The compilation process is usually

affected by the use of scripted compiler instructions, which are nothing but VHLS

explicitly interpreted meta-instructions. By default, the instructions are programmed to be

completed simultaneously and fast. The role of Vivado HLS is shown in Figure 12.

Figure 12. The “role” of Vivado HLS tool in the Synthesis process

32

CHAPTER 4

LITERATURE REVIEW

This chapter summarizes the literature review regarding to CNN implementation

on FPGA architectures with the use of HLS. Several papers and articles have been studied,

and the main ideas and results for the work done so far are included.

4.1. Methodology

The methodology used to conduct this master thesis is the review methodology.

Several papers and articles are studied in order to develop a better understanding on High-

Level Synthesis implementation on FPGA architectures for machine learning algorithms,

especially for neural networks.

4.2. Related work

This section presents a description on the most recent work done for the CNN

implementation on FPGAs.

The usage of AutoESL’s AutoPilot HLS tool coupled with domain-specific

system-level implementation developed by Xilinx is presented by (Cong, et al., 2011). The

aim was to demonstrate the effectiveness of C-to-HLS synthesis solutions targeting

multiple application domains. An experiment on a sphere decoder is done and the results

show that the HLS solution can achieve 11-31% reduction in FPGA resource usage with

improved design productivity compared to hand-coded design.

A model is designed by Microsoft for the CNN acceleration using many cards

of FPGAs by (Ovtcharoc, et al., 2016). This design employs a controller of the highest

33

level to monitor the data flow with the use of a memory adapter. It contains several buffers

for input data, one buffer for weighting the kernel, a huge collection of arrays of processing

elements (PEA) and a section for redistributing the data. By using a DMA channel, it inserts

the information from the PC storage into the buffers. The PEA blocks are used for

calculating the dot product between the values of source buffer and the values of the weight

buffer. The output of the dot product calculation is stored in the following input buffer. A

schematic view of this model is given in Figure 12, whose main features are: (1) a software

machine that can be customized, which at runtime could accept different layer

configurations, (2) an effective mechanism which buffers data and a network for on-chip

re-distributing, which reduces transmission traffic to off-chip storage, (3) a collection of

processing elements (PEs) which are spatially spread and could be quickly scaled up to

millions of units. This CNN accelerator can accept an image as input and process several

layers of convolution, which are then transmitted to each PE array. In the end, the collected

results are delivered to a dedicated NoC (network on chip), whose job is to redistribute the

outcomes towards the input buffers for the following stage.

34

Figure 13. Design of the high-level of the CNN Accelerator

The model implemented by Microsoft is studied further by (Gschwend, 2020),

by developing ZynqNet, which aims to make it operate for the training and the inference

stages. ZynqNet is designed for SoC structures and not for server solutions and it contains

two important elements: ZynqNet CNN, which is a strongly efficient and adapted CNN

topology, and ZynqNet FPGA Accelerator, which is a design based on FPGA architecture

used to evaluate the ZynqNet CNN. Even though the suggested approach tends to have

some constraints because of a solely implementation via Cbased HLS, it appears to be

optimistic. To handle the input data, the model utilizes a CLB (Circular Line Buffer), and

to obtain data via the central memory, it utilizes an interface which is memory-mapped.

Two key accelerating techniques are introduced by (Hassan & Mostafa, 2020):

(1) parallelism of layer resources and (2) pipelining within some layers. The

implementation of CNN is done using the Xilinx SDSoC framework which includes the

FPGA and the processor on a single board. The approach presented in this report aims to

35

reach a satisfying balance between the area, the speed and the design time, which is

achieved.

A Long Short-Term Memory (LSTM) network targeting FPGA is implemented

by (Rao, 2020). A LSTM model is first translated to HLS code, which is then given as

input to an HLS tool to obtain reports and analyze the overall latency and resources

required by this model. The LSTM model was successfully implemented, and further

verification steps were taken. The first verification involved the verification between the

KERAS LSTM model versus the HLS model generated by the framework. The second

verification was performed by the HLS tool – Vivado HLS, that confirmed the model

functionality between HLS and RTL.

A generic CNN accelerator for SoC is introduced by (Bjerge, Schougaard, &

Larsen, 2020), who aimed an accelerated inference for various DL networks on a SoC

structure. The given accelerator provides a flexible architecture that includes the HLS

implementation via SystemC. It is capable of accelerating any Python-exported CNN and

encourages a mixture of the CNN layers (convolutional, max-pooling and fully-connected).

The approach was tested on a Xilinx Ultra96 frame and the used CNN is VGG16. In

comparison with previous models, the outcome provided by this accelerator provided high

precision during the training process. The inference was performed in 2 seconds while

consuming an average amount of power, equal to 2.63W.

Machine learning models are implemented on HLS by (Dai, Zhang, Ustun,

Young, & Zhang, 2018). In addition to Figure 9, Figure 13 shows the FPGA tool flow with

HLS and the ML models proposed in this article. Experiments have proved that ML models

can be trained to enable fast and accurate resource and timing estimations for HLS designs.

They have also demonstrated that the proposed approach is able to dramatically reduce the

estimation errors for different FPGA devices.

36

Figure 14. FPGA tool flow with HLS and the proposed ML models

The hls4ml software package is introduced and developed by (Duarte, et al.,

2018), which is used to build machine learning models in FPGAs. They present a case

study for NN inference in FPGAs focusing on a classifier for jet substructure. The results

from this implementation have shown that the use of HLS increases accessibility across a

broad user community and allows for a drastic decrease in firmware development time.

The overall aim of this study is for hls4ml to be a general tool for translating many types

of neural network architectures.

37

CHAPTER 5

CONCLUSIONS

This chapter summarizes the conclusions of the master thesis.

5.1. Conclusions

This thesis starts with detailed description on convolutional neural networks, as

well as high-level synthesis process a review. Later, it focuses on the previous work done

on the CNNs implementation on FPGAs using HLS

Throughout this work, it is seen that FPGAs have many favorable

characteristics, which make them the most promising architectures for accelerating CNNs

hardware, like good performance and low power consumption at a reasonable cost. Their

highly efficient and flexible architecture enables managing various computing algorithms

by the same time they try to accommodate the device’s memory resources.

HLS has proven to be a great tool for writing code in high-level languages,

avoiding so the hardware-description languages, which are significantly difficult to write

for complex schemes. HLS tools translate the code written in a high-level language such

as C, C++ or SystemC into HDL code. As a result, a significant distinction between the

HLS tools of the current generation and their predecessors is that several tools are

developed aiming FPGA implementation. In recent times, research has shown that FPGAs

have had a continuous improvement in speed and capacity, making them an excellent

platform for signal processing, communication applications and CNN implementation.

38

REFERENCES

[1] Bjerge, K., Schougaard, J., & Larsen, D. E. (2020). A generic and efficient

convolutional neural network accelerator using HLS for a system on chip design.

Aarhus: Aarhus University.

[2] Chen, Y.-H., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss: An Energy-

Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks.

IEEE Journal of Solid-State Circuits.

[3] Cong, J., Liu, B., Neuendorffer, S., Nouguera, J., Vissers, K., & Zhang, Z. (2011).

High-Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 473-

491.

[4] Dai, S., Zhang, Y., Ustun, E., Young, E. F., & Zhang, Z. (2018). Fast and Accurate

Estimation of Quality of Results in High-Level Synthesis with Machine Learning.

26th Annual International Symposium on Field-Programmable Custom Computing

Machines. IEEE.

[5] Dai, S., Zhou, Y., Zhang, H., Ustun, E., Young, E. F., & Zhang, Z. (2018). Fast and

Accurate Estimation of Quality of Results in High-Level Synthesis with Machine

Learning. IEEE 26th Annual International Symposium on Field-Programmable

Custom Computing Machines (pp. 129-132). IEEE Computer Society.

[6] Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., . . . Wu, Z.

(2018). Fast inference of deep neural neetworks in FPGAs for particle physics. IOP

Publishing for Sissa Medialab.

[7] Gschwend, D. (2020). ZynqNet: An FPGA-Accelerated Embedded Convolutional

Neural Network. Zurich: Swiss Federal Institute of technology Zurich.

[8] Hassan, R. O., & Mostafa, H. (2020). Implementation of deep neural networks on

FPGA-CPU platform using Xlinx SDSOC. Analog Integrated Circuits and Signal

Processing.

39

[9] Majumder, K., & Bondhugula, U. (2019). A Flexible FPGA Accelerator for

Convolutional Neural Networks. Cornell University.

[10] McFarland, M. C., Parker, A. C., & Camposano, R. (1998). Tutorial on High-Level

Synthesis. Proeedings of the 25th ACM/IEEE Design Automation Conference (pp.

330-360). IEEE.

[11] Ovtcharoc, K., Ruwase, O., Kim, J.-Y., Fowers, J., Strauss, K., & Chung, E. S.

(2016). Accelerating Deep Convolutional Neural Networks Using Specializd

Hardware. Microsoft.

[12] Rao, R. (2020). Implementation of long Short-Term memory Neural Networks in

High-Level Synthesis targetting FPGAs. University of Washington (Master of

Science in Electrical and Computer Engineering).

[13] Sun, Y., Wang, G., Yin, B., Cavallaro, J. R., & Ly, T. (2012). High-Level Design

Tools for Complex DSP Applications. In R. Oshana, DSP for Embedded and Real-

Time Systems (pp. 133-155). Elsevier.

[14] Tagliaferri, L. (2017). An Introduction to Machine Learning.

[15] XILINX. (2020). High Level Synthesis. In XILINX, Vivado Design Suite User

Guide (pp. 5-7).

[16] Yamashita, R., Nishio, M., Do, R. K., & Togashi, K. (2018). Convolutional Neural

Networks: an overview and application in radiology. Springer.

40

APPENDIX

The machine learning algorithms are usually developed in Python. This is the main reason

that the hls4ml tool was developed: to convert the Python codes into HLS projects in C,

C++ or SystemC.

Supposing that Python is already installed in the PC: to use the hls4ml tool, it is required

to install it by the command pip install hls4ml through the command prompt. To be

able to use this package, it is needed to import it in the project through the import hls4ml

command.

Dependencies

Needed tools Aim Source

numpy, h5py For the translation of

Keras model files
http://www.numpy.org
http://www.h5py.org

pyyaml For configuration file

parsing
https://pypi.python.org/pypi/PyYAML

PyTorch For reading in Torch

models
https://pytorch.org/

scikit-learn For BDT architectures,

includes dependencies

on numpy etc

https://scikit-learn.org

onnx https://github.com/onnx/onnx

Xilinx
Vivado HLS

For converting the HLS

project into HDL code,

to be them implemented

on FPGA architectures

https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html

Further information can be found at http://fastmachinelearning.org/hls4ml/

http://www.numpy.org/
http://www.h5py.org/
https://pypi.python.org/pypi/PyYAML
https://pytorch.org/
https://scikit-learn.org/
https://github.com/onnx/onnx
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://fastmachinelearning.org/hls4ml/

41

Vivado HLS

The minimum system memory recommendations for the Vivado Design Suite can be found

on the link: https://www.xilinx.com/products/design-tools/vivado/memory.html

32-bit machines are not suitable for Xilinx devices.

https://www.xilinx.com/products/design-tools/vivado/memory.html

	Pages from PDFen
	Master Thesis (1)

