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ABSTRACT 

A REVIEW STUDY ON THE USE OF HIGH-LEVEL SYNTHESIS FOR 

IMPLEMENTING DEEP LEARNING ALGORITHMS IN FPGAs 

 

Ruçi, Danjela 

M.Sc. Department of Computer Engineering 

Supervisor: Dr. Julian Hoxha 

 

Because of the high precision that they offer, CNNs represent a very important model for 

systems that do image identification. However, such a task has high costs. For this reason, 

the current goal is to implement designs that are fast, but at the same time not costly. GPUs 

are an alternative, but they do not offer the best solution due to their large power 

consumption. FPGAs on the other hand, suit more with CNNs systems because they 

consume less energy and have a flexible structure. The difficult part for FPGA 

architectures is implementing CNN systems using HDL, which is not a platform on which 

to program; it is simply hardware-level code to describe components of hardware like 

registers and counters. With HLS, designers are now capable of using high-level languages 

like C or C++ to implement CNNs into FPGAs, because HLS “translates” or synthesizes 

the codes written in high-level languages into hardware-level code or RTL parameters. 

This thesis represents a review on the previous work done on the CNNs implementation 

on FPGAs using HLS and summarize the results obtained.  

  

Keywords: Convolutional Neural Networks (CNNs), FPGA, High-Level Synthesis,  

                    Hardware Description Language, power consumption 
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ABSTRAKTI 

NJË STUDIM TEORIK MBI PËRDORIMIN E SINTEZËS SË NIVELIT 

TË LARTË PËR ALGORITMET DEEP LEARNING NË FPGA 

 

Ruçi, Danjela 

Master Shkencor, Departamenti i Inxhinierisë Kompjuterike 

Udhëheqësi: Dr. Julian Hoxha 

Për shkak të saktësisë së lartë që ofrojnë, rrjetet neurale CNN përfaqësojnë një model 

shumë të rëndësishëm për sistemet që identifikojnë dhe klasifikojnë imazhe. Sidoqoftë, 

një detyrë e tillë ka kosto të larta. Për këtë aryse, qëllimi kryesor aktual lidhet me 

implementimin e modeleve që ofrojnë shpejtësi të lartë dhe kosto të ulët. Procesorët GPU 

janë një alternivë e mirë kundrejt këtyre kërkesave, por ato nuk ofrojnë zgjidhjen më të 

mire të mundshme për shkak të konsumit të lartë të energjisë. Nga ana tjetër, modulet 

FPGA përshtaten më së miri me rrjetet CNN sepse konsumojnë më pak energji se 

procesorët GPU dhe kanë një arkitekturë fleksibël. Vështirësia për dizenjuesit e moduleve 

FPGA është përdorimi i gjuhës HDL për implementimin e rrjeteve CNN. HDL nuk është 

një platformë mbi të cilën mund të programohet; ajo përfaqëson kod të nivelit hardware 

për të përshkruar komponentët hardware-ikë, siç janë regjistrat. Sinteza e nivelit të lartë 

(HLS) mundëson përdorimin e gjuhëve të nivelit të lartë, siç është gjuha C apo C++, për 

të implementuar rrjetet CNN në FPGA, pasi është HLS ajo që kujdeset për konvertimin e 

kodit të shkruar në gjuhë të nivelit të lartë, në kod të nivelit hardware. Ky punim 

përfaqëson një përmbledhje të punës që është studiuar dhe zhvilluar deri tani për 

implementimin e rrjeteve CNN në FPGA duke përdorur HLS.  

 

Fjalë kyçe: rrjetet neurale (CNN), FPGA, sinteza e nivelit të lartë (HLS), gjuhë 

                      përshkruese hardware-ike (HDL), konsumim i energjisë 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Introduction 

In the past decades, deep learning (DL) has demonstrated its effectiveness and 

efficacy in resolving several problems related to real-world issues. The reason why DL is 

so useful and needed is related to its possibility to automatically adjust itself to new 

circumstances, as well as learn and improve itself. Convolutional neural networks (CNNs) 

are considered to be the state-of-the-art for DL algorithms.  

Nowadays, CNNs are being used in numerous fields for several actions, like 

classifying images or identifying and recognizing objects. CNN approaches usually operate 

on a cloud server. Nevertheless, there exists a need for introducing CNNs to embedded 

systems, due to IoT emerging each day more. Such a task is particularly required for 

systems that collect huge amounts of data in real time. While CNNs are continuously being 

implemented to complex challenges, there are some difficulties regarding to low 

performance, latency and power consumption that are present on integrated systems that 

have CPUs or GPUs.  

GPU architectures, due to their good performance and memory space, are 

considered as one of the most efficient tools in terms of the improvement of CNNs 

processes like training and classification. Still, their power consumption, which is a crucial 

metric for evaluating the throughput, is large. ASIC architectures on the other hand, have 

reached better performance consuming less power, but the time and costs needed for 

implementing them is high (Chen, Krishna, Emer, & Sze, 2016).  

FPGAs have many favorable characteristics, which make them the most 

promising architectures for accelerating CNNs hardware, like good performance and low 

power consumption at a reasonable cost. Their highly efficient and flexible architecture 

enables managing various computing algorithms by the same time they try to accommodate 
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the device’s memory resources. FPGAs are programmable modules which, in terms of 

efficiency, provide countless benefits. They also have characteristics like high velocity and 

low power consumption, that make them a good option for machine learning applications. 

While NNs are being transformed to reach out to more industries, it is helpful to have the 

flexibility that FPGAs offer. CNNs require high computational techniques and FPGAs 

offer a reasonable compromise between three parameters: cost efficiency, performance and 

power efficiency. FPGAs are also beneficial as large quantities of computing are being 

moved to Cloud, since FPGAs can be modified to different requirements users have 

FPGAs provide better performance compared to CPUs. Regarding to power 

consumption, FPGAs offer higher efficiency in comparison with both CPUs and GPUs. 

However, the long time required for designing have restricted the utilization of FPGAs. 

Lately, the HLS tools have provided an automatic “translation” from high-level languages, 

like C or C++, into hardware description languages (HDL).  

 

 

1.2. Aim of the study 

For computers, image comprehension is a hard action. However, the task of 

image classification has a great importance on several applications for systems used almost 

every day, like security or medical field. Over the last several years, great improvement 

has been achieved in this field. Nowadays, CNNs provide the most successful solution to 

image understanding and classification.  

Numerous systems have been proposed for achieving CNNs implementations 

that have effective performance. While CNNs require high computational techniques, 

FPGAs offer a reasonable compromise between three parameters: cost efficiency, 

performance and power efficiency.  

The aim of this study is to develop a better understanding on the High-Level 

Synthesis implementation on FPGA architectures for Convolutional Neural Networks. 

Hardware description languages (HDL), like Verilog and VHDL, are an option for 

realizing this implementation, but coding for complex NNs is extremely complicated since 
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they are at a low abstraction level. Fortunately, the use of High-Level Synthesis simplifies 

all this process.  

 

 

1.3. Thesis Organization 

This master thesis is organized in five chapters. 

In the first chapter, a brief introduction and the aim of the study is given. 

In the second chapter, it is given a theoretical background on machine learning, 

deep learning, neural networks as well as a detailed description on convolutional 

neural networks. FPGA architecture is also described. 

In the third chapter, it is documented a detailed introduction on High-Level 

Synthesis and a description of the hls4ml package. 

In the fourth chapter, the literature review related to this work is given. 

In the fifth chapter, there are given conclusions and future work. 
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CHAPTER 2 

INTRODUCTION TO MACHINE LEARNING AND DEEP 

LEARNING 

In this chapter is given a brief overview of machine learning and deep learning, 

as well as a description on Neural Networks. A detailed explanation on Convolutional 

Neural Networks is also included, followed by a paragraph that describes the FPGA 

architecture. Lastly, some reasons why FPGA technology is ideal for Neural Network 

implementations are listed. 

 

 

2.1.  Machine Learning Background 

Machine learning (ML) is an artificial intelligence (AI) technology which allows 

different machines to implicitly learn and develop from experience without being 

programmed. ML is focused on the creation and development of programs which access 

content and information with the aim of learning for themselves. In other words, the general 

goal of ML is to recognize the data structure and integrate it into models that people can 

understand and use.  

Even though ML is a branch of computer science, it is different from traditional 

existing techniques for computing. Algorithms used in traditional computing are 

collections of coded instructions that computers use for calculating or solving problems. 

Machine learning algorithms on the other hand are designed to permit computers to analyze 

input data and utilize statistical analysis to generate results which are within a particular 

range. Therefore, ML allows computers and machines to build structures through sample 

data so that processes like decision-making are done automatically based on input data.  

Machine learning is a field which is evolving constantly. It has helped almost 

every user of technology nowadays. The technology of facial recognition makes social 
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media sites help users tag or share friends’ images. The technology of optical character 

recognition (OCR) transforms text images into movable forms. Based on users’ interests 

and using ML algorithms, recommendation mechanisms suggest what shows or movies to 

watch next.  

 

2.1.1. Methods of Machine Learning  

Tasks in machine learning are usually divided into broad categories, which are 

based on the way how the learning process is obtained or how the system gets a feedback 

on the learning.  

Two of the most commonly accepted methods of machine learning are 

supervised learning, that “teaches” algorithms based on human-labeled sample data for 

input and output, and unsupervised learning, that does not “offer” labeled data to the 

algorithm to help it identify structure in the input data (Tagliaferri, 2017).   

1. Supervised Learning 

In this type of learning, example inputs which are marked with their ideal output, 

are introduced to the computer. The goal of this approach is to enable the algorithm 

to “learn” and adjust the model by making a comparison between the real output 

and the “taught” one. For this reason, supervised learning utilizes patterns on 

certain data that is unlabeled in order to predict label values. A typical scenario of 

supervised learning is the use of past data to foresee future events that are likely to 

happen: tagged images of dogs are used to identify untagged images of dogs.  

2. Unsupervised Learning 

In unsupervised learning, the algorithm is responsible for finding similarities 

between the input data. Unlabeled data is the ideal type of input for unsupervised 

learning. The aim of unsupervised learning is simple: finding hidden patterns within 

the same dataset and allowing the machine to explore the required representations 

for automatic data identification. Unsupervised learning is widely used in data 

transactions.  
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2.2.  Deep Learning  

Deep learning (DL) is an important method of ML that tries to imitate the way 

that human brains transform light and sound input into vision and hearing output. A deep 

learning model is similar to biological neural networks, which consist of many layers. In 

order to obtain data features, DL requires processing layers in cascade, where the output of 

one layer acts as input for the following one. Algorithms in DL are either supervised, which 

help to classify data, or unsupervised, which do pattern analysis.  

Deep learning algorithms collect the most data among all machine learning 

algorithms that are developed. They have also beaten humans in certain tasks regarding to 

cognitive tasks. Due to these features, DL is now a potential approach in the field of 

artificial intelligence.  

 

  

2.3. Neural Networks 

Neural networks (NN) could be considered as the human brain’s machine 

implementation. Similar to the way human brains are trained to learn, complete different 

tasks and produce things, like differentiating cats from dogs, neural networks can also 

“train” or learn and complete a task. In Figure 1 is shown a schematic representation of a 

neural network (Rao, 2020). 
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Figure 1. Schematic representation of a neural network 

 

2.3.1. Neural network components 

- Neurons: The spheres colored in green, blue and purple in Figure 1 represent 

the “neurons”. Their goal is to process data which is transmitted to the neural network. 

- Layers: There are at least three layers in a simple neural network: one input 

layer, one hidden layer and one output layer. More complex and deeper networks might 

have many hidden layers. 

- Weights and Biases: The weights are represented by the arrows shown in 

Figure 1. They define the relative proportion of the relation among neurons. The 

mathematical relation that exists between the input, weights, biases and activation 

functions within a neural network are shown in Equation 1. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠)   (Equation 1) 

where f is the activation function.  

- Activations: The activation functions consist of tanh, sigmoid, softmax and 

others. These functions help in maintaining the values in the neural network within a 

limited range. 



8 

 

a) Sigmoid activation function gives an output that varies from 0 to 1, for 

any given input (as shown in Figure 2). 

b) Tanh (hyperbolic tangent) activation function generates an output that 

has values from -1 to 1, for any given input. In comparison to the 

Sigmoid function, it has a steeper gradient (as shown in Figure 2). 

c) Softmax activation function, in case of a network model that is focused 

in classification, produces a probability distribution as output (as shown 

in Figure 3). 

 

Figure 2. Sigmoid and Tanh activation functions 

 

Figure 3. Softmax activation function 

 

2.3.2. Training and Inference 

One of the most effective approaches for neural network trainings is to provide 

it with a dataset, each input of which goes along with the expected output. For instance, a 

set of data that is composed of classified images of cats and dogs can be provided to a 
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network. The images of the dataset go from the input layer of the NN to the output layer of 

the NN, going via all the hidden layers. The value obtained in the output is compared to 

the expected value that has been made known to the network. An error that must be 

minimized to support the neural network foresee values as close as possible to the expected 

values, is calculated. It is of a great importance to emphasize that a NN is a mathematical 

model and the layers can communicate within only via numbers (Rao, 2020).  

A common algorithm used in training NN is the backpropagation algorithm. 

This algorithm calculates a cost function (error function) depending on the comparison 

between the expected output and the obtained output, which is then utilized to modify the 

weights and the biases so that, for a given input, the obtained output is similar to the 

expected output. The method of going back to adjust the weights and the biases is called 

backpropagation. Its aim is to minimize the error as much as possible. If the NN is trained, 

the algorithm’s prediction accuracy can be tested through the inference process. In the 

previous example, an unlabeled dog/cat image is given as input and it is tested the accuracy 

of output prediction. 

 

2.3.3. Types of Neural Networks 

There exist several categories of neural networks. Specific NNs deal with 

specific applications and operate with specific datasets. Many use images as inputs, 

whereas many others may choose a series of inputs. 

The types of NNs are: 

1. Deep Neural Networks (DNN), which have two or more hidden layers (more than 

1). 

2. Recurrent Neural Networks (RNN), which are helpful in context-relaying data 

prediction, like text generation. 

3. Convolutional Neural Networks (CNN), whose ideal inputs are images.  
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2.4.  Convolutional Neural Networks 

A convolutional neural network is a category of the deep learning design that is 

responsible for analyzing data with grid patterns, like image data.  

A CNN is a mathematical model which usually consists of three layer types: 

convolution layers, pooling layers and connected layers (Yamashita, Nishio, Do, & 

Togashi, 2018). The pooling and convolution layers are responsible for feature extractions, 

while connected layers are responsible for mapping the features extracted into a final 

output. The convolution layer has a crucial function in CNNs, which in fact consist of a 

stack of mathematical functions, like the convolution function, a specific linear operation.  

 

2.4.1. Architecture of CNNs 

As mentioned above, the architecture of CNN has many blocks: convolution 

layers, pooling layers and fully connected layers (Yamashita, Nishio, Do, & Togashi, 

2018). A standard CNN architecture is composed of many layers of convolution followed 

by a pooling layer, which are then followed by one or many fully connected layers, as 

presented in Figure 4. The phase in which the data input is converted into an output via 

these layers is named forward propagation. Based on forward propagation and a loss 

function, the performance of a design under specific kernels and weights is determined.   

 

Figure 4. A visual representation of CNN architecture building blocks 
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2.4.1.1. Convolution layer 

The convolution layer is a crucial element of the CNN architecture that extracts 

features, usually consisting of a combination of operations that might be linear 

(convolution operations) or nonlinear (activation function).  

- Convolution operation is used for extracting features, with the application of a 

kernel (which represents a small array of numbers) in the input (which represents a 

numbers’ array, called a tensor). An element-wise production is computed for each 

component of the kernel and the input tensor; and the value of the output is 

calculated as the sum of those products at the corresponding locations of the output 

tensor, known as a feature map. This process is illustrated in Figure 5 (Yamashita, 

Nishio, Do, & Togashi, 2018) and is redone with the use of multiple kernels to 

create an arbitrary amount of feature maps representing various input tensor 

characteristics, so that different kernels are seen as different extractors for the 

features.  
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Figure 5. An illustration of the convolution process 

There are two important hyperparameters that characterize the convolution process: 

the number of the kernels and their dimensions. The typical kernel size is 3 × 3, but 

it might also be 5 × 5 or 7 × 7. In the reported convolution operation, kernels’ 

centers do not overlap the outermost input tensor element. The dimensions of the 

feature map are reduced in contrast to the input tensor. Better result is received by 

applying the zero-padding technique (columns and rows with 0s are added around 

the input tensor), as illustrated in Figure 6.  
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Figure 6. Convolution operation using the zero-padding technique 

- Nonlinear activation function receives as input the output of the linear operation. 

The most used activation function is the ReLU (rectified linear unit). It calculates 

𝑓(𝑥) = max⁡(0, 𝑥) and is represented in Figure 7. Other activation functions are the 

sigmoid function and the hyperbolic tangent (tanh) function, which are shown in 

Figure 2. 

 

Figure 7. ReLU nonlinear activation function 

 

2.4.1.2. Pooling layer 

A pooling layer offers a standard subsampling procedure which decreases the 

dimensions of the feature maps, so that a translation invariance is added to minor shifts and 

the amount of corresponding trainable parameters is reduced.  
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The most common method of pooling processes is max pooling. Its job it to 

extract patches from the feature maps of the input in order to output the greatest value of 

each patch discarding other values. Figure 8 shows the process of max pooling. A widely 

used max pooling is the one with a filter of dimensions 2 × 2.  

 

Figure 8. An example illustration of max pooling  

 

2.4.1.3. Fully connected layer 

The output of the convolution and the pooling layer, which are represented by 

feature maps, are usually flattened and linked to at least one fully connected layer. In every 

fully connected layer, each input has a corresponding output, to which it is connected by a 

trainable weight. As soon as the convolution layers’ features are extracted and pooling 

layers’ features are produced, they map with the resulting outputs of the neural network. A 

nonlinear function (sigmoid, tanh or ReLU) follows every fully connected layer, except 

from the last layer: its activation function is softmax (shown in Figure 3) and is different 

from activation functions that follow all the other layers.  

 

2.4.1.4. Cost function 

A cost function is also known as a loss function and evaluates the accuracy 

among the neural network’s output predictions based on forward propagations. A widely 

used cost function is cross entropy.  
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2.4.1.5. Forward propagation and Backpropagation 

The forward propagation represents the prediction phase. After the input data is 

read and processed by the network, an output value is obtained. The mathematical 

operation behind this process is given through Equation 1.  

The backpropagation represents the training phase. In order to obtain a better 

performance, the network updates its parameters by making comparisons between the 

predictions or outputs of the network and the true values.  

 

 

2.5.  Field-Programmable Gate Arrays (FPGAs) 

FPGAs are electronic devices that consist of an array which has customizable 

logical blocks. These logic blocks are linked through programmable connectors, that 

consist of packets of wires which run among the logic pieces in a vertical and in a horizontal 

way. New FPGA versions provide thousands logical blocks that can be configured, and at 

the same time, they have an amount of hardened operational modules that permit specific 

operations to be implemented quickly and effectively (Gschwend, 2020).  

CNNs provide greater levels of accuracy compared to existing algorithms. 

However, they need enormous quantities of computing resources as well as memory access 

because of the huge amounts of parameters required by the convolution process. This leads 

to large power consumption and as a result, a computing obstacle for the CPUs (General 

Purpose Processors) (Hassan & Mostafa, 2020). As a consequence, hardware accelerators, 

like GPUs, FPGAs and ASICs, are being used in order to optimize the CNNs performance. 

 

2.5.1.   FPGAs over GPUs 

General-Purpose Processor (GPU) architectures, due to their good performance 

and memory space, are considered as one of the most efficient tools in terms of the 

improvement of CNNs processes like training and classification. Still, their power 

consumption, which is a crucial metric for evaluating the throughput, is large.  
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2.5.2.   FPGAs over ASICs 

ASIC architectures have reached better performance than GPUs consuming less 

power, but the time and costs needed for implementing them is still high (Chen, Krishna, 

Emer, & Sze, 2016).  

 

2.5.2.   FPGAs and Neural Networks 

FPGAs remain one of the most important technologies regarding to the CNN 

implementation since they offer a good performance and consume less power at a 

reasonable cost. Their highly efficient and flexible architecture enables managing various 

computing algorithms by the same time they try to accommodate the device’s memory 

resources. FPGAs are programmable modules which, in terms of efficiency, provide 

countless benefits. They also have characteristics like high velocity and low power 

consumption, that make them a good option for machine learning applications. While NNs 

are being transformed to reach out to more industries, it is helpful to have the flexibility 

that FPGAs offer.  

In the deep learning field, FPGAs are favored due to their task of inference. The 

training process helps a NN to determine the collection of weights and biases to best 

connect specific sets of inputs to their corresponding sets of outputs. The inference process 

is responsible for predicting an output based on the weights and biases, which are defined 

in the training process. While CNNs require high computational techniques, FPGAs offer 

a reasonable compromise between three parameters: cost efficiency, performance and 

power efficiency. FPGAs are also beneficial as large quantities of computing are being 

moved to Cloud, since FPGAs can be modified to different requirements users have 

(Majumder & Bondhugula, 2019). 

With so many advantages that the implementation of neural networks or 

machine learning algorithms on FPGAs has, a question arises: what is the best way to do 

this implementation? Hardware description languages (HDL), like Verilog and VHDL, are 

an option, but coding for complex NNs is extremely complicated since they are at a low 

abstraction level. Fortunately, the use of High-Level Synthesis simplifies all this process.   
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CHAPTER 3 

HIGH-LEVEL SYNTHESIS DESIGN 

In this chapter it is given a short paragraph on Synthesis, which is then followed 

by a theoretical background on the High-Level Synthesis basics and benefits. Later in 

the chapter is described the hls4ml package and what Xilinx offers. 

 

 

3.1. Introduction 

The synthesis is a task which specifies the required behavior of a system, as well 

as the collection of objectives and constraints to satisfy. By behavior we refer to the way 

that the system and its elements cooperate with the environment they are in. Synthesis can 

occur at different levels of abstraction since structures can be represented in different levels 

of detail. By structure we refer to the collection of the elements that are interconnected to 

create the whole system. (McFarland, Parker, & Camposano, 1998). To recognize a 

specific behavior, there can be used various structures. 

One of the main responsibilities that synthesis has, is to discover the structure 

that satisfies the best the constraints, such as power, cycle time limitations and area, while 

the other costs are significantly reduced. The aim might be, for example, to mitigate area 

while trying to attain the processing rate at its minimum. 

There are different types of synthesis, each of which operates at a different level 

on the design hierarchy. 
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3.2. High-Level Synthesis 

High-Level Synthesis (HLS) is an automated design process that will take an 

algorithmic definition as its input, so that it can construct the digital hardware that will 

implement the required function, (McFarland, Parker, & Camposano, 1998). For this 

reason, HLS is also called the algorithmic level of the design hierarchy. These algorithms 

are written in programming languages that are high-level languages. This level uses integer 

or/and bit strings and arrays as primary data types, rather than Boolean variables. The 

specifications of the input provide the necessary mappings from input sequences to output 

sequences.  

There has been a movement towards automated synthesis in recent years, which 

aims to place the automated synthesis into higher levels of the design hierarchy. There are 

some considerable improvements that the implementation of HLS offers: 

1. Shorter design cycle 

The more the design process is automated, the faster the company is able to reach 

the design’s market window. In addition, the automation of processes reduces costs 

significantly, as much of the chip’s cost is being developed during design. 

2. Less errors 

By the time that the synthesis process is validated as correct, the probability that 

the final design will respond to the initial specification is very high. For new chips, 

this means less errors and less time for debugging. 

3. Self-documentation of the design process 

A special feature of an automated system is that it keeps record of the decisions 

made and the reasons why, as well as the effects that those decisions had. 

 

3.2.1. Historical background on HLS 

HLS systems were first developed in the 1900s. The early generations of these 

systems resulted into a failure. However lately, due to the following reasons, we are seeing 

a progressively rising demand for innovative HLS solutions (Cong, et al., 2011):  
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1. Nearly every SoC seems to have embedded processors 

With the implementation of multiple micro-processors, memories and other units 

on a single chip, more and more software components are being included in the 

development of new embedded systems and devices. An automatic HLS flow helps 

designers to define the features of designs for embedded systems as well as SoC 

hardware logic in high-level languages, like C or C++. Thus, they can rapidly test 

various boundaries regarding hardware and software and explore trade-offs 

between area, power rand performance. 

2. A greater level of abstraction is required for the capacity of Huge Silicon 

Abstraction of design is one of the most efficient strategies to control the 

complexity and to improve the performance of the design.  

3. The productivity of designs is improved by the reuse of behavioral IP 

Behavioral synthesis has reduced the line-count in design parameters and at the 

same time, has the extra value of enabling an effective reuse of intellectual 

properties (IPs). Unlike RTL IP that has both well-defined interface protocols and 

micro-architecture, behavioral IP can be replaced by various implementing 

technologies and/or system requirements. 

4. Acceptance of high-level requirements is driven by verification 

Transaction-level modeling (TLM) with C or C++ seems to be a common method 

for system-level verifications. 

An increasing amount of FPGA and ASIC models and designs are being 

developed via HLS tools. This happens for two main reasons, which are listed as follows:  

1. Less formal verification pressure is required when using HLS tools than in normal 

integrated circuits. 

2. HLS tools are ideal for synthesis based on platforms as they help in achieving a 

higher quality of results (QoR).  

Compilers for languages of high-level have had great success in practice since 

back to 1950s. The concept of automatic generation from high-level behavioral 
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requirements of circuit implementations rises inevitably with the growing complexity of 

integrated circuits (ICs) designs. Around the 1980s, the first efforts on HLS mostly 

consisted in research projects, where several tools were designed to attract attention to the 

technique and to try and work with different algorithms. However, almost all those tools 

made fairly simple predictions about the targeted platform and were not commonly used. 

Early marketing campaigns in the 1990s attracted significant interest among designers, but 

they struggled to achieve widespread acceptance due to low QoRs. Later HLS efforts have 

strengthened the use of it by increasing coverage of the input language and incorporation 

of the platform, as well as enhancing QoRs.  

After 2000, both industry and academia have built a new generation of HLS 

tools (Cong, et al., 2011). Almost all these HLS tools concentrate on using C or C++ 

languages for design intent capturing. Compared to previous tools which recognize only 

HDL languages, the use of C or C++ languages makes the designers of algorithms and 

systems more open HLS tools. However, due to the fact that the C and C++ languages have 

complicated structures, like pointers and dynamic memory, that contribute to difficulty in 

synthesis, there have been continuous discussions on whether they are the best choice for 

HLS. 

 

 

3.3. Methodology of HLS 

HLS, usually referred to as behavioral synthesis, automatically compiles a high-

level description of a design into a Register Transfer Level (RTL) implementation which 

matches several design constraints defined by the user. In comparison to RTL, the 

definition of HLS design is ‘high level’ in two aspects: design abstraction and specification 

language (Sun, Wang, Yin, Cavallaro, & Ly, 2012): 

1. High level of abstraction 

The input of HLS is usually a design specification of the data flow. This level is 

higher than RTL since it gives the HLS tools the freedom to determine which tasks 



21 

 

to complete in each cycle of the clock and does not define one exact behavior at a 

cycle. 

2. High level of specification language:  

The input of HLS is defined in languages such as C, C++, Java, Python or Matlab, 

allowing so the use of advanced data structures such as loops, arrays, classes, 

inheritance, overloading, polymorphism and so on. RTL, on the other hand, is 

represented by description languages.  

RTL models produced by HLS are generally not human-readable. Despite this 

fact, there is a collection of reports provided by HLS tools that express in a quantitative 

way the predicted performance, timing and use of resources of RTL design. These reports 

are critical, and sometimes the only evidence in which designers are based on to change 

models and designs to produce more favorable results (Dai, et al., 2018).  

 

3.3.1. Objectives of HLS 

HLS’s goal is not only to execute the description of the input, but also to discover 

parallelism from it and create a faster and cheaper small (micro) architecture. The micro 

architecture includes a datapath which is pipelined, as well as a description of the way data 

is processed through the datapath.  

The HLS’s output might consist of (Sun, Wang, Yin, Cavallaro, & Ly, 2012): 

1. Implementation of RTL  

It contains the RTL netlist that includes the datapath, I/O, host and memory 

interfaces, the control logic and the libraries, scripts and synthesis constraints that 

are needed to synthesize the netlist of RTL. 

2. Feedback of the analysis 

It contains GUI and performance bottleneck reports, high-level mapping of the 

source code to RTL, costs of hardware and so on. The aim is to help users in 

understanding and improving the micro architectures.  
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3. Artifacts verification 

It contains simulations on the reference model (test bench) to encourage users build 

and debug high-level language tests and use them again to verify RTL. 

 

3.3.2. Constraints of HLS 

There are some limitations/constraints which are user-specified, that help HLS 

create the wanted micro architecture. These limitations include (Sun, Wang, Yin, 

Cavallaro, & Ly, 2012):  

1. Target hardware 

It contains all the tools that the design is developed for, such as the platform, 

frequency of the clock and the library of the technology. This information is used 

by the HLS to predict the timing of the sub-cycle and the datapath costs. 

2. Constraints on performance  

These limitations consist of sampling rate of the input, production rate of the output, 

latency from input to output, intervals for loop initiation and latency of loops. 

3. Memory architecture 

It defines how memory and its interfaces are mapped to multi-dimensional arrays, 

enabling HLS to build micro architectures that consist of multi-bank, multi-port 

and memories: internal and external. 

4. Constraints on interface 

This contains the necessary logic to develop ports, protocols and handshake process 

on every host, input, output, and external memory interface. HLS produces the 

elements mentioned above in the netlist of RTL. This way, it is easily combined 

with different hardware components. 

5. Hierarchy of the design 
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It helps to divide a design by implementing the concept of hierarchy in the 

description of the high-level input. This way, HLS can handle the complexity of 

the design by divide-and-conquer. 

 

3.3.3. Benefits of HLS 

To identify the ideal micro architecture behind a range of constraints, HLS is 

designed to explore through various algorithms and architectures. The key benefits of HLS 

arise from its use of languages of high abstraction and high specification level (Sun, Wang, 

Yin, Cavallaro, & Ly, 2012): 

I. The advantages of modeling/designing at a high abstraction level: 

a. Authorizes focus to design essential features. Easy to explore other 

architectures.  

b. Easy to assess changes or modifications on algorithms. 

c. Easy to create the interfaces of memory, I/O and host, and the logic behind 

the pipeline and handshake. 

d. Easy to retarget constraints or performance of various hardware from the 

same description of the input. 

II. The advantages of confirming at a high abstraction level: 

a. Easy to debug and test input definition features. 

b. Rapid simulation and available for free. 

c. Test suite can be reused to verify the RTL. 

d. Easy to obtain the coverage of the code. 

III. The advantages of high-level specification language: 

a. Reuse of the existing code for confirmation and for design. 

b. The possibility to use different tools to develop software (such as Visual 

Studio). 

c. Offers various features of the advanced language, such as polymorphism. 

The main benefits that HLS provides are listed as follow (XILINX, 2020): 

1. Greater efficiency for hardware designers 
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Designers of hardware components can work on higher abstraction levels focusing 

on achieving a hardware high-performance.  

2. Greater system efficiency for software designers 

Designers of software can optimize their algorithms’ intensive parts on FPGAs.  

 

 

3.4. HLS for FPGAs 

FPGAs can generate circuits which have millions of memory units only for 

computing. The architecture of FPGA is adaptable, allowing greater optimizations for 

improved throughput. FPGAs consume less power and are considered efficient for 

embedded applications. The difficult part for FPGA architectures is implementing ML 

systems that are written in languages of higher level, like Python. HDL is not a platform 

on which to program; it is simply code to describe components of hardware like registers 

and counters. The main problem that arises is the lack of a direct translation from a high-

level language to HDL.  

An option to “fix” the issue of programming is by using HLS tools to build and 

develop programs for deployment in HDL. HLS tools permit the designers to use high-

level languages instead of writing HDL code. So, HLS offers the ability to transform the 

descriptions of untimed software into optimized hardware designs that are cycle-accurate. 

As a result, it was identified as an important way to enhance the hardware design 

productivity. Through HLS, designers do not need to continuously deal with the details of 

low-level hardware description language (HDL) anymore. Instead, they can concentrate on 

choosing the best tradeoff between algorithm and microarchitecture from a single source 

of software design. 

A significant distinction between the HLS tools of the current generation and 

their predecessors is that several tools are developed aiming FPGA implementation. In 

recent times, FPGAs have had a continuous improvement in speed and capacity, making 
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them an excellent platform for signal processing and communication applications. For this 

reason, several HLS tools are explicitly designed for FPGAs.  

HLS tools’ role in FPGA is presented in Figure 9. They translate the code written 

in a high-level language such as C, C++ or SystemC into HDL code. HDL code allows the 

RTL synthesis into a digital circuit, to finally deploy it on an FPGA. 

 

Figure 9. The role of HLS in FPGA systems 

 

3.4.1. HLS Phases 

The High-Level Synthesis process consists of three main phases (XILINX, 

2020):  

1. Scheduling 

This step decides the operations that will happen during every clock cycle relying 

on three components:  

- Clock cycle length 

- The needed time for completing an operation 
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- Optimization instructions specified by the users 

For a longer duration of the clock, more operations are performed within a clock 

cycle and all operations could be performed in one clock cycle. On the other hand, 

for shorter durations of the clock, more clock cycles are required to perform all the 

operations. In other words, the high-level synthesis makes an automatic schedule 

for the operations to complete.  

2. Binding 

The binding phase specifies the hardware resources that will implement every 

scheduled operation.  

3. Extraction of control logic 

This phase makes the extraction of the control logic in order to construct a finite 

state machine (FSM) which will sequence each operation in RTL. 

 

3.4.2. Synthesis of C code 

The way in which HLS makes the C code synthesis is described as follows 

(XILINX, 2020):  

- Synthetizing function arguments of highest level into RTL input/output ports 

- Synthetizing C functions into blocks to fit in the hierarchy of RTL 

For C codes that contain a sub-functions hierarchy, the resulting RTL 

architecture will include a hierarchical structure of models and entities which 

will have a one-to-one relationship with the initial hierarchy of C functions. 

- Keeping as rolled by default the loops in the C functions 

Once the loops are rolled, the logic for one loop iteration is generated by the 

synthesis process and the design of RTL uses this logic for all other iterations. 

Loops can also be unrolled with the use of optimization directives that will 

allow a parallel execution of all iterations. Also, loops may be pipelined by 

implementing a finite state machine.  
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- Synthetizing the C code arrays into RAM blocks for the final design of FPGA 

Arrays which are on the interface of the top-level, are implemented as access 

ports to RAM blocks that are located outside the design. 

Depending on the defined default actions, constraints and optimizing directives, 

HLS generates an efficient implementation. Optimizing directives may be used in order to 

change and manage the default actions of the inner input/output ports and inner logic. This 

helps in the generation on different variants of the hardware architecture using a single C 

code. 

To decide if the proposed architecture satisfies all the criteria, the HLS 

performance metrics may be obtained in the form of a synthesis report (XILINX, 2020). 

This report includes details for the metrics of performance that are listed as follows: 

- Area: represents the quantity of hardware tools which are needed for 

implementing the design depending on the provided resources in FPGA. 

- Latency: represents the amount of clock cycles needed for each value in the 

output to be calculated by the function. 

- Initiation Interval (II): represents the total amount of clock cycles until the 

operation could allow new incoming input.   

- Loop iteration latency: represents the total amount of clock cycles required for 

the completion of a loop iteration. 

- Loop initiation interval: represents the total amount of clock cycles until the 

following loop iteration begins the data-processing. 

- Loop latency: represents the total amount of clock cycles needed for executing 

all loop iterations. 

 

 

3.5. The concept of hls4ml package  

hls4ml is a software package to create HLS implementations of neural networks. 

The purpose of hls4ml package is to make an easy and accurate translation for machine 
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learning designs. In other words, hls4ml package is responsible for automatically 

converting a trained neural network into HLS code. The generated HLS design can either 

be used to develop an IP that can be inserted into more complicated structures, or can be 

used to build a kernel for CPU co-processing (Duarte, et al., 2018). Figure 10 illustrates a 

scheme of a typical workflow.  

The section of the workflow evidenced in red shows the workflow of the regular 

software that is needed for a particular task to build a neural network. Before setting up a 

final model, this normal workflow includes a training phase and potential compression 

steps with tools like Keras and PyTorch. The blue part of the workflow represents the 

hls4ml section that transforms a design into HLS code which can later be run on an FPGA.  

 

Figure 10. hls4ml workflow for translating a model into a FPGA implementation 

At a higher level, the algorithm of FPGA design is unique from CPU 

programming, allowing individual operations to run in full parallel. This way, FPGAs can 

complete billions of instructions per second at lower power cost respective to CPUs and 

GPUs. But such operations use devoted resources and therefore they cannot be remapped 

in a dynamic way while running. The aim in designing an optimized implementation on 

FPGA is to balance the use of FPGA resources with reaching the desired algorithm’s 

latency and throughput objectives. Important metrics for implementing FPGA include 

(Duarte, et al., 2018):  
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1. Latency: the overall time represented in units of “clocks” that is necessary 

to complete a particular iteration of the algorithm. 

2. Initiation interval: often referred to as “II”, expresses the amount of clock 

cycles needed before a new input is accepted by the algorithm. The initiation interval and 

the inference rate are inversely proportional of each other. As a result, input can be 

pipelined into the algorithm with a frequency of the initiation interval. 

3. Resource usage: categories of FPGA resources are as follow: memory of 

onboard FPGA (BRAM), blocks of digital signal processing (arithmetic DSPs), registers 

and programmable logic (flip-flops and lookup tables). 

The hls4ml tool consists of a variety of parameters that are configurable and 

might help users to discover and optimize their applications’ latency space, initiation 

interval and usage of resources. The aim of hls4ml package is to enable the user to achieve 

this optimization via the FPGA design iteration and the translation of neural networks. 

Practically, the time needed to accomplish the translation of neural networks via hls4ml is 

reduced compared to the necessary time to develop a particular neural network model on 

an FPGA. At the same time, it can be used to quickly test machine learning (ML) 

algorithms lacking the need for dedicated support for the implementation of FPGA. 

First, some terms and principles for deep and completely connected neural 

networks are introduced. In Figure 11 it is shown a neural network which has M layers. 

Each layer m has Nm neurons.  

The input layer has N1 input neurons and the output layer has NM output neurons. 

The values of the output neurons vector are defined by xm on each layer. For the mth layer 

which is fully connected (m > 1) (Duarte, et al., 2018),  

               𝑥𝑚 =⁡𝑔𝑚⁡(𝑾𝑚,𝑚−1⁡𝒙𝑚−1 +⁡𝒃𝑚)        (Equation 2) 

where 𝑾𝑚,𝑚−1 represents the weights matrix among layer m and layer m-1 of dimensions 

Nm × Nm-1, 𝒃𝑚 represent the bias values and 𝑔𝑚 represents the function of activation for 

layer m. Nm × Nm-1 multiplications are required to calculate the values of layer m neurons. 
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Figure 11. A visual representation of a deep neural network 

In hls4ml, each layer xm is calculated in an independent and sequent way. 

Following its initiation interval, the inference pipelined and allows a new set of data as its 

input. The overall number of multiplications that a certain neural network requires to infer 

is:  

     𝑁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =⁡∑ 𝑁𝑚−1 ×⁡𝑁𝑚
𝑀
𝑚−1    (Equation 3) 

For a number of input values, activation functions that are non-trivial like 

hyperbolic tangent, sigmoid and softmax are precomputed and stored in BRAMs (Duarte, 

et al., 2018). The activation function of ReLU is applied in programmable logic. For any 

specified task, the impact of neural networks focuses on latency, throughput and usage of 

resource. 
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3.6. Vivado HLS 

Vivado HLS (VHLS) is among the most known compilers for high-level 

synthesis. Produced by Xilinx Inc., it allows the designers to use features of high-level 

programming languages (even OO programming), to write the wanted codes. VHLS 

instantly converts the codes into languages of low level of abstraction, that describe 

features like registers, counters or state machines. The compilation process is usually 

affected by the use of scripted compiler instructions, which are nothing but VHLS 

explicitly interpreted meta-instructions. By default, the instructions are programmed to be 

completed simultaneously and fast. The role of Vivado HLS is shown in Figure 12. 

 

Figure 12. The “role” of Vivado HLS tool in the Synthesis process 
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CHAPTER 4 

LITERATURE REVIEW 

This chapter summarizes the literature review regarding to CNN implementation 

on FPGA architectures with the use of HLS. Several papers and articles have been studied, 

and the main ideas and results for the work done so far are included.  

 

 

4.1. Methodology 

The methodology used to conduct this master thesis is the review methodology. 

Several papers and articles are studied in order to develop a better understanding on High-

Level Synthesis implementation on FPGA architectures for machine learning algorithms, 

especially for neural networks.  

 

 

4.2. Related work 

This section presents a description on the most recent work done for the CNN 

implementation on FPGAs.  

The usage of AutoESL’s AutoPilot HLS tool coupled with domain-specific 

system-level implementation developed by Xilinx is presented by (Cong, et al., 2011). The 

aim was to demonstrate the effectiveness of C-to-HLS synthesis solutions targeting 

multiple application domains. An experiment on a sphere decoder is done and the results 

show that the HLS solution can achieve 11-31% reduction in FPGA resource usage with 

improved design productivity compared to hand-coded design.  

A model is designed by Microsoft for the CNN acceleration using many cards 

of FPGAs by (Ovtcharoc, et al., 2016). This design employs a controller of the highest 
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level to monitor the data flow with the use of a memory adapter. It contains several buffers 

for input data, one buffer for weighting the kernel, a huge collection of arrays of processing 

elements (PEA) and a section for redistributing the data. By using a DMA channel, it inserts 

the information from the PC storage into the buffers. The PEA blocks are used for 

calculating the dot product between the values of source buffer and the values of the weight 

buffer. The output of the dot product calculation is stored in the following input buffer. A 

schematic view of this model is given in Figure 12, whose main features are: (1) a software 

machine that can be customized, which at runtime could accept different layer 

configurations, (2) an effective mechanism which buffers data and a network for on-chip 

re-distributing, which reduces transmission traffic to off-chip storage, (3) a collection of 

processing elements (PEs) which are spatially spread and could be quickly scaled up to 

millions of units. This CNN accelerator can accept an image as input and process several 

layers of convolution, which are then transmitted to each PE array. In the end, the collected 

results are delivered to a dedicated NoC (network on chip), whose job is to redistribute the 

outcomes towards the input buffers for the following stage. 
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Figure 13. Design of the high-level of the CNN Accelerator  

The model implemented by Microsoft is studied further by (Gschwend, 2020), 

by developing ZynqNet, which aims to make it operate for the training and the inference 

stages. ZynqNet is designed for SoC structures and not for server solutions and it contains 

two important elements: ZynqNet CNN, which is a strongly efficient and adapted CNN 

topology, and ZynqNet FPGA Accelerator, which is a design based on FPGA architecture 

used to evaluate the ZynqNet CNN. Even though the suggested approach tends to have 

some constraints because of a solely implementation via Cbased HLS, it appears to be 

optimistic. To handle the input data, the model utilizes a CLB (Circular Line Buffer), and 

to obtain data via the central memory, it utilizes an interface which is memory-mapped.  

Two key accelerating techniques are introduced by (Hassan & Mostafa, 2020): 

(1) parallelism of layer resources and (2) pipelining within some layers. The 

implementation of CNN is done using the Xilinx SDSoC framework which includes the 

FPGA and the processor on a single board. The approach presented in this report aims to 
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reach a satisfying balance between the area, the speed and the design time, which is 

achieved. 

A Long Short-Term Memory (LSTM) network targeting FPGA is implemented 

by (Rao, 2020). A LSTM model is first translated to HLS code, which is then given as 

input to an HLS tool to obtain reports and analyze the overall latency and resources 

required by this model. The LSTM model was successfully implemented, and further 

verification steps were taken. The first verification involved the verification between the 

KERAS LSTM model versus the HLS model generated by the framework. The second 

verification was performed by the HLS tool – Vivado HLS, that confirmed the model 

functionality between HLS and RTL.  

A generic CNN accelerator for SoC is introduced by (Bjerge, Schougaard, & 

Larsen, 2020), who aimed an accelerated inference for various DL networks on a SoC 

structure. The given accelerator provides a flexible architecture that includes the HLS 

implementation via SystemC. It is capable of accelerating any Python-exported CNN and 

encourages a mixture of the CNN layers (convolutional, max-pooling and fully-connected). 

The approach was tested on a Xilinx Ultra96 frame and the used CNN is VGG16. In 

comparison with previous models, the outcome provided by this accelerator provided high 

precision during the training process. The inference was performed in 2 seconds while 

consuming an average amount of power, equal to 2.63W.   

Machine learning models are implemented on HLS by (Dai, Zhang, Ustun, 

Young, & Zhang, 2018). In addition to Figure 9, Figure 13 shows the FPGA tool flow with 

HLS and the ML models proposed in this article. Experiments have proved that ML models 

can be trained to enable fast and accurate resource and timing estimations for HLS designs. 

They have also demonstrated that the proposed approach is able to dramatically reduce the 

estimation errors for different FPGA devices.  
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Figure 14. FPGA tool flow with HLS and the proposed ML models  

The hls4ml software package is introduced and developed by (Duarte, et al., 

2018), which is used to build machine learning models in FPGAs. They present a case 

study for NN inference in FPGAs focusing on a classifier for jet substructure. The results 

from this implementation have shown that the use of HLS increases accessibility across a 

broad user community and allows for a drastic decrease in firmware development time. 

The overall aim of this study is for hls4ml to be a general tool for translating many types 

of neural network architectures.  
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CHAPTER 5 

CONCLUSIONS 

This chapter summarizes the conclusions of the master thesis.  

 

 

5.1. Conclusions 

This thesis starts with detailed description on convolutional neural networks, as 

well as high-level synthesis process a review. Later, it focuses on the previous work done 

on the CNNs implementation on FPGAs using HLS  

Throughout this work, it is seen that FPGAs have many favorable 

characteristics, which make them the most promising architectures for accelerating CNNs 

hardware, like good performance and low power consumption at a reasonable cost. Their 

highly efficient and flexible architecture enables managing various computing algorithms 

by the same time they try to accommodate the device’s memory resources. 

HLS has proven to be a great tool for writing code in high-level languages, 

avoiding so the hardware-description languages, which are significantly difficult to write 

for complex schemes. HLS tools translate the code written in a high-level language such 

as C, C++ or SystemC into HDL code. As a result, a significant distinction between the 

HLS tools of the current generation and their predecessors is that several tools are 

developed aiming FPGA implementation. In recent times, research has shown that FPGAs 

have had a continuous improvement in speed and capacity, making them an excellent 

platform for signal processing, communication applications and CNN implementation. 
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APPENDIX 

The machine learning algorithms are usually developed in Python. This is the main reason 

that the hls4ml tool was developed: to convert the Python codes into HLS projects in C, 

C++ or SystemC. 

Supposing that Python is already installed in the PC: to use the hls4ml tool, it is required 

to install it by the command pip install hls4ml through the command prompt. To be 

able to use this package, it is needed to import it in the project through the import hls4ml 

command. 

 

Dependencies  

Needed tools Aim Source 

numpy, h5py For the translation of 

Keras model files 
http://www.numpy.org 
http://www.h5py.org 

pyyaml For configuration file 

parsing 
https://pypi.python.org/pypi/PyYAML 

PyTorch For reading in Torch 

models 
https://pytorch.org/ 

scikit-learn For BDT architectures, 

includes dependencies 

on numpy etc 

https://scikit-learn.org 

onnx  https://github.com/onnx/onnx 

Xilinx 
Vivado HLS 

For converting the HLS 

project into HDL code, 

to be them implemented 

on FPGA architectures 

https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html  

 

Further information can be found at http://fastmachinelearning.org/hls4ml/  

 

http://www.numpy.org/
http://www.h5py.org/
https://pypi.python.org/pypi/PyYAML
https://pytorch.org/
https://scikit-learn.org/
https://github.com/onnx/onnx
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://fastmachinelearning.org/hls4ml/
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Vivado HLS 

The minimum system memory recommendations for the Vivado Design Suite can be found 

on the link: https://www.xilinx.com/products/design-tools/vivado/memory.html  

32-bit machines are not suitable for Xilinx devices.  

https://www.xilinx.com/products/design-tools/vivado/memory.html
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