
IMAGE SEGMENTATION USING THRESHOLDING TECHNIQUE FPGA NEXYS 

A7 BOARD  

A THESIS SUBMITTED TO  

THE FACULTY OF ARCHITECTURE AND ENGINEERING 

OF  

EPOKA UNIVERSITY  

BY 

ARDIT  DERVISHI 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

COMPUTER ENGINEERING 

JULY, 2020 



ii 

THESIS TITLE: IMAGE SEGMENTATION USING THRESHOLDING 

TECHNIQUE FPGA NEXYS A7 BOARD  

submitted by Ardit Dervishi in partial fulfillment of the requirements for the degree of 
Master of Science in Department of Computer Engineering, Epoka University by, 

Dr. Ali. O. Topal    _____________________  
Head of Department, Computer Engineering, EPOKA University 

Prof. Dr. Betim Cico    _____________________  
Supervisor, Dept., EPOKA University 

Assoc. Prof. Dr. Dimitrios Karras      _____________________ 
Dept., EPOKA University  

Examining Committee Members: 

Dr. Ali Osman Topal,         _____________________  
Computer Engineering Dep, EPOKA University 

Prof. Dr. Betim Cico        _____________________  
Computer Engineering Dept, EPOKA University 

Assoc. Prof. Dr. Dimitrios Karras    _____________________ 
Computer Engineering Dept, EPOKA University 

Date: 24.07.2020 



iii 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced all 
material and results that are not original to this work. 

Name, Last name: Ardit Dervishi 

 Signature: 



iv 

ABSTRACT 

IMAGE SEGMENTATION USING THRESHOLDING TECHNIQUE FPGA 

NEXYS A7 BOARD  

Dervishi, Ardit 

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Betim Cico 

    Nowadays, with the introduction of Graphics Processing Unit for general purpose 

issues, not only graphical ones, there has been an increasing attention towards exploiting 

GPU processing power for deep learning algorithms. In the world of technology as 

considered by many scientist and analysts everything is going very fast.In this thesis I 

will use FPGA boards rather than graphical card processing using like NVidia, as a case 

study in observation of behavior regarding with image segmentation.   

    Therea are several qualities that distinguish both processors, with classical graphical 

processing units being more flexible, not much complex and vice versa with FPGA 

processors offering programmability, reducing time latency, optimized energy in 

computation process. For while, it has been an enigma the comparison between two 

different mentalities ( software vs. hardware ) engineering mentalities will occur, thus 

the results will be compared to each-other like energy used, flip-flops, LUT-s etc.  The 

whole system will be implemented in Xilinx Nexus A7  FPGA board and Vivado HLS 

2018.2 software framework. 

Keywords: Convolution Neural Network, Deep Learning, Image segmentation, Field 

programmable gate array, Xilinx, VHDL 



v 

ABSTRAKT 

  Në ditët e sotme, me prezantimin e Njësisë së Përpunimit të Grafikëve për çështje me 

qëllim të përgjithshëm, jo vetëm ato grafike, ka pasur një vëmendje në rritje drejt 

shfrytëzimit të fuqisë përpunuese GPU për algoritmet e të mësuarit të thellë. Në botën e 

teknologjisë, siç konsiderohet nga shumë shkencëtarë dhe analistë, gjithçka po shkon 

shumë shpejt. Në këtë tezë unë do të përdor bordet FPGA sesa përpunimin e kartave 

grafike duke përdorur si NVidia, si një rast studimi në vëzhgimin e sjelljes në lidhje me 

ndarjen e imazhit. 

  Ekzistojnë disa cilësi që i dallojnë të dy procesorët, me njësitë klasike të përpunimit 

grafik që janë më fleksibël, jo shumë kompleks dhe anasjelltas me procesorët FPGA që 

ofrojnë programueshmëri, zvogëlojnë vonesën në kohë, energjinë e optimizuar në 

procesin e llogaritjes. Përderisa, ka qenë një enigmë krahasimi midis dy mentaliteteve të 

ndryshme (softuer kundrejt harduerit) do të ndodhë mentaliteti inxhinierik, kështu që 

rezultatet do të krahasohen me njëri-tjetrin si energjia e përdorur, flip-flops, LUT-et etj. 

sistemi do të implementohet në bordin e softuerit Xilinx Nexus A7 FPGA dhe Vivado 

HLS 2018.2. 

Fjalët kyçe: rrjeti i konvolucionit neural, deep learning, segmentim imazhi, FPGA, 

xilinx, vhdl ( gjuhe programimi ) 



vi 

 

ACKNOWLEDGEMENTS  
 
 
 
I would like to express my special thanks to my supervisor Prof. Dr. Betim Çiço for his 

continuous guidance, encouragement, motivation and support during all the stages of my 

thesis. I sincerely appreciate the time and effort he has spent to improve my experience 

during my graduate years. 

 

My acknowledgement goes to my thesis committee members, Dr. Ali Osman Topal Head 

of Computer Science Department and all the professors, for their comments, feedback 

and suggestion throughout entire thesis. Also, I note that I am always thankful to my 

parents, for their unconditional encouragement and support through entire my life. 



vii 

Table of Contents 

ABSTRACT ............................................................................................................... iv 

ABSTRAKT ................................................................................................................ v 

ACKNOWLEDGEMENTS ........................................................................................ vi 

LIST OF FIGURES .................................................................................................... ix 

CHAPTER 1 ................................................................................................................ 1 

INTRODUCTION ....................................................................................................... 1 

1.1. Background of image segmentation ............................................................... 1 

1.2. Objective and aim .......................................................................................... 4 

1.3. Scope of work ................................................................................................ 4 

1.4. Thesis structure .............................................................................................. 5 

CHAPTER 2 ................................................................................................................ 7 

LITERATURE REVIEW ............................................................................................. 7 

2.1. Introduction ................................................................................................... 7 

2.2. Hypothesis and research questions ............................................................... 10 

CHAPTER 3 .............................................................................................................. 15 

METHODOLOGY .................................................................................................... 15 

3.1. FPGA .......................................................................................................... 15 

3.2. NEXYS 4 DDR BOARD ............................................................................. 18 

3.3 HDL program and its design ............................................................................. 20 

3.4 VHDL ASSEMBLY LANGUAGE .................................................................. 21 

3.4.1 History of VHDL ....................................................................................... 24 

3.4.2 VHDL design tools .................................................................................... 26 

3.5 XILINX VIVADO SOFTWARE ...................................................................... 27 

3.6 DEEP LEARNING AND ITS APPLICABILITY ............................................. 30 

3.6.1 History of DNN ......................................................................................... 32 

3.6.2 CNN based in image segmentation ............................................................ 32 



viii 

CHAPTER 4 .............................................................................................................. 36 

DESIGN AND IMPLEMENTATION ....................................................................... 36 

4.1 SYSTEM ARCHITECTURE ........................................................................... 36 

4.1.1 Cache Design ............................................................................................ 37 

4.2 EXPERIMENTAL WORK............................................................................... 39 

4.2.1 MATLAB .................................................................................................. 39 

4.2.2 Image read in VHDL ................................................................................. 40 

4.3 Top module and blocks .................................................................................... 43 

4.4 RESULTS AND DISCUSSION ....................................................................... 46 

CHAPTER 5 .............................................................................................................. 50 

CONCLUSIONS AND FUTURE RECOMMENDATION ........................................ 50 

5.1 CONCLUSIONS .............................................................................................. 50 

5.2 FUTURE WORK & RECOMMENDATION ................................................... 51 

REFERENCES .......................................................................................................... 53 

APPENDIX A ........................................................................................................... 55 



ix 

 

LIST OF FIGURES 
 
 
Figure 1. CNN- based architecture for FPGA ............................................................... 2 

Figure 2. Computation process overview of CNN ........................................................ 3 

Figure 3. CNN containing 2 convolution layers, 2 pooling layers, and a fully connected 

layer ........................................................................................................................... 13 

Figure 4. Architecture of RNN ( recurrent neural network )........................................ 14 

Figure 5. FPGA structure ........................................................................................... 16 

Figure 6. Structure of CLB ......................................................................................... 17 

Figure 7. IOB schematic............................................................................................. 18 

Figure 8. Nexys 4 DDR FPGA board ......................................................................... 19 

Figure 9. Explanation table of HDL features .............................................................. 21 

Figure 10. Levels of abstraction ................................................................................. 22 

Figure 11. VHDL sample code ................................................................................... 23 

Figure 12. HDL modeling capability .......................................................................... 24 

Figure 13. Artix-7 based Basys3 scheme .................................................................... 29 

Figure 14. Relation of deep learning with other methods ............................................ 31 

Figure 15. Connections to a neuron in the brain.......................................................... 31 

Figure 16. CNN ( convolution neural network ) ......................................................... 33 

Figure 17. Architecture of convolutional neural network ............................................ 35 

Figure 18. General architecture overview ................................................................... 36 

Figure 19. Concept of cache structure ........................................................................ 38 

Figure 20. FIFO schematic design .............................................................................. 38 

Figure 21. Block Diagram of VGA display ................................................................ 41 

Figure 22. VGA interface ........................................................................................... 42 

Figure 23. Colors expressed with VGA interface ........................................................ 43 

Figure 24. FPGA Nexys A7 board connected through VGA & USB cable with monitor 

and PC respectively.................................................................................................... 44 

Figure 25. Original image processed in Vivado IDE, hardware manager .................... 46 



x 

Figure 26. Grayscale image, edge detector image, sobel edge detection, blue-color 

inverting image respectively....................................................................................... 48 

Figure 27. Hex File .................................................................................................... 49 



1 

CHAPTER 1 

INTRODUCTION 

1.1. Background of image segmentation 

        Image segmentation marks its origin in 70s and 80s during medical researches into 

bone tissues, bacterial cells, different viruses, later on it spread into X-ray, MRI images. 

Later on, its peak was achieved during the 90s, where a significant amount of paper 

research were published. Most of them were related with image reconstruction, for high-

speed image processing, increasing the specificity of those images. 

Ninety years after its invention, the Pap test continues to be the most used method 

for the early identification of cervical pre-cancerous lesions. In this test, the 

cytopathologists look for microscopic abnormalities in and around the cells, which is a 

time consuming and prone to human error task. This paper introduces computational tools 

for cytological analysis that in corporate cell segmentation deep learning techniques. 

These techniques are capable of processing both free-lying and clumps of abnormal cells 

with a high overlapping rate from digitized images of conventional Pap smears [1] 

       In order to transcend the insufficiency in computer resources, a significant amount 

of analysts and researches have conducted the results from the process of convolution 

neural network calculation, furthermore have produced different strategies ( methods ) for 

computation. In the figure below, the ‘strategies’ mainly focus in accelerating and 

optimizing, which will tremendously increase the performance by giving a better 

accuracy, less time processing, larger and maximized output result and higher efficiency 

in power producing. Many experiments are conducted in this section, using theses CNN 

industrial codes. The methodology in this strategy tends to label CNN architecture, which 



2 

is nonetheless but just the multiple convolution layers attached together as shown in the 

below figure [2] 

Figure 1. CNN- based architecture for FPGA 

       ‘Researchers build what they call a ‘body plan’, adapted to segmentation and 

recognition in complex environments. They suggest that the body plan can be fixed or can 

be learned using statistical learning techniques’. In the methodology that we have been 

using, a pre-processing step is being utilized, where the images with abnormal cells that 

have a probability very low are rejected, with no preliminary division, moreover this 

methodology increases the efficiency, by performing faster than any other methodology. 

Furthermore, according to the probability of abnormal cells, the results vary to different 

possibilities. Through conventional Pap smears, a new methodology is being unveiled, 

that contains more than 108 field views, from real-world scenarios image database, where 

86 cells are normal, 1 abnormal cell through millions of corresponding cells. 

        In the below figure, processing ‘path’ of convolution neural network where the 

basic data flows. Hierarchically, CNN contains multiplication and adder units connected 

together. Researchers and software developers have found that these units ( multiplication 

and adder units ) may decrease the processing speed, even though the number of layers is 

being optimized and reduced through the process of data reformation. Later on, these 



3 

researchers started to optimize the data access process, by creating new methodologies 

that enable and develop an improved floating point and increase the size of buffer.  

Figure 2. Computation process overview of CNN 

        It is known that for the first time, Convolutional Neural Network (CNN) based 

deep learning model by Krizhevsky et al brought down the error rate on that task by half, 

beating traditional hand-engineered approaches [3] .He achieved that by simply 

performing an end-to-end data training, that does not need unsupervised pre-training like 

the traditional methods. During the upcoming years, the method used by Krizhevsky et al, 

deep neural network image classification, earned the status of one of the most important 

computer vision papers. It became quite vital the importance of convolution neural 

network in deep learning designs, especially the Krizhevsky et al trained network, which 

earned the name ‘Alex Net’. This method become a fundamental strategy, used to solve 

different problems in computer vision.  



4 

 

1.2. Objective and aim 
 

         In this thesis I am going to stress out the necessity of FPGA board processors rather 

than traditional graphical processor units. Its vitality is related with ability to be 

programmable, large amount of data related to Deep Learning it is proportionally with the 

better results and accuracy. Moreover, in the results & discussion section 4.4, the outputs 

from two different “observing” views ( software & hardware ) mentality will be compared, 

and the reason why the hardware engineering mentality will provide us better throughput. 

Furthermore, there are some reasons which eager me toward this special topic:  

 

 The latest paper researches through these years are in signal processing which 

makes the hottest area where there is still a lot of work to do in the future. 

 

 Image processing applicability and usage in everyday life ( in my thesis mostly 

concentrated in image segmentation ), furthermore its field of study is related 

with segmentation of cancer cells, MRI images, etc.  

 

1.3. Scope of work 
 

             The scope of signal processing ranges to multiple application starting with audio, 

speech, music, image and video processing. These are complemented by wireless 

communications and networking, and information security aspects [4]. Additionally 

several paper researches and science articles are oriented via this direction citing latest 

updating pointing them out not even practically but even theoretically. But in general 

words what is the definition of processing ? It is a represented way or method of how a 

given information can be more understandable , for instance, how discrete Fourier 

transforms are used to understand the frequency components of a signal. There are some 



5 

areas where signal processing takes place like : compression, communication and audio, 

image and Video, Bio-Sensors. Signal processing is a subcategory of lots disciplines like; 

electrical & electronic engineering, informatics, mathematics etc. that are related with 

signal modification, synthetization and analyzation, where the functions are defined as 

“information about the behavior or attributes of some phenomenon". These can rather be 

electronic measurements, images or even sounds. For instance, the necessity of signal 

processing is being noticed in properties like, increasing efficiency of storage, fidelity, 

increasing the signal transmission throughput and even better optimization in power used 

in blocks.  

1.4. Thesis structure 

My thesis is divided into 5 chapters, where its organization is as below. It begins 

with Introduction into image processing, then literature review ( hypothesis and 

research questions ), FPGA and VHDL ( implementation and design of system), 

results and analysis and the last chapter conclusions and future work. 

      The first chapter begins with the abstract of work ( design ) that is going to be 

implemented associated with acknowledgment,  introduction in image processing where 

a general overview of image segmentation, its applications. After that, I will state my 

problem and give my objectives, motivation.  

     Chapter 2 include papers that I have been analyzed, where I have identified the research 

gap. The paper researches that I have conducted are published during the last 3 years. 

Furthermore, I have stated the conclusions & future work of each paper. In this chapter, I 

am going to emphasize the hypotheses and research questions. Their aim is to represent 

thesis objectives, directivities and answer some important questions related with the topic. 



6 

      This chapter will begin with the general idea of image segmentation and the methods 

used to implement it. Then I will focus on the methods that I am going to analyze using 

deep learning technique. What is deep learning and how it is going to affect to our results, 

what is the amount of data needed and how is the training process going to take place. I 

will introduce FPGA and its framework, the features and its main buttons, HDL 

programming language ( vhdl and Verilog programming languages ).  

      Chapter 4th is considered to be one of the most important part in thesis, since all the 

experimental work is conducted. I will implement several blocks using Nexys A7 

framework in order to gain a higher power efficiency, where the input data ( image ) is 

going to be converted into .hex file being programmable for our Nexys A7 board. There 

are going to be introduced some concepts like: reducing power consumption, reforming 

the code in order to optimize the number of flip – flops.  

      All the gathered information from experimental work will be used in order to compare 

with the current energy specification of the framework used even in the papers ( referred 

in literature review ). I will use graphical method of data representation to have better 

comprehensive results. In conclusions section all my results and work interpretation, is 

going to be included. I am going to state possible future work and references.  



7 

CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

      The literature review has been based on numerous amount of papers related with the 

impact of image segmentation in signal processing, its correlation and increasing a 

fundamental problem. Mostly of the papers that were found by me and my mentor also 

gave me the understanding of having a good perspective in characterizing object 

boundaries and giving the details of the complex images for instance, detection of 

boundaries in tumor cells and being able to overcome with a solution, nowadays is a huge 

challenge. After narrowing my gap of research I went through a better analyze of where 

the papers came through, the years they were published which beside one paper it dated 

in 2012 the others where from the past 3 years.  

       From our systematic mapping study and also from other literature reviews in the same 

field, we can say that image analysis has been extensively studied [5]. The majority of 

papers dealt with image search purposes, most of the, based in deep learning and CNN as 

architecture, using GPU-accelaeration According to the sites where they were published: 

75 % of paper researches were published in IEEE, 18 % in ResearchGate, 5 % in ACM 

and the rest from different articles, scientific magazines.  

      Deep learning is directly cited to be full group of information layers called learning 

techniques, where all these layers contain in decreasing order lots of processing phases, 

used to learn features, representations and extinguish models in different classifications. 

Common properties, features are inteconnected together through areas of optimism, 



8 

recognition model, graphic and signal processing inside neural network areas. Therefore, 

a group of neurons, which consists several processor name connects come together to 

create neural network. Through sensors, all these neurons become activate because of 

active neurons. Moreover, a slight effect is being noticed in the enviroment, because of 

action promoting neurons. Learning or credit assignment is about finding weights that 

make the NN exhibit desired behaviour. Depending on the problem and how the neurons 

are connected, such behavior may require long causal chains of computational stages, 

where each stage transforms (often in a non-linear way) the aggregate activation of the 

network. Deep Learning is about accurately assigning credit across many such stages. 

     The aim of the thesis is to study the comparison between a traditional method such as 

Thresholding technique versus EM / MPM using FPGA, based on deep learning 

algorithms and convolution neural networks. The idea is to gain knowledge over state-of-

art implementations in the field and to potentially distinguish future directions [6] . 

     Multimedia technology is popularized in consumer electronics, therefore we see 

increased use of image processing systems. New products require greater image capacity, 

higher image quality, and faster image processing speed. Many image processing systems 

are implemented on graphic controllers with Digital Signal Processors (DSP) or PC 

software. Additional effort is needed to control DSP work flow. For the segmentation 

algorithm, choosing FPGA hardware improves the speed [7]. 

     In order to improve the speed for medical image for image segmentation systems, a 

high speed image processing system is presented from Xinxi Zhang, Yong Li, Jinyang 

Wang, Yulin Chen scientist, which underlines the necessity in integration of system for a 

vehicle-loaded computer to have high velocity in processing of image [8]. The system 

presented from the mentioned scientist requires FPGA hardware and software system in 

order to give better functionality in processing, preprocessing and image display. Better 

accuracy, high speed of the processing image is achieved by all hardware components of 



9 

FPGA like: programmable chips, different blocks, thus it gives stronger capability in real-

time. 

    It is known the wide area of application of Image segmentation like robotic vision 

systems, medical purposes, signal processing and so on. There are different approaches 

proposed in this area like clustering, graph cutting, super-pixeling, SegNet, semantic 

image segmentation. There are 3 most known architectures, beginning with pipelined 

architecture, sequential architecture graph optimization which uses algorithms of 

segmentation called hybrid architecture. First one and third one, respectively, pipelined 

architecture is being related with hybrid designs, by replicating lots of elementary modules 

and re-organizing, scheduling those in parallel order. The second architecture design, 

sequential design, utilizes level control gates in the architecture, to produce a detailed 

control of the implementation occurring in CPU. It is worth knowing, that all these 

architecture example make possible conserving of dissipated power and having better 

segmentation in real-time. 

    Going thorough a detailed analysis through every research paper gave me the 

significance of the image processing.  I observed each and every paper, and I identified all 

of their characteristics, what have been solved, conclusions and future work for every 

pattern.  The first five are related with cell segmentation by using deep learning in order 

to train effective methods for strong and more improved image details and it has 

applications in diseases like breast cancer, tumor, stained cells etc. Using Deep Learning 

and Convolution Neural Network tool for object detection framework and inverse imaging 

with different modifications to increase resolution were identified in 4 paper researches. 

Problem solving again by using deep learning method with CNN tool in reliable 

reconstruction for nonlinear inverse imaging with non-linear Fourier data were conducted 

in 3 paper researches Regulating or restoring distortion of images while stretched 

horizontally or vertically by treating it as regression problem and using CNN tool. 

Creating a 3d images by optimizing their high speed segmentation applied in MRI images, 

bone cells images were evidenced in 3 research papers. In one of the papers it shows 



10 

 

another model in representing the shape in image segmentation where it takes the 

statistical prior information about the shape of the object to be segmented. 

     It is proposed a shape-based segmentation algorithm that utilizes convolutional neural 

networks to learn a posterior distribution of disjunction of conjunctions of half spaces to 

segment the object. This approach shows promising results on noisy and occluded data 

where it is able to accurately segment the objects. The proposed approach also benefits 

from fast inference via CNNs which is computationally more efficient that other methods 

such as density estimation and sampling [8].  

      Beside that, there were presented lots of fails, pragmatic thoughts in unsolved part 

which can be truly identified as a future work, where its purpose is giving answers and 

better objective understanding of different causes, events and unexplained features. 

Generally the unsolved part in most of the papers is related with the difficulties in adapting 

architectural hardware, difficulties in hyper selection and computational cost. There is an 

approach where to presume the pose and identify the action where convolution neural 

network is being noticed. For this kind of situation, there are methods which train multiple 

duties involving implementation of CNN. 

 

2.2. Hypothesis and research questions 
 

In order for me to deal with the problem, I have to divide it in subtopics by stating 

hypothesis and research questions which will guide me in my research (null hypothesis 

and zero hypothesis). I have proposed several research questions each of them posing 

different directions. We will try to give answers the questions like the advantage of FPGA 

board usage prior to classical graphical processor units and so on. 

The first is based on the most efficient method by taking into the consideration the 

existing techniques.  Another idea is to use another type of CNN architecture for the 

same task and see how it affects the solution. The last one is to user another type of 



11 

 

learning paradigm for image segmentation. 

 

H0:  We train a large amount of data for image segmentation, by using deep learning 

technique in order to have accurate and reliable results. This is a null hypothesis because 

it is true and proven theoretically by lots of paper researches. 

- How much accuracy will DL method provide us to have better results ? 

Deep learning method is a subset of machine learning, which is a subset of AI ( artificial 

intelligence ). It has a wide area like signal processing, computer vision, embedded 

systems, robotics etc. Differently from machine learning method more data are needed in 

order to be trained and compiled. This brings in better results. More computational costs 

brings the need of more “powerful” processors called FPGA ( field programmable gate 

array ).  

     -      Will image segmentation help us in realization of the determined hypothesis? 

If no, what will be the limitations ? 

I believe that image segmentation will help us a lot in achievement of our objectives. I 

think that both methods ( edge thresholding  and EM/MPM ) will provide outstanding 

results which would help us in understanding of segmentation of tumor cells. Despite that, 

it offers limitations like requirement of enormous amount of data to be trained, high 

computational cost.    

  

HA:  By analyzing pixels and their characteristics we will be able to detect damaged cells 

in several diseases. This is an alternate hypothesis because it need to be proven through 

research.           

- How efficient will these results be able to determine these damaged cells ? 

Different methods have different approaches and show different results. EM/MPM 

method classifies every pixel in an image by assigning a cost to an incorrect segmentation 



12 

 

based on the number of incorrectly classified pixels and iteratively finding the best 

probabilistic solution which fits the data. On the other hand edge thresholding methods 

lies in using multiple thresholds to find the edges, therefore once there is a pixel as a 

starting point, then we identify contours route through each and every pixel and mark that 

instantaneous route where we are below critical threshold value. Later on, we terminate it 

till that values is below the critical threshold value set up from us. This kind of treatment 

assumes that the route is in those continuous curves, by allowing us to follow the 

diminished sections that we have seen before, without noting every pixel is targeted as an 

edge. Even though, it has flaws regarded in finding the appropriate thresholding 

parameters, while lots of thresholding values can vary over the image.  

- Which is the most efficient method to deal with ? 

The most traditional and simplest method is thresholding compression based method, 

where it has an wide application computed tomography images. Basically, the key is to 

select the threshold value over and over until we have better results in edge detection. 

There are other methods like: clustering method or K-means algorithm is an iterative 

method which is based in partitioning the image in K-clusters, compression technique, 

fuzzy C-means clustering method, dual clustering method etc.  Several paper researches 

imply the comparison between of two or more techniques where the most proficient 

method is EM/MPM algorithm where the processor uses portions of EM algorithm to 

perform MPM. The real question is how the output will result if we apply deep learning 

CNN in this algorithm? This is what I will try to evaluate in my thesis. 

- How will deep learning CNN indicate in image segmentation ? 

Deep learning is a subset of machine learning and it is quite vital in producing better 

results in image segmentation. Convolution Neural Network is set to be one of the most 

important and prominent architectures used in deep learning area. It consists of several 

layers, where these layers have filters, different sets of weight and they are not 

interconnected to each-other. A 2D portion of filter is named as Kernel. They are applied 

through convolution process. 



13 

 

 

Figure 3. CNN containing 2 convolution layers, 2 pooling layers, and a fully connected 

layer 

 

- What would the result be if we used Recurrent Neural Networks to deal 

with the problem of image segmentation? 

 

          Recurrent Neural Networks are often used to pre-process data like: videos, simple 

text,different speeches, in that instantaneous position or time depending respectively in 

the prior data. At each time-stamp the model collects the input from the current time iX  

and the hidden state from the previous step 1−ih , and outputs a target value and a new 

hidden state.   It exists a type of RNNs called LSTM ( long short term memory ) which 

avoids the issues such are gradient vanishing or exploding problems. LSTM architecture 

includes gates (input gate, output gate, forget gate), which regulate the flow of information 

into and out from a memory cell, which stores values over arbitrary time intervals [8]. 



14 

 

 

Figure 4. Architecture of RNN ( recurrent neural network ) 

Furthermore, Recurrent Neural Network can pattern a sequence of data, where every 

template its is related with the prior model. The perfect process sustainable for the RNN is 

by convolving every layer, thus increasing effectiveness of the upcoming pixel. 

- Graphical processing units disadvantages comparing to FPGA processors ? 

Even though GPUs are more flexible than FPGAs, they lack in quality while FPGAs 

offering a better system throughput hardware algorithm representation. For sure, hardware 

is faster and better than software. In the prior, FPGAs offer lower energy consumption, 

higher agility, lower latency, higher execution speed etc. All these qualitities insight the 

importance of FPGAs in nowadays application. 

 

 

 

 

 

 
 



15 

 

CHAPTER 3 

METHODOLOGY 
 

       In my thesis I am going to work from theoretically perspective in accordance with the 

stated hypothesis. The system will be implemented in Nexys A7 board FPGA processor, 

where I am going to take binary image from MATLAB R2018a framework. The output 

.mif image from MATLAB  will be processed with BRAM blocks of Xilinx VIVADO 

2018.2 framework, and according to the methods implemented, I will state the results. 

These results with be compared and analyzed with the previous results of literature review 

papers. The most flexible method is Quantitative research because it deals with 

experimental study. Quantitative methods emphasize objective measurements and the 

statistical, mathematical, of the throughput taken from simulation test benches. In the end, 

I will try to train these data through deep learning method and Keras framework, in order 

to achieve the specificity of the segmented image we want.  

 

3.1. FPGA 
 

       Digital hardware has been greatly improved and expanded in last 40 years . Since the 

invention of MOSFET transistor, the number of transistors in a chip has only grown 

exponentially approximately accordingly with the Moore law and today into a silicone 

chip they are integrated hundreds of millions of transistors. In the past, most applications 

of digital systems were oriented towards computational systems. The great development 

of integrated circuit technology has made that most of the electronic systems such as 

telecommunication systems, control systems , power electronic systems and systems 

found nowadays in IoT to be based on the digital technology. FPGA stands for Field 

Programmable Gate Array meaning they are nothing more than reconfigurable logic 

blocks (logic gates, memory elements, DSP components, etc.) and interconnects. 



16 

 

Nowadays there are several types of FPGA boards like : Altera Cyclone board, SainSmart 

EP4CE6, FPGA development board EP4CE40, Altera Cyclone II mini board, Basys-3 

board, Virtex family boards very expensive and adaptive to higher complexity 

computation processes. I have used a medium-type FPGA board Nexys A7, which was 

the best processing board at our university, therefore I have challenged all the limitation 

that Nexys A7 board has provided to me. FPGA is very different from other chips that can 

be bought in the market is that FPGA doesn’t do anything , it has no intended function 

unlike microcontrollers which is a digital system well-built, it acts like a computer because 

it has all its component hardwired and it can do something useful if it is being programmed 

[10]. At beginning, when we start routing at FPGA-s boards, there are being noticed lots 

of wires connected with each-other by means of switches. Every block in FPGA is related 

with two components : wire segments and their length. The ratio between used block 

logics, routing area against wire segments is inversely proportional. They have a greater 

advantage in design FPGA system by giving a trade-off in time optimization and 

productivity amount of money used. FPGA on the other side acts like a ‘stupid’ circuit 

because they do not have a digital system built-in, but they make up for it by giving the 

user extreme flexibility allowing him to do anything imaginable in the digital domain.The 

two main components of a FPGA are CLB (configurable logic blocks) and switch matrix 

interconnections or routing channels and input/output block (IOB) [11]. A schematic of 

FPGA is given in the figure below. 

 

Figure 5. FPGA structure  



17 

 

Configurable logic blocks : Is the basic logic unit of an FPGA which can be used to build 

combinatorioal or sequential circuits.The number and properties vary from one device to 

another but each CLB consists of 4 or 6 input look-up tables which have 1 or 2 outputs 

respectively, multiplexers, carry and control and flip flops.  

 

- LUT - Look-Up table are the primary elements forthe application of logic. A LUT can 

accomplish any 4 input Boolean function. Except Boolean functions a LUT can 

accomplish synchronuous RAM and a 16 bit shift register also.  

- Carry and control - This component includes the logic of fast math, multiplier logic, 

multiplexer logic. Each CLB holds special logic and guidance for fast signal generation 

and fast signal proccessing .This leads to increased efficiency and performance at adders, 

subtractors, accumulators, comparators and counters.  

- Memory element - It can be a Flip Flop or a Latch equipped with the Set and Reset 

inputs. Entries can be also inverted. Such an element may apply synchronous or 

asynchronous logic.A schematic of a CLB (configurable logic block) is shown in the 

figure below.  

 
Figure 6. Structure of CLB 

 



18 

 

Switch matrix interconnection or routing channel : While a CLB provides the basic 

logic, a flexible connection gives connections for signals between CLBs and between 

CLBs and IOB. Routing takes many forms, starting with the one designed for connecting 

CLBs to the lines long and fast vertical and horizontal interfaces that interface with routing 

for the system clock and other global signals. 

Input / Output blocks IOB: I/O's on FPGAs are grouped into banks where each bank is 

able to uphold different input/output standards. Today FPGAs offer dozens of I/O bands 

to provide I/O flexibility. IOBs are interfaces between packet pins and CLBs. 

 

Figure 7. IOB schematic 

 

3.2. NEXYS 4 DDR BOARD 
 

       The Nexys4 DDR board is a complete , ready-to-use digital development platform. 

The FPGA in this digital platform is the latest Artix-7TM designed by Xilinx (Xilinx part 

number XC7A100T) which is extremely powerful FPGA and very new in the market. The 

Nexys4 DDR is an update of the previous Nexys4 Board. One of the major improvements 

is 16 MiB Cellular RAM with a 128 MiB DDR2 SDRAM memory. The Nexys4 DDR has 

a high capacity FPGA , generous external memories , Ethernet, Collection of USB and 



19 

 

other ports giving it the possibility to design digital systems from introductory 

combinatorial circuits to powerful embedded processors. Nexys4 DDR have several 

improved built-in peripherals including temperature sensor, accelerometer, MEM digital 

microphone 16 user switches and LEDs , two tricolor LEDS, micro SD card connector, 

PDM microphone , four Pmod ports , serial flash , USB-UART bridge, 128 MiB DDR2, 

Diligent USB-JTAG , 10/100 Ethernet PHY USB HID host for mice, Pmod for XADC 

signals, PWM audio output , PDM microphone and two 4-digit 7 segment displays. 

My board Artix -7 FGPA 100T includes. 

 15850 logic slices, each with four 6-input LUTs and 8 flip flops  

 240 DSP slices  

 4860 Kbits of fast block RAM  

 Six clock management tiles  

 On chip analog-to-digital converter (XADC)  

 Internal clock speeds exceeding 450 MHz [9] 

 

 

Figure 8. Nexys 4 DDR FPGA board  

 

 
 



20 

 

3.3 HDL program and its design  
 

       A digital system can be described at different levels of abstraction and from different 

perspectives. With the advancement of the design process level of abstraction and 

perspective have changed, both from human designers and software tools [13]. It is 

desirable to have a common framework for sharing information between designers and 

various software tools [10]. For this purpose serve the hardware description languages 

(HDL). It is rather a language in which it shows the relation between the behaviors and 

structure of electronic and digital circuits. It assembles a lot with C , C++ programming 

and its structure ( HDL syntax and semantic ) it includes notations in which different parts 

of code are executed out-of-order without affecting the final throughput. Moreover, it 

include notion of time which is quite an important hardware attribute. HDL is the program 

where all the elements of the programming language disciplines like C/ C++ provide the 

designer all the features for a perfect hardware development.  

     The properties of a digital circuit are based on several concepts like connection, 

concurrency, timing and entity. The entity is a basic building block, that models a part of 

a real circuit. It is self-sustaining and independent, and it does not have any information 

about other components. The connection models the connecting cable between different 

parts of the digital system. The entities cooperate with each-other while lots of entities can 

be active at the same time by performing many actions in parallel. This can be described 

as concurrency, while timing is correlated to concurrency and it expresses the start and 

end of each action and builds a schedule and a queue of numerous other actions.  

      The purpose of an HDL is to design and describe a digital system in a complete, 

accurate and reliable manner. To achieve this, the foundation of language must be based 

on the hardware action model, and its semantics must be able to capture the main features 

of the circuit. A digital system can be described in four different levels of abstraction and 

from three different perspectives. Although these descriptions have similar basic features, 

detailed layout and their models vary widely. 



21 

 

 

Figure 9. Explanation table of HDL features 

 

         Ideally, it is attempted to develop a single HDL language for it to cover all levels 

and all perspectives.  However this is very difficult to accomplish because of the many 

variations between levels of abstractions and perspectives would make the hardware 

description language very complex. Modern HDL languages cover descriptions of 

behavioral and structural model of the circuit but not in physical terms. They provide 

constructs to support circuit modeling at gate level and register transfer level (RTL) and 

in a limited degree of abstraction at the processor and transistor levels. Two of the most 

important HDL hardware description language are Verilog and VHDL. In my thesis I will 

use VHDL language for some of the reasons that I am going to explain below.  

 

3.4 VHDL ASSEMBLY LANGUAGE 
 

          FPGA board can be easily programmable with HDL programing language either 

VHDL or Verilog. They serve for the same purpose but, also have differences between 



22 

 

them. VHDL can be used to describe models, while it originates from government 

program to elaborate complex integrated systems.   

         VHDL and Verilog are the most popular HDL languages. Although the syntax and 

the presentation of these two languages are very different, their abilities and goals are very 

similar, not to say the same. Both of these languages are standard and are supported by 

most software. We can say that VHDL has one better support for a parameterized design. 

In low level modeling Verilog is simpler than VHDL. Verilog is way simple for a new 

hardware programmer due to its resemblance to C programming language. 

         Verilog is supporting User-Defined Primitives (UDP).This feature is very popular 

for ASIC designers. VHDL and Verilog implement register-transfer-level (RTL) 

abstractions. Since, they were firstly presented in the late 80s, immediately all engineers 

were eager to use these programming languages, at a higher level of abstraction register-

transfer-level based simulators. One of the strongest features of VHDL, is its richness, 

deterministic and more voluble than Verilog. In the other hand, Verilog syntax is more 

like C/ C++ programming language, that’s the reason why engineers designing in VHDL 

programming language need extra coding. Another advantage in VHDL language, is 

error-catching ability. The highest level is a system level of abstraction that features 

constructs intended for system-level design applications.  

 

Figure 10. Levels of abstraction 



23 

 

           The derived VHDL model will consist of a combination of behavioral, RTL and 

structural definitions mapped directly from the Simulink model. The library in VHDL is 

called the place where project units are stored. Usually associated with one directory in 

the memory space of the computer. The program determines the link between the name of 

the VHDL library and its physical directory.  

 

Figure 11. VHDL sample code 

 

 

 

 

 

 



24 

 

3.4.1 History of VHDL  
 

          VHDL was sponsored by the US Department of Defense as a standard for hardware 

documentation in early 1980s and then transferred to IEEE 27. IEEE ratified it as standard 

1076 at 1987, which is today referred to as VHDL-87. Every IEEE standard is reviewed 

within a few years. The IEEE revised the VHDL standard in 1993, which we refer to as 

the VHDL-93 and then in 2001 made some modifications and fixed some bugs which 

were annoying the designers a lot. The latest version is referred to as VHDL-2001. Like 

in every programming language, firstly we need to learn its syntax and language 

construction. There are several differences between VHDL and Verilog, they differ as 

below:  

 

- Compilation : In VHDL entity/architecture pairs, can be compiled each on its 

own, by giving the ability for each design unit to keep its files while in Verilog 

compilation is achieved by speeding up the simulation, so the original language is 

unchanged. As a result care must be taken with both the compilation order of code 

written in a single file and the compilation order of multiple files. 

 
Figure 12. HDL modeling capability 



25 

 

- Data types : Dedicated functions for converting objects, it allows a multitude 

language which results in make the models easier to be written and read, while in 

Verilog all the data types are defined from the Verilog and not by the user as in 

VHDL. The data types  

are much more easier to use, and the vast simplicity that offers gives  better 

advantage than VHDL.  

- Libraries : it serves like a storehouse, which saves all the packages, configurations 

and architecture. Moreover, it manages design projects, but in Verilog such 

concept does not exist.  

- Managing large designs : Configuration, generate, generic and package 

statements all help manage large design structures while in Verilog nothing can be 

done to manage large designs [11].   

- Language Extensions : its ability is mainly related with allowing new 

architectures to be modeled. It gives higher advantage to VHDL language, since 

Verilog is not ‘able’ to use those tools. 

- Procedures and tasks : it is a feature of VHDL language, Verilog does not 

possess this ability. 

- Readability : Verilog contains more C/ C++  syntax resemblance, differently from 

VHDL. This is a strong reason why software developers most likely, would be 

comfortable with Verilog rather than VHDL programming language.  

- Verboseness : VHDL is a strong language, where it needs precision in coding. 

Signals representing objects of different bits widths may be assigned to each other. 

The signal representing the smaller number of bits is automatically padded out to 

that of larger number of bits, and is independent of whether it is the assigned signal 

or not [12].  

 

 



26 

 

3.4.2 VHDL design tools  
 

 Entity – which is used to define the external view of a symbol/object. 

 Architecture – it is a design unit which defines the function of a model/schematic.  

 Configuration – it is a design unit which is used to associate an entity with the 

architecture. 

 Package – it is a design unit which is an array of the information that can be 

referred from the VHDL models and nonetheless consists of package body and 

package declaration. 

 

A VHDL program is usually processed in four stages:  

1. VHDL functional simulation  

2. Synthesis  

3. PAR (Place and Route)  

4. Bit-Stream Generation  

 

            1st Stage  the source code of VHDL is checked, It is like a functional simulation 

where the syntax is checked just as the traditional programming languages. VHDL 

simulator take places in order to do the functional simulation to check the behavioral 

simulation of the circuit and to check circuit functionality without building the digital 

system physically. 

            2nd Stage, here the logic simulation takes place, where its task is to present the 

structured description of the synthesized circuit in accordance with the FPGA used.  

            3rd Stage, where Place and Route happens, the structured description is planned to 

be place in the FPGA. The right CLB , interconnection and IOB are chosen for the given 



27 

 

FPGA in order to have the most optimized circuit. In this stage also the timing analysis 

and timing simulation are done and the I/O pins constraints are made. 

            4th Stage, in bit stream generation, the FPGA program is conveyed into 1s and 0s. 

After this final step the program is in the FPGA and designed digital system can be tested 

physically. 

 

 

 

3.5 XILINX VIVADO SOFTWARE  
 

         Vivado is the newest Design Suite of the Xilinx company. It has a lot of 

improvement from its previous ISE Design Suite. The only disadvantage is that it takes a 

large storage capacity approximately 20 Gigabyte. Vivado supply design teams with tools 

and methodology needed to leverage C-based design and optimized reuse , integration 

automation and accelerated design closure . The improvements that are made in Vivado 

help a lot to accelerate the BitStream generation of large HDL programs. Three main units 

in the HDL programming that are accelerated are given below:  



28 

 

 

 Accelerating High Level Design  

 Accelerating Verification  

 Accelerating Implementation  
 

          The Software-defined Ip generation, blocked-based IP integration and model-based 

Design integration help in the accelerating high level design. New equation methods in 

the logic simulation, integrated mixed language simulator, verification IP and the new 

Vivado HLS helps in the Verification acceleration. Vivado has four times faster 

implementation than ISE Design Suite, it uses 20 % less Design density and optimize the 

digital system in order for the FPGA to use less power. Power consumption advantage can 

go up to 35 %.  

          Firstly, Vivado was released at 2012 but it have gone down a long road of 

improvements to reach at the newest version Vivado 2019.1.3. At the newest version of 

Vivado partial configuration is included with no additional cost in order to help the 

designers. There are 2 key criteria in our model design like bus interface and memory. 

EoBM ( External-on Board Memory ), DDR3 SDRAM ( double-data-rate three  

synchronous dynamic random access ) its function is mainly related with saving image 

segment output from MPM and data image from host computer. In our framework, 

XILINX Vivado it occurs by means of PCI express bus the data transfer between PC and 

DDR3. Serial Rapid I/O, 10 Gigabit Ethernet and Peripheral Component Interconnect 

Express are just a few bus technologies that have been proposed and applied by the 

scientist for high speed of data transmission.  



29 

 

 

Figure 13. Artix-7 based Basys3 scheme 

       

        Additionally, Direct Memory Access (DMA) controller has been applied in our 

system which provides DMA services to devices on the Processor Local Bus 

(PLB).Vivado does not need another program like ISE Design Suite which need Digilent 

Adept in order to download the bitstream into the FPGA. It has the tool Hardware manager 

which make possible downloading the bitstream. Vivado also have another constraint file 

to used to map the VHDL programming variables into the FPGA. ISE Design suite 

constraint file extension is UCF and one example of UCF file is given below :  

 

          where the variable after net is VHDL variable and after LOC is the circuit variable 

found in the manual or seen directly at the FPGA, where between the parenthesis of get 

ports the VHDL variable is written and the location of the circuit can be seen at the 



30 

 

variable after the word PIN.  Vivado constraint file extension is XDC and one example of 

a XDC file is given below :  

 

 

3.6 DEEP LEARNING AND ITS APPLICABILITY 
 

        Deep learning is the foundation of what we call today AI ( artificial intelligence ). Its 

application lies in computer vision, speech recognition, robotics, signal processing and 

even detecting cancer. It is well known that deep learning network offers better 

improvement in accuracy for many AI assignment, but also it gives a trade-off regarding 

its cost in design complexity. There are techniques that enable processing efficiency in 

DNN by giving better accuracy and throughput, but in the other hand it can give a hard 

time in engineers while applying these methods widely in AI systems.  

       As mentioned above since the specificity and accuracy lies with the high cost of 

computational complexity, while traditional GPU-s have failed in providing the required 

acceleration of data analyzing, here the necessity of FPGA-s ( programmable more 

advanced GPU-s ) becomes substantial.  



31 

 

 

Figure 14. Relation of deep learning with other methods  

 

          The first computational element of the brain is the neuron. Therefore, neurons are 

being connected to a vast numbers of dendrites and the output is going to be an axon. All 

the signals coming into neuron are computed and the output signal is generated into axon, 

these are called activations. The signal 𝑥𝑥 i is multiplied with weight iw and the sum of all 

signals as expressed in the figure below gives the output activation, while f( • ) is a non-

linear function. Inside neural network an area deep learning is located, consisted of more 

than three-layers. Nowadays, the average amount of network layers utilized from deep 

learning method varies from four up to a thousand. Their ability is related of learning and 

constructing designs with great complexity compared to ‘traditional’ neural networks. For 

instance, is processing visual data through deep learning, where the pixels are assigned 

into the first layers of deep neural network and the results are represented as a low- level 

features, as contours or lines.     

 

 

 

Figure 15. Connections to a neuron in the brain 



32 

 

3.6.1 History of DNN 
 

        Deep Neural Networks began as initial proposal nearly in 40s, where the first 

application assignments started not before than in late 70s, early 80s with Le-Net network 

for digit recognition. Later on, in 2010s an exploit in DNN application were noticed with 

Microsoft speech recognition, and Alex-Net design system in 2012 for image recognition. 

Below is the DNN breakthrough evolution through the years.  

 

          How deep learning neural network came to the phase as we know now? Lots of 

computational data, which led to the development of open source frameworks and 

combining  this with the evaluation of the algorithmic techniques which highly improved 

application accuracy and significantly broadened the domains of DNNs area of field.  

 

3.6.2 CNN based in image segmentation 
 

           The comprised methods of CNN in image segmentation, may alter from each-other 

in spite of dimensions size input, network depth, filter size, input size etc. Several methods 

were proposed for image segmentation like: Deep-Medic, FCN-8 and all of these methods 

had the same root architecture U-Net. It has been proved that CPU core can compute 

around 6 billion floating points operations. Compared to an average human brain this 



33 

 

amount of computation is likely unimaginable to be processed, even though there are no 

records of 100% power exploiting of human brain. Unlikely to traditional CPU-s human 

brain is able of computing lots of tasks per fraction of time for instance classification of 

images. That is the reason why even in the beginning of DNN development in 40s, 

researchers tried to imitate human brain, where this concept was called as Artificial Neural 

Network.  

 

Figure 16. CNN ( convolution neural network )  

 

         Each of the convolution layers of the CNNs produce a high level of abstraction name 

f-map ( feature map ), which conserves essential information. Nowadays, CNNs are able 

to perform in high level, while introducing a hierarchy layer. After the convolution of the 

CNN layers the input activators are structure in 2 dimension feature maps, called channel. 

Every channel is comprised of filter sets, unique for each and every channel, where many 

times this filter set is denoted as a 3-D filter. Therefore, the convolution products for every 

point are added together, where the result of the computation output is nonetheless but 

activation output, named output feature map. Moreover, all input feature maps are 

processed together as a batch, resulting in improvement of filter weights. 

         Additionally, there are other optional layers, as observed in the figure above like, 

nonlinearity ( generally it can evaluate the maximum value of two intersecting function ), 

pooling ( it makes the network to withstand to any invariance or distortion ) and 



34 

 

normalization which is nonetheless but, controlling the input distribution through the 

layers. It formula is as below : 

βγ
εσ

µ
+

+

−
=

2

xy            

In convolution neural network the processes occur as below :  

Firstly when the images arrive the computer is to much literal and unable to decide, 

therefore ConvNets matches all the pieces of the image, then filtering happens later on 

pooling ( max pooling ), normalization, ReLu, fully connected layer then learning. Below 

all the steps will be explained.  

FILTERING  

- All the features are lined up within the image patch.  

- Each image pixel is being multiplied by the corresponding feature pixel.  

- Later on they are all added up and then divided by the total number of pixels in 

the feature. 

Then convolution happens which is the repeated application of this feature several times. 

The output is a map across the image where the feature occurs, and one image becomes a 

stack of filtered images. 

POOLING  

- It shrinks the image stack by picking a window size and a stride ( generally by 2 

pixels). 

- Use the window by going across the filtered images. 

- Later on, from every window the maximum values is taken. ( Max Pooling )  

- Perform “max pooling” within the stack.  

 

 

 



35 

 

NORMALIZATION 

- If the pixel is a positive number it is left as it is, otherwise we set it 0. ( ReLu 

process )  

 

RELU ( rectified linear unit )  

- A stack of images becomes a stack of images with no negative values. After that 

deep stacking happens, where layers are repeated several time. Final layer is fully 

connected layer , the matrix 2x2 is rearranged and put in a single list, being easier 

to visualize. Therefore fully connected layer chooses the number of intermediate 

neurons.  

 
Figure 17. Architecture of convolutional neural network 

 

 

 

 

 

 



36 

 

CHAPTER 4 

DESIGN AND IMPLEMENTATION 
 

4.1 SYSTEM ARCHITECTURE  
 

       It is essential in the system architecture that before setting up system implementation, 

we need to state and design blocks of the architecture. In the scope of work, we mentioned 

that we need two RAM-s, one as input and the next one as output, another block of 

random-access memory ( BRAM ) and video graphics-array ( VGA ), in order to display 

the resulting image. While designing in HDL in Xilinx Vivado 2018.2, when we create 

the module there is a set of scripts generated:  

Different components of the routing architecture consists on different VHDL models. TCL 

scripts and pin location constraint files for VHDL code synthetization can reassure the 

tile-ability of the layout. 

 

Figure 18. General architecture overview 

 

In our project Artix-7 Nexys 4 DDR  FPGA board, we are going to implement an image 

processing of image size 256 x 256 pixels. The reason why we picked the image size in 



37 

 

256x256 pxl is because of the original image size. Its height and width varies from 480 – 

540 pixels so in order to maintain a square size processed image we cropped it to the 

256x256 pixel image Before stating the methodology, that we are going to imply, worth 

knowing that it wont be efficient toward large size processing images in real-time, we will 

introduce the cache design, cache coding, FIFO, kernel convolution.                                                       

        In the above figure, all the stages where the image is processed are shown perfectly 

in order. It begins with the raw image ( .tif, .png, .jpeg ), then converted image to binary 

file ( readable for Vivado HLS 2018.2 framework, by means of converting interface to 

.hex file. After that, the converted image file is processed through n-BRAM modules, later 

on through interface between BRAM module as output and VGA display. Last but not 

least, the processed image goes into VGA display giving as output Hsync, Vsync, hcount, vcount, 

video_on. Between BRAM modules we will use 3 stages of Convolution Neural Network 

to train the image. For instance, from a set of images, the method is going train, process, 

identify and result an output image that is going to be an approximate resemblance of the 

original image. 

4.1.1 Cache Design 
 

        Through implementation, the assignment of accessing 259 pixels of image subject 

has been applied. The assignment is divided in 2 subsets of operation: 1st one data fetching 

from the memory block and 2nd one saving that data fetched into memory units. In digital 

electronics, D-flip flop are substantial in memory block building. Its operation is quite 

simple, observing D-data input and at different clock cycle ( falling and raising ) the data 

output Q is shifted. Also, Q remains the same, for the data at same clock cycle shifting 

from input to output. 

 



38 

 

The structure of cache requires an 8-bit push pixel by pixel, for a serial to parallel design, 

and while all 259 are being pushed in the memory pipeline, then 9 pixels are pulled-out to 

the mask position. Input data is pushed from the first flip-flop FF1 assuming that all the 

flip-flops  are synchronous sharing the same clock signal. Below figure, shows perfectly 

the concept of cache structure. 

 

Figure 19. Concept of cache structure 

Even though, this methodology is quite relevant still it lacks in its convenience in saving 

all the pixels in flip-flop memory units, when the system is related to mask. Additionally, 

a more innovative method is using FIFO ( first-in first-out ), where all the pixels are saved 

in each row, with exception of pixels correlated to kernel_width.   

 

Figure 20. FIFO schematic design 



39 

 

In the FIFO method there is a full threshold single programmable input port prog_full, 

which functions to shown when the byte exceed the value of threshold. As it is shown in 

the figure rd_en  is being connected with prog_full by reading the data from port called 

‘dout’. Then the timing of byte is being synchronized with 128th byte shifted in FF1. The 

‘prog_full_thresh’ is remaining of width_img with ‘kernel_width’. Generally, this is what 

happens inside FIFO structure method. 

 

4.2 EXPERIMENTAL WORK  
 

       The goal is to design a FPGA based system, able to perform image processing 

assignments faster than traditional processors. The images which are in ( .tif, .jpg, .png 

file ) are converted by Matlab means in binary file, and the edges are detected using 

traditional method thresholding technique and later compared to EM / MPM based 

technique. For this assignment we are going to need : Nexys 4 DDR FPGA board, Display 

monitor, captured images, Xilinx Vivado software design 

 

 

4.2.1 MATLAB  
 

            MatLab is a well known program among engineers and scientist. Million of them 

uses and trust Matlab everyday. Matlab combines a desktop environment tuned for 

iterative analysis and design processes with a programming language that expresses 

matrix and array mathematics directly. In Matlab, Live Editor can be used in order to 

create scripts that combine code , formatted text and output. MatLab is built professionally 

and all its toolboxes are rigorously tested. Creating a new algorithm in MatLab is very 

convenient because it let you see directly how your data are affected by the algorithms 

you are using. If the result that the engineer wants are not achieved directly iterative work 



40 

 

is done until the right result are achieved and after that MatLab generates directly a 

program to reproduce and automate all the work.   

 

The image is being resized into 256 x 256 pixels, later on the 24-bit of RGB is converted 

into 12-bit RGB.  

 

After that, above is a small piece of code where the conversion of image, is being done in 

mytext.file.  

 

4.2.2 Image read in VHDL  
 

        In signal processing assignments, it is substantial to load binary images in VHD 

implementation for different simulations. As mentioned above VHDL programming 

language is a technical language, and is not able to read jpg, tif, bmp files [13]. Therefore, 

the captured images, are required to be conveyed into binary text files using use 

std.textio.all library. The following function shows how to read the images [14].  



41 

 

 
We have modified the code where in the Nexys A7 FPGA board we have declared several 

components as input and as output : resetn ( input ), Switches ( 0 – 11 ) input, R-G-B ( 4-

bit grayscale per each, total 12 ) output, and Hsync, Vsync as output. According to the 

architectural block schemes, there is BRAM as input and as output. BRAM is designed 

based on IP core function of Xilinx, and later on the images are introduced to be shown in 

VGA_display. There are different types of mode for VGA, and the one that we are going 

to use is 640x480, refresh frequency of 60Hz, 25Mhz frequency.  

 

Figure 21. Block Diagram of VGA display 



42 

 

 

         VGA ( video- graphic- array ) its function is controlling the monitor, its standard is 

15-pin connector, used to manipulate video devices. Its interface shows the way the 

information is sent through VGA device to our FPGA board. One of the most basic 

protocols, VGA is designed to be used with AC cathode ray tube. The electron beam 

transaction toward the screen left-right direction, for a certain refresh rate, for example 

60Hz ( horizontally synchronization ) and also moves from bottom-up ( vertically 

synchronization ). We can also alter RGB  ( red-green-blue colors ) on VGA interface 

according to what we wat to apply:   

 

Figure 22. VGA interface 

 

VGA is connected to Nexys A7 diligent board through Xilinx Vivado with each and every 

signal of RGB. The composition of these three main colors give us all the colors used in 

everyday life. According to the below table, we are going to refer it in our design, changing 

background screen color with the colors we are interested to use:  

      In VGA, the video controller gives us output data and sync signals in serial way. 

Video_on ability is to display and image enable While implementing it in VHDL, we are 

going to use two types of counter 800-module, 500-module counter respectively.  

 



43 

 

 

Figure 23. Colors expressed with VGA interface 

 

Later on, in the ‘primarymodule.vhdl’ code we have the combination of the read_file 

saved as myimg.txt.  

4.3 Top module and blocks  
 

       During our simulation the FPGA Nexys A7 board acts as “central unit”, where all 

the operations regarding with displaying of “epoka.jpg” image varying different colors 

in background, sobel edge detection of image, segmentation and so forth occur.  



44 

 

 

Figure 24. FPGA Nexys A7 board connected through VGA & USB cable with monitor 

and PC respectively  

      After we run the codes, in fact the synthesis, simulation takes a couple of hours, we 

are able to projectile the schematic design where we are going through each and every 

block:  

 

These are the declared input as in the primary_module consisting on : 12-switches, clock, 

resetn button. The reason behind 12-switches is 4-bit for each color ( since there are three 

RGB in total ) each pin in the constraint_file assigns to each color bit.  

 



45 

 

It is the main block ( BRAM ), where the important operations occur like : clock, RAM 

write, RAM read, RAM input enable. BRAM gives as output data stream of 16-bit data, 

going into the MUX ( multiplexer block ). The latter one works as a ‘switch’ for RGB, 

triggered by an AND logic circuit, giving the access in RGB display for the image, either 

away from image contours displaying the color of background from 12-bit switches.  

After that we have another RAM block in output, functioning as regenerator and VGA 

display consisting in clock, resetn (input), HS, VS, hcount[9,0], vcount[9,0], vga_tick, 

video_on (output). 

 

 

 

 

 

The last block module is what we call RGB_Mux, where takes input from the output 

BRAM ( shown above ) and ground ( reset ) purpose, enabled by video_on ( VGA display 

output ). In the output we are going to have Hsync, Vsync, 3-sets of array R[3,0], G[3,0], 

B[3,0].  

 

The process of bit bit_regulator is being done from two comparator blocks as shown 

below. Its duty is enabling or resetting D flip-flop modules, and transmitting the bit array 

in BRAM input, and setting horizontal_counter and vertical_counter in gateway of  VGA 

display block. 



46 

 

 

 

After simulation process is finished, our challenge lies in several factors like ; for lower 

power consumption in design circuit how it can be done, or reducing LUT, FF flip-flops 

for better efficiency, programming through combination of processes not from usual codes 

etc. These questions I will try to solve them later on. 

 

4.4 RESULTS AND DISCUSSION  
 

      Our designed system enables all the features that a random image can generate. Below 

the original image of a flower is represented. Due, to specifics given to the code, every 

switch creates different visual image.  

 

Figure 25. Original image processed in Vivado IDE, hardware manager  

 



47 

 

      After synthetization and implementation of the code, we obtain different images where 

each of them shows a property such are : sobel edge detection, color-image inverting, 

grayscale image, etc. Switch [0] enables the grayscale image , while switch [1] gives a 

better quality in grayscaled image ( first image up-left ). In the 2nd image ( up-right ) the 

features of edges are stressed even better by giving a higher specificity in the image. The 

3rd image ( down-left ) is an image created based on sobel edge detector generated from 

switch [0], switch [1], switch [3] pressed on at the same time in the FPGA board. The 

sobel image is just an operator 3x3 kernel, where a convolution process occurs, and has 

horizontal & vertical approximation derivatives. A is the source image, Gx and Gy are the 

derivative approximations: 

XG = [ ]
101
202
101

−+
−+
−+

 A∗                                     YG = [ ]
121

000
121

−−−

+++
 A∗  

While in the 4th  image ( down-right ) generated by enabling switch [0], switch [1], switch 

[2], switch [4], where the stress is given into blue-color inverting image, generally the 

foreground color as pink is inverted into blue-color. It is worth mentioning that in all these 

processed images, convolution operations occur. The convolution is a mathematical 

operation where multiplication and addition of two functions produces a third modified 

function. As mentioned, all the 4 images below are the representation of convolution 

operations indicating different features that we want to stress out from the original image.  



48 

 

 

Figure 26. Grayscale image, edge detector image, sobel edge detection, blue-color 

inverting image respectively 

 

      We intended to provide hardware engineering mentality while designing the system 

rather than the common used software engineering mentality. Therefore, while displaying 

the results it is obvious that when designing the system from hardware perspective wehave 

better energy preservation, fewer D-flip flops used, fewer LUTs and less BRAM blocks.  

 

 



49 

 

First photo shows the total power, LUT, flip-flops from hardware perspective, the second 

photo is from software perspective. Beside that, we were able to utilize the difference in 

power efficiency, blocks, flip-flops etc. while designing two systems, for example: an 

“epoka.jpg” background altered in different colors, in RGB, corresponding to different 

switches, while the second image was a random image whose pixels assign white and 

black colors. The results indicate that we have a better energy conservation, fewer amount 

of blocks, LUTs and flip-flops used in image segmentation of images with different colors 

rather than white and black, lower energy change between successive pixels during 60Hz 

VGA refresh rate. In Sobel edge detection we used Sobel filter operator which uses two 

3x3 kernels, which are convolved with the original image to calculate the approximations 

of the derivatives, horizontally and vertically change.  

 

Figure 27. Hex File  

According to our results, the effectives of “hardware” is higher than that of “software” 

since it requires less utilization energy, fewer flip-flops, blocks, etc.  



50 

 

CHAPTER 5 

CONCLUSIONS AND FUTURE RECOMMENDATION 
 

5.1 CONCLUSIONS 
 

         Image processing is a hot topic nowadays, with a variety of application in everyday 

topic like : Computer Vision, Nanotechnology, IoT ( internet of things ), Medical image 

processing etc. Our aim, is for the captured images, we had to increase the specificity of 

contours, power consumption optimization for a higher efficiency and decreasing as many 

as possible the number of LUT-s, D flip-flops blocks.  

          In our thesis we went in a hardware implementation using Diligent Nexys A7 FPGA 

board through Xilinx Vivado 2018.2 software platform version. We compared two 

different mentalities hardware engineering mentality versus software engineering 

mentality, where we observed that “hardware” is faster, better, more optimized than 

“software”. I have analyzed the results coming from the comparison of two images 

segmentented. The first image had different intensity of colors, while the second image 

had gray color. From the results we acquired that greater amount of energy, higher blocks 

used, more flip-flops were required in the first image rather than the second one. It was 

associated with the greater change in intensity values of two corresponding pixels, thus 

requiring higher energy in performing image segmentation. In the first Chapter, I have 

started with the abstract of work ( design ) that is going to be implemented associated with 

acknowledgment,  introduction in image processing where a general overview of image 

segmentation, its applications. After that, I will state my problem and give my objectives, 

motivation. Chapter 2 include papers that I have been analyzed, where I have identified 

the research gap. The paper researches that I have conducted are published during the last 

3 years. Furthermore, I have stated the conclusions & future work of each paper. In this 

chapter, I am going to emphasize the hypotheses and research questions. Their aim is to 



51 

 

represent thesis objectives, directivities and answer some important questions related with 

the topic. This chapter begun with the general idea of image segmentation and the methods 

used to implement it. Then the focus was on the methodology used. I introduced FPGA 

and its framework, the features and its main buttons, HDL programming language ( vhdl 

and Verilog programming languages ). Chapter 4th is considered to be one of the most 

important part in thesis, since all the experimental work is conducted. I successfully 

implemented several blocks using Nexys A7 framework in order to gain a higher power 

efficiency, where the input data ( image ) is converted into .hex file being programmable 

for our Nexys A7 board. Concepts like: reducing power consumption, reforming the code 

in order to optimize the number of flip – flops were introduced. As a result, from the data 

processed it is shown the necessity of FPGA processor nowadays, its trade-off related with 

time execution with greater optimization and better accuracy, and being less flexible, more 

complex. 

         We were able to identify and process images through Hardware Engineering 

mentality differently  from software engineering mentality. During our methodology, we 

analyzed the total amount of LUT-s, power efficiency, time delay, D-flip flops, were 

nearly 9-times, 70%, ½-times respectively were lower during hardware-implementation 

rather than software-implementation.  

 

5.2 FUTURE WORK & RECOMMENDATION  
 

   Future work lies in using multiple of CNN to affect the training of a larger amount of 

data. For sure, it will demand greater computational cost, higher GPU processor 

performance to withstand the operation. New GUI interface also will be designed to 

replace ImageJ tasks and a software interface which is used to connect with common 

medical image programs like Slicer or Visualization Toolkit (VTK) will be designed [14].  



52 

 

Moreover, better FPGA boards with greater abilities are required like FPGA Virtex V, VII 

boards etc. These boards are more adaptive related with usage of more layers convolution 

neural networks in making possible gathering larger amount of data trainable for higher 

and better image accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

REFERENCES 

 
 

[1]  P. Pooyoi, "Snow scene segmentation using cnn-based approach with transfer 
learning.," 2019 16th International Conference on Electrical 
Engineering/Electronics, Computer, Telecommunications and Information 
Technology (ECTI-CON)., pp. 50-62, 2019.  

[2]  F. H. S. R. R. U. D. M. R. M. T. C. C. M. B. A. G. C. &. M. Araújo, "Deep 
learning for cell image segmentation and ranking.," Computerized Medical 
Imaging and Graphics, pp. 13-21, 2019.  

[3]  "frontiers," [Online].  

[4]  "springeropen," [Online].  

[5]  "Frontier," [Online]. Available: https://www.frontiersin.org/. 

[6]  E. &. Ç. B. Nishani, "Computer vision approaches based on deep learning and 
neural networks: Deep neural networks for video analysis of human pose 
estimation.," 2017 6th Mediterranean Conference on Embedded Computing 
(MECO), pp. 1-4, June, 2017.  

[7]  "Scholar Work," [Online].  

[8]  Y. S. L. C. Chao Liu, "3D EM/MPM Image Segmentation Using an FPGA," 
Journal of, 2015.  

[9]  O. Mazhar, "Real-time Image Processing using FPGA,," pp. 1-5, 15th December 
2015.  

[10]  P. M. Aiken Pang, "Beginning FPGA:Programming metal," Springer Science and 
Business Media LLC, 2017.  

[11]  P. P. Chu, "FPGA Prototyping by VHDL Examples," 2008.  

[12]  "Xilinx," [Online].  



54 

 

[13]  L. L. E. L. A. S.-V. S. Edwards, "Design of embedded systems: formal models, 
validation, and synthesis," 1997.  

[14]  P. P. Chu, "RTL hardware design using VHDL: coding for efficiency, portability, 
and scalability.," 2006.  

[15]  D. J. Smith, "VHDL and Verilog compared and contrasted-plus modeled example 
written in VHDL, Verilog and C.," 33rd Design Automation Conference 
Proceedings, 1996, pp. 771-776.  

[16]  "Very Large Scale Integration (VLSI)," [Online].  

[17]  "fpga4student," [Online].  

[18]  S. Mittal, "Learning to Combine Top-Down and Bottom-Up Signals in Recurrent 
Neural Networks with Attention over Modules.," 2020.  

[19]  S. B. Y. P. F. P. A. K. N. &. T. D. Minaee, "Image Segmentation Using Deep 
Learning: A Survey," arXiv preprint arXiv:2001.05566., 2011.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



55 

 

APPENDIX A 
 

Matlab Code for converting image into .hex file 

clear all; close all; clc; 

I = imread ('epoka.jpg'); % RGB image 

figure; imshow(I); 

% Resizing the image to 256x256: 

IP = imresize(I,[256 256]); 

figure; imshow (IP); 

% 24-bit RGB image: we will convert it to a 12-bit RGB image: 

for i = 1:3 

    IN(:,:,i) = IP(:,:,i)/16; % every plane converted to 4 bits. right shift 

end 

figure; imshow(IN*16); % This is just so that 'imshow' can display the image properly 

% Converting to text file. Format: 0|R|G|B in hexadecimal 

q = quantizer ('ufixed', 'round', 'saturate', [4 0]); 

textfile = 'myimg.txt'; 

fid = fopen (textfile, 'wt'); % generates text file in write mode 

for i = 1:256 

    for j = 1:256 

        R = IN(i,j,1); G = IN(i,j,2); B = IN(i,j,3); 

        Rh = num2hex(q, double(R)); Gh = num2hex(q, double(G)); Bh = num2hex(q, double(B)); 

        fprintf(fid, '0%s%s%s\n',Rh, Gh, Bh); 

    end 

end 

  



56 

 

fclose (fid); 

 

ANEX VHDL code – Primary module 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

library UNISIM; 

use UNISIM.vcomponents.all; 

library work; 

use work.pack_xtras.all; 

--use work.lpm_components.all; 

-- Nexys-4 Board: 

-- 12-bit color: R (4 bits), G (4 bits), B (4 bits) 

-- 4-bit grayscale images: R=G=B 

entity vga_ctrl_12b is 

 generic (TYPE_CTRL: string:= "MEMORY"; -- "12BASIC" (2048 colors), "BASIC" (8 
colors), MEMORY 

    clock_pixel_ratio : integer:= 4); -- (Available clock)/25MHz 
(pixel clock) 

                                      -- Only two available 

 port ( clock: in std_logic;  

    resetn: in std_logic; -- low level reset      

    SW: in std_logic_vector (11 downto 0); 

    R, G, B: out std_logic_vector (3 downto 0); 

    HS, VS: out std_logic); 

    --vga_clk: out std_logic; 



57 

 

    -- debug signals 

    --video_on: out std_logic; 

    --hcount, vcount: out std_logic_vector (9 downto 0)); 

end vga_ctrl_12b; 

 

architecture structure of vga_ctrl_12b is 

 

 

 component vga_ctrl_ram 

  generic (clock_pixel_ratio : integer:= 2; 

     NPIXELS: INTEGER:= 256; -- Picture: 
NPIXELSxNPIXELS. Max for Nexys-4: 525x525 -#-256 

           
  -- So far, we only work with square images 

     FILE_IMG: STRING:= "myimg.txt"; -- text file 
containing the image                                                                    

     nbits: integer:= 12);  -- number of bits for each pixel. 
Example: 3, 8, 12, 15  

  port ( clock: in std_logic;  

     resetn: in std_logic;     

     SW: in std_logic_vector (nbits-1 downto 0); 

     RGB: out std_logic_vector (nbits-1 downto 0); 

     HS, VS: out std_logic; 

     vga_clk: out std_logic; 

     -- debug signals 

     video_on: out std_logic; 

     hcount, vcount: out std_logic_vector (9 downto 0)); 

 end component; 

 



58 

 

   signal RGB: std_logic_vector (11 downto 0);  

 signal vga_clk: std_logic; 

 -- debug signals 

 signal video_on: std_logic; 

 signal hcount, vcount: std_logic_vector (9 downto 0); 

begin 

-- tested for 16, 32, 64, 

gbc: if (TYPE_CTRL = "MEMORY") generate 

    ramd: vga_ctrl_ram generic map (clock_pixel_ratio => clock_pixel_ratio, 
NPIXELS => 256, FILE_IMG => "myimg.txt", nbits => 12) -- -#-256 

    --ramd: vga_ctrl_ram generic map (clock_pixel_ratio => clock_pixel_ratio, 
NPIXELS => 256 FILE_IMG => "myimgt.txt", nbits => 12) -- 128x128 

      port map (clock, resetn, SW, RGB, HS,VS, vga_clk, video_on, 
hcount, vcount); 

   R <= RGB(11 downto 8); G <= RGB (7 downto 4); B <= RGB (3 
downto 0); 

  end generate; 

end structure; 

 

VGA_generator VHDL code 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.std_logic_unsigned.all; 

use ieee.std_logic_arith.all; 

use ieee.math_real.log2; 

use ieee.math_real.ceil; 

 

entity my_genpulse_sclr is 



59 

 

 --generic (COUNT: INTEGER:= (10**8)/2); -- (10**8)/2 cycles of T = 10 ns --> 0.5 s 

 generic (COUNT: INTEGER:= (10**2)/2); -- (10**2)/2 cycles of T = 10 ns --> 0.5us 

 port (clock, resetn, E, sclr: in std_logic; 

   Q: out std_logic_vector ( integer(ceil(log2(real(COUNT)))) - 1 downto 
0); 

   z: out std_logic); 

end my_genpulse_sclr; 

architecture Behavioral of my_genpulse_sclr is 

 constant nbits: INTEGER:= integer(ceil(log2(real(COUNT)))); 

 signal Qt: std_logic_vector (nbits -1 downto 0); 

begin 

 process (resetn, clock) 

 begin 

  if resetn = '0' then 

   Qt <= (others => '0'); 

  elsif (clock'event and clock = '1') then 

   if E = '1' then 

    if sclr = '1' then 

     Qt <= (others => '0'); 

    else 

     if Qt = conv_std_logic_vector (COUNT-1,nbits) then 

      Qt <= (others => '0'); 

     else 

      Qt <= Qt + conv_std_logic_vector (1,nbits); 

     end if; 

    end if; 

   end if; 



60 

 

  end if; 

 end process;  

 z <= '1' when Qt = conv_std_logic_vector (COUNT-1,nbits) else '0'; 

   Q <= Qt; end Behavioral 

 


	ABSTRACT
	ABSTRAKT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	1.1. Background of image segmentation
	1.2. Objective and aim
	1.3. Scope of work
	1.4. Thesis structure

	CHAPTER 2
	LITERATURE REVIEW
	2.1. Introduction
	2.2. Hypothesis and research questions

	CHAPTER 3
	METHODOLOGY
	3.1. FPGA
	3.2. NEXYS 4 DDR BOARD
	3.3 HDL program and its design
	3.4 VHDL ASSEMBLY LANGUAGE
	3.4.1 History of VHDL
	3.4.2 VHDL design tools

	3.5 XILINX VIVADO SOFTWARE
	3.6 DEEP LEARNING AND ITS APPLICABILITY
	3.6.1 History of DNN
	3.6.2 CNN based in image segmentation


	CHAPTER 4
	DESIGN AND IMPLEMENTATION
	4.1 SYSTEM ARCHITECTURE
	4.1.1 Cache Design

	4.2 EXPERIMENTAL WORK
	4.2.1 MATLAB
	4.2.2 Image read in VHDL

	4.3 Top module and blocks
	4.4 RESULTS AND DISCUSSION

	CHAPTER 5
	CONCLUSIONS AND FUTURE RECOMMENDATION
	5.1 CONCLUSIONS
	5.2 FUTURE WORK & RECOMMENDATION

	REFERENCES
	APPENDIX A



