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ABSTRACT 

 

Influence of Confined Concrete Models on the Seismic Response of RC 
Frames  

 

Plaku, Bredli 

Master of Science, Department of Civil Engineering 

Supervisor: Prof. Dr. Hüseyin Bilgin 

 

In this thesis, the influence of confined concrete models on the response of 

reinforced concrete structures is investigated at member and global system levels. The 

commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-

Razvi and Mander are considered. Two moment-resisting frames designed according 

to the pre-modern code are taken into consideration to reflect the example of a RC 

moment-resisting frame in the current building stock. The building is in an earthquake-

prone zone to be located on Z3 Soil Type. The inelastic response of the building frame 

is modelled by considering the plastic hinges formed on each beam and column 

element for different concrete classes and stirrups spacings. The models are subjected 

to non-linear static analyses. The differences between confined concrete models are 

comparatively investigated at both reinforced concrete member and system levels. 

Based on the results of the analyses, it is observed that the differences exhibited in the 

moment-curvature response of column cross-sections do not significantly affect the 

overall behaviour of the global system. 

 

 

Keywords: Non-linear static analysis, moment-curvature relationships, plastic hinges, 

concrete confinement models, seismic action. 
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ABSTRAKT 

 

Influenca e Modeleve të Betonit të Kufizuar në Sjelljen Sizmike të 
Strukturave Betonarme 

 

Plaku, Bredli 

Master Shkencor, Departamenti i Inxhinierisë së Ndërtimit 

Udhëheqësi: Prof. Dr. Hüseyin Bilgin 

 

Në këtë tezë, ndikimi i modeleve të betonit të kufizuar në strukturat e betonit 

të armuar është studiuar në nivel elementi dhe global. Modelet e betonit që hasen më 

shpesh si Kent-Park i Modifikuar, Saatçioğlu-Razvi dhe Mander janë marrë në 

konsideratë. Dy ndërtesa rezistente ndaj momentit, të projektuara sipas kodeve para-

moderne, janë marrë në konsideratë për të pasqyruar shembullin e strukturave të 

betonit nga stoku aktual i ndërtesave. Ndërtesa është në zonë tërmetesh e vendosur në 

llojin e dheut Z3. Sjellja joelastike e strukturës së ndërtesës është modeluar duke marrë 

në konsideratë menteshat plastike e formuara në çdo element trau dhe kolone për klasa 

të ndryshme të betonit. Modelet i janë nënshtruar analizave statike jolineare. Dallimet 

e modeleve të betonit të kufizuar janë studiuar në mënyrë krahasuese në nivel elementi 

dhe global. Bazuar në rezultatet e analizave vërehet se diferencat e shfaqura në sjelljen 

jolineare të kolonës nuk ndikojnë ndjeshëm në sjelljen e përgjithshme të sistemit 

global. 

 

 

Fjalët kyçe: Analiza statike jolineare, marrëdhënia moment-përkulje, mentesha 

plastike, modelet e kufizimit të betonit, veprimet sizmike.
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CHAPTER 1 

INTRODUCTION 

 

1.1 General 

Concrete is the most used material in construction due to its strength, durability, 

and versatility. It possesses excellent compressive strength, but it also has limited 

resistance to tensile forces. 

To better understand and predict the behaviour of concrete, researchers have 

developed various concrete models that attempt to capture the complex interactions 

between the concrete, reinforcement, and external confining pressures. They are 

mathematical representations of the behaviour of concrete under different loading 

conditions used to simulate the stress-strain relationship, the failure criteria, and the 

post-failure behaviour of concrete elements in structural analysis. Some proposed 

concrete models are by Assa et al, Cusson and Paultre, El-Dash & Ahmad, Fafitis and 

Shah, Hoshikuma et al, Kent and Park, Mander et al, Mansur et al, Richart et al, Roy 

and Sozen, Saatcioglu and Ravi, Scott et al, Sheikh and Uzumer, Yong et al, etc [1]. 

There has been a notable trend in recent decades, particularly in the assessment 

of seismic behaviour of existing structures, towards displacement-based analysis 

methods instead of force-based methods. These methods consider the non-linear 

behaviour of structures, enabling more realistic results to be obtained. The structural 

elements, and consequently the non-linear behaviour of the structure, are modelled 

using plastic hinges determined according to the element properties [2]. Therefore, 

determining the behaviour of plastic hinges is a crucial part of the analysis for 

estimating the structure's behaviour. 
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1.2 Objective of thesis 

This thesis aims to investigate the effects of different concrete models proposed 

by various researchers on the behaviour of reinforced concrete at element level and 

different concrete grades and reinforcement at system level. Two frame structures, a 

four-story and a seven-story one, have been considered for the analysis. The non-linear 

behaviour is expressed using the non-linear static pushover analysis method, which is 

widely used in research. The concrete models proposed by Kent-Part (1971) [3], 

Saatçioğlu-Razvi (1992) [4], and Mander (1994) [5] are considered.  

By achieving these objectives, this thesis aims to contribute to the advancement 

of structural engineering and provide valuable information for the design and 

construction of safer and more resilient reinforced concrete structures. 

 

 

1.3 Scope of work and methodology 

This thesis focuses on the non-linear static analysis of two reinforced concrete 

frame structures: a four-storey and a seven-storey frame. The moment-curvature 

relationship is used to analyse the non-linear behaviour of the members at the element 

level, and the pushover analysis is used to investigate the non-linear behaviour of the 

frames at the global level. The non-linear static analysis has been conducted using the 

following tools: 

• SEMAp [6] 

• CSi SAP2000 [7] 

 

 

1.4 Organization of the thesis 

This thesis is divided into five chapters. The organization is done as follows: 

• Chapter 1 introduces the information needed to understand the topic and 

lists the objectives that need to be answered at the end of this thesis. 
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• Chapter 2 gives an insight into the topic by other researchers and introduces 

the sources which have supported collecting the data. 

• Chapter 3 consists of the methodology used to conduct the research and all 

the additional information. 

• Chapter 4 includes all the results collected from the previous chapter and 

the comparison/investigation/deduction of this data. 

• Chapter 5 consists of the conclusions, limitations to the research process 

and recommendations for further research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Plain Concrete 

Concrete is one of the most used materials in construction since ancient times. It 

is a composite material made of: 

• Fine aggregate, which provides stability, fills the voids between larger aggregates 

and contributes to the overall strength and workability of the concrete mixture. 

• Coarse aggregate, which consists of larger particles, adds strength, volume 

stability, and load-bearing capacity to the concrete mixture. 

• Water, which acts as a reactant in the chemical process called hydration, where 

water chemically reacts with cement to form a solid matrix. Water also provides 

workability to the concrete mix, allowing it to be easily poured, compacted, and 

shaped during construction. 

• Cement, which when mixed with water undergoes the hydration process, forming 

a paste that binds the aggregate particles together, creating a cohesive and solid 

structure. 

Plain concrete is used in applications where the primary load is compressive or 

where tensile stresses are minimal, such as pavements, walls, and foundations. Its 

compressive strength, durability, and relatively low cost make it a practical and widely 

used material in these contexts. 

 

 

2.2  Prestressed Concrete 

 Just as the name implies, prestressed concrete is concrete that has been 

compressed during its production. By incorporating prestressing in concrete, structures 
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can achieve higher load-carrying capacity, improved resistance to cracking, and 

enhanced durability. The distribution of forces within a prestressed member helps 

optimize its structural performance and ensures efficient utilization of materials [8]. 

 

Figure 1. Unloaded Prestressed Beam [8] 

Let’s take a beam element as an example. The beam is initially "squeezed" or 

subjected to compressive forces to induce pre-compression. This pre-compression is 

achieved by tensioning high-strength steel tendons or cables within the concrete before 

it fully hardens. The tendons are anchored at the ends of the beam, and once the 

concrete has hardened, the tendons are released, transferring the compressive forces to 

the concrete (Figure 1). 

 This pre-compression allows the prestressed concrete beam to resist the tensile 

stresses that occur when the beam is loaded. The compressive forces counterbalance 

the external loads, resulting in reduced tensile stresses within the concrete. As a result, 

cracks and deformation that typically occur in non-prestressed concrete beams under 

load can be significantly minimized or eliminated. 

 

Figure 2. Loaded Prestressed Beam [8] 
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In the unloaded state, the pre-compression in the prestressed beam causes it to 

adopt a slightly curved shape, known as the default shape (Figure 2). The top section 

of the beam remains under compression, while the bottom section experiences reduced 

tension due to the pre-compression 

 

 

2.3   Reinforcement Steel 

The most common material used for reinforcing concrete is round deformed 

steel bars. The steel itself is straight, but the deformation is on its surface, as shown in 

Figure 3. 

 

Figure 3. Typical reinforcement steel shape [9] 

 This rib-like shape creates a mechanical bond between the rough surface of 

concrete and the usually smooth surface of the steel. 

 

2.3.1 Types of Steel 

Steel reinforcement is classified into [10]: 

• Mild Steel Bar, smooth and round. They are mostly used on roads and 

highways. 

• Deformed Steel Bar, which have a rib-like surface. They are classified to: 

o Thermo-Mechanically Treated Bars (TMT). 

o High-Strength Deformed Bars. 
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• European Rears, made of manganese and bend easily. 

• Carbon Steel Rebar, made of carbon. The main disadvantage is that it corrodes 

easily. 

• Epoxy-Coated Rebar, resistant to corrosion but very delicate coating. 

• Galvanized Rebar, more resistant to corrosion but it costs more. 

• Glass-Fibre-Reinforced-Polymer (GFRP). 

• Stainless Steel Rebar, easy to bend and resistant to corrosion, but also the most 

expensive type of reinforcement. 

Due to their workability and cost, High-Strength Deformed Bars are the most 

common reinforcement used in concrete. 

 

2.3.2 Rebar Sizes 

Deformed steel bars are classified by their cross-sectional diameter. The 

classification is done according to ASTM A 615M/A 615, A 706M/A 706, and A 

996M/A 996 [8]. Depending on the country, the diameters are available in both S.I. 

Units and Imperial Units. The S.I. bar sizes are a derivative of the Imperial bar sizes. 

Table 1. Rebar Size Charts [11]. 

U.S. Rebar Size Chart European Rebar Size Chart 

Imperial 

Bar Size 

Nominal Diameter Nominal Area Metric 
Bar 
Size 

Nominal 
Diameter  

Cross-
Sectional 

Area 
(inch) (mm) (inch2) (mm2) (mm) (mm2) 

#2 0.250 6.35 0.05 32 6 6 28.3 
#3 0.375 9.525 0.11 71 8 8 50.3 
#4 0.500 12.7 0.20 129 10 10 78.5 
#5 0.625 15.875 0.31 200 12 12 113 
#6 0.750 19.05 0.44 284 14 14 154 
#7 0.875 22.225 0.60 387 16 16 201 
#8 1.000 25.4 0.79 509 20 20 314 
#9 1.128 28.65 1.00 645 25 25 491 

#10 1.270 32.26 1.27 819 28 28 616 
#11 1.410 35.81 1.56 1006 32 32 804 
#14 1.693 43 2.25 1452 40 40 1257 
#18 2.257 57.3 4.00 2581 50 50 1963 
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2.4  Reinforced Concrete 

Reinforced concrete is a composite material that combines the compressive 

strength of concrete with the tensile strength of steel reinforcement. When a beam is 

subjected to vertical loads or a column is subjected to eccentric axial and lateral loads, 

it experiences flexural stresses that cause cracks to the region in tension and shear 

stresses that cause cracks near the supports (Figure 4). 

 

Figure 4. Plain concrete beam under a longitudinal load [8] 

 

 2.4.1 Unconfined Concrete 

By incorporating longitudinal reinforcement at the regions with high tensile 

stress concentration, the capacity to withstand tensile forces is significantly enhanced, 

thus preventing the formation of cracks. 

 

Figure 5. Properly reinforced unconfined concrete beam [8] 
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Figure 6. Improperly reinforced unconfined concrete beam [8] 

Unconfined concrete is mostly used in foundations, pavements, and walls, 

where the shear stresses are minimal; and confined concrete is used in structural 

members that are subject to bending and shear stresses. 

 

2.4.2 Confined Concrete 

 Similarly, by confining the longitudinal reinforcement using transverse 

reinforcement, the resistance to shear forces is increased. In contrast to unconfined 

concrete, confined concrete exhibits a ductile failure due to the presence of lateral 

reinforcement. 

 

Figure 7. Confined reinforced concrete column [12] 
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2.5   Stress-Strain Relationship 

The stress-strain relationship is the fundamental concept in the mechanics of a 

material. It describes the deformation of a material when a load is applied to it. 

Strain is the ratio of change in the length of the body. 

 

Figure 8. Strain of a horizontal body 

𝜺𝜺𝒙𝒙 =
𝜟𝜟𝜟𝜟
𝜟𝜟

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 1) 

 Stress is the internal resistance of the body under the effect of external forces. 

𝝈𝝈 =
𝑭𝑭
𝑨𝑨

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 2) 

 where A is the area of the cross-section. 

This relationship can be demonstrated in graphical form, where the curve 

describes the deformation when force is increased. The shape of the curve depends on 

the material’s properties. 
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Figure 9. Stress-Strain relationship for different types of materials 

• Brittle materials break with small elastic deformation. There is no 

plastic deformation. 

o Elastic limit = Yield strength = Ultimate tensile strength 

• Ductile materials have both elastic and plastic deformations.  

o Elastic limit  Yield strength  Ultimate strength 

• Plastic materials exhibit only plastic deformation. 

Understanding the stress-strain relationship of concrete and steel is crucial for 

designing safe structures. The linear and non-linear behaviours that these materials 

exhibit must be considered to analyse their response under load [9]. 

 

2.5.1 Stress Block Parameters 

The stress block model is a graphical representation of the stress distribution 

of a cross-section. In civil engineering, the tensile/compressive stresses are displayed 

for a member’s (beam/column) cross-section. The stress block models used for 

reinforced concrete are: 
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• Triangular Stress Block, in which the stress distribution is nearly proportional to 

the strain. It is valid up to the Serviceability Limit State 

• Parabolic Stress Block, in which the strains are within the plastic range. It is valid 

for the Ultimate Limit State. 

o Rectangular Stress Block is the simplified equivalent of the Parabolic 

Stress Block 

 

Figure 10. Stress Block of a rectangular reinforced concrete section [13] 

 

2.5.2 Stress-Strain of Steel 

 

Figure 11. Stress-Strain curve for #8 bar (25.4 mm diameter) [9] 
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 The stress-strain curve of steel bars is generated from the Tensile Strength Test. 

This test is conducted in the Universal Testing Machine (UTM). The steel bar is pulled 

from both ends with an increasing load until it reaches the ultimate stress.  

 When the ultimate stress is reached, necking will keep forming until it breaks. 

 

Figure 12. Necking forming in the steel bar [14] 

 Finally, the stress-strain graph is generated from the data gathered during the 

tensile test. 

The relationship between stress and strain in steel differentiates according to 

the bar diameter. 

 

Figure 13. Stress-Strain curve for several types of reinforcing steel [9] 
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The stress-strain relationship is also different for cold-worked and hot-rolled 

steel bars. Cold-worked steel bars have high strength but lower ductility than the 

widely used hot-rolled steel bars (Figure 14). 

 

Figure 14. Stress-strain curve for steel bars with different diameters. The 6 mm and 

9 mm curves represent cold-worked steel bars [15]. 

 The ideal stress-strain curve which is widely used in civil engineering is shown 

in Figure 15. Each region represents the phases that the material, in this case, steel, 

goes through. 

a) In Region AB, steel is linearly elastic. The stress-strain relationship and 

material properties are predictable and easily expressible by formula 

expressions. The strain is elastic; thus, the steel specimen will revert to its 

initial dimensions when unloaded. For 𝜀𝜀𝑠𝑠 ≤ 𝜀𝜀𝑦𝑦 and Modulus of Elasticity, 𝐸𝐸𝑠𝑠 =

210 𝐺𝐺𝐺𝐺𝐺𝐺 [16]: 

𝜺𝜺𝒔𝒔 =
𝒇𝒇𝒔𝒔
𝑬𝑬𝒔𝒔

⇒ 𝒇𝒇𝒔𝒔 = 𝑬𝑬𝒔𝒔 ∗ 𝜺𝜺𝒔𝒔 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 3) 
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b) Region BC is the yield point. Steel has reached its elastic limit and it is 

beginning its plastic phase. From this point on, the steel capacity is considered 

as failed and not suitable for further use. For 𝜀𝜀𝑦𝑦 ≤ 𝜀𝜀𝑠𝑠 ≤ 𝜀𝜀𝑠𝑠: 

𝒇𝒇𝒔𝒔 = 𝒇𝒇𝒚𝒚 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 4)  

c) In Region CD, steel is non-linearly plastic. The stress-strain relationship is 

expressible by experimental data and the strain in plastic. When unloaded, the 

steel specimen will not revert to its initial dimensions. For 𝜀𝜀𝑠𝑠ℎ ≤ 𝜀𝜀𝑠𝑠 ≤ 𝜀𝜀𝑢𝑢: 

𝒇𝒇𝒔𝒔 = 𝒇𝒇𝒚𝒚 ∗ �
𝒎𝒎 ∗ (𝜺𝜺𝒔𝒔 − 𝜺𝜺𝒔𝒔𝒔𝒔) + 𝟐𝟐
𝟔𝟔𝟔𝟔 ∗ (𝜺𝜺𝒔𝒔 − 𝜺𝜺𝒔𝒔𝒔𝒔) + 𝟐𝟐

+
(𝜺𝜺𝒔𝒔 − 𝜺𝜺𝒔𝒔𝒔𝒔) ∗ (𝟔𝟔𝟔𝟔 −𝒎𝒎)
𝟐𝟐 ∗ (𝟑𝟑𝟔𝟔 ∗ 𝒓𝒓 + 𝟏𝟏)𝟐𝟐 � (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 5) 

Where: 

𝒎𝒎 =
�𝒇𝒇𝒔𝒔𝑬𝑬
𝒇𝒇𝒚𝒚
� ∗ (𝟑𝟑𝟔𝟔 ∗ 𝒓𝒓 + 𝟏𝟏)𝟐𝟐 − 𝟔𝟔𝟔𝟔 ∗ 𝒓𝒓 − 𝟏𝟏

𝟏𝟏𝟏𝟏 ∗ 𝒓𝒓𝟐𝟐
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 6) 

𝒓𝒓 = 𝜺𝜺𝒔𝒔𝑬𝑬 − 𝜺𝜺𝒔𝒔𝒔𝒔 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 7) 

d) Point D is the Ultimate Strength Limit. Steel has reached its maximal strain 

and cannot “stretch” further. ASTM A706 Standard [17] demands: 

𝒇𝒇𝒔𝒔𝑬𝑬
𝒇𝒇𝒚𝒚,𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬𝑬𝑬𝒂𝒂

> 𝟏𝟏,𝟐𝟐𝟏𝟏 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 8) 

e) Region DE is the final region. Necking will start forming at point D (Figure 

12) and finally, the steel specimen will rupture at point E. For 𝜀𝜀𝑠𝑠 > 𝜀𝜀𝑠𝑠𝑢𝑢: 

𝒇𝒇𝒔𝒔 = 𝟔𝟔 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 9) 
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Figure 15. Idealised Stress-Strain Curve for Reinforcing Steel [9] 

 

2.5.3 Stress-Strain of Concrete 

The stress-strain relationship for concrete is obtained by the Concrete 

Compression Test. The test is conducted 28 days after the concrete is set, due to it 

reaching 99% of its strength. A cylindrical (150x300 mm) or cubic (150x150x150 mm) 

sample is placed inside the Compression Test Machine and is placed under a constantly 

increasing load until it fails [18]. Due to the ease of drilling on-site and flexibility, the 

cylindrical shape is the most widely used for the specimen. The cylindrical specimen’s 

strength is usually 10%-20% less than the equivalent cube specimen. 
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Figure 16. Compression Test Machine [19] 

The stress-strain curve for unconfined concrete has three regions, as shown in 

Figure 17, the linear ascending curve that represents the elastic phase, the non-linear 

ascending curve that represents the plastic phase and the peak point and descending 

curve that represents failure [20]. 

 

Figure 17. Stress-Strain curve for Unconfined Concrete [21] 
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CHAPTER 3 

METHODOLOGY 

 

3.1   Global and Local Levels 

To analyse the safety of a structure, we need to consider the Local  Global 

levels relationship: Material  Section  Member/Connection  System [2]. 

 

Figure 18. Global and Local Levels Hierarchy [2] 

Starting with the first level of the hierarchy, material, we need to understand 

and predict the behaviour of concrete from its stress-strain relationship. From the 

curve, the elastic limit where concrete transitions from elastic to plastic phases can be 
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determined. The plastic phase is non-linear and involves cracking and crushing of 

concrete. 

Moving to the next section level, the moment-curvature relationship describes 

how the cross-section deforms in response to applied moments. It determines the 

location and rotation of plastic hinges, which are the regions where concrete has 

cracked (determined from the stress-strain relationship) and steel has yielded. The 

plastic hinges indicate the loss of stiffness and strength of the section. 

 

 

Figure 19. Locating plastic hinges from moment-curvature [2], [9] 
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The next level is the member/connection level. As previously stated, concrete 

will undergo elastic deformation, reach its elastic limit, and then go to plastic 

deformation. This plastic deformation is concentrated in plastic hinges, which are 

critical points of failure. The plastic hinges affect the ductility and stability of the 

member and connection, as well as their energy dissipation capacity. 

Finally, at the system level, the non-linear static pushover analysis of roof 

displacement versus base shear is performed. This displacement-based method 

considers the non-linear behaviour of the material for more realistic results. It helps 

evaluate the global performance of the system under different load levels and patterns. 

 

Figure 20. Typical plastic mechanisms for moment-resisting frames 

 

 

3.2  Confined Concrete Models 

The stress-strain curve of concrete is influenced by numerous components, 

making it impossible to define a single curve for each case, especially for the non-

linear phase. Thus, researchers have proposed different concrete models that describe 

the behaviour of concrete using empirical equations.  

 



21 

Table 2. Peak stress and strain for some concrete models [1] 

Researcher Peak stress, (𝐟𝐟𝐜𝐜𝐜𝐜) Peak strain, (𝛆𝛆𝐜𝐜𝐜𝐜) 

Sheikh and 

Uzumeri 

𝐾𝐾𝑠𝑠 0.85 𝑓𝑓𝑢𝑢𝑢𝑢 

𝐾𝐾𝑠𝑠 = 1 +
𝐵𝐵′2

140 𝐺𝐺0𝑢𝑢𝑢𝑢
 ��1

−
𝑛𝑛 𝐶𝐶′2

5.5 𝐵𝐵′2�  �1

−
𝑠𝑠

2 𝐵𝐵′
�
2
�  �𝑝𝑝𝑠𝑠𝑓𝑓𝑦𝑦 

80 𝐾𝐾𝑠𝑠 𝑓𝑓𝑢𝑢𝑢𝑢 10−6 

Fafitis and 

Shah 𝑓𝑓𝑢𝑢𝑢𝑢 + �1.15 + �
3048
𝑓𝑓𝑢𝑢𝑢𝑢

�� 𝑓𝑓𝑙𝑙  1.027 10−7 𝑓𝑓𝑢𝑢𝑢𝑢 + 0.0296 �
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢
� + 0.00195 

Mander et 

al. 𝑓𝑓𝑢𝑢𝑢𝑢  �2.254 �1 + 7.94 �
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

� − 2 �
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

� − 1.254� 𝜀𝜀𝑢𝑢𝑐𝑐  �1 + 5 �
𝑓𝑓𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑢𝑢

− 1�� 

Yong et al. 
�1 + 0.0091 �1 − �

0.245 𝑠𝑠
𝐵𝐵 ��𝑝𝑝𝑠𝑠

+
𝑛𝑛 𝑑𝑑𝑠𝑠𝑠𝑠′

𝐵𝐵 𝑠𝑠 𝑑𝑑𝑠𝑠
 𝑝𝑝𝑠𝑠��

𝑓𝑓𝑦𝑦ℎ
�𝑓𝑓𝑢𝑢𝑢𝑢

���  𝑓𝑓𝑢𝑢𝑢𝑢  

0.00265 + 0.0035 �1 − 0.734 𝑠𝑠
𝐵𝐵

� �𝑝𝑝𝑠𝑠 𝑓𝑓𝑦𝑦ℎ�
2
3

�𝑓𝑓𝑢𝑢𝑢𝑢
 

Saatçioğlu 

et al. 𝑓𝑓𝑢𝑢𝑢𝑢 + 6.7 (𝑓𝑓𝑙𝑙)−0.17 𝑓𝑓𝑙𝑙 

𝜀𝜀𝑢𝑢𝑐𝑐 [1 + 5 𝐾𝐾] 

𝐾𝐾 = 6.7 (𝑓𝑓𝑙𝑙)−0.17 𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

 

El-Dash & 

Ahmad 

𝑓𝑓𝑢𝑢𝑢𝑢 + �5.1 �
𝑓𝑓𝑢𝑢𝑢𝑢
𝑓𝑓𝑦𝑦ℎ

�
0.5

 �
𝑑𝑑𝑠𝑠𝑠𝑠′

𝑝𝑝𝑠𝑠
�
0.25

�  𝑓𝑓𝑙𝑙  

𝑓𝑓𝑙𝑙 = 0.5 𝑝𝑝𝑠𝑠 𝑓𝑓𝑦𝑦ℎ  �1 −�
𝑠𝑠

1.25 𝑑𝑑𝑠𝑠
 � 

𝜀𝜀𝑢𝑢𝑐𝑐 + �
66

� 𝑠𝑠
𝑑𝑑𝑠𝑠𝑠𝑠′
�  𝑓𝑓𝑢𝑢𝑢𝑢1.7

�
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

 

Cusson 

and Paultre 𝑓𝑓𝑢𝑢𝑢𝑢 + 2.1 �
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

�
0.7

 𝜀𝜀𝑢𝑢𝑐𝑐 + 0.21 �
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

�
1.7

 

Mansure et 

al. 𝑓𝑓𝑢𝑢𝑢𝑢  �1 + 0.6 �
𝑝𝑝𝑠𝑠 𝑓𝑓𝑦𝑦
𝑓𝑓𝑢𝑢𝑢𝑢

�
1.23

� 𝜀𝜀𝑢𝑢𝑐𝑐  �1 + 2.6 �
𝑝𝑝𝑠𝑠 𝑓𝑓𝑦𝑦
𝑓𝑓𝑢𝑢𝑢𝑢

�
0.8

� 

Hoshikum

a et al. 𝑓𝑓𝑢𝑢𝑢𝑢  �1 + 0.73 �
𝑝𝑝𝑠𝑠 𝑓𝑓𝑦𝑦
𝑓𝑓𝑢𝑢𝑢𝑢

�� 0.00245 + 0.0122 �
𝑝𝑝𝑠𝑠 𝑓𝑓𝑦𝑦
𝑓𝑓𝑢𝑢𝑢𝑢

� 

Assa et al. 𝑓𝑓𝑢𝑢𝑢𝑢  �1 + 3.36
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

� 𝜀𝜀𝑢𝑢𝑐𝑐  �1 + 21.5 
𝑓𝑓𝑙𝑙
𝑓𝑓𝑢𝑢𝑢𝑢

� 

 

3.2.1 Modified Kent-Park Model 

The Modified Kent-Park Model is based on the original Kent-Park Model by 

taking into consideration the change in concrete strength due to the confinement. The 

maximum stress and strain are at point B [9]. 
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Figure 21. Stress-Strain Relationship for Concrete proposed by Kent and Park [22] 

𝑲𝑲 = 𝟏𝟏 +
𝝆𝝆𝒔𝒔𝒇𝒇𝒚𝒚𝒔𝒔
𝒇𝒇𝒂𝒂′

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 10) 

𝑓𝑓𝑦𝑦ℎ = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦𝑦𝑦 ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝑠𝑠 

The stress block parameters for this model are demonstrated in Figure 22.  

 

Figure 22. Stress Block for the Modified Kent-Park Model [22] 

a) Region AB, where 𝜀𝜀𝑢𝑢 ≤ 0,002. The unconfined and confined curves are the same 

in the original model. The maximum stress at B is taken from the cylinder’s 

compressive strength test. 
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𝒇𝒇𝒂𝒂 = 𝑲𝑲 ∗ 𝒇𝒇𝒂𝒂′ ∗ �
𝟐𝟐𝜺𝜺𝒂𝒂

𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲
− �

𝜺𝜺𝒂𝒂
𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲

�
𝟐𝟐
�  (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 11) 

𝜶𝜶 =
𝜺𝜺𝒂𝒂

𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲
∗ �𝟏𝟏 −

𝜺𝜺𝒂𝒂
𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔𝑲𝑲

� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 12) 

𝜸𝜸 = 𝟏𝟏 −
𝟐𝟐
𝟑𝟑
− � 𝜺𝜺𝒂𝒂

𝟔𝟔.𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲
�

𝟏𝟏 − � 𝜺𝜺𝒂𝒂
𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔𝑲𝑲

�
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 13) 

b) Region BC, where 0,002𝐾𝐾 ≤ 𝜀𝜀𝑢𝑢 ≤ 𝜀𝜀20𝑚𝑚,𝑢𝑢. 

𝒇𝒇𝒂𝒂 = 𝑲𝑲 ∗ 𝒇𝒇𝒂𝒂′ ∗ �𝟏𝟏 − 𝒁𝒁𝒎𝒎 ∗ (𝜺𝜺𝒂𝒂 − 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲)� ≥ 𝟔𝟔.𝟐𝟐 ∗ 𝑲𝑲 ∗ 𝒇𝒇𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 14) 

𝜶𝜶 =
𝟏𝟏
𝜺𝜺𝒂𝒂
∗ �
𝟔𝟔.𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲

𝟑𝟑
+ (𝜺𝜺𝒂𝒂 − 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲) −

𝒁𝒁
𝟐𝟐
∗ (𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲)𝟐𝟐� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 15) 

𝜸𝜸 = 𝟏𝟏 −
𝟏𝟏
𝜺𝜺𝒂𝒂
∗ �

�𝜺𝜺𝒂𝒂
𝟐𝟐

𝟐𝟐
− (𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲)𝟐𝟐

𝟏𝟏𝟐𝟐
� − 𝒁𝒁 ∗ �𝜺𝜺𝒂𝒂

𝟑𝟑

𝟑𝟑
− 𝟔𝟔.𝟔𝟔𝟔𝟔𝟏𝟏𝑲𝑲 ∗ 𝜺𝜺𝒂𝒂𝟐𝟐 + (𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲)𝟑𝟑

𝟔𝟔
�

�𝜺𝜺𝒂𝒂 −
𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲

𝟑𝟑
� − 𝒁𝒁 ∗ �𝜺𝜺𝒂𝒂

𝟐𝟐

𝟐𝟐
− 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲 ∗ 𝜺𝜺𝒂𝒂 + (𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲)𝟐𝟐

𝟐𝟐
�
� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 16) 

Where: 

𝒁𝒁 =
𝟔𝟔,𝟏𝟏

𝜺𝜺𝟏𝟏𝟔𝟔𝑬𝑬 + 𝜺𝜺𝟏𝟏𝟔𝟔𝒔𝒔 − 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 17) 

The strain for each critical point is: 

𝜺𝜺𝟏𝟏𝟔𝟔𝑬𝑬 =
𝟑𝟑 + 𝟔𝟔.𝟐𝟐𝟐𝟐𝒇𝒇𝒂𝒂′

𝟏𝟏𝟎𝟎𝟏𝟏𝒇𝒇𝒂𝒂′ − 𝟏𝟏,𝟔𝟔𝟔𝟔𝟔𝟔
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 18) 

𝜺𝜺𝟏𝟏𝟔𝟔𝒔𝒔 =
𝟑𝟑
𝟎𝟎
𝝆𝝆𝒔𝒔�

𝒃𝒃"
𝒔𝒔𝒔𝒔

 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 19) 
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𝜺𝜺𝟐𝟐𝟔𝟔𝒂𝒂 =
𝟔𝟔,𝟎𝟎
𝒁𝒁

+ 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐𝑲𝑲 = 𝜺𝜺𝒂𝒂𝑬𝑬 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 20) 

𝑓𝑓𝑢𝑢′ = 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 𝑓𝑓𝑠𝑠𝑜𝑜𝑐𝑐 𝐺𝐺 150𝑥𝑥300 𝑐𝑐𝑐𝑐 𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑛𝑛𝑑𝑑𝑦𝑦𝑠𝑠 𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠 

𝜌𝜌𝑠𝑠 = 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 𝑐𝑐𝑜𝑜𝑦𝑦𝑣𝑣𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐 𝑠𝑠𝐺𝐺𝑠𝑠𝑦𝑦𝑜𝑜 

𝑏𝑏" =  𝑤𝑤𝑦𝑦𝑑𝑑𝑠𝑠ℎ 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓𝑦𝑦𝑛𝑛𝑦𝑦𝑑𝑑 𝑐𝑐𝑜𝑜𝑠𝑠𝑦𝑦 

𝑠𝑠ℎ = 𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠𝑦𝑦𝑠𝑠 − 𝑠𝑠𝑜𝑜 − 𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠𝑦𝑦𝑠𝑠 𝑠𝑠𝑦𝑦𝑦𝑦 𝑠𝑠𝑝𝑝𝐺𝐺𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

c) Region CD, where 𝜀𝜀𝑢𝑢 > 𝜀𝜀20𝑚𝑚,𝑢𝑢. 

𝒇𝒇𝒂𝒂 = 𝟔𝟔.𝟐𝟐 ∗ 𝑲𝑲 ∗ 𝒇𝒇𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 21) 

𝜶𝜶 =
𝟏𝟏
𝜺𝜺𝒂𝒂
∗ �
𝟔𝟔.𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲

𝟑𝟑
+
𝟔𝟔.𝟑𝟑𝟐𝟐
𝒁𝒁

+ 𝟔𝟔.𝟐𝟐𝑲𝑲 ∗ 𝜺𝜺𝒂𝒂 − 𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 22) 

𝜸𝜸 = 𝟏𝟏 −
𝟏𝟏
𝜺𝜺𝒂𝒂
∗ �

(𝟏𝟏.𝟐𝟐𝟔𝟔𝟔𝟔𝟐𝟐 ∗ 𝟏𝟏𝟔𝟔−𝟔𝟔)𝑲𝑲 + 𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲
𝒁𝒁

+ 𝟔𝟔.𝟎𝟎𝟑𝟑

𝟔𝟔𝒁𝒁𝟐𝟐
+ 𝟔𝟔.𝟏𝟏𝜺𝜺𝒂𝒂𝟐𝟐

𝟔𝟔.𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲
𝟑𝟑

− 𝟔𝟔.𝟑𝟑𝟐𝟐
𝒁𝒁

+ 𝟔𝟔.𝟐𝟐𝑲𝑲 ∗ 𝜺𝜺𝒂𝒂 − 𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔𝟎𝟎𝑲𝑲
� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 23) 

The stress–strain relationship will change due to the hysteresis behaviour of 

concrete when it experiences repeated load cycles. 

 

Figure 23. Kent-Park model response under load cycles 
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3.2.2 Saatçioğlu-Razvi Model 

 Saatçioğlu and Razvi proposed a model based on uniform confinement 

pressure caused by transverse reinforcement. This model can be applied to both 

circular and rectangular sections. This model consists of a parabolic rising curve and 

a linear decreasing curve up to 20% of the concrete’s strength [4]. 

 

Figure 24. Stress-Strain Relationship of Confined Concrete proposed by Saatçioğlu 

and Razvi [4] 

The parabolic curve can be expressed by the following equation: 

𝒇𝒇𝒂𝒂 = 𝒇𝒇𝒂𝒂𝒂𝒂′ ∗ �𝟐𝟐 ∗ �
𝜺𝜺𝒂𝒂
𝜺𝜺𝒂𝒂𝒂𝒂

� − �
𝜺𝜺𝒂𝒂
𝜺𝜺𝒂𝒂𝒂𝒂

�
𝟐𝟐
�

𝟏𝟏
𝟏𝟏+𝟐𝟐𝑲𝑲

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 24) 

Where: 

𝒇𝒇𝒂𝒂𝒂𝒂′ = 𝒇𝒇𝒂𝒂𝑬𝑬 + 𝒌𝒌𝟏𝟏 ∗ 𝒇𝒇𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 25) 

𝜺𝜺𝒂𝒂𝒂𝒂 = 𝜺𝜺𝒂𝒂𝑬𝑬 ∗ (𝟏𝟏 + 𝟏𝟏𝑲𝑲) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 26) 
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𝜺𝜺𝒂𝒂𝑬𝑬 = 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 27) 

𝜺𝜺𝟐𝟐𝟔𝟔𝒂𝒂 = 𝟔𝟔.𝟐𝟐𝒇𝒇𝒂𝒂𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 28) 

 𝑲𝑲 =
𝒌𝒌𝟏𝟏 ∗ 𝒇𝒇′𝒂𝒂
𝒇𝒇𝒂𝒂𝑬𝑬

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 29) 

𝒌𝒌𝟏𝟏 = 𝟔𝟔.𝟐𝟐 ∗ (𝒇𝒇𝒂𝒂′)−𝟔𝟔.𝟏𝟏𝟐𝟐 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 30) 

𝒇𝒇𝒂𝒂 = 𝒌𝒌𝟐𝟐 ∗ 𝒇𝒇𝒂𝒂 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 31) 

𝒌𝒌𝟐𝟐 = 𝟔𝟔.𝟐𝟐𝟔𝟔��
𝒃𝒃𝒂𝒂
𝒔𝒔
� ∗ �

𝒃𝒃𝒂𝒂
𝒔𝒔𝒂𝒂
� ∗ �

𝟏𝟏
𝒇𝒇𝒂𝒂
� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 32)  

For circular sections: 

𝒇𝒇𝒂𝒂 =
𝟐𝟐𝑨𝑨𝒔𝒔𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚𝒔𝒔
𝒅𝒅𝒂𝒂 ∗ 𝒔𝒔

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 33) 

For rectangular sections: 

𝒇𝒇𝒂𝒂 =
∑𝟐𝟐𝑨𝑨𝒔𝒔𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚𝒔𝒔 ∗ 𝒔𝒔𝑬𝑬𝑬𝑬𝜶𝜶

𝒃𝒃𝒂𝒂 ∗ 𝒔𝒔
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 34) 

For square sections: 

𝒇𝒇𝒂𝒂 =
𝒇𝒇𝒂𝒂𝒙𝒙′ ∗ 𝒃𝒃𝒂𝒂𝒙𝒙 + 𝒇𝒇𝒂𝒂𝒚𝒚′ ∗ 𝒃𝒃𝒂𝒂𝒚𝒚

𝒃𝒃𝒂𝒂𝒙𝒙 + 𝒃𝒃𝒂𝒂𝒚𝒚
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 35) 

Where: 

𝑓𝑓𝑢𝑢𝑐𝑐 − 𝑣𝑣𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓𝑦𝑦𝑛𝑛𝑦𝑦𝑑𝑑 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 
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𝑓𝑓𝑙𝑙′ − 𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑦𝑦𝐺𝐺𝑠𝑠𝑦𝑦𝑠𝑠𝐺𝐺𝑦𝑦 𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑦𝑦 

𝑓𝑓𝑙𝑙𝑙𝑙′ − 𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑦𝑦𝐺𝐺𝑠𝑠𝑦𝑦𝑠𝑠𝐺𝐺𝑦𝑦 𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑦𝑦 𝑝𝑝𝑦𝑦𝑠𝑠𝑝𝑝𝑦𝑦𝑛𝑛𝑑𝑑𝑦𝑦𝑐𝑐𝑣𝑣𝑦𝑦𝐺𝐺𝑠𝑠 𝑠𝑠𝑜𝑜 𝑏𝑏𝑢𝑢𝑙𝑙 

𝑓𝑓𝑙𝑙𝑦𝑦′ − 𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑦𝑦𝐺𝐺𝑠𝑠𝑦𝑦𝑠𝑠𝐺𝐺𝑦𝑦 𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑦𝑦 𝑝𝑝𝑦𝑦𝑠𝑠𝑝𝑝𝑦𝑦𝑛𝑛𝑑𝑑𝑦𝑦𝑐𝑐𝑣𝑣𝑦𝑦𝐺𝐺𝑠𝑠 𝑠𝑠𝑜𝑜 𝑏𝑏𝑢𝑢𝑦𝑦 

𝛼𝛼 − 𝐺𝐺𝑛𝑛𝑠𝑠𝑦𝑦𝑦𝑦 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝 𝑤𝑤𝑦𝑦𝑠𝑠ℎ 𝑏𝑏𝑢𝑢 

𝑏𝑏𝑢𝑢, 𝑏𝑏𝑢𝑢𝑙𝑙, 𝑏𝑏𝑢𝑢𝑦𝑦 − 𝑐𝑐𝑜𝑜𝑠𝑠𝑦𝑦 𝑑𝑑𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛𝑠𝑠 𝑓𝑓𝑠𝑠𝑜𝑜𝑐𝑐 𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝 𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑜𝑜 𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑣𝑣𝑝𝑝 𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠𝑦𝑦 

𝑠𝑠 − 𝑑𝑑𝑦𝑦𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑐𝑐𝑦𝑦 𝑏𝑏𝑦𝑦𝑠𝑠𝑤𝑤𝑦𝑦𝑦𝑦𝑛𝑛 𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑠𝑠𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

𝑠𝑠𝑙𝑙 − 𝑑𝑑𝑦𝑦𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑐𝑐𝑦𝑦 𝑏𝑏𝑦𝑦𝑠𝑠𝑤𝑤𝑦𝑦𝑦𝑦𝑛𝑛 𝑦𝑦𝑜𝑜𝑛𝑛𝑠𝑠𝑦𝑦𝑠𝑠𝑣𝑣𝑑𝑑𝑦𝑦𝑛𝑛𝐺𝐺𝑦𝑦 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

𝑘𝑘2 = 1 𝑓𝑓𝑜𝑜𝑠𝑠 𝑐𝑐𝑦𝑦𝑠𝑠𝑐𝑐𝑣𝑣𝑦𝑦𝐺𝐺𝑠𝑠 𝐺𝐺𝑛𝑛𝑑𝑑 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝐺𝐺𝑛𝑛𝑠𝑠𝑣𝑣𝑦𝑦𝐺𝐺𝑠𝑠 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛𝑠𝑠 𝑤𝑤𝑦𝑦𝑠𝑠ℎ 𝑠𝑠𝑐𝑐𝐺𝐺𝑦𝑦𝑦𝑦

− 𝑠𝑠𝑝𝑝𝐺𝐺𝑐𝑐𝑦𝑦𝑑𝑑 𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑠𝑠𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

The descending linear curve can be expressed from the strain corresponding to 85% of 

the concrete’s strength: 

𝜺𝜺𝟎𝟎𝟏𝟏𝒂𝒂 = 𝟐𝟐𝟔𝟔𝟔𝟔𝝆𝝆𝒔𝒔𝒔𝒔 ∗ 𝜺𝜺𝒂𝒂𝒂𝒂 + 𝜺𝜺𝟎𝟎𝟏𝟏𝑬𝑬 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 36) 

𝝆𝝆𝒔𝒔𝒔𝒔 =
∑𝑨𝑨𝒔𝒔𝒔𝒔

𝒔𝒔�𝒃𝒃𝒂𝒂𝒙𝒙 + 𝒃𝒃𝒂𝒂𝒚𝒚�
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 37) 

Where: 

𝜺𝜺𝟎𝟎𝟏𝟏𝒂𝒂 = 𝟔𝟔.𝟎𝟎𝟏𝟏𝒇𝒇𝒂𝒂𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 38) 

𝜌𝜌𝑠𝑠ℎ − 𝑐𝑐𝑜𝑜𝑦𝑦𝑣𝑣𝑐𝑐𝑦𝑦𝑠𝑠𝑦𝑦𝑐𝑐 𝑠𝑠𝐺𝐺𝑠𝑠𝑦𝑦𝑜𝑜 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑠𝑠𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

𝐴𝐴𝑠𝑠ℎ − 𝑐𝑐𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛𝐺𝐺𝑦𝑦 𝐺𝐺𝑠𝑠𝑦𝑦𝐺𝐺 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑠𝑠𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 
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3.2.3 Mander Model 

One of the most widely used confined concrete models is the Mander model. 

It is used as the default model in a lot of structural engineering software, such as 

SAP2000 [7]. Mander proposed a unified stress-strain model that includes both 

circular and rectangular confined concrete sections. The stress-strain curve is derived 

from Popovics' Equation [23], while the confinement coefficient is like the approach 

of Sheikh and Uzumeri [24]. This model incorporates the effect of arching pressure as 

the source of confining stress. 

 

Figure 25. Stress-Strain Relationship of Concrete proposed by Mander [25] 

The effective cylinder compressive strength of confined concrete is 0.8 times 

the cube compressive strength of confined concrete. The thickness and spacing of the 

transverse reinforcement affect the confining stress and the effective lateral pressure 

determines the peak cylinder strength. When 𝑓𝑓𝑙𝑙 = 0  𝑓𝑓𝑢𝑢𝑢𝑢′ = 𝑓𝑓𝑢𝑢′. 

𝒇𝒇𝒂𝒂𝒂𝒂′ = 𝒇𝒇𝒂𝒂′ ∗ �𝟐𝟐.𝟐𝟐𝟏𝟏𝟎𝟎 ∗ �𝟏𝟏 + 𝟐𝟐.𝟐𝟐𝟎𝟎 ∗
𝒇𝒇𝒂𝒂′

𝒇𝒇𝒂𝒂′
− 𝟐𝟐 ∗

𝒇𝒇𝒂𝒂′

𝒇𝒇𝒂𝒂′
− 𝟏𝟏.𝟐𝟐𝟏𝟏𝟎𝟎� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 39) 
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𝒇𝒇𝒂𝒂 =
𝒇𝒇𝒂𝒂𝒂𝒂′ ∗ 𝒙𝒙 ∗ 𝒓𝒓
𝒓𝒓 − 𝟏𝟏 + 𝒙𝒙′

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 40) 

𝒇𝒇𝒂𝒂′ = 𝟔𝟔.𝟎𝟎𝒇𝒇𝒂𝒂𝒌𝒌 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 41) 

Where: 

𝒙𝒙 =
𝜺𝜺𝒂𝒂
𝜺𝜺𝒂𝒂𝒂𝒂

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 42) 

𝜺𝜺𝒂𝒂𝒂𝒂 = 𝟔𝟔.𝟔𝟔𝟔𝟔𝟐𝟐 ∗ �𝟏𝟏 + 𝟏𝟏 ∗ �
𝒇𝒇𝒂𝒂𝒂𝒂′

𝒇𝒇𝒂𝒂′
− 𝟏𝟏�� (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 43) 

𝒓𝒓 =
𝑬𝑬𝒂𝒂

𝑬𝑬𝒂𝒂 − 𝑬𝑬𝒔𝒔𝒔𝒔𝒂𝒂 
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 44) 

𝑬𝑬𝒂𝒂 = 𝟏𝟏𝟔𝟔𝟔𝟔𝟔𝟔�𝒇𝒇𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 45) 

𝑬𝑬𝒔𝒔𝒔𝒔𝒂𝒂 =
𝒇𝒇𝒂𝒂𝒂𝒂′

𝜺𝜺𝒂𝒂𝒂𝒂
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 46) 

𝑓𝑓′𝑐𝑐 − 𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑛𝑛𝑑𝑑𝑦𝑦𝑠𝑠 𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 𝑜𝑜𝑓𝑓 𝑣𝑣𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓𝑦𝑦𝑛𝑛𝑦𝑦𝑑𝑑 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 

𝑓𝑓𝑢𝑢𝑢𝑢′ − 𝑐𝑐𝑦𝑦𝑦𝑦𝑦𝑦𝑛𝑛𝑑𝑑𝑦𝑦𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓𝑦𝑦𝑛𝑛𝑦𝑦𝑑𝑑 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 

𝑓𝑓𝑙𝑙′ − 𝑐𝑐𝑜𝑜𝑛𝑛𝑓𝑓𝑦𝑦𝑛𝑛𝑦𝑦𝑛𝑛𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠  

 When experiencing repeated load cycles, the unloading curves follow the same 

pattern as the monotonic curve until the maximum stress, but the unloading modulus 

is modified by two coefficients that depend on the stress, 𝑓𝑓𝑢𝑢𝑛𝑛, and strain, 𝜀𝜀𝑢𝑢𝑛𝑛  , at the 

unloading point [26]. 
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Figure 26. Mander model response under load cycles [26] 

 

 

3.3 Moment-Curvature Relationship 

In the analysis of reinforced concrete structures, the deformation of its 

members is an important factor to consider. The displacement of a member reflects its 

ability to resist stresses caused by external loads. Therefore, the displacement must be 

determined accurately and efficiently. Moment-curvature relationship describes how 

the cross-section deforms in response to applied forces. 

A simply supported beam with a point load P applied is shown in Figure 27. 

The deformation shape of the beam can be expressed as the function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), as 

illustrated in Figure 28. 

 

Figure 27. Beam Member with a specific length and section [9] 
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Figure 28. Deflection curve of a beam under an axial load [9] 

 A small section from the member is taken and a moment 𝑀𝑀 is applied along 

the neutral axis of its cross-section.  

  

Figure 29. Small section taken from a simply supported beam [9] 

The distance of the neutral axis to the centre of rotation is: 

𝝆𝝆 =
𝜟𝜟𝒙𝒙
𝜟𝜟𝜟𝜟

  𝒇𝒇𝑬𝑬𝒓𝒓  𝜟𝜟𝜟𝜟 < < < (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 47)  

The length of the fibre at any distance, y, is: 

𝜟𝜟𝒙𝒙 + 𝜟𝜟𝑬𝑬 = 𝜟𝜟𝜟𝜟 ∗ (𝝆𝝆 + 𝒚𝒚)  
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𝜟𝜟𝑬𝑬 = 𝜟𝜟𝜟𝜟 ∗ 𝒚𝒚 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 48) 

𝜺𝜺 =
𝒅𝒅𝑬𝑬
𝒅𝒅𝒙𝒙

= 𝒚𝒚 ∗
𝒅𝒅𝜟𝜟
𝒅𝒅𝒙𝒙

= 𝒚𝒚 ∗ 𝝓𝝓 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 49) 

Considering the linearly elastic region of concrete, Hook’s Law is eligible. 

𝝈𝝈 = 𝑬𝑬 ∗ 𝜺𝜺 = 𝑬𝑬 ∗ 𝒚𝒚 ∗ 𝝓𝝓 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 50) 

The moment in the section is: 

𝑴𝑴 = � 𝝈𝝈 ∗ 𝒚𝒚 ∗ 𝒅𝒅𝒚𝒚
𝑨𝑨

= � 𝑬𝑬 ∗ 𝒚𝒚𝟐𝟐 ∗ 𝝓𝝓 ∗ 𝒅𝒅𝒚𝒚
𝑨𝑨

= 𝝓𝝓 ∗ 𝑬𝑬 ∗ � 𝒚𝒚𝟐𝟐 ∗ 𝒅𝒅𝒚𝒚
𝑨𝑨

 

𝑴𝑴 = 𝝓𝝓 ∗ 𝑬𝑬 ∗ 𝑰𝑰 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 51) 

Consequently, the curvature is the ratio of the moment to the section properties. 

𝝓𝝓 =
𝟏𝟏
𝜿𝜿

=
𝑴𝑴
𝑬𝑬𝑰𝑰

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 52) 

From Figure 28, the elastic deformation curve can be expressed as: 

𝑬𝑬𝑰𝑰
𝒅𝒅𝟎𝟎𝒚𝒚
𝒅𝒅𝒙𝒙𝟎𝟎

= 𝒑𝒑(𝒙𝒙) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 53) 

Where: 

𝑦𝑦 = 𝑑𝑑𝑦𝑦𝑓𝑓𝑦𝑦𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑠𝑠ℎ𝑦𝑦 𝑐𝑐𝑦𝑦𝑐𝑐𝑏𝑏𝑦𝑦𝑠𝑠 𝐺𝐺𝑠𝑠 𝑥𝑥 

𝑥𝑥 = 𝑝𝑝𝑜𝑜𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑠𝑠ℎ𝑦𝑦 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 

𝑝𝑝(𝑥𝑥) = 𝐺𝐺𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑 𝑦𝑦𝑜𝑜𝐺𝐺𝑑𝑑 
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By integrating the equation successively, 𝑆𝑆ℎ𝑦𝑦𝐺𝐺𝑠𝑠,𝑉𝑉  𝑀𝑀𝑜𝑜𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠,𝑀𝑀  

𝐶𝐶𝑣𝑣𝑠𝑠𝑐𝑐𝐺𝐺𝑠𝑠𝑣𝑣𝑠𝑠𝑦𝑦,𝜙𝜙  𝑅𝑅𝑜𝑜𝑠𝑠𝐺𝐺𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛,𝜃𝜃  𝐷𝐷𝑦𝑦𝑓𝑓𝑦𝑦𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛, 𝛿𝛿 can be obtained (Table 3). This linear 

relationship is valid only for the elastic range of concrete. 

Table 3. P  V  M  ϕ  θ  δ Relationship [9] 

Load 𝒑𝒑(𝒙𝒙) 

 

Shear 𝑉𝑉(𝑥𝑥) = �𝑝𝑝(𝑥𝑥) 𝑑𝑑(𝑥𝑥) 

 

Moment 𝑀𝑀(𝑥𝑥) = �𝑉𝑉(𝑥𝑥) 𝑑𝑑(𝑥𝑥) 

 

Curvature 𝜙𝜙(𝑥𝑥) =
𝑀𝑀(𝑥𝑥)
𝐸𝐸𝐸𝐸

 
 

Rotation 𝜃𝜃(𝑥𝑥) = �𝜙𝜙(𝑥𝑥) 𝑑𝑑(𝑥𝑥) 

 

Deflection 𝛿𝛿(𝑥𝑥) = �𝜃𝜃(𝑥𝑥) 𝑑𝑑(𝑥𝑥) 
 

The Moment-Curvature relationship is analysed at the section system level, 

which means that only the section properties, such as the geometry, material, and 

reinforcement, are required to be known to perform the analysis. 
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3.3.1 Calculating Moment-Curvature according to Kent-Park Model 

 

Figure 30. Moment-Curvature curve of an unconfined concrete beam [9] 

The calculation of the moment-curvature relationship of unconfined concrete 

sections according to the Kent-Park model is explained in detail. All the phases of the 

material behaviour, such as concrete cracking, steel yielding and ultimate failure, are 

considered. 

I. Uncracked Stiffness: 

In the first region, the relationship is linearly elastic. The procedure of calculating 

the curvature begins with transforming the area of the cross-section to an equivalent 

concrete area by multiplying the variables by the coefficient of equivalency. 
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Figure 31. Transformation of the reinforced concrete cross-section to an equivalent 

concrete section [9] 

𝑬𝑬 =
𝑬𝑬𝒔𝒔
𝑬𝑬𝒂𝒂

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 54) 

Where: 

𝑬𝑬𝒔𝒔 = 𝟐𝟐𝟔𝟔𝟔𝟔 𝑮𝑮𝑮𝑮𝑬𝑬 = 𝟐𝟐𝟔𝟔𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 𝑴𝑴𝑮𝑮𝑬𝑬 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 55) 

𝑬𝑬𝒂𝒂 = 𝟎𝟎,𝟐𝟐𝟔𝟔𝟔𝟔 ∗ �𝒇𝒇𝒂𝒂′   (𝑴𝑴𝑮𝑮𝑬𝑬) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 56) 

The distance of the neutral axis to the top fibre is denoted with 𝑐𝑐𝑠𝑠. 

𝒂𝒂𝑬𝑬 =
∑(𝔂𝔂 ∗ 𝑨𝑨)
∑𝑨𝑨

=
𝒃𝒃 ∗ 𝒔𝒔 ∗ 𝒔𝒔

𝟐𝟐
+ (𝑬𝑬 + 𝟏𝟏) ∗ 𝑨𝑨𝑺𝑺 ∗ 𝒅𝒅 + (𝑬𝑬 − 𝟏𝟏) ∗ 𝑨𝑨𝒔𝒔′ ∗ 𝒅𝒅′

𝒃𝒃 ∗ 𝒔𝒔 + (𝑬𝑬 − 𝟏𝟏) ∗ 𝑨𝑨𝒔𝒔 + (𝑬𝑬 − 𝟏𝟏) ∗ 𝑨𝑨𝒔𝒔′
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 57) 

And the remaining distance is: 

𝒂𝒂𝒃𝒃 = 𝒔𝒔 − 𝒂𝒂𝑬𝑬 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 58) 

The moment of Inertia of the section is calculated as follows: 

𝑰𝑰 = �(𝑰𝑰𝟔𝟔 + 𝑨𝑨 ∗ 𝒅𝒅𝟔𝟔) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 59) 

𝑥𝑥 

𝑦𝑦 
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𝑰𝑰 =
𝟏𝟏
𝟏𝟏𝟐𝟐

∗ 𝒃𝒃 ∗ 𝒔𝒔𝟑𝟑 + 𝒃𝒃 ∗ 𝒔𝒔 ∗ �
𝒔𝒔
𝟐𝟐
− 𝒂𝒂𝑬𝑬�

𝟐𝟐

+ (𝑬𝑬 − 𝟏𝟏) ∗ (𝑨𝑨𝒔𝒔 ∗ (𝒅𝒅 − 𝒂𝒂𝑬𝑬)𝟐𝟐 + 𝑨𝑨𝒔𝒔′ ∗ (𝒂𝒂𝑬𝑬 − 𝒅𝒅′)𝟐𝟐) 

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 60)
 

Where: 

𝐸𝐸0 = 𝑀𝑀𝑜𝑜𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 𝑜𝑜𝑓𝑓 𝐸𝐸𝑛𝑛𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝐺𝐺 𝑜𝑜𝑓𝑓 𝑠𝑠ℎ𝑦𝑦 𝑠𝑠𝑝𝑝𝑦𝑦𝑐𝑐𝑦𝑦𝑓𝑓𝑦𝑦𝑐𝑐 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 

𝑑𝑑0 = 𝑠𝑠ℎ𝑦𝑦 𝑑𝑑𝑦𝑦𝑠𝑠𝑠𝑠𝐺𝐺𝑛𝑛𝑐𝑐𝑦𝑦 𝑓𝑓𝑠𝑠𝑜𝑜𝑐𝑐 𝑠𝑠ℎ𝑦𝑦 𝑛𝑛𝑦𝑦𝑣𝑣𝑠𝑠𝑠𝑠𝐺𝐺𝑦𝑦 𝐺𝐺𝑥𝑥𝑦𝑦𝑠𝑠 𝑜𝑜𝑓𝑓 𝑠𝑠ℎ𝑦𝑦 𝑠𝑠𝑝𝑝𝑦𝑦𝑐𝑐𝑦𝑦𝑓𝑓𝑦𝑦𝑐𝑐 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 𝑠𝑠𝑜𝑜 𝑐𝑐𝑏𝑏 

II. Cracking Point: 

The first region concludes with the cracking point in which concrete reaches 

its elastic limit. The compressive stress can be analytically calculated or taken from a 

compressive cylinder strength test. 

 

Figure 32. The stress block at the cracking point [9] 

The maximum amount of stress, which in this case is the tensile stress, that 

concrete can withstand is calculated with the Modulus of Rupture [27]: 

𝒇𝒇𝒓𝒓 = 𝟔𝟔,𝟐𝟐 ∗ �𝒇𝒇𝒂𝒂′ ∗ 𝝀𝝀 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 61) 

Where: 𝜆𝜆 = 1,00 for normal weight concrete. 

At this point, the stress is equal to that of the modulus of rupture. 
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𝝈𝝈𝒂𝒂𝒓𝒓 =
𝑴𝑴𝒂𝒂𝒓𝒓 ∗ 𝒂𝒂𝒃𝒃

𝑰𝑰
= 𝒇𝒇𝒓𝒓 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 62) 

Finally, the cracking moment and curvature at the cracking point are: 

𝑴𝑴𝒂𝒂𝒓𝒓 =
𝒇𝒇𝒓𝒓 ∗ 𝑰𝑰
𝒂𝒂𝒃𝒃

 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 63) 

𝝓𝝓𝒂𝒂𝒓𝒓 =
𝜺𝜺𝒓𝒓
𝒂𝒂𝒃𝒃

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 64) 

From Hooke’s Law: 

𝒇𝒇𝒓𝒓 = 𝜺𝜺𝒓𝒓 ∗ 𝑬𝑬𝒂𝒂 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 65) 

𝜺𝜺𝒂𝒂 = 𝝓𝝓𝒂𝒂𝒓𝒓 ∗ 𝒂𝒂𝑬𝑬 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 66) 

III. Yielding Point: 

The yielding point is the point where steel yields, thus 𝜀𝜀𝑠𝑠 = 𝜀𝜀𝑦𝑦. 

 

Figure 33. The stress block at the yielding point [9] 

�𝑭𝑭𝒙𝒙 = 𝟔𝟔 
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𝑻𝑻𝒔𝒔 = 𝑪𝑪𝒂𝒂 

𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚 = 𝜶𝜶 ∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗ 𝒌𝒌 ∗ 𝒅𝒅 

From strain compatibility: 

𝜺𝜺𝒂𝒂 + 𝜺𝜺𝒚𝒚
𝒅𝒅

=
𝜺𝜺𝒂𝒂

𝒌𝒌 ∗ 𝒅𝒅
⟹ 𝒌𝒌 =

𝜺𝜺𝒂𝒂
𝜺𝜺𝒂𝒂 + 𝜺𝜺𝒚𝒚

 

⟹ 𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚 = 𝜶𝜶 ∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗
𝜺𝜺𝒂𝒂

𝜺𝜺𝒂𝒂 + 𝜺𝜺𝒚𝒚
∗ 𝒅𝒅 

Finally, the yielding moment and curvature at the yielding point are: 

𝑴𝑴𝒚𝒚 = 𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚 ∗ 𝒅𝒅 ∗ (𝟏𝟏 − 𝒌𝒌 ∗ 𝜸𝜸) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 67) 

𝝓𝝓𝒚𝒚 =
𝜺𝜺𝒂𝒂

𝒌𝒌 ∗ 𝒅𝒅
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 68) 

IV. Ultimate Load: 

The ultimate load point is the point where concrete reaches its ultimate strain 

and fails, thus 𝜀𝜀𝑢𝑢 = 𝜀𝜀𝑢𝑢𝑢𝑢. 

 

Figure 34. The stress block at the ultimate load point [9] 
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�𝑭𝑭𝒙𝒙 = 𝟔𝟔 

𝑻𝑻𝒔𝒔 = 𝑪𝑪𝒂𝒂 

𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚 = 𝜶𝜶 ∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗ 𝒌𝒌 ∗ 𝒅𝒅 

From strain compatibility: 

𝜺𝜺𝒂𝒂𝑬𝑬 + 𝜺𝜺𝒔𝒔
𝒅𝒅

=
𝜺𝜺𝒂𝒂𝑬𝑬
𝒌𝒌 ∗ 𝒅𝒅

⟹ 𝒌𝒌 =
𝜺𝜺𝒂𝒂𝑬𝑬

𝜺𝜺𝒂𝒂𝑬𝑬 + 𝜺𝜺𝒔𝒔
 

⟹𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒔𝒔 = 𝜶𝜶 ∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗
𝜺𝜺𝒂𝒂𝑬𝑬

𝜺𝜺𝒂𝒂𝑬𝑬 + 𝜺𝜺𝒔𝒔
∗ 𝒅𝒅 

Finally, the ultimate moment and curvature at this point are: 

𝑴𝑴𝑬𝑬 = 𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒔𝒔 ∗ 𝒅𝒅 ∗ (𝟏𝟏 − 𝒌𝒌 ∗ 𝜸𝜸) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 69) 

𝝓𝝓𝑬𝑬 =
𝜺𝜺𝒂𝒂𝑬𝑬
𝒌𝒌 ∗ 𝒅𝒅

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 70) 

 

3.3.2 The Presence of Compressive Reinforcement 

In the case of doubly reinforced beam sections, compressive reinforcement is 

the additional parameter that should be taken into consideration. Its presence increases 

the ductility of the members with a very small change in yield moment [9]. 

III. Yielding Point: 

To simplify the process, the stress-strain relationship is assumed to be linear. 
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Figure 35. Stress Block at yielding point of doubly reinforced beam [9] 

�𝑭𝑭𝒙𝒙 = 𝟔𝟔 

𝑻𝑻𝒔𝒔 = 𝑪𝑪𝒂𝒂 + 𝑪𝑪𝒔𝒔 

𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒔𝒔 =
𝟏𝟏
𝟐𝟐
∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗ 𝒌𝒌 ∗ 𝒅𝒅 + 𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒔𝒔′ 

Steel stresses are calculated from the strain compatibility: 

𝜺𝜺𝒂𝒂
𝒌𝒌 ∗ 𝒅𝒅

=
𝜺𝜺𝒔𝒔′

𝒌𝒌 ∗ 𝒅𝒅 − 𝒅𝒅′
=

𝜺𝜺𝒔𝒔
𝒅𝒅 − 𝒌𝒌 ∗ 𝒅𝒅

 

𝒇𝒇𝒔𝒔′ =
𝒌𝒌 ∗ 𝒅𝒅 − 𝒅𝒅′

𝒌𝒌 ∗ 𝒅𝒅
∗ 𝑬𝑬 ∗ 𝒇𝒇𝒂𝒂′     𝑬𝑬𝑬𝑬𝒅𝒅     𝒇𝒇𝒔𝒔 =

𝟏𝟏 − 𝒌𝒌
𝒌𝒌

∗ 𝑬𝑬 ∗ 𝒇𝒇𝒂𝒂′  

Substituting the above equations: 

�
𝟏𝟏 − 𝒌𝒌
𝒌𝒌

� ∗ 𝑨𝑨𝒔𝒔 ∗ 𝑬𝑬 ∗ 𝒇𝒇𝒂𝒂′ =
𝟏𝟏
𝟐𝟐
∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗ 𝒌𝒌 ∗ 𝒅𝒅 + �

𝒌𝒌 ∗ 𝒅𝒅 − 𝒅𝒅′

𝒌𝒌 ∗ 𝒅𝒅
� ∗ 𝑨𝑨𝒔𝒔′ ∗ 𝑬𝑬 ∗ 𝒇𝒇𝒂𝒂′  

𝒌𝒌 = �(𝝆𝝆+ 𝝆𝝆′)𝟐𝟐 ∗ 𝑬𝑬𝟐𝟐 + 𝟐𝟐 ∗ �𝝆𝝆 + 𝝆𝝆′ ∗
𝒅𝒅′

𝒅𝒅
� ∗ 𝑬𝑬 − (𝝆𝝆 − 𝝆𝝆′) ∗ 𝑬𝑬 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 71) 
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Where: 

𝝆𝝆 =
𝑨𝑨𝒔𝒔
𝒃𝒃 ∗ 𝒅𝒅

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 72)    

𝝆𝝆′ =
𝑨𝑨𝒔𝒔′

𝒃𝒃 ∗ 𝒅𝒅
∗ 𝑬𝑬 ∗ 𝒇𝒇𝒂𝒂′ (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 73) 

Finally, the yield moment and curvature at the yield point are: 

𝑴𝑴𝒚𝒚 = 𝑨𝑨𝒔𝒔 ∗ 𝒇𝒇𝒚𝒚 ∗ 𝒋𝒋𝒅𝒅 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 74) 

𝝓𝝓𝒚𝒚 =
𝒇𝒇𝒚𝒚

𝒅𝒅 ∗ 𝑬𝑬𝒔𝒔 ∗ (𝟏𝟏 − 𝒌𝒌) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 75) 

Where 𝒋𝒋𝒅𝒅 is the distance from the tensile reinforcement to the centroid of the 

compression force. 

𝒋𝒋𝒅𝒅 = 𝒅𝒅 −
𝑪𝑪𝒂𝒂 ∗

𝒌𝒌∗𝒅𝒅
𝟑𝟑

+ 𝑪𝑪𝑺𝑺 ∗ 𝒅𝒅′

𝑪𝑪𝒂𝒂 + 𝑪𝑪𝒔𝒔
(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 76) 

IV. Ultimate Load: 

At this point, the compression reinforcement is yielding. 

𝒌𝒌 =
𝒇𝒇𝒚𝒚 ∗ (𝑨𝑨𝒔𝒔 − 𝑨𝑨𝒔𝒔′ )
𝜶𝜶 ∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗ 𝒅𝒅

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 77) 

And the ultimate moment and curvature at this point are: 

𝑴𝑴𝑬𝑬 = 𝜶𝜶 ∗ 𝒇𝒇𝒂𝒂′ ∗ 𝒃𝒃 ∗ 𝒌𝒌 ∗ 𝒅𝒅𝟐𝟐 ∗ (𝟏𝟏 − 𝒌𝒌 ∗ 𝜸𝜸) + 𝑨𝑨𝒔𝒔′ ∗ 𝒇𝒇𝒚𝒚 ∗ (𝒅𝒅 − 𝒅𝒅′) (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 78) 

𝝓𝝓𝑬𝑬 =
𝟔𝟔,𝟔𝟔𝟔𝟔𝟎𝟎
𝒌𝒌 ∗ 𝒅𝒅

(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 79) 
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3.3.3 Comparison with worked examples 

 Let’s consider the following cross-section and calculate the moment-curvature 

according to the Kent-Park model when compressive reinforcement is absent and 

present. 

 

Figure 36. Example of an unconfined concrete section 

 The moment and curvature values for each critical point are calculated and 

demonstrated in Table 4: 

Table 4. Calculated Moment-Curvature values 

Compressive RC Not present Present 

Point Moment (kN m) Curvature (1/m) Moment (kN m) Curvature (1/m) 

0 0.00 0.000000 0.00 0.000000 

Before Cracking 39.73 0.000713 32.56 0.000713 

Cracking 39.73 0.000713 32.56 0.000668 

Yield 219.61 0.008434 220.32 0.006000 

Ultimate 205.01 0.031003 219.28 0.036500 

b = 250 mm fc′ = 28 MPa 

h = 450 mm fy = 420 MPa 

Unconfined Es = 200 GPa 

db = 25 mm 
Ec = 4 700 ∗ �fc′

= 24.87 GPA 

db′ = 16 mm cover = 25 mm 
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Figure 37. Graphic representation of the moment-curvature data 

The shape of the moment-curvature curve can be observed from Figure 37. 

The presence of compressive longitudinal reinforcement increases the moment 

capacity slightly compared to the case without compressive reinforcement, as stated 

earlier. 

 

3.3.4 The Presence of Transverse Reinforcement 

To improve the ductility and shear performance of the member the longitudinal 

reinforcement is confined with transverse reinforcement, such as steel stirrups. A 

confinement zone will be formed in the cross-section. 
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Figure 38. Confined Beam Section [9] 

 The procedure for determining the moment-curvature relationship of confined 

concrete sections is the same as the one explained in the previous chapters. The 

Modified Kent-Park model is adopted due to the presence of confinement, where the 

confinement factors are introduced [28]. 

 

 

3.4 Moment-Rotation Relationship 

Plastic hinges are lumped masses where the concentration of the plastic 

deformation is accumulated due to bending. These regions are formed when steel 

reaches its yield point, and their location is determined by the moment-curvature 

relationship of the cross-section. The moment-rotation relationship describes the 

behaviour of the member due to bending [9]. 

 

Figure 39. Typical location of plastic hinges [9] 
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The rotation of the member is determined by the integration of the curvature 

along the length of the member, including the elastic and plastic regions. 

𝜟𝜟 = 𝝓𝝓 ∗ 𝓵𝓵𝒑𝒑 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 80) 

Where: 

𝜃𝜃 = 𝑠𝑠𝑜𝑜𝑠𝑠𝐺𝐺𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 𝐺𝐺𝑛𝑛𝑠𝑠𝑦𝑦𝑦𝑦 

𝜙𝜙 = 𝑐𝑐𝑣𝑣𝑠𝑠𝑐𝑐𝐺𝐺𝑠𝑠𝑣𝑣𝑠𝑠𝑦𝑦 𝑦𝑦𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 

ℓ𝑝𝑝 = 𝑝𝑝𝑦𝑦𝐺𝐺𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐 ℎ𝑦𝑦𝑛𝑛𝑠𝑠𝑦𝑦 𝑦𝑦𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 

There is still no compromise on the best way to estimate the length of plastic 

hinges, thus researchers have proposed empirical formulas for different types of 

reinforced concrete beams and columns. Some of the most common methods for 

calculating the plastic hinge length are:  

Table 5. Empirical equations for calculating the length of plastic hinges [29] 

Researcher Plastic Hinge Length, 𝒂𝒂𝒑𝒑 

Baker (1956) 𝑘𝑘 �
𝑧𝑧
𝑑𝑑
�
1
4 𝑑𝑑 

Sawyer (1964) 0.25𝑑𝑑 + 0.075𝑧𝑧 

Corley (1966) 0.5𝑑𝑑 + 0.2√𝑑𝑑 �
𝑧𝑧
𝑑𝑑
� 

Mattock (1967) 0.5𝑑𝑑 + 0.05𝑧𝑧 

Priestley and Park (1987) 0.08𝑧𝑧 + 6𝑑𝑑𝑏𝑏 

Paulay and Priestley (1992) 0.08𝑧𝑧 + 0.022𝑑𝑑𝑏𝑏𝑓𝑓𝑦𝑦 

Sheikh and Khoury (1993) 1.0ℎ 

Coleman and Spacone (2001) 
𝐺𝐺𝑓𝑓𝑢𝑢

�0.6𝑓𝑓𝑢𝑢′ �𝜀𝜀20 − 𝜀𝜀𝑢𝑢 + 0.8𝑓𝑓𝑐𝑐′

𝐸𝐸𝑐𝑐
��

 

Panagiotakos and Fardis (2001) 0.18𝑧𝑧 + 0.02𝑦𝑦𝑑𝑑𝑏𝑏𝑓𝑓𝑦𝑦 
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Bae and Bayrak (2008) 

𝑦𝑦𝑝𝑝
ℎ

= �0.3 �
𝑝𝑝
𝑝𝑝0
� + 3�

𝐴𝐴𝑠𝑠
𝐴𝐴𝑔𝑔
� − 1� �

𝑧𝑧
ℎ
� + 0.25

≥ 0.25 

Where: 

𝐴𝐴𝑔𝑔 = 𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑦𝑦𝐺𝐺 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 

𝐴𝐴𝑠𝑠 = 𝐺𝐺𝑠𝑠𝑦𝑦𝐺𝐺 𝑜𝑜𝑓𝑓 𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

𝑑𝑑 = 𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑑𝑑𝑦𝑦𝑝𝑝𝑠𝑠ℎ 

𝑑𝑑𝑏𝑏 = 𝑑𝑑𝑦𝑦𝐺𝐺𝑐𝑐𝑦𝑦𝑠𝑠𝑦𝑦𝑠𝑠 𝑜𝑜𝑓𝑓 𝑦𝑦𝑜𝑜𝑛𝑛𝑠𝑠𝑦𝑦𝑠𝑠𝑣𝑣𝑑𝑑𝑦𝑦𝑛𝑛𝐺𝐺𝑦𝑦 𝑠𝑠𝑦𝑦𝑦𝑦𝑛𝑛𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦𝑐𝑐𝑦𝑦𝑛𝑛𝑠𝑠 

𝐸𝐸𝑢𝑢 = 𝐸𝐸𝑦𝑦𝐺𝐺𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐 𝑀𝑀𝑜𝑜𝑑𝑑𝑣𝑣𝑦𝑦𝑣𝑣𝑠𝑠 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 

𝑓𝑓𝑢𝑢 = 𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑛𝑛𝑠𝑠𝑠𝑠ℎ 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 

𝑓𝑓𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑦𝑦𝑛𝑛𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓 𝑠𝑠𝑦𝑦𝑏𝑏𝐺𝐺𝑠𝑠𝑠𝑠 

𝐺𝐺𝑓𝑓𝑢𝑢 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦 𝑓𝑓𝑠𝑠𝐺𝐺𝑐𝑐𝑠𝑠𝑣𝑣𝑠𝑠𝑦𝑦 𝑦𝑦𝑛𝑛𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦 𝑦𝑦𝑛𝑛 𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 

ℎ = 𝑜𝑜𝑐𝑐𝑦𝑦𝑠𝑠𝐺𝐺𝑦𝑦𝑦𝑦 𝑑𝑑𝑦𝑦𝑝𝑝𝑠𝑠ℎ 𝑜𝑜𝑓𝑓 𝑠𝑠𝑦𝑦𝑐𝑐𝑠𝑠𝑦𝑦𝑜𝑜𝑛𝑛 

𝑝𝑝 = 𝐺𝐺𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑 𝐺𝐺𝑥𝑥𝑦𝑦𝐺𝐺𝑦𝑦 𝑓𝑓𝑜𝑜𝑠𝑠𝑐𝑐𝑦𝑦 

𝒑𝒑𝟔𝟔 = 𝟔𝟔.𝟎𝟎𝟏𝟏 𝒇𝒇𝒂𝒂′  �𝑨𝑨𝒈𝒈 − 𝑨𝑨𝒔𝒔� + 𝒇𝒇𝒚𝒚 𝑨𝑨𝒔𝒔 (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 81) 

𝑝𝑝0 = 𝑛𝑛𝑜𝑜𝑐𝑐𝑦𝑦𝑛𝑛𝐺𝐺𝑦𝑦 𝐺𝐺𝑥𝑥𝑦𝑦𝐺𝐺𝑦𝑦 𝑦𝑦𝑜𝑜𝐺𝐺𝑑𝑑 𝑐𝑐𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑦𝑦𝑠𝑠𝑦𝑦 𝑝𝑝𝑦𝑦𝑠𝑠 𝐴𝐴𝐶𝐶𝐸𝐸 318 − 05 (2005) [27] 

𝑧𝑧 = 𝑠𝑠ℎ𝑦𝑦𝐺𝐺𝑠𝑠 𝑠𝑠𝑝𝑝𝐺𝐺𝑛𝑛 

𝜀𝜀𝑢𝑢 = 𝑝𝑝𝑦𝑦𝐺𝐺𝑘𝑘 𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑦𝑦𝑐𝑐𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑦𝑦𝑛𝑛 

𝒛𝒛 is the distance from the critical point to the point of contraflexure. The point 

of contraflexure is the point where the moment changes sign, and therefore the moment 



47 

is zero. In simple terms, 𝒛𝒛 is the length of the member segment from the critical point 

to the point where the moment is zero. 

 

Figure 40. Length of shear spans formed in a frame [30]  
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CHAPTER 4 

CASE STUDY 

 

4.1  Four-Storey Residential Building 

The first case study involves the non-linear analysis of a 3D frame of a four-

storey residential building located in a seismic zone. It has four bays in both directions 

with a width of 4 m in the x-direction and 3 m in the y-direction. The frame is modelled 

using the three concrete models to compare their performance under earthquake 

loading. The layout of the frame is based on pre-modern building design. The nominal 

concrete strength is 16 MPa and the steel reinforcement grade is 220 MPa. However, 

due to the age and quality of construction, the actual concrete strength and stirrup 

spacing vary throughout the structure. Therefore, two scenarios are considered: one 

with 16 MPa concrete and 100 mm stirrup spacing, and another with 10 MPa concrete 

and 250 mm stirrup spacing. These values are obtained from the site surveys conducted 

on such buildings. The additional information is shown in the following table [31]. 

Table 6. Data for the first case 

 Case 1.1 Case 1.2 
Type Residential Building 
Number of floors 4 
Floor height (m) 2.80 
Bay width in x-direction (m) 4 
Bay width in y-direction (m) 3 
Frame weight (kN) 6830.04 
Concrete cover (mm) 25.00 
Concrete grade (MPa) 16 10 
Steel grade (MPa) 220 
Stirrup spacing (mm) 100 250 

The longitudinal reinforcement is: 

• 8𝜙𝜙12 for the 200x500 beams 

• 6𝜙𝜙14 for the 300x300 side columns 
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• 10𝜙𝜙14 for the 250x500 / 500x250 columns 

 

Figure 41. Member cross-sections for the four-storey frame [6] 

 

Figure 42. Top view of the frame in xy plan [31] 
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Figure 43. Side views of the frame in xz and yz plans respectively 

To evaluate the non-linear behaviour of the structural members, the moment-

curvature relationship of each member is calculated using the SEMAp section analysis 

tool, used by the Scientific and Technical Research Council of Turkey (TÜBİTAK) 

under Project No. 105M024 [6]. The section is manually configured by inserting the 

dimensions and reinforcement data.  

 

Figure 44. Configuring the section in SEMAp [6] 

The initial data for the structural analysis of the building is obtained by running 

SAP2000 linear analysis with only the dead and live loads (𝐷𝐷𝐷𝐷 + 0.3𝐷𝐷𝐷𝐷) applied to 

the model. The results show that the average shear span of the beams in the xz-

direction is 0.85 m, and the beams in the yz-direction have an average shear span of 
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0.70 m. The columns have different shear spans for each floor, 1.91 m for the ground 

floor, 1.44 m for the first and second floors, and 1.50 m for the third floor. 

For this study, two representative members are selected for detailed analysis: 

one of the middle beams in the xz plane (both are symmetric) on the second floor, and 

the middle column in the xy plane on the ground floor, both belonging to the middle 

frame of the building. These members have been chosen because they are the most 

critical in terms of their demand and their influence on the global response of the 

structure. 

The SEMAp section analysis tool is used to calculate the moment-curvature 

relationship for each concrete model, based on the non-linear material models and the 

stress-strain relationships of the concrete.  

 

Figure 45. Generated stress-strain curves for the C250x500 column in Case 1.1 



52 

 

Figure 46. Generated moment-curvature curves for the C250x500 column in Case 

1.1 

 

Figure 47. Generated moment-rotation curve for the Modified Kent-Park model of 

the C250x500 column in Case 1.1 
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The main difference between the beam and column members in this analysis is 

the axial force applied to the cross-section. The beam is assumed to have zero axial 

force, while the column has an axial force of 358 kN, which corresponds to the gravity 

load on the ground floor. The axial force affects the curvature and the ultimate moment 

capacity of the member. 

 

Figure 48. One of the most critical beams in the 4-storey frame 

 

Figure 49. The most critical column in the middle of the frame 

Selected 

Selected 
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The moment-rotation relationship of all members is obtained from the 

moment-curvature relationship using Equation 80. The plastic hinge length is also 

calculated for each member using Paulay and Priestley’s equation from Table 5. 

The force-deformation and moment-rotation data that is generated for each 

member is manually assigned to the hinges of the corresponding member in SAP2000. 

The beams have two degrees of freedom: shear (V2) and moment (M3). The columns 

have five degrees of freedom: axial (P), shear (V2 and V3), and moment (M2 and M3). 

The suffixes 1, 2 and 3 denote the local axis of the cross-section of the member, which 

determines the direction and orientation of the forces and moments acting on the 

member. 

 

 

Figure 50. Defining the force-displacement parameters for shear, V2, of column 
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Figure 51. Defining the moment-rotation parameters for moment, M2, of column 

 The force-displacement and moment-rotation values can be either entered 

directly into the sheet or divided by safety factors for a clearer presentation. 

The next step is performing the non-linear pushover analysis at the global 

system level, after assigning all the hinges to the frame members. The frame has a 

natural period of 0.55409 s in the x-direction and 0.54321 s in the y-direction, which 

reflects its dynamic characteristics and stiffness. The modal load case, which applies 

a proportional load distribution based on the mode shapes of the frame, is used for 

conducting the pushover analysis in both directions. The load application control is 

displacement-controlled, meaning that the load is increased until the target 

displacement is reached. The target displacement is set to 4% of the frame’s height, 

which is equivalent to 448.0 mm. This value represents the maximum allowable 

displacement of the frame under seismic loads. 
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Figure 52. The parameters for the non-linear static pushover analysis in the y-

direction 

 

 

4.2  Seven-Storey Residential Building 

The second case study involves the non-linear analysis of a 7-storey frame. The 

top view of the plan in the xy direction is the same as in Figure 42. 

Table 7. Data for the second case 

 Case 2.1 Case 2.2 
Type Residential Building 
Number of floors 7 
Floor height (m) 2.80 
Bay width in y-direction (m) 4 
Bay width in y-direction (m) 3 
Frame weight (kN) 15,100.96 
Concrete cover (mm) 25.00 
Concrete grade (MPa) 16 10 
Steel grade (MPa) 220 
Stirrup spacing (mm) 100 250 
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The longitudinal reinforcement is: 

• 8𝜙𝜙14 for the 250x600 beams 

• 12𝜙𝜙14 for the 400x400 side columns 

• 8𝜙𝜙16 and 2𝜙𝜙14 for the 300x600 / 600x300 columns 

 

Figure 53. Member cross-sections for the seven-storey frame [6] 

 

Figure 54. Side view of the frame in xz and yz plans respectively 

For this case, two representative members are selected for detailed analysis too: 

one of the side beams in the xz plane (both are symmetric) on the sixth floor, and the 

middle column in the xy plane on the ground floor, both belonging to the middle frame 

of the building. 
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Figure 55. One of the most critical beams in the 4-storey frame 

 

Figure 56. The most critical column in the middle of the frame 

Selected 

Selected 



59 

The frame has a natural period of 0.76456 s in the x-direction and 0.75352 s in 

the y-direction. The target displacement is set to 4% of the frame’s height, which is 

equivalent to 784.0 mm. 

 

Figure 57. The parameters for the non-linear static pushover analysis in the x-

direction 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1  Results 

A comparison of the moment-curvature relationships of the beam and column 

sections for different concrete models reveals that the concrete behaviour in the 

column case is more sensitive to the choice of the model than in the beam case. This 

happens due to the presence of axial loads and confinement effects of the column, 

which affect the concrete behaviour and strength. The axial load reduces the curvature 

and increases the ultimate moment capacity of the column, while the confinement 

effect enhances the concrete strength and ductility by preventing lateral expansion and 

cracking.  

 

 

 

Figure 58. Moment-curvature data for the selected beam sections 
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Figure 59. Moment-curvature data for the selected column sections 

Another factor that influences the moment-curvature of the members is the 

stirrup spacing and concrete quality. As expected, the members with smaller stirrup 

spacing and better concrete quality have higher moment capacity than the members 

with larger stirrup spacing and poor concrete quality. This is because the stirrups 

provide confinement and shear resistance to the concrete, while the concrete quality 

affects the compressive strength and stiffness of the material. Moreover, the strain 

capacity of the members, which represents their ductility and deformation ability, is 

lower when the concrete quality is poor and the stirrup spacing is large, especially in 
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the seven-story case. This indicates that these members are more prone to brittle failure 

and less able to dissipate energy under seismic loads. 

 

 

  

 Figure 60. Capacity curves for the four-storey frame 
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 Figure 61. Capacity curves for seven-storey frame 

 The final observation is made on the capacity curve of the frames, which is 

obtained from the non-linear pushover analysis. The capacity curve shows the base 

shear versus the roof displacement of the frame under lateral loads. The results show 

that the capacity curve is not sensitive to the choice of the concrete model, as all the 

models produce similar curves for both frames. However, the capacity curve is 

influenced by the concrete grade and the stirrup spacing of the members, as these 

factors affect the moment capacity and ductility of them. The frames with better 

concrete grade and smaller stirrup spacing have a higher base shear and roof 

displacement than the frames with poor concrete grade and larger stirrup spacing. This 
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means that these frames have higher strength and deformation capacity. The effect of 

the concrete grade and stirrup spacing is more evident in the seven-story frame than in 

the four-story frame, as the seven-story frame has more members and more gravity 

load than the four-story frame. Therefore, these factors are important for designing and 

evaluating the seismic performance of reinforced concrete frames. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1  Conclusions 

 The main objective of this thesis was to compare the different concrete models 

in SAP2000 for the non-linear analysis of reinforced concrete frames under seismic 

loads. The concrete models were applied to the cross-sections of the beam and column 

members of two frames: a four-story frame and a seven-story frame. The moment-

curvature and moment-rotation relationships of the members were calculated using the 

SEMAp section analysis tool, which was developed by the Scientific and Technical 

Research Council of Turkey (TÜBİTAK) under Project No. 105M024. The force-

deformation and moment-rotation data were then manually assigned to the hinges of 

the corresponding members in SAP2000. The non-linear pushover analysis was 

performed on the frames using the modal load case and the displacement-controlled 

load application. 

 The results show that the concrete models have a significant effect on the 

moment-curvature and moment-rotation relationships of the members, especially in 

the column case. The concrete models also affected the plastic hinge length and the 

strain capacity of the members, which are important parameters for evaluating the 

ductility and energy dissipation of the structure. However, the concrete models did not 

have a noticeable effect on the capacity curve of the frames, which showed similar 

base shear / seismic weight and drift values for all models. The capacity curve is more 

influenced by the concrete grade and the stirrup spacing of the members, which 

affected the strength and deformation capacity of the frames. The effect of these factors 

is more pronounced in the seven-story frame than in the four-story frame, due to the 

higher number of members and gravity load. Therefore, it can be concluded that the 

selection of an appropriate concrete model for the non-linear analysis of reinforced 

concrete frames is crucial for capturing the local behaviour and performance of the 

members, while the selection of an appropriate concrete grade and stirrup spacing is 

crucial for capturing the global behaviour and performance of the frames. 
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6.2  Recommendations for future research  

As stated before, this thesis compared the different concrete models at local 

and global system levels. However, there are still some limitations and challenges that 

need to be addressed in future research. For example, more concrete models can be 

investigated and validated using experimental data and other software tools. More 

frames with different geometries, heights, and boundary conditions can be analysed 

and compared using the same concrete models. More concrete grades and stirrup 

spacings can be considered and their effects on the moment-curvature, moment-

rotation, and capacity curve of the frames can be evaluated. These aspects can provide 

more insights and understanding of the non-linear behaviour and performance of 

reinforced concrete frames under seismic loads and can help to improve the design and 

assessment of these structures. 
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