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ABSTRACT

Density inflow is modeled in two dimensions through a reservoir with sloping bottom. If an
inflow of higher density enters ambient dam reservoir water, then it plunges below the
ambient water and then becomes density underflow. In the present model, nonlinear and
unsteady continuity, momentum, energy and turbulence model equations are formulated in the
Cartesian coordinates. For the turbulence viscosity, k-ε turbulence model is used with an
extension to include production or destruction of turbulent kinetic energy. In order to
investigate the Coriolis force effect on the density flow in a dam reservoir, Coriolis force
parameter is included in the governing equations. The equations of the model are solved based
on the initial and boundary conditions of the dam reservoir flow for a range of bottom slopes.
The results of the present model are compared with the previous experimental work and the
mathematical model. Present model results are found to be of the same magnitude as the
experimental measurements
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INTRODUCTION
Inflow river water polluted from industrial plants, household and also power stations may
have different temperatures, concentration of dissolved or suspended substances from the
ambient water in a dam reservoir. The ambient water has seldom the same density difference
with inflow river water. The differences lead to baroclinic forces affecting the flow structure.
If such inflow river water enters ambient dam reservoir water, then three basic types of
currents may occur. These are called the over flow; inter flow, and plunging flow [1-2]. If
density of incoming flow is smaller than ambient water body in the reservoir, this type of flow
will move along the free surface and is called over flow. If reservoir ambient water is
stratified due to temperature or other effects, incoming flow will go forward an intermediate
layer that density of this layer is equal to inflow density. This flow is called inter flow.
However, if a river water flowing density is denser than quiescent water density of dam
reservoir, then this type of flow will plunge below the ambient water and will move along the
reservoir bottom. This flow is named underflow, density negatively buoyant flow or plunging
flow and is the subject investigated in this study in a three-dimensional reservoir with a
sloping bottoms and divergence angles.

The definition sketch of plunging flow and initial entrainment coefficient are shown in Fig. 1
[3-4]. This figure shows a plunging flow situation in a sloping bottom two-dimensional
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reservoir. In Figure 2, Hp, is plunge depth, Hd, is the depth of the underflow layer, Ud is
underflow layer mean velocity, qd is underflow layer stream discharge along the density flow
and Uin is river inflow mean velocity.

In this type of flow, the river inflow plunges at a place on ambient reservoir water surface
that is known as plunge point or plunge line.

Figure 1 Sketch of plunging flow and development of mixing rate

Density flow is studied herein in a two dimensional reservoir with a sloping bottom.
Laboratory experimental studies of density plunging flows over both sloping bottom and
diverging horizontal channel were performed by a lot of researchers that most of them
established a number of semi empirical equations [5-10]. A few authors have considered the
problem by solving it using numerical methods [1- 4, 7 and 11]. They established
mathematical models and used numerical solution to investigate the plunging and underflow.

In the numerical approach, plunge region need not be isolated from the rest of the reservoir so
that the river inflow can be simulated along the reservoir. In this solution, plunge region will
appear in the emerging flow field as a part of the overall solution. Such a solution gives
realistic and useful results.

PRESENT STUDY
In this paper, solutions were obtained for flows corresponding to both the experimental runs
of Singh and Shah [5] and the mathematical model of Farrell and Stefan [3]. Singh and Shah
experimental runs applied turbulence flow conditions where Reynolds numbers are taken as
600-11000. Farrell and Stefan model is based on Singh and Shah experimental runs using
cylindrical coordinates in two-dimensional reservoir.

Inflow to shallow dam reservoir may be in virtually constant depth and strongly diverging
channel. Inflow to a reservoir in a narrow walley may have little divergence and more slope
effect [7]. So apart from reservoir geometry, various extraneous forces or factors such as
wind, waves etc. can exert an influence on the plunging flow dynamics. These forces, in
particularly, can be expected to move the plunge point on the water surface. If density
differences are due to dissolved or suspended materials, then buoyancy flux may change and
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influence the plunging flow dynamics. Some of the above mentioned factors are omitted in
the present model in order to facilitate the solution, even though, they may have some effects
over the reservoir flow.

Since this work is limited to 2-D, the width of the reservoir is not considered, meaning the
divergence of the reservoir is not studied. The temperature effects caused by meteorological
inputs are not considered in this study.

Based on the initial and boundary conditions of the reservoir flow, equations presented later in
this article are solved using control volume concept with computational fluid dynamic solver
Fluent 5.3 software program. In these model simulations, it is assumed that density flows
occur only due to differences in temperatures of ambient water and inflow water.

MATHEMATICAL MODEL EQUATIONS

The reservoir configuration is accommodated in two dimensional (x,y) Cartesian coordinates.
The experimental reservoir configuration of Singh and Shah [5] is used in the present paper as
well as in Farrell and Stefan [3] mathematical model simulation. In this density different
reservoir, flows such as stratified, plunging and circulation can occur and these types of flows
are very complicated and hard to solve. Therefore, some simplification process has to be
made before presenting the governing equations.

Because the free surface phenomena such as wind or wave effects are not being considered in
reservoir surface, the free surface of the reservoir is modeled as a rigid lid during the present
model simulation. Another simplification is that the temperature difference is taken to be the
source of the stratified and buoyancy flows [4, 12]. From field and practice, small temperature
differences are enough to produce density flow in the reservoir [3].

Therefore, the density-temperature relation can be linearized and written as follows:

 TT000  (1)

where ρ is the water density, T is the water temperature and β is the coefficient of thermal
expansion and is calculated as β = - (Δρ/ρo)(1/ΔT), where ΔT is the temperature difference
between ambient and inflow river waters, ρo and To refer to the reservoir conditions. Equation
(1) will be substituted into the momentum equation. In the present mathematical model
application of the Boussinesq approximation and reduced pressure approach is considered as
another simplification.

The mathematical model consists of the following equations: the continuity equation,
momentum equations, energy equation and the turbulence model equations.
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Momentum equations
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and for the y axis,
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Energy equation for the temperature.
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where u and v are the mean velocities in the x and y directions, respectively, ρ is the water
density, P is the pressure adjusted to absorb the hydrostatic portion of the gravity terms and
T is the mean temperature, νeff = ν + νt, where ν is the kinematic viscosity and νt is the
kinematic eddy (turbulence) viscosity; and αeff = ( ν / Pr) + (νt /σt) where Pr and σt are the
Prandtl and turbulent Prandtl numbers, respectively.

k-ε turbulence model equations
The effect of turbulence is simulated using the modified standard k-ε model including the
suitable buoyancy terms. Standard k-ε model is semi–emprical model Launder and Spalding
[13-14] based on model transport equations for turbulent kinetic energy (k) and its dissipation
rate (ε). In the derivation of the k- ε model, it was assumed that the flow is fully turbulent, and
the effects of molecular viscosity are negligible.   The standard k-ε model is therefore valid
only for fully turbulent flows. k-ε transport equations has been implemented by Rodi [15]. For
a two dimensional unsteady flow at the sloping bottom reservoir, the eddy viscosity νt is
computed from the following equation,
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where k is the turbulent kinetic energy and ε is the turbulent energy dissipation rate per unit
mass. k and ε are obtained from the solution of the following equations in two-dimensional
flow [3].
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and equation of ε,
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where Prod is the production of turbulent kinetic energy from the mean flow and is given as
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In these equations, G is the production or destruction of turbulent kinetic energy by buoyancy
forces and is given as
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The values of the coefficients Cμ, C1ε, C2ε, C3, σk, σk, and σt appearing in the k-ε turbulence
model equations used herein were given the standard values recommended by Launder and
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Spalding (1974). For the standard k-ε model, these constants are taken as Cμ = 0.09, C1ε =
1.44, C2ε = 1.92, σk = 1.00, σk = 1.3, and σt = 0.9. C3 is not part of the standard k-ε model but
enter through the buoyancy terms and the constant C3 is not stable value. In FLUENT, C3 is
not specified, but is instead calculated according to C3=tanh|v/u|, where v is the component of
the flow velocity parallel to the gravitational vector and u is the component of the flow
velocity perpendicular to the gravitational vector (FLUENT, [16]).

Boundary and Initial Conditions
Since reservoir density flow is unsteady, turbulence flow field boundary conditions must be
specified individually on the reservoir inlet and outlet planes, at the walls and at the free
surface. Boundary and initial conditions for each variable are chosen individually.

Velocity is given a symmetry condition at the free surface. At the reservoir bottom and dam
face, velocities are determined using the standard wall function that is based on the proposal
of Launder and Spalding [14]. This function assumes a log-law velocity profile near the wall
and is provided in FLUENT as follows.
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where, up is the mean flow velocity at point p; u* is the friction velocity; K is the von Karman
constant; E is the empirical constant having a value of 9.81; yp is the distance from point p to
the wall; and ΔB is the roughness function that depends, in general, on the wall roughness
height, Ks. At the inflow boundary, the horizontal velocity component in the x direction, u, is
given uniform velocity distribution. The vertical velocity component in the y direction, v, is
set to zero. At the outflow point of the reservoir, the horizontal velocity component is
allocated a value in order to exactly balance inflow and the vertical velocity component is
taken as zero. The initial velocity field into the reservoir consists of a forward horizontal
velocity, u, and zero vertical velocity, v, at all points except close to dam.

The bottom and the free surface of the reservoir’s temperatures are taken as adiabatic. The
initial temperature field consists of a constant temperature throughout the reservoir. The dam
face temperature is taken equal to the initial temperature of the reservoir water. The inflow
river water temperature is set at a constant value with no variation over river depth. Reservoir
temperature conditions will be changed later during the simulation run time.

MODEL APLICATION
In order to examine plunging flow models, model solutions were extracted for flows
corresponding to the experimental runs of Singh and Shah [5]. and Farrell and Stefan [3].
Their experimental reservoir configuration was taken from their paper and the project report.
The reservoir shape is shown schematically in Fig. 2.

Experimental and model reservoir flows were simulated in a reservoir 12.5 m long where the
reservoir inlet and outlet average depths are changed between 3.5 - 16 cm and 16 - 41 cm,
respectively. The computational domains are divided into 125x17 grids in the x and y
directions, respectively and 2125 cells. As an initial condition, the inflow channel is first
filled with warm water, and then the cold water is released at the upstream end of the inflow
channel at a specified rate. The current proceeds forward until it reaches the downstream
boundary. The inlet densimetric Froude number in all cases exceeds unity, indicating an
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incoming supercritical flow condition. The calculation continued for approximately 800 s at
which point the front has long past the downstream boundary and any change in the flow field
would be insignificant. In order to have the desired converged solution, a time step of 10
seconds was chosen after preliminary trials.

Figure  2. Schematic projection of model simulation for sloping reservoir

ANALYSIS OF THE RESULTS

In the present mathematical model, a number of flows were simulated within the variable
ranges given with the experimental runs of Singh and Shah [5]. Farrell and Stefan [3] used the
same variable ranges in their mathematical model simulation. The present model simulations
were carried out for a range of flow conditions. These simulations yielded realistic plunging
flow fields in all runs and were developed in a similar manner as described by Singh and Shah
(1971). The details of these runs are given in Table.1.

Table.1 Details of reservoir plunging flow simulations for the present model

Temporal variation of velocity field

The velocity field in the present paper is developed in a similar manner as both the available
experimental and mathematical model simulation results. In all run simulations, initially the
inflow river water (cold water) advanced into the reservoir, pushed forward under the ambient

Run
No:

Bottom
Slope

Inflow
Channe
l Depth

(cm)

Inflow
Velocity

(cm/s)

Inflow
Stream

Discharge
(cm3/cm/s

)

Ambient
Water
Temp.

To
(0C)

Inflow
Water
Temp.

Tin
(0C)

Plunge
Depth

by
Farrell

and
Stefan
(1986)
(cm)

(Present Model)
After Plunge First

Appearing
Plunge
Depth

Hp
(cm)

Distance
from Inlet

X
(m)

SSHAH
3 0.0104 8.3 3.71 30.8 25 15 12.4 12.7 4.3

Reservoir
Reservoir Inlet

12.5 m

0.16 - 0.41m

Reservoir Sloping
Bottom
Slope: 0.01-0.02

Outlet

0,035-0,16m

Dam
x

y
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warm water and then the warm water is displaced forward and the velocities are in the
downstream direction at all points. The warm water is initially displaced forward and
velocities are forward at all points. When the denser cold water pushed slightly forward under
the warm water, consequently a small region of (back) recirculation flow appeared in the
ambient water surface. In this way plunging flow started and then the river inflow cold-water
flow downstream under the ambient warm water as a density current. This backflow region
grew larger as time elapsed and then eventually the density current front reached the dam base
and the entire ambient warm water zone is transformed into a recirculation zone and a
stratified flow is produced along the reservoir. Plunge point was well defined in these
simulation velocity fields.

Typical velocity fields for the runs of SSHAH3 at different elapsed times are given from
simulation results. The times development of flows are shown in Fig.3, 4  and 5. These fields
illustrate the different elapsed times that are used in the initial stage and the density flow
reaches the dam. The simulation results give the contours of the velocity fields. Fig. 3 shows
the initial velocity field is forward at all points.

Figure 3. Initially typical velocity contour field, (elapsed time is 30 seconds)
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Figure 4. Reservoir velocity contour field at initiation of circulation flow for experimental
SSHAH3 (elapsed time is 210 seconds).

Figure 5. Reservoir velocity contours after density flow reached the dam for experimental
SSHAH3 (elapsed time is 600 seconds).
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Fig. 4 show velocity contour field for the elapsed time 210 seconds after  plunging. The
situation at this time is just the appearance of a small region of backflow over the plunging
flow where the velocities are about 4.68 cm/s. Fig. 5 show that the density flow reached the
dam face at the elapsed time of 600 seconds and at the same time recirculation region reached
the dam too. The recirculation region grows and cover the entire reservoir and maximum
velocities appear in the under flow region. The velocities in the Figure increase from 3.71
cm/s to 5.60 - 5.79 cm/s during the run elapsed time. This velocity increment is important for
reservoir bottom stability. The reason for the velocity increment can be explained with
increases bottom slope and with charging balance of force. This feature is appeared in all the
other model simulations and experimental measurement.

Variation of vertical velocity profiles at the plunging point
Both experimental (for run SSHAH3 ) and numerical simulations of velocity profiles near the
plunging point are given in Fig. 6. The comparison of these profiles shows an excellent
agreement between the experimental and the present model simulations. The maximum
percentage difference between the present model results and that of Singh and Shah is 11%.

Figure 6. Comparison of experimental and numerical velocity profiles near the plunge point,
for run SSHAH3.

CONCLUSION
A mathematical model was derived to investigate the characteristic parameters of the density
and plunging flow in a dam reservoir. The model was solved numerically using FLUENT and
analyzed to determine density flow characterizing parameters. The results followed such an
expected trend based on the plunging flow dynamics.

Plunging flow, density flow and recirculation zone development were well defined in the
velocity, temperature and turbulence fields from the model simulation figures. The results of
this mathematical model were compared with the available experimental and mathematical
model results. The comparison revealed an excellent agreement.

The present model simulations provide useful information for understanding and determining
plunging flow patterns as well as density flow in a dam reservoir.
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