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Abstract (12 Punto Times New Roman, Bold)

Transient sediment waves are solved by the double decomposition (DD) method. The method

solves the parabolic partial differential equation by decomposing the solution function into

summation of M number of components. The solution is approximated by considering the first

three terms. The performance of the model in simulating experimental data is satisfactory.

The hypothetical case study reveals that the model can mimic the sediment transport in nature.
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INTRODUCTION

Sediment transport in alluvial channels has been extensively studied both

experimentally and mathematically. Experimental studies have involved extensive flume and

field observations (Guy et al. 1966, Soni 1975, Bombar et al 2010, among many). Field

studies of sediment transport have also been conducted by many researchers (Langbein and

Leopold 1968, Wathen and Hoey 1998, Lisle et al. 2001, among others). Flume experimental

and field studies have contributed to the enhanced understanding of basic mechanisms of

sediment wave movement in alluvial channels.

Considerable effort has also been devoted to developing theoretical models for

predicting sediment movement in alluvial channels. These models have ranged from simple

conceptual representations of transport in uniform flow in clear water (de Vries 1973) to

comprehensive representations treating transport in sediment laden non-uniform and unsteady

flow with interaction between suspended sediment and movable bed layer (Pianese 1994, Wu

et al. 2004; Tayfur and Singh 2007).

Analytical solutions have also been attempted for simulating sediment transport in

mostly aggrading channels (de Vries 1973; Soni 1981; Dietrich et al. 1999; Shan and Hong,

2001).
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The objective of this study is to introduce a mathematical solution technique of the

Double Decomposition (DD) method developed by Adomian (1984, 1988) for solving the

diffusion equation representing the temporal and spatial change in sediment rate in aggraded

channels.

Double Decomposition (DD) Method

The equation to be solved by the DD method is the diffusion equation employed by Soni

(1981b):
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Subjected to the following initial and boundary conditions:

G (x,0) = Ge (10)

G (0, t) = Ge + G sin (wt) (11)

  eGtLG , (12)

where; G = sediment transport rate, Co = coefficient whose value is determined to be 0.372

(Soni 1981b); g = gravitational acceleration; qw = unit flow discharge; p = porosity, and f =

friction coefficient.

The DD method, developed by Adomian (1984, 1988), decomposes the solution function into

a sum of components. Thus, the solution function for the transport rate G(x, t) can be

represented as:
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where Gm is the mth approximation of G and m = 0, 1, 2, 3,…,M, and M is arbitrary number

indicating the order of approximation. In this study, a three-term approximation is considered

in this study. Employing the operators,
ttL



 and 2

2

x
xxL




 , Eq. (9) can be written as:

   GxxLoKGtL  (14)

Equation (13), with the use of Eq. (14), can be expressed as:
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where Wx,m, m = 0, 1, 2, 3,…,M, are coefficients.

The first-term approximation can be expressed as:

S1 (x,t) = G0 = W 0,0 + xW 0,1 (16)

Applying the first boundary condition (Eq. 11) yields W0,0 = Ge +Gsin (wt) and second

boundary condition (Eq. 12) yields W0,1 = -Gsin(wt)/L. Substituting these coefficients into

Eq. 16 yields  the first-term approximation solution as:
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The two-term approximation can be expressed as:

S2(x, t) = S1(x, t) + G1 (18)
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Substituting Eq. (21) into Eq. (19) yields
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Substitution of this G1 into Eq. (18) results in:
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The use of the first and second boundary conditions (Eqs. 11 and 12) yields W0,1=0.0 and

W1,1 = -GwLCos(wt)/(3Ko), respectively.  Substitution of these coefficients into Eq. (22)

results in the second-term approximation as:
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Note that G1 is equal to the last term on the right hand side of Eq. (23).

The three-term approximation can be expressed as:

S3(x, t) = S2(x, t) + G2 (24)

where
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Substituting Eq (27) into Eq (25) yields
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Coefficients in Eq. (28) are found by the application of the first and second boundary

conditions (Eqs. 11 and 12) as W0,2 = 0.0 and W1,2 = -Gw2L3sin(wt)/(45Ko
2), respectively.

Substitution of these coefficients into Eq. (28) results in the three-term approximation as:
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Equation (29) is the double-decomposition solution for the partial differential equation,

expressed by Eq. (9). Hence, by Eq. (29), one can obtain the solution for spatial and temporal

variation of sediment rate in the channel as a result of sinusoidal loading at the upstream end.

The rate of deposition can be obtained by the use of the sediment continuity equation:
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where z is the bed level.

Differentiating Eq. (29) with respect to x once, and then integrating the resulting expression

from t1 to t2, one can obtain the following expression for computing temporal and spatial

variation of the bed level in a channel as a result of excess sinusoidal loading at the upstream

end:
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From Eq. (31), one can obtain the change in bed level in a period of t = t2-t1 at any section

of the channel length as a result of the sediment movement in channel due to excess sediment

loading at the upstream end of the channel.

MODEL APPLICATION

Experimental Data

The DD solution (Eq. 31) is tested against the experimental data of aggradation depths

measured by Soni (1981) in laboratory flume experiments.  The flume of rectangular cross-

section was 30.0 m long, 0.20 m wide and 0.50 m deep. The flume was filled with sand to a

depth of 15 cm, which was the equilibrium bed level depth. The sand forming the equilibrium

bed and the injected excess sediment had a median sieve diameter of d50 = 0.32 mm and a

specific gravity of 2.65 g/cm3.  The sediment was dropped manually at the upstream section at

a constant rate in excess of the equilibrium concentration to cause aggradation. Aggradation

runs were continued until the end-point of the transient profiles reached the downstream end.

The aggradation runs were conducted using two flow discharges of 4 and 7 l/s, slopes ranging

from 0.00212 to 0.00652, and with an overloading varying from 0.3Ge to 4.0Ge, where Ge is

the average equilibrium sediment rate. The details of the experiments can be obtained in Soni

(1981).

Soni (1981) loaded a constant excess sediment rate during each experiment. Since the

DD solution requires a sinusoidal loading the excess loading is represented by a half

sinusoidal curve while keeping the total amount constant (Fig.1). For example, for Ge =

1.66x10-5 m2/s, the excess load of 1.35 Ge = 2.24x10-5 m2/s. That means, every second, there

is an excess loading of 2.24x10-5 m3/m volume of sediment at the upstream end.  In 120

minutes, for example, the total loading becomes 0.1614 m3/m. This excess volume is loaded

into the DD solution in 120 min by representing it as a half sine curve as presented in Fig. 1.

According to Fig. 1, the period w = /7200 and hence loading is zero at t = 0 and t =7200

seconds and it reaches a maximum at t = 3600 seconds, where the loading is equal to G. G
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can be obtained from   mmdtwtSinG /1614.0 3
7200

0

 which results in G = 3.65x10-5

m3/m.

Fig. 1 Schematic representation of a half-sine function for sediment loading

Figures 2—5 present the simulation of bed profiles at 15, 45, 75, and 105 minutes of

the experiment, respectively, by the DD solution for the case where excess loading is equal to

1.35 Ge, where Ge = 16.6x10-6 m2/s (Soni 1975, 1981a, 1981b). The porosity is assumed to

be 0.45. From the available information, one can find the shear velocity, ogRSu * is equal

to 0.032 m/s, where R is the hydraulic radius.  Then, from 2

2
*8

u
uf  , one can obtain the value

of the friction coefficient as f = 0.174, where u is the flow velocity. Then,

from
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 , one can obtain the value of Ko = 0.02, which is in agreement

with Soni (1981b).

Also, shown in those figures are comparisons against the error-function solution (Eq.

3) and the numerical solution (Tayfur and Singh 2006). Note that the error function solution

employs ),( tG  = Ge, i.e., as the channel is sufficiently long, the aggradation profile would

reach the original bed level. This is analogous to the boundary conditions which are often

employed in groundwater flow and contaminant transport problems. The numerical solution

solves the system of flow continuity and momentum, and sediment continuity equations. It

approximates the momentum equation by the kinematic wave approximation, i.e., it ignores

t = 0 t = 7200 Time (s)

G

Load
(m3/m) w = /7200
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the convective and local acceleration terms in the momentum equation. For sediment transport

function, it employs the kinematic wave theory model developed by Tayfur and Singh (2006).

It also employs Dietrich (1982)’s formulation for particle fall velocity and Bridge and

Dominic (1984)’s model for particle velocity. It relates suspended sediment concentration to

flow variables and particle characteristics through Velikanov (1954)’s relation. It solves the

system of equations by the Lax explicit finite difference method. The details of the numerical

model can be obtained in Tayfur and Singh (2006).

Figure 2 shows the simulation at the 15th minute of the experiment. The measured

level reaches the equilibrium bed at the 3rd meter, and then fluctuates significantly. The

sediment wave front reaches the equilibrium level earlier at the 2nd m in the case of the

numerical model, but at the 5th m in DD solution. In the case of error-function solution, it

never reaches the original level. Fig. 3 shows the bed profile simulation at the 45th minute.

The measured profile reaches the equilibrium bed level around the 10th meter, although it

fluctuates from that location onward. The numerical model and DD solutions closely follow

the measured profile until the 10th meter. The error-function solution, although, on average,

follows the measured profile, in the first 10 meters, it over-predicts. However, after the 10th

meter, it shows better performance than others in capturing the measured bed levels. Fig. 4

shows the simulation at the 75th minute of the experiment. As seen, the measured profile

gradually reaches the original level at around the 15th meter, while the numerical model

reaches that level at the 12th meter, and DD model at the 10th meter, both closely following the

measured profile. The error-function solution reaches the original level at a later distance of

the 18th meter. It significantly over-predicts the measured data, especially in the first 14

meter-distance. Figure 5 shows the simulation at the 105th minute of the experiment. The

sediment wave front reaches the equilibrium bed level at an earlier distance, around the 12th

meter in the DD solution. The numerical model shows better performance in capturing the

measured data.
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Fig. 2 Simulation of bed profile at 15 min of the experiment

Time : 45 min; Excess load = 1.35 Ge
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Fig. 3 Simulation of bed profile at 45 min of the experiment
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Time : 75 min; Excess load = 1.35 Ge
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Fig. 4 Simulation of bed profile at 75 min of the experiment

Time : 105 min; Excess load = 1.35 Ge
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Fig. 5 Simulation of bed profile at 105 min of the experiment
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Hypothetical Case Application

The DD solution is investigated for a hypothetical channel having a 200 m length, 20

m width, and bed slope of 0.0025. It is assumed that flow rate Q = 20 m3/s, Chezy coefficient

Cz = 20 m0.5/s, porosity p = 0.40. A constant sediment loading of 10 ton/h is assumed at the

upstream end of the channel.

Fig. 9 shows the simulation of bed profiles at different times of the simulation. As

time progresses bed level increases along the channel length. Fig. 10 shows the bed profile

simulation at the 30th minute, under different sediment loadings. As the loading increases, bed

levels increase along the channel length. Fig. 11 shows the simulation of bed profiles along

the channel under the same sediment loadings of 10 ton/h but different Ko values. Note that

different Ko-values imply different flow conditions. The higher is Ko-value, the higher the

flow discharge becomes. Under higher flow discharges, the bed levels are low. This is

because a high flow rate carries the sediment faster downstream of the channel, thus resulting

in low bed levels. These results imply that the model can produce results compatible with

those that one may observe in the field.
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Fig. 9 Simulation of bed profile along the hypothetical channel at different times of the

simulation period
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Fig. 10 Simulation of bed profile at the 30th min along the hypothetical channel under

different sediment loadings
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Fig. 11 Simulation of bed profile at the 30th min along the hypothetical channel under

different Ko-values
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CONCLUDING REMARKS

The satisfactory performance of the solution and the comparison analysis of the order

of approximations imply that considering only the first 3 terms of the series solution (3 rd order

approximation) is sufficient for this particular problem.

The performance of the model against the numerical and analytical (error-function)

solutions is satisfactory for simulating the experimental data. It nearly shows the same

performance as the numerical model but it is mostly better than the analytical solution. On the

contrary to the error-function solution, the developed model does not impose any constraint

on the solution, such as the infinite channel length.

The model is not satisfactorily able to predict bed levels after the middle section of the

channel at later periods of simulation.
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