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Abstract 

Free and forced vibration analysis of straight and curved beams on elastic foundation 

are investigated in Laplace domain. The Timoshenko beam theory is adopted in the derivation 

of the governing equation. The curvature of the rod axis, effect of rotary inertia and, shear and 

axial deformations are considered in the formulation. Ordinary differential equations in scalar 

form obtained in the Laplace domain are solved numerically using the complementary 

functions method to calculate the dynamic stiffness matrix of the problem. The solutions 

obtained are transformed to the real space using the Durbin’s numerical inverse Laplace 

transform method. The dynamic analysis of straight and curved beams on elastic foundation 

are analyzed through various examples.  
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1. Introduction 

Beams and plates resting on elastic foundation have wide application in engineering 

practice. The dynamic analysis of beams is investigated using various foundation models. 

Numerous studies have been performed to investigate the static deflection and dynamic 

response of the beams resting on various elastic foundations.  

Kıral and Ertepınar [1] investigated the isothermal behavior of planar rods resting on 

an elastic foundation and subjected to a static loading. Kukla [2] and Wang [3] studied the 

problem of free, lateral vibration of a Bernoulli-Euler beam supported on a step like varying 

Winkler elastic foundation. Haktanır and Kıral [4] studied the behavior of continuous and 

elastically supported helicoidal structures by the stiffness matrix approach based on transfer 

matrix method. De Rosa and Maurizi [5] calculated the exact free vibration frequencies of a 

Euler beam on two parameter elastic soil. Chen et al. [6] studied bending and free vibration of 

arbitrarily thick beams on a Pasternak elastic foundation. Çalım [7] investigated dynamic 

behavior of beams on Pasternak-type viscoelastic foundation subjected to time-dependent 
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loads. Later, Çalım and Akkurt [8] studied static and free vibration analysis of straight and 

circular beam on elastic foundation. 

In this study, the numerical procedure is used to analyze the free and forced vibrations 

of straight and circular beams on elastic foundation.  The curvature of the rod axis, effect of 

rotary inertia and shear and axial deformations are also considered in the formulation. 

Ordinary differential equations in scalar form obtained in the Laplace domain are solved 

numerically using the complementary functions method to calculate the dynamic stiffness 

matrix of the problem [7-9]. The solutions obtained are transformed to the time domain using 

the Durbin’s numerical inverse Laplace transform method [7-9].  

2. The governing equations 

Consider a naturally curved and twisted spatial slender rod. The trajectory of 

geometric centre G of the rod is defined as the rod axis and its position vector at t=0 is given 

by ro=ro(s, 0) where s is measured from an arbitrary reference point s=0 on the axis. A 

moving reference frame is defined by the unit vectors t, n, b with the origin on the rod axis, 

where t, n and b are tangent, normal and binormal vectors, respectively. The following 

differential relations among the unit vectors t, n, b can be obtained with the aid of the Frenet 

formulae [10]: 

   nt χ=∂∂ s/ , tbn χ−τ=∂∂ s/ ,  nb τ−=∂∂ s/             (1) 

where χ and τ are the curvature and the natural twist of the axis, respectively. For planar rods 

τ = 0, and for straight rods χ = τ = 0.  

Let the displacement of a point on the rod axis be Uo(s, t), and the rotation of the 

cross-section about an axis passing through the geometric centre G be Ωo(s, t). Assuming the 

displacements and the deformations are infinitesimal, and that the material of the rod is 

homogenous, linear elastic and isotropic the governing equations of a space rod are obtained 

in vectorial form as: 
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where the inertia force vector is T0, the inertia moment vector is M0 and p(ex) and m(ex) are the 

external distributed load and external distributed moment vectors per unit length of axis, 

respectively. The mass density ρ, the inertia force p(in) and the inertia moment m(in), per unit 

length of the rod axis are given as 
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where A is area of cross-section, E and G are elastic constants, αn and αb are shear 

coefficients, It is torsional and In, Ib are bending moments of inertia.  

Let p(ex) and m(ex) be composed of two parts such that 

  fe(ex) ppp −= ,  fe(ex) mmm −=               (6) 

where the quantities with superscripts e and f denote, respectively, the loading and the 

foundation reaction on the beam. pf and mf are the foundation stimulated force and moment 

per unit length of the beam,  
o
ii

f
i Ukp = ,  ( ) o

ii1
f

i Ωkm =    (i = t, n, b)         (7) 

where k and k1 are the spring constants. 

Assuming that the centroid and the shear center of cross-section coincide, the n, b 

axes become the principal axes. Moreover, the effect of warping of the cross-section is 

neglected. The system of 12 ordinary differential equations governing the dynamic analysis of 

the curved beams on elastic foundation with respect to the moving coordinate system, is 

obtained in canonical form in the Laplace domain as  
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where k and k1 are the spring constants. χ and τ  are parameters that define the geometry of 

the rod. When χ = τ = 0, it represents the straight rods and when τ = 0 , χ = 1/R and ds = R 

dϕ, it represents the circular rods (Fig. 1).  

 

 

 

 

Fig. 1. Circular beam on elastic foundation 

For the forced vibration analysis, a column matrix Y(s, t) is defined as
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Laplace transform of equation (9) with respect to time ( )[ ] ( )zssL ,t, YY = , for t>0 is defined as 

∫
∞
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where the Laplace transform parameter z is a complex number.  

For the free vibration analysis, we set 0p(ex)

i = and 0m(ex)

i =  with (i= t, n, b). Assuming 

harmonic motion, Uo, Ωo, To and Mo take the form  
tiωsts, e)()( *o UU = , tiωsts, e)()( *o ΩΩ = , tiωsts, e)()( *o TT = , tiωsts, e)()( *o MM =          (11) 

and substituting (11) into (2-3) a set of twelve first-order linear, homogeneous ordinary 

differential equations is obtained. If the generalized displacements 
****** ,,,,, bntbnt ΩΩΩUUU  and corresponding generalized resultant forces 
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****** ,,,,, bntbnt MMMTTT  are considered as the components, in the indicated order, of a 

column matrix )(s*Y , these twelve equations can be rewritten in the matrix form as 
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s ω=                  (12) 

The values of ω which make the determinant of the system dynamic stiffness matrix zero are 

the natural frequencies of the problem. For the case of free vibrations the dynamic stiffness 

matrix is obtained by applying the complementary functions method described [7-9]. Both the 

element dynamic stiffness matrix and the fixed-end forces are determined by the method of 

the complementary functions in the Laplace domain [7-9]. 

3. Numerical examples 

In this section, various problems are presented. First, in order to validate the present 

model, the free vibration frequencies of straight beam on Winkler-type elastic foundation are 

compared with the results available in the literature. In addition, this system is also analyzed 

under an impulsive load. Second, a clamped-clamped circular beam on elastic foundation is 

considered. The effect of R/h ratio on dynamic behavior is also investigated.  

Example 1. A simply supported uniform beam of length L = 6.096 m resting on an elastic 

foundation is considered (Fig.2). The beam has Young’s modulus E = 24.82 GPa, material 

density ρ = 3387 kg/m3, ν = 0.3 and second moment of inertia I = 144×10-5 m4. The stiffness 

of foundation is k = 16.55 MN/m2. Free vibration frequencies calculated by using the present 

computer program are given in Table 1. It can be seen from Table 1 that the results of the 

present model demonstrate good agreement with the previously obtained result and ANSYS 

predictions. 

 

 

 

 

 

 

Fig. 2. A Timoshenko beam on elastic foundation and triangular impulsive load. 

 After having tested the validity of the present model on the free vibration problem, the 

forced vibration analysis of beam on elastic foundation is presented. A triangular impulsive 

load (Fig. 2) with the amplitude P = 100 kN is applied at the midpoint of the beam. 
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Displacement at the midpoint of the beam are compared with the results of the ANSYS (Fig. 

3).  

Table 1. The natural frequencies for simply supported beam on elastic foundation (Hz) 

Mode 
Timoshenko 

et al. [11] 
Lai et al. 

[12] 
Thambiratnam  
and Zhuge [13] 

Friswell  
et al. [14] 

ANSYS 
[15] 

Present  
study 

1 32.903 32.905 32.903 32.898 32.862 32.863 

2 56.814 56.822 56.819 56.808 56.589 56.597 

3 112.91 111.97 111.96 111.90 110.74 110.76 
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Fig. 3. Displacement versus time at the midpoint of the beam  

 

Example 2. A semicircular beam on elastic foundation fixed at both ends is considered. The 

material and geometrical properties of the system are R = 7.63 m, b = h = 0.763 m, E = 47.24 

GPa,  G = 19.68 GPa, kb = 23.623 MPa, (k1)t = 1143 kNm/m. This example has also been 

used in the work of Çalım and Akkurt [8] for analyzing the free vibration of circular beam on 

elastic foundation. The natural frequencies of circular beam on elastic foundation are 

calculated and given in Table 2. 

A triangular impulsive load with the amplitude P = 100 kN is applied at the midpoint 

of the beam. Displacement (Uz) at the midpoint of the beam is compared with the results of 

the ANSYS (Fig. 4). These results obtained using the present method exhibit very good 

agreement with those obtained using ANSYS. 

The effect of the ratio R/h on dynamic behavior of the circular beam on elastic 

foundation is investigated. The results are compared to those obtained from ANSYS. It is 

observed that when the ratio of R/h of semicircular beam on elastic foundation increases, the 

displacement amplitude increases as well while the vibration period decreases. 
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Table 2. The fundamental natural frequencies semicircular beam fixed at both ends (Hz) 

R/h 
ANSYS Present Study 

R/h 
ANSYS Present Study 

(k1)t=0 (k1)t=0 (k1)t≠0 (k1)t=0 (k1)t=0 (k1)t≠0 
5 9.727 9.730 9.733 17 24.432 24.433 24.444 
7 11.088 11.090 11.094 19 27.258 27.260 27.272 
9 13.406 13.408 13.414 21 30.168 30.169 30.182 

11 16.038 16.039 16.047 23 32.972 32.973 32.987 
13 18.799 18.800 18.809 25 35.882 35.883 35.897 
15 21.595 21.596 21.606         
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Fig. 4. Uz displacement versus time midpoint of the semicircular beam 

 

4. Conclusions 

The free and forced vibration analysis of straight and circular beams on elastic 

foundation is investigated. A computer program is coded in Fortran to perform the analysis in 

the Laplace domain. The dynamic stiffness matrix has been calculated in the Laplace domain 

by applying the complementary functions method to the differential equations in canonical 

form. Free and forced vibrations calculated to validate the developed computer program are 

compared with the data given in the literature and ANSYS.  

As the ratio R/h of circular beam on elastic foundation increase, the natural 

frequencies increase. When the ratio, R/h, of circular beam on elastic foundation increases, 

the displacement amplitude increases as well while the vibration period decreases. 
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