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ABSTRACT 

A Tuned Mass Damper (TMD) is a device consisting of a mass, a spring and a viscous 
damper attached to a vibrating main system. The principles of it are classic but applying them 
has become possible only after the progress of other related fields like electronics, computer 
science, new materials and new technologies. Nowadays we have successful applications all 
around the world. Buildings are getting higher and higher and controlling the displacements 
would have been a lost match for a structural engineer without the devices of structural 
control on his side. 

The main types of TMDs are presented in this paper followed by the main concepts 
and basic equations. The paper is focused on Passive Tuned Mass Dampers, which need no 
external source of energy to function. 

A 20-storey reinforced concrete building is analyzed, first without TMD and then with 
a TMD installed on top. The most important results are obtained by Time History Analysis, 
although Linear Static Analysis, Modal Analysis and Response Spectrum Analysis have 
served to determine the basic characteristics of the structure. The Time History Analysis has 
produced meaningful graphs showing the displacements for different parameters of the TMD.  

A TMD is known to be more effective in reducing the response of tall buildings under 
wind action. This paper gives some results for the response of the 20-storey building under 
seismic action, trying to find cases when the TMD can be effective under such actions. From 
harmonic time-history functions to completely irregular seismic time-history functions, they 
have been tested upon the Finite Element Method Structure of the building, giving the 
possibility to find the most effective cases of using a TMD. 

1. INTRODUCTION 

1.1 Tuned Mass Damper Systems 
 
A Tuned Mass Damper (TMD) system consists of a mass, a spring and a viscous 

damper attached to the structure (usually on top of it, as shown in Figure 1.1) with the 
purpose to reduce its dynamic response. 
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Figure 1.1 Model of a structure with a TMD 



 
2 

This system is most efficient when the frequency of the damper is tuned to a particular 
structural frequency so that when that frequency is excited, the damper resonates out of phase 
with the structure. There are different types of TMDs, with different schemes (pendulum 
TMD, compound pendulum TMD, mass on rubber bearings etc.), but almost all of them can 
be represented by a simple scheme like that of the Figure 1.1. 
 
1.2 Basic equations of motion 

 
To “tune” the frequency of a TMD means setting the frequency of it equal to the 

fundamental frequency of the main structure. The basic characteristics of the TMD systems 
have been studied by various authors using an idealized two degree of freedom system 
consisting of two masses (one of the structure and another of the TMD) connected by dash-
pots and springs (like those on Figure 1.1). However, the model in this paper is a multi degree 
of freedom model (it is nowadays possible to easily analyze it with a Finite Element Method 
software such as Sap2000). According to Jerome J. Connor (see [1] in the references section), 
for the two degree of freedom structure under harmonic excitation, the response in the case of 
no TMD installed is given by: 
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where: 

maxu   - amplitude of displacements of the main structure 

maxp  - amplitude of the harmonic excitation 
k   - stiffness of the structure 
ξ  - damping ratio of the main structure 

 
For the case of a structure with a TMD, the response is given by equation (2) below, 

using the concept of equivalent damping ratio eξ  defined in equation (3) below (note that the 
index “d” is used for TMD parameters).  
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where: 
m - mass ratio (mass of the damper/mass of the main structure, or md/m) 

dξ - damping ratio of TMD 
 

The phase shift of the tuned mass is 90º to the response of the main structure (not 
shown in the equations, see [1]). This difference in phase is responsible for the energy 
dissipation of such systems. Equation (3) shows the theoretical contribution of the damper 
parameters to the total damping. Theory shows that increasing the mass ratio gives more 
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damping. On the other side, decreasing the damping ratio for the TMD also increases the 
damping. There are practical limits to these parameters, because the main structure has to 
resist bigger weight loads if we increase the mass of the TMD and more room is needed for 
the TMD to allow bigger displacements if we decrease the damping ratio of TMD. Design of 
these systems requires a compromise between these two constraints (the mass and the 
displacements), therefore various studies have been made regarding the optimal parameters of 
TMDs. 

 
1.3 Optimal parameters 

 
Den Hartog gave the optimal values of the damping ratio of TMD and the frequency ratio as a 
function of mass ratio m  (see also [2-3] in the references section): 
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where optρ  is the optimal frequency ratio ; 
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where optd ,ξ  is the optimal damping ratio of the TMD. 

2. STRUCTURAL ANALYSIS AND RESULTS 

2.1 Structural analysis of a system without TMD 
 

A 20-storey building is modeled and analyzed in this paper. The general plan of the 
structure is shown in Figure 2.1. The storey height is 3.5m, the concrete of the structural 
elements is grade C-30/37 and the reinforcement steel is grade S-500. The dead load on the 
floors is 2/5 mKN , the dead load of the infill walls is 2/3 mKN  and the live load on the floor 
is 2/3 mKN . Seismic loads and other loads will be introduced further in the paper. 
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Figure 2.1 Plan view and 3D view of the model 
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The cross section of the beams is rectangular 40x70 cm, while the cross section of the 

columns varies from base to top, from square section 90x90 (base) to 60x60 (top). 
Modal analysis results indicate that the fundamental period of the structure is T=2.009s 

and the fundamental frequency is =3.128rad/s. The first vibration modes corresponding to a 
main axis of the structure are shown in Figure 2.2. Because of the symmetry, the first 
vibration modes are similar for the other axis. 

 

                              
 
Fig. 2.2 – First modes, from left to right, mode 1, mode 3 and mode 4  
 

2.2 Analysis of the Tuned Mass Damper system 
 
The same structure is studied in the case of a TMD installed on top of it. The results of 

the modal analysis of the structure without TMD were used to calculate the damping system. 
The main structure damping is assumed %5=ξ , a typical value for a reinforced concrete 
building. The equations (2) to (5) may be used for a preliminary design of the TMD 
parameters. Of course this is not the case of a correct implementation of these equations for 
design as long as we do not have a two degree of freedom structure and we don’t have a 
harmonic excitation. The value of eξ  in equation (3) is taken equal to 0.1 (assuming that we 
aim to achieve a 10% damping). Therefore: 
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After entering the value of %5=ξ  and making further transformations, the equation is: 
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Maximal relative displacement of the damper is given by equation (2). Therefore, the 
equations (8) and (9) are obtained: 
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In this preliminary design, we may accept 10/ maxmax, =uu d , which means that the 
displacements of the ideal two degree of freedom structure under harmonic excitation are 10 
times smaller than the TMD displacements. The equation (10) is to be solved in order to 
obtain the mass ratio. 
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The solution of equation (10) gives a mass ratio equal to 0.01. The mass of the main 

structure is m=17000 tons, therefore md=170 tons. The damping parameters are calculated 
below (note that cd is the damping coefficient of the TMD): 
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Equation (13) is derived from frequency tuning ( dωω = ). Given that the stiffness of the 

main structure is k=165894 KN/m, the TMD stiffness is equal to: 
 

m
KNkkmkd 165916589401.001.0 =⋅=⋅=⋅=       (13) 

 

 
 

Figure 2.3 – “Link” element modeling the TMD on the 20th storey 
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 The TMD is modeled as a “link” element in the 3D model in Sap2000. The element 
has two joints, the first one corresponds to the top floor of the structure and the other joint is 
above the first one, with a mass equal to md. The model is shown in Figure 2.3. 

 
2.3 Structural response for various parameters of TMD and different excitations  

 
Table 1 describes the parameters for mass ratios equal to 0.1%, 0.5%, 1% and 2%. The 

structure was analyzed for these different mass ratios. 

Table 1 – Parameters of the TMD for various mass ratios 

Mass 
ratio  
m  

Mass of 
TMD 

md 

Optimal 
frequency 

ratio 
opt 

Optimal 
damping ratio 

of TMD 
d,opt 

Frequency 
of TMD 

dω  

Stiffness 
of TMD 

kd 

Damping 
coefficient 

cd 
dm

m
 

mm ⋅  m+1
1  

(see eq. (5)) ωρ ⋅opt  dm⋅2ω  ddoptd mωξ ,2  

0.001 17 0.999 0.019 3.137 167.341 2.062 
0.005 85 0.995 0.043 3.124 831.283 22.829 
0.010 170 0.990 0.060 3.108 1649.110 63.780 
0.020 340 0.980 0.084 3.078 3245.050 176.082 

 
TMD structures will be studied for different excitations represented by their 

accelerograms shown in Figure 2.4 below (horizontal axis represents “time”, vertical axis 
represents the “acceleration”): 

 

 
 

Sinusoidal excitation with T=2s 
(almost equal to the fundamental 
period of the main structure) 

  
 

A single-shock excitation (an 
impact load or a very short 
idealized earthquake)  

 
 

Lexington accelerogram, 
representing the Lexington 
earthquake, lasting only a few 
seconds 

 

  

Santa Monica accelerogram, 
representing the Santa Monica 
earthquake, lasting longer than 
Lexington. 

 
Fig. 2.4 – Various input accelerograms for the analysis of the structure 

 
The response of the structure under each excitation mentioned above is plotted in the 

graphs shown in Figure 2.5 to 2.7. Figure 2.5 displays the horizontal displacements on top of 
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the structure as a function of time, for different mass ratios, for the sinusoidal excitation and 
for the single shock excitation (theoretical accelerograms). 

 

 
 

Figure 2.5 – Horizontal displacements on top of the main structure for sinusoidal 
accelerogram (left), single shock accelerogram (right). 

 
The response reduction under the sinusoidal excitation is significant. Increasing the 

mass of the TMD increases the damping. In the case of a single shock, the TMD serves only 
to reduce the displacements after a few cycles (after one cycle, in this case). The maximum 
displacement is not reduced. This fact limits the use of the TMDs under such excitations.  

Figure 2.6 shows the horizontal displacements for the structure under Lexington 
earthquake loading and Figure 2.7 corresponds to Santa Monica earthquake loading. 

 

 
 

Figure 2.6 – Horizontal displacements on top, Lexington accelerogram 
 

 
 

Figure 2.7 – Horizontal displacements on top, Santa Monica accelerogram 
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The peak values are joined together in Figures 2.6 and 2.7 with a line to make the view 
more clear. The graphs for other mass ratios are not shown in these figures (only mass ratio 
1% is shown). Comparing Figure 2.5 with Figures 2.6 and 2.7, the response in the case of 
Lexington accelerogram is similar to the response in case of a single-shock accelerogram. 
Santa Monica accelerogram produces an irregular response, with some values higher than the 
values in case of no TMD. However, the maximum value is slightly reduced. 

3. CONCLUSION 

This paper highlights some cases when a TMD is effective or not. It has been shown 
that the case where the TMD system is most effective is the case of a harmonic excitation 
with a period close to the fundamental period of the structure. This might be the case of wind 
excitation to tall buildings or sometimes the case of distant earthquakes and with long 
duration in time. The TMD did not reduce the maximum value of horizontal displacements in 
the building subjected to “single shock” earthquakes or other types of similar accelerograms, 
but it did help reducing the displacements after the “shock”. 
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