“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

Efficiency of cache-replacement algorithmswhileretrieving
data from aredational database and XML filesin aweb based
system

Lule AHMEDI?, Hilmi HAXHIHAMZA?

lFaculty of Contemporary Sciences and Technologies, SEE UNIVERSI TY, Tetovo-MACEDONIA
E-mail: |.ahmedi @seeu.edu.mk

2Faculty of Contemporary Sciences and Technologies, SEE UNIVERSI TY, Tetovo-MACEDONIA
E-mail: hhilmi @gmail.com

ABSTRACT

Caching has been applied in Web based information systems in order to
reduce the transmission of redundant network traffic and response latency by saving
copies of the content obtained from the Web closer to the end user. The efficiency
of caching is influenced to a significant extent by the cache replacement algorithms
which are triggered when the cache becomes full and old objects must be evicted to
make space for the new ones.

This paper presents a framework that can be used in future work to tune
cache-replacement agorithms while data is simultaneoudy retrieved from a
relational database and XML files in a web based environment, by a large number
of end-users. Three replacement policies are considered: Least Recently Used
(LRU), Least Freguently Used (LFU) and Lowest Latency First (LLF). The
experimental results obtained from the framework show that data caching greatly
improves the overall performance of web based systems, and the type of the applied
cache replacement policy also plays an important role in the performance. In the
scenarios considered in this paper, the LLF algorithm produced the best
performance when retrieving data from a relational database, while the LFU
algorithm was the most efficient algorithm when data was retrieved from an XML
file.

INTRODUCTION

With the expansion of the popularity of the Internet in the last decade, the
Web based applications became very important in the software industry, mainly
because of the flexibilities that they offer while running on a web browser. Today,
under normal circumstances, people access the web daily for various purposes: to
check the e-mail, read the latest news, for e-commerce, for entertainment etc. But,
although most of today’s web users have switched to faster Internet connections,

150

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

they still do not decrease the transmission of redundant data being sent across the
Web. This could be weather related data, news, stock quotes, sport scores, course
notes, technical papers, exchange rate information etc. If a large number of users
attempt to access a web page at the same time, then there is a high probability that
they may experience problems in getting connected to that site because the website
is unable to cope with the load, and the responses received from it are either slow or
even completely absent. Thus, in order to provide an enjoyable working and surfing
experience to the end-users, when developing web applications which are subject to
be accessed by a potentially large group of end-users, it isimportant to pay attention
to the time that it takes for a page to be requested from the server and rendered on
the user’s web browser.

Web caching is atechnology aimed at reducing the transmission of redundant
network traffic by saving copies of content (obtained from the Web) closer to the
end user, in order to enable quicker access to the content. Data-driven applications
with large and complex queries that commonly consume the majority of the
application’s execution time can often be improved by storing the results of
expensive database queries in the server or client memory (cache). Caching
generally enhances the performance of web applications, but it may also produce
limitations by occupying space in the memory where the cache is stored. In this
case, a cache-replacement algorithm must be called to purge the cache by removing
suitable contents from it. The efficiency of caching is influenced to a significant
extent by the cache replacement algorithms which aim to minimize the hit ratio;
byte hit ratio, the cost of access and the latency [1]. This paper presents a
framework to simulate cache-replacement agorithms while retrieving large
amounts of data from a relational database and XML files in a web based
environment. The data is retrieved simultaneoudly by a large group of users. Three
replacement algorithms were evaluated in our system:

Least Recently Used (LRU),
Least Frequently Used (LFU).
LLF (Lowest Latency First)

The results of the experiment show that data caching greatly improves the
performance of web based systems that frequently retrieve huge amounts of data.
The use of a suitable cache replacement strategy can enhance the performance even
more.

This research paper contributes towards identification of methods for
development of more optimized and faster web applications, by implementing
proper caching strategies and cache-replacement policies. It may also serve as a
solid foundation for further investigation and improvement of the existing cache
replacement a gorithms.

151

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

Related Work

In this section, we introduce the literature and research papers that are related
with our work and which were used as a basis for our research.

S. V. Nagarg) [1] states that the efficiency of proxy cachesis influenced to a
significant extent by document replacement algorithms. Cache replacement
algorithms aim to minimize various parameters as the hit ratio, the byte hit ratio, the
cost of access and the latency. T. Partl [2] analyzed the performance of four
common cache clean-up algorithms: LRU, Space Working Set (SWS), Space-Time
Working Set (STWS) and Space Time Product (STP). He states that the choice of
the clean-up algorithm affects both the hit/access ratio and the actua time the users
save by using the cache. The analysis of the algorithms was performed through an
experiment where a public caching proxy was set up to collect data for the
experiment. He tested the hit to access ratio and time gain of the algorithms on two
different cache sizes. The results showed that a high hit/access ratio does not
guarantee a high time gain. Similarly, Busari [3] explores the performance of cache
clean-up algorithms, but he concentrates exclusively on LFU algorithm and several
of its variations (LFU-Aging, LFU* and LFU*-Aging). The experimental part is
performed by using a trace-driven simulation to determine the performance of the
algorithms. From the results, LFU-Aging and LFU*-Aging provided best
performance. Cardenas, Gil, Sahuquillo and Pont in [4] present a framework to
simulate web proxy cache systems which provides an environment to simulate and
explore cache management techniques. Zahran [5] states that the efficiency of the
replacement policy affects both the hit rate and the access latency of a cache system.

This research paper is particularly related to the articles mentioned in [2-4]
which evaluate the performance of cache-cleanup policies by proposing and using
various methods. However, our work differs from the above mentioned papers since
its main objective is to evaluate cache replacement algorithms while caching data
from a database or an XML file in web applications, while the related papers are
generally concerned with caching of data in computer hardware components and
caching of web documents.

PROPOSED FRAMEWOK AND EXPERIMENTAL DESIGN

The efficiency of cache replacement algorithms was measured in a custom
caching framework which was developed in C# programming language specifically
for this purpose. The framework can simulate different scenarios where a large
number of users simultaneoudly retrieve data from a relational SQL database and
XML files. The amount and structure of the data is same both in the database and
XML file.

The caching algorithms are implemented and maintained in a specific caching
module which runs as a separate process on the application server. All requests that
are directed to the application server are initially received from the caching
component. When the server receives a request for data, it firstly checks if it is
located in the cache. If the cache contains a copy of the requested object, it is

152

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu” University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

retrieved from the cache and returned to the user. Otherwise, the object must be
requested from the server, and at the same time its copy should be stored in the
cache in order to avoid multiple executions of the same queries. The diagram in
Figure 1 presents a high-level overview of the system.

APBLICATION SERVER i DATABASESERVER [

gl

Caching medule

5
Sampiln application

"""" S i v] S DATABASE

CLIENT

Web Browser

Figure 3 A high level overview of the system

The data retrieved from database and XML files is stored in separate
objects (also known as datasets) in the cache. Three factors which can be manually
configured in the framework are important in the experimental phase:

cache size,
number of simultaneous users that retrieve data,
cache-replacement a gorithm used.

Cache Size

The cache size represents the maximum amount of data (in Megabytes) that
can be stored in the cache. When the maximum limit for the data that can be stored
in the cache is reached, a cache-replacement policy is initiated. In our experiments,
3 cases were explored:

(1) Cachesize=50MB

(2) Cachesize=100MB

(3) Cachesize=200MB

153

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

Number of Users

The number of users represents the number of simultaneous requests for the
same data from a database or XML file. The data are stored in objects known as
datasets. The size of a dataset is same in all cases. The following scenarios were
considered:

(1) Number of users=100
(2) Number of users=500
(3) Number of users= 1000

Cache-replacement Algorithm

When the cache memory becomes full and there is no place for a new
object to be stored, then the caching component must trigger a replacement policy.
The replacement policy is based on a cache-replacement algorithm which must free
space from the cache according to a certain criteria. In our experiment, three well
known replacement a gorithms were eval uated:

- LRU (Least Recently Used) - the objects with the oldest requests are
deleted first. This algorithm uses a structure that stores the time when the
object was lastly used.

LFU (Least Frequently Used) - the objects which are used less are
deleted from the cache first. If all objects are used in same frequency, the
objects that should be deleted are selected in arandom order.

LLF (Lowest Latency First) - this agorithm keeps the average latency to
a minimum by first expelling the object with the lowest download
latency (the smallest object).

Table 1 Thelist of scenarios considered in the experimental part

Cachesize Number of Cache-replacement policy
(MB) users

50 100 LRU, LFU, LLF
500 100

1000 100

50 500

500 500

1000 500

50 1000

500 1000

1000 1000

154

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu” University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

RESULTSANALYSIS

All planned scenarios were performed in five consecutive series and the data
retrieval time was measured for each scenario. Then, from the measured times, an
average retrieval time was calculated. Finally, after the comparison of the calculated
average retrieval times, the most efficient algorithm was chosen.

Most of the requests at the beginning of the simulation were not located in the
cache (“cold misses”). In order to obtain more accurate results, we tried to avoid
them as much as possible by firstly “warming-up” (initializing) the cache with
random objects before starting to measure the actual performance of the algorithms.

The average retrieval times (in seconds) obtained from the experiments which
were performed while reading data from a relational database are showed in Table
2. As it can be seen, the performance of the web application is improved
significantly when data caching is applied. LLF (Lowest Latency First) replacement
algorithm produced the best results and its performance was faster than the LRU
agorithms for approximately 15 seconds. A graphical representation of the results
can be observed in Figure 1.

Table 2 Results obtained from experiments where data was retrieved from a
database in five consecutive series with and without caching of the data

Series of retrieved data from arelational database by

Without

_ " using caching
Algorithm | cachi rég (Measured in seconds)
(seconds) 2 3 4 5 | Average

LRU 152,219 | 2287 | 21.98 | 21.544 | 22.262 | 21.887 | 21.898
LFU 146.231 | 80.387 | 17.55 | 17.519 | 17.816 | 17.144 | 33.217
LLF 158.83 | 24.196 | 17.207 | 17.035 | 16.771 | 17.005| 18.443

g
(1]
e
g BLRU
£
ELFU
ELLF

Series

155

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu” University of Durrés

on June 2-4 2011, Tirana-Durres, ALBANIA

Figure 1 Graphical representation of average data retrieval times while applying
LRU, LFU and LLF cachereplacement agorithms in scenarios where data is

retrieved from arelational database, in five consecutive series

The results obtained from the scenarios in which data was retrieved from
XML files are presented in Table 3. They prove that in these cases too, caching
significantly improves the performance of the web applications, but give dightly
different results when cache replacement strategies are applied. Namely, in the
XML-based scenarios, LFU (Least Frequently Used) algorithm provided the best
average performance in al cases. The graph in Figure 2 represents the results
obtained from these scenarios.

Table 3 Results obtained from the experiments where data was retrieved from an
XML file in five consecutive series with and without caching of the data

Without Series of retrieved datafrom XML file by using caching
Algorithm | caching (Measured in seconds)
(seconds) 1 2 3 4 5 Average
LRU 124532 | 43.914 | 40.857 | 40.045 | 39.453 | 39.39 41.067
LFU 126.213 | 53.134 | 37.487 | 25.568 | 25.054 | 25.132| 33.275
LLF 114.241 | 82977 | 22.339 | 22.386 | 22.714 | 22.62 37.604
S
3
e mLRU
=
BLFU
BLLF

1st

4th

5th AVG

Figure 2 Graphical representatioRc6iS8verage data retrieval times while applying
LRU, LFU and LLF cachereplacement agorithms in scenarios where data is
retrieved from an XML file, in five consecutive series

156

“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA

CONCLUSION

The results obtained from our simulation framework prove that web-caching
techniques can significantly improve the performance of web based applications
which frequently read data from databases or XML files. They are convenient
especially in scenarios where huge amount of static data should be retrieved
multiple times.

The use of a proper cache replacement strategy in certain scenarios is an
important factor which can considerably enhance the overall efficiency of web
caching. LLF (Lowest Latency First) replacement agorithm, which keeps the
average latency of the objects in cache to a minimum by first removing the object
with the lowest download latency, gives the best results in cases where the data is
retrieved by executing a query against arelational database. On the other hand, LFU
(Least Frequently Used) algorithm which firstly deletes objects with the oldest
reguests provides the best performance in scenarios where the data is retrieved from
an XML file.

REFERENCES

[1] Nagarg S. V. (2004), Web Caching and its Applications, Kluwer Academic
Publishers

[2] Partl T. (1996), A Comparison of WWW Caching Algorithm Efficiency, ICM
Workshop on Web Caching, Warsaw, Poland

[3] Busari M. (1999), Comparison of Web Caching Algorithms in Web Proxies,
University of Saskatchewan in Canada

[4] CéadenasL.G,, Gil JA., Sahuquillo J, Pont A. (2005), Emulating Web Cache
Replacement Algorithms versus a Rea System, Computers and
Communications, 2005. | SCC 2005. Proceedings. 10th IEEE Symposium

[5] Zahran M. (2007), Cache Replacement Policy Revisited, Proceedings of the

6th Workshop on Duplicating, Deconstructing, and Debunking, San Diego,
CA, USA

157

