Minimal Quasi-Ideals In X-Semigroup

Islam BRAJA

Department of Mathematics, Faculty of Natural Sciences, University "Aleksander Xhuvani", Elbasan, Albania.

Email: braja_islam@yahoo.com

ABSTRACT

In this paper we will prove some theorems that discover the structure of minimal quasi-ideals in Γ -semigroups without zero. The main result is these are Γ -subgroups. We will prove also that this structure is not true for respective quasi-ideal of Γ -semigroup without zero, living opened the problem of conditions that must satisfy a Γ -semigroup without zero in order to have, in this case, an analogous structure.

Keywords: X-semigroup, right (left) principal ideal, quasi-ideal, idempotent element, minimal quasi-ideal, principal quasi-ideal.

INTRODUCTION

Definition 1.1 [1] Let be $M = \{a, b, c, ..., \}$ and $= \{x, y, z, ..., \}$ two nonempty set. We call the set M a -semigroup if: 1. $axb \in M$, 2. (axb) yc = ax (byc) for $a, b, c \in M$ and $x, y \in A$.

In this definition so called multiplication, which is similar with multiply of an ordinary semigroup is described intuitively, so let's try to precise it.

Let $M = \{a, b, c, ..., \}$ and $= \{x, y, z, ..., \}$ be two nonempty sets. The multiplication in the set M by elements of Γ set, which are between, we call every map of $M \times M$ in M. This multiplication we call also Γ -multiplication in M and will denote by $(\cdot)_{\Gamma}$. Result of Γ -multiplication in M for every two elements a, b of M and every element $x \in \Gamma$, which is the image of mapping $(\cdot)_{\Gamma}$ for triple (a, x, b), $(\cdot)_{\Gamma}(a, x, b)$, will denote simply by axb.

Definition 1.1'. [3] We call I proper ideal if it is a right (resp. left, two-sided) ideal of X-semigroup M and a proper subset of M.

in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

Now, in a -semigroup M we may define analog relations of Green's relations in a semigroup [4].

Let M be a -semigroup and a, b from M. We define binary relations in the following way:

- (1) $a \mathbf{l} b \Leftrightarrow (a)_{l} = (b)_{l}$
- (2) $a \mathbf{R} b \Leftrightarrow (a)_r = (b)_{r}$.
- (3) $a \mathbf{J} b \Leftrightarrow (a) = (b)$.
- (4) $a H b \Leftrightarrow a L b \wedge a R b$
- (5) $a \triangleright b \Leftrightarrow \exists c \in M, a \triangleright c \land c \triangleright b.$

Note that relation \boldsymbol{l} , \boldsymbol{R} , \boldsymbol{H} , \boldsymbol{J} are equivalence relations in M. The classes of equivalence of an element a from Γ -semigroup M by these equivalence relations we denote respectively by:

$$L_a$$
, R_a , H_a , J_a .

- Theorem 1.2. (Green's Theorem) [6]. If H is a \mathcal{H} -class of -semigroup M, then either for all x from H, H and H is a subgroup of H_x .
- Definition 1.3. [4] An element $e \, \stackrel{.}{\circ} \, M$ is called idempotent in a semigroup M if there is $x \stackrel{.}{\circ}$ such that exe = e.
- Definition 1.4. The quasi-ideal of -semigroup M we call a nonempty subset Q of M such that O M M $O \subset O$.

It is clear that every left (resp. right, two-sided) ideal of a - semigroup M is quasi-ideal of M. It is clear also that every quasi-ideal Q of M is - subsemigroup. A -semigroup may have not a proper quasi-ideal. As result of the absence of the proper quasi-ideals of a -semigroup we have an important property. So, is true the following theorem:

- Theorem 1.5. Let M be a -semigroup and $x \in M$ be a fixed whatever element. M_x is group if and only if M have not proper quasi-ideals.
- Theorem 1.6. If e = exe ($e \in M$, $x \in$) is idempotent element of semigroup of M and L, R are left, right ideals of M, respectively, then:

Rxe = R Mxe, exL = L exM, are quasi-ideals of M.

on June 2-4 2011, Tirana-Durres, ALBANIA.

- Definition 1.7. Let A be a nonempty subset of a -semigroup M. The quasi-ideal generated by A will call intersection of all quasi-ideals $(A)_q$ of M that contain A.
- Definition 1.8. If $A = \{a\}$, then quasi-ideal $(\{a\}_q)$, which denoted by $(a)_q$, we will call principal quasi-ideal generated by element a of M.

The following proposition give the structure of quasi-ideal generated by a nonempty subset A of a -semigroup M.

Theorem 1.9. If A is a nonempty subset of a -semigroup M, then $(A \ \hat{a} \ M \ A)$ is quasi-ideal $(A)_q$ of M, generated by A.

2. Main Results

The minimal quasi-ideals in Γ -semigroups without zero are discussed before, but without discover their Γ -groupoid structure, which will be obtained through Greens relations.

Definition 2.1. A quasi-ideal Q of a X-semigroup without zero M is called minimal if Q not hold in proper quasi-ideals of this X-semigroup.

The following theorem characterizes the minimal quasi-ideal:

- Theorem 2.2. A quasi-ideal Q of a X-semigroup M is minimal if and only if it is a interception of the minimal left ideal L and minimal right ideal R, i.e. $Q = L \cap R$.
- Theorem 2.3. A quasi-ideal Q of a X-semigroup M is minimal if and only if Q is a \mathcal{H} -class.

Proof. Let suppose Q is a minimal quasi-ideal and $a \in Q$. Since

$$(a)_a = a \cup (M \Gamma a \cap a \Gamma M)$$

we have:

$$(a)_q \subseteq Q \cup (M \Gamma Q \cap Q \Gamma M) \subseteq Q$$

and since Q is minimal, $(a)_q = Q$. Conversely, let have

$$\forall a \in Q, (a)_q = Q.$$

If Q' is a quasi-ideal of M, such that $Q' \subseteq Q$, for an $a \in Q'$ we have $Q = (a)_q \subseteq Q'$, hence Q = Q'. Thus, Q is minimal. So, we have prove the equivalence:

Q is minimal if and only if for every $a \in Q$, $(a)_q \in Q$. From this we get Q is a H -class.

Theorem 2.4. A quasi-ideal Q of a X-semigroup without zero M is minimal if and only if Q is X-subgroup of M. Moreover, every minimal quasi-ideal Q of M, for all $x \in X$ holds equalities:

$$Q = exM \land Mxe = exMxe,$$

where e = exe is the unity element of subgroup Q^x .

Proof. Let suppose Q is a minimal quasi-ideal of Γ -semigroup M, then from **Theorem 2.3** Q is a \mathcal{H} -class. If \mathcal{H} -class Q we denote by H, then for $x \in \Gamma$, $Q^{x} = H$ is a Γ -subgroup because have not proper quasi-ideals of M.

Conversely, let suppose for $x \in \Gamma$ the quasi-ideal Q is a Γ -subgroup. If Q' is a quasi-ideal of Γ -semigroup M such $Q' \subseteq Q$, then:

$$Q' \Gamma Q \cap Q \Gamma Q' \subseteq Q' \Gamma M \cap M \Gamma Q' \subseteq Q'$$
,

which shows Q' is a quasi-ideal of Q.

We know Q is a Γ -subgroup, then it not contain proper quasi-ideals, thus Q' = Q, which imply Q is minimal quasi-ideal.

Let Q be a minimal quasi-ideal of Γ -semigroup M and e = exe, where $e \in Q$ is unity of Γ -subsemigroup Q^x , for every $x \in \Gamma$. From **Theorem 2.2** Q is the intersection of a right minimal ideal R and a left minimal ideal L and since $e \in Q = R \cap L$ imply $e \in R$ and $e \in L$. Since:

$$exM \subseteq R \Gamma^{\wedge} \subseteq R$$
,

then from minimality of R we have

$$R = exM$$
.

Thus, analogously, we show L = Mxe. Now we have:

$$Q = R \cap L = exM \cap Mxe$$
.

Finally, we prove

$$exM \cap Mxe = exMxe$$
.

Let $a \in Q = exM \cap Mxe$. Then we have a = exm = nxe where $n, m \in ^$ and thus:

$$a = (exe)xm = ex(exm) = ex(nxe) \in exMxe$$
.

So

$$exM \cap Mxe \subset exMxe$$
.

Conversely, let suppose $a \in exMxe$, then:

$$a = exbxe = ex(bxe) \in exM$$

and

$$a = exbxe = (exb)xe \in Mxe$$
,
then $a \in exM \cap Mxe$, thus we find

$$exMxe \subseteq exM \cap Mxe$$
.

From this inclusion and above conversely inclusion we have equality.

Naturally, rise question: Are hold true the above theorem if we substitute the Γ -semigroup without zero by a Γ -semigroup with zero, certainly demanding that quasi-ideal Q of Γ -semigroup with zero M not contain quasi-ideals other than zero and M quasi-ideal as well as by substitute the requirement Γ -group have zero?

The response of this question is negative, as demonstrate the following counterexample:

Counterexample 1

Let M be the set of complex numbers C and $\Gamma = C$. Let define the Γ -multiplication in C by common multiplication axb for every two complex numbers a, b and for every $x \in \Gamma$. It is clear $(M, (\cdot)_{\Gamma})$ is Γ -semigroup with zero. The set M is a quasi-ideal. The quasi-ideal M does not contain anyone

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

quasi-ideal other than zero and M. Indeed, if Q is a quasi-ideal different from zero, then for a element a not equal zero and for every element $b \in M$ we have element $ba^{-1} \in M$ and $1 \in \Gamma$ for which holds true equalities:

$$b = ba^{-1} \cdot 1 \cdot a = a \cdot 1 \cdot a^{-1}b.$$

These equalities show $b \in Q$, since Q is quasi-ideal of M. So, Q = M. The minimal quasi-ideal M is not Γ -group with zero because for $x = 0 \in \Gamma$, we have MxM = 0 and thus M is not a group with zero of semigroup with zero M_0 .

But, there are Γ -semigroups with zero for which hold true the analogous theorem for Γ zero $(C, (\cdot)_{\mathbb{C}^*})$ is Γ -group because for every complex number x diverse from zero, the set CxC përputhet me x and so it is group with zero of the semigroup with zero \mathbb{C}_0 .

Considering situation for Γ -semigroup with zero we let opened this problem:

What conditions must satisfy a X-semigroup with zero to hold true the analogous theorem of Theorem 2.4 for X-semigroup with zero?

The minimal quasi-ideals in Γ -semigroupd without zero are discussed before by other authors, but fail to show their groupoid structure, which will be obtained through Greens relations.

Theorem 2.5. If e = exe, $x \ge 1X$, is a idempotent element of a X-semigroup M contained in a minimal left ideal L, then exL is X-group, and moreover is a minimal quasi-ideal of M.

Proof. Let e be an idempotent, e = exe, $x \in \Gamma$, contained in left ideal L. Let consider exL. We will show G = exL is a subgroup of M_x . Take elements exm, $exn \in exL$, where $m, n \in L$. For every $y \in \Gamma$ are true the following equalities:

$$(exm)$$
 y $(exn) = ex[my(exn)] = ex[(mye)$ $xn]$

showing G is Γ -subsemigroup of Γ -semigroup M. It is clear that e = exe is left unity element of semigrup (G, \cdot) , where \cdot is the induced operation from operation of semigroup M_x . If g = exl is an arbitrary element of semigroup (G, \cdot) , then Lxg is the left ideal of M, because:

$$M(\Gamma Lxg) \subseteq (M \Gamma L) xg \subseteq Lxg$$

Since:

$$Lxg = Lx (exl) = (Lxe) xl \subseteq M \Gamma L \subseteq L$$

and L is a minimal left ideal of M we have Lxg = L. From this we find

$$(ex)Lxg = exL,$$

or, same

$$(exL) xg = exL.$$

So, the element g = exl of semigroup (G, \cdot) has as left inverse element an element exl_1 of exL. Thus, semigroup (G, \cdot) is group. Γ -semigroup $(G, \cdot)_{\Gamma}$ is Γ -group, due to a theorem, and therefore is Γ -subgroup of Γ -semigroup $(M, \cdot)_{\Gamma}$ if with Γ -subgroup of the Γ -semigroup $(M, \cdot)_{\Gamma}$ we mean every Γ -semigroup such that Γ -semigroup generated by it is Γ -group. Now, basing on **Theorem 2.4** we get out exL is a minimal quasideal of M.

Theorem 2.6. If e = exe, $x \in X$ is an idempotent contained in a right minimal ideal R of a X-semigroup M, then Rxe is a X-group and, moreover, a minimal quasi-ideal of M.

Proof. Let e = exe be an idempotent element of Γ -semigroup M, wich is an element of right ideal R. Let show that G = Rex is a subgroup of M_x . Let take elements mxe, nxe of 1Rxe. For every $y \in \Gamma$ are true the following equalities:

$$(mxe)$$
 y $(nxe) = mx [(eyn)xe] = [mx(eyn)]ex,$

which show that G is a Γ -subsemigroup of Γ -semigroup M. It is clear that e = exe is the left unity element of semigroup (G, \cdot) , where \cdot is the induced operation from operation of semigroup M_x . If g = rxe is an arbitrary element of G, then gxR is a right ideal of M, because:

$$(gxR) \Gamma M \subseteq gx(R \Gamma M) \subseteq gxR$$

whiles:

$$gxR = (rxe)xR = rx(exR) \subseteq 1 R \Gamma M \subseteq M.$$

So, while R is minimal right ideal of M we have gxR = R. From this we get

$$(gxR)xe = xeR$$
,

or, similarly

$$gx(Rex) = Rxe.$$

Thus, the element g = rxe of semigroup (G, \cdot) has as left inverse element an element r_1xe of Rxe. So, semigroup (G, \cdot) is group. From this we get Γ -semigroup $(G, \cdot)_{\Gamma}$ is Γ -group and hence G is Γ -subgroup. From this, basing on **Theorem 2.4** we have Rxe is also a minimal quasi-ideal of M.

Theorem 2.7. If X-semigroup without zero M has a reducible element, contained in a minimal quasi-ideal Q of M, then M is a X-group.

Proof. Basing on **Theorem 2.4** Q is a minimal quasi-ideal of Γ -semigroup $^{\wedge}$ and thus it is a Γ -subgroup. Let e = exe be the inverse element of Q^x and $a \in ^{\wedge}$ a reducible element in Q for the element a we have exa = a. If $m \in ^{\wedge}$ is an arbitrary element, we find that:

$$mx(exa) = mxa$$
 ose $(mxe) xa = mxa$.

Its imply mxe = m. In the similar manner we show that exm = m. So, e is the identity element for semigroup (M, \cdot) . Since $e \in O$, if $m \in \land 1$ we have:

$$M = mxe = exm \in M \Gamma Q \cap Q\Gamma M \subseteq Q$$
.

It imply M = Q. Thus, M is Γ -group.

Remark

It seems that removing of idempotent element in **Theorem 2.3** is replaced by inserting a reducible element but we may prove every idempotent in a minimal quasi-ideal Q is a reciprocal reducible element. For this is suffice to prove:

$$exa = exb \implies a = b,$$

 $axe = bxe \implies a = b.$

Since e is an idempotent in minimal quasi-ideal Q, then (Q^x, \cdot) is group, where e is its unity and then we will have:

$$a = exa = (exe) \ xa = ex \ (exa) = ex \ (exb) = (exe) \ xb = exb = b.$$

This prove e is the left reducible. Similarly, we prove also that e is right reducible.

We emphasize that existence of idempotent element in a minimal quasi-ideal of

 Γ -semigroup is a necessary condition for it to be a group.

Theorem 2.8. Let Q be a quasi-ideal of X-semigroup without zero M. Q is minimal if and only if for $q \in Q$ we have:

$$QXq \quad qXQ = Q = (a)_q$$
.

Proof. Let suppose Q is a quasi-ideal of M, which satisfy the equality. Let Q' be a quasi-ideal of Γ -semigroup \cap and $Q' \subseteq Q$. On the other hand, let Q be an element of Q'. Then:

$$Q = q \Gamma Q \cap Q \Gamma q \subseteq Q' \Gamma M \cap M \Gamma Q' \subseteq Q'.$$

So, Q = Q' and consequently Q is a minimal quasi-ideal.

Conversely, let suppose Q is a minimal quasi-ideal of M and $q \in Q$ is an arbitrary element of Q, then, firstly we will prove $Q \Gamma q \cap q \Gamma Q$ is a quasi-ideal of M.

We know $Q = (a)_q$. Since $q \Gamma q \in Q \Gamma q \cap q \Gamma Q$ then it is nonempty set. Moreover:

$$\begin{array}{ccc} Q \; \Gamma(Q \; \Gamma q \cap q \; \Gamma Q) & \cap \; (Q \; \Gamma q \cap q \; \Gamma Q \; \;) \; \Gamma Q \subseteq \; Q \; \Gamma(Q \; \Gamma q) \cap (\; q \; \Gamma Q) \\ \Gamma Q & \subseteq & \\ & \subseteq \; (Q \quad \Gamma Q) \; \Gamma q \cap q \; \Gamma Q \; \Gamma Q) \subseteq \; Q \; \Gamma q \cap q \; \Gamma Q. \end{array}$$

So, $Q \Gamma q \cap q \Gamma Q$ is a quasi-ideal of Q and since it is minimal then

$$Q \Gamma q \cap q \Gamma Q = Q = (a)_q$$
.

CONCLUSION

In this paper we are proved some theorems that help to find out the structure of minimal quasi-ideals in Γ -semigroups without zero. The our aim was to discover their structures, which, as we proved, is the same with Γ -subgroups. But this structure was not true for respective quasi-ideal of Γ -semigroup without zero, living opened the problem of conditions that must satisfy a Γ -semigroup without zero in

order to have, in this case, an analogous structure.

REFERENCES

- [1] Sen M.K. (1981) On -semigroups. Proceeding of International Conference on Algebra and it's Applications. Decker Publication, New York, 301.
- [2] Sen M.K. and Saha N.K. (1986) On -semigroup I. Bull. Cal., Math. Soc. **78**, 180-6.
- [3] Saha, N.K. (1987) On -semigroup II. Bull. Cal. Math. Soc., **79**, 331-5.
- [4] Steinfeld, O. (1978) Quasi-ideals in rings and semigroups. Akademia Kiado, Budapest.
- [5] Dutta, T.K. and Chatterjee, T.K. (1987) Green's equivalences on semigroup. Bull. Col. Soc. **80**, 30-35.