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ABSTRACT

In this paper, we will give a leisurely introduction to the theory of Grébner bases.
First we will see how to determine whether a polynomial f is contained in an ideal
and how an answer to this problem leads to a method to determine whether two
ideals are equal. We will use Euclidian Algorithem for solving this problems. After
that will be introduced what we mean by the leading term of a polynomial in n
variables. So we will explain Grébner bases notion and will present the algorithem
due to Bruno Buchberger wich transform the abstract notion of a Grébner basisin a
fondamental tool in computational algebra. And in the end we will give some
applications of Grobner bases.
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1. INTRODUCTION

Let k be afield. Consider K[x,,...,xn] which is the set of all polynomials in the
variables x,,...,xn with coefficients in k. Such polinomial are finite sums of terms of
the form ax;*,...x ", whereal k andb, T N,i =1..,n. We call x}*,...x>a

n

power product. Note that K[x,....xn] iS a commutative ring with respect to
polynomial addition and multiplication.

Definition 1.1. Let | | K[ X,....xn], I * f.lisanideal ink[X,...,xn] if

1. f, gl limpliesthatf+ gl 1.
2. f1 landh1 Kx,....xn] impliesthat hf T 1.

It will be important for usto be able to identify all of the generators of an ideal.
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One of the most important results in polynomial ideal theory is the Hilbert Basis
Theorem. This result is important because it says that any ideal in k[x,...,xn] has a
finite set of generators.

Theorem 1.2 (Hilbert Basis Theorem) Every ideal in k[X,...,xn] is finitely
generated.In other words, if | is an ideal in K[X,...,xn], then there exists fy,..., fs 1
K[X,,...,xn]such that

= 8y F17 (8 U /0T KD X)) =L...,”§_
|

i=1

Let see the polinomials with one variable from k[x]. Here we will use the well
known Euclidean Algorithem. First let give some notation: If f1 01T K[x],

f=ax"+a, X"'+..+ax+a,
witha1 kanda,! 0,i=1,...,n, then:
Thedegree of f, denoted deg( f)= n, isthelarges exponent of xinf.
Theleading termof f, denoted It( f )= a, X", isthe term of f with highest degree.

Theleading coefficient of f, denoted Ic( f )= a,, isthe coefficient in the leading term
of f.

The main tool in Euclidean Algorithem isthe Division Algorithem:
INPUT: f,gT k[X] withg? O
OUTPUT: q,rsuchthat f=qgg + r and
r=0ordeg(r) < deg(9)
INITIALIZATION: g=:0;r=:f
WHILE r1 0 AND deg(r) < deg( g)DO

109
q=qt—2
1t(9)
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r: = r- 1)
It(g)
. . lt(r)
Now let | =&f, gfiand suppose that f 344® h Then since h= f -mg we can
g
replace f by hiin the generating set of I, | = &h, gii So we can gave the nex theorem:

Theorem 1.2: Everyideal f1 k[X] isgenerated by one element.

Proposition 1.3: Let f;, f, T K[x], with one of f,, f, not zero. Then ged( fi, f,) exist
and
af,, f,Ai=4&cd(f,, f,)i

So by the Euclidean Algorithem we can finde ged, and so we can finde a single
generator of ideal af,, f, .
INPUT: fy,f,1 K[X] withoneof fy,f, not zero
OUTPUT: f=gcd(fy, 1)
INITIALIZATION: f=:f,g=:1,
WHILE g* 0 DO
f 384® . r wherer isthe reminder of the divisonof f by g

f=g

g=r

f= 1
le(f)

We can proceed in the same way in the case of ideals generated by more than two
polynomials, | = &f,,.., f, fiwith not all f;’zero.

1100 I
2. TERM ORDERS

Recall that the set of power products is denoted by: T"= { xfl x,ﬂ’ biT N, i
=1,.n}. If we have @, X’I T", exactly one of the following three relations must

happen:
<), = orx@> X,

Definition 2.1: Atermorder on T"isatotal order < on T" such that
1. 1< forall X1 T x°: 1.

501



“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”

in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
on June 2-4 2011, Tirana-Durres, ALBANIA.

2. 1f @< X then @ x9< x° x for all X971 T".

Next we give some examples of term orders that are commonly used. We will
assume that
X1>X2>,...,> Xn.

Definition 2.2. We define the lexicographical ordering (denoted by lex) as follows:
For a =(as,..,an); b = (by,...b,) T N"we define

@ < xb <=> i the first coordinatesa; and b, ina and b,
| formthe left, which are different , satisfy a, < b,

Definition 2.3. We define the degree lexicographical ordering (denoted deglex) as
follows:

For a =(ay,..,an); b = (by,...b,) T N"we define

da <&,
i=1 i=1
é_ =4 b, and x* <x°

i=1

i
i
i
i

X <X <= |
i
i |th respect to lex with x, > x, >... > X,
i
[

Definition 2.4 We define the degree reverse lexicographical ordering (denoted
degreviex) asfollows: For a =(ay,..,.a,); b = (by,..,b,) T N"we define

':'é.ai <é. b,

T i=1 i=1
Td ) ' :

x* <x* <=>{§ a, =4 b, and the first coordinate a, and b,
T i=1 i=1

Iina and b fromther ight, xhic h are diff erent, satisfya, > b,
|

~

|
Now choose aterm order on T". For al fT K[x,...,xn] we can write

f=ax +a,x*? +..+ax"
where01 a1 k, x* are power products, and X2t > X2 >...> X . We definene:

(i) the leading power product of fto belp(f) = X**;
(ii) the leading coefficient of f to belc(f) = a;
(iii) the leading term of fto beIt(f) = a,x**
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3. MULTIVARIABLE DIVISION ALGORITHM

Definition 3.1. Letf; g; hT K[X,...,xn] with g* 0. We say that f reduces to h modulo

g in one step, denoted f 3%4® h,
if and only if Ip(g) divides a non-zero term ax® that appears in f and
ax?

f=1- .
It(g) °

Definition 3.2. Let f, h and fy,...,fs be the polinomials in K[X,,...,xn] with f;2 O for
i=1,...,s.
Let F={fy,....,fs}. We say that f reduces to h modulo F, denoted

f 34® . h,

if and only if there exist a sequence of indices iy, io,..,ii 1 { 1....,s }and a sequence of
polynomialshy,..., heal K[X,,...,xn] such that

f %3%4® h %%® h, %%® ... % %O h_, %3Hhe h,

Definition 3.3. A polynomial r is called reduced with respect to a set of non-zero
polynomials

F={fy...fs} if r = 0 or no power product that appearsinr is divisible by any one
of thelp(fi), i = 1,..., s. In other words, r cannot be reduced modulo F.

Definition 3.4. If f 3#4® . r and r is reduced with respect to F, then we call r a
remainder for f with respect to F.

The reduction process alows the formulation of the following division algorithm
for multivariate polynomials which mirrors the univariate division agorithm:

INPUT: fy, f5,....fsT K[Xy,...,X;] Withfi* O
OUTPUT: wu,...,Us, I such that f = u,fi+...+uf+r andr isreduced with
respect to
{ fu,....f¢ and max(Ip(uy)ip(fy),..., Ip(uglp(fs).Ip(f))=1p(f)
INITIALIZATION: u;:=0,...,us=0,r:=0,h: =f
WHILE ht 0DO
If there existsi such that Ip(f;) dividesIp(h) Then
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Choosei least such that Ip(f;) divides|p(h)

=y 4
)
= - O
()
ELSE
r:=r+It(h)
h:=h- It(h)

4 . GROBNER BASESAND BUCHBERGER'SALGORITHM

Definition 4.1. A set of non-zero polynomials G ={ gs,...,0: }, contained in an ideal
I, is called a Grobner basis for | if and only if for all f1 1 suchthat f1 0, there
existsil {1,...,t} such that Ip(gi) divides Ip(f).

Definition 4.2: For a subset Sof K[ xi,..., xn], the leading termideal of Sisthe ideal
Lt(S= dt(s)/sl Sh

Theorem 4.3 . Let | be anon-zero ideal of k[ x1,..., Xn] . The following statements are
equivalent for a set of non-zero polynomials G ={ gy,....g: }i I.
(i) G isa Grobner basisfor I.

(i) f1 lifandonlyif f 3%4%® . 0.

(i) f1 tifandonlyif f =3 | hg, withlp(f)= max(Ip(h)Ip(g,))
(iv) L(G)=Lt()).

As a consequence of the preceding theorem, we have the important result,
pointed out earlier, that a Grobner basis G ={g,...,gi for | is a set of generators for
Ithatis, | = &g,..., g,fi

Another important consequence of the preceding theorem is the fact that every
nonzero ideal | | K[x,..., xn] has a Grébner basis.

Given a set of generators fy,...,fs of an ideal | | k[xu,..., xn], Buchberger's
Algorithm produces a Grobnerbasis for |. We recal that such a finite set of
generatorsfor | always exists by Hilbert's Basis Theorem.

Definition 4.5. Let L = lem(Ip(f), 1p(g)). The S-polynomial of f and g is defined to be
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L L

SO e

BUCHBERGER'SALGORITHM

INPUT: F={fy..f} | KXs...x] withf? 0(1£i £9)
OUTPUT: G={ g,...,0: }, aGrobner basisfor &f,,..., f.f
INITIALIZATION: G:= F,G:= {{f; f} |1 f;T G}
WHILE G?! 0DO
Chooseany {f,g}1 G
G:=G-{{f, gt}
S(f,g ¥#%® . h where hisreduced with respect to G
IFht OTHEN
G: = GE {{u h}[foral ul G}
G =GE {h}

Example. ([1], Problem 1.7.3(b))

Letf,=xXy+z f,=xz+yl Q[xy, 7 andlex, z>y > x, be the term order. We
want to find a Grobner basisfor af,, f,fi

INITIALIZATION: G := {fy; f}, G = {{fy; f2}}

Sep 1.

Choose{fy; f2}:

G.=A&

S(f,, f,) :§(Z+ x2y)- %(xz+ y)=x% - y=h which is reduced with
respect

to Gsincelp(fy) = z Ip(f,) = xz
Snceht O, letfy:= Xy -y
G:= {{fy; fa} {{f2 fs}}

G = {fy; T f3};
Sep 2.

Choose{fy; f3}.

G:= {fz, f3}

x® x°
St f) = [Py +2)- 20y - y) =y e yz

Note that yz + X°y* = y (z+ Xy) + (<Y - Xy)
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XY -y = Xy (Y - y)
Therefore, since S(f,, f,) = yf, + X*yf,, S(f,, f,) ¥%%® . 0=h

Sep 3.
Choose{fy; f3}.
G =K
3

X x3
S(f,, f,) = XZyZ(XZ+ y)- X%;Z(xsy- y) = x2y? + yz = ¥f,

Thus, S(f,, f,) ¥%%® . 0=h
The algorithmends, G = {f; f5; fa} isour desired Grobner basis.

The following example shows that the algorithm is sensitive to the term order
chosen. That is, for the same input of generators { fi,..., fs}, we may get different
Grébner basis outputs, depending on the term order.

Example ([1], Problem 1.7.3(a))
Let f1; f2be as above but let theterm order be deglex, x>y > z

INITIALIZATION: G := {f1; f2}, G := {{fy; f2}}
Sep 1.

Choose {f2; fi}:

G=A

2 2 . A
S(f,, f,) = szyz (xz+y)- %(XZW 7) = xy? - 22 =h, Which is reduced

with respect to G since Ip(f1) = ey, Ip(f2) = xz
Snceh? O, letf3:= xy>- z(Notethat Ip( f3) = xy?)
G = {{fy; f3} ,{f2; f3}}
G = {fy; f2; f3}
Sep 2.
Choose {fi; f3}:
G = {{f2 f3}}
2\,2 2,,2
S(f,, f,) = f(); (x2y + 2)- XXTyz(xy2 +2)=xz?+yz=271,

So, S(f,, f,) ¥%#5® .0=h
Sep 3.

Choose {f2; f3}:

G=A
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2 2

S(f,, f,) = nyzz (xz+2)- XXB;ZZ(XyZ - 22)=y®- 22 =h, Which is reduced

with
respect to G.
Snceh? 0, let fa:= y*+ z(Note that Ip(fs) = ys)
G = {{fy; fa}; {f2; fa}; {f3; fa}}
G = {fy; f2; f3; fa}
Sep 4.
Choose {fs; fi}:
G := {{fz; fa}; {fs; fa}}
2.,3

X X2 3
S(f,, 1) = yy (y* + 2°)- XTf/(xsz):sz?’- y'z=(xz* - y)f,

3

S S(f,, f,) ¥#%® . 0=h

Sep 5.
Choose {f4; f2}:
G = {{fs fa}}

3 3
S(f,, f,) =22y + 22)- X2 pa+y) = xzt - vt
y Xz
Notethat xz* - y* = Z(xz+y)=(-y*- yz°) - y* - yz* =
=-y(y’+2°)
Therefore, since § fg; f2) = zf2- yfa, S(f,, f,) 38%5® . 0=h
Sep 5.
Choose {fs; f3}:
G: =&
3 3
S(f,, f,) :%(ys + Zs)_ %(xyz - )= x4y = 2,

S S(f,, f,) ¥%#4® . 0=h
The algorithm ends, G = {f1; f2; fs; fa} isour desired Grébner basis.

Moreover, we point out that even in the event that the term order is fixed,
uniqueness of Grobner bases is not guaranteed. Buchberger's Algorithm can produce
different Grobner bases if different fi are chosen at a given step. In order to achieve
uniqueness, one needs to restrict Grobner bases as follows (see [1]):
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Definition 4.6. A Grobner basisG = {gy,...,0¢ iscalled minimal if for all i, [c(g)=1
and for all it j,p(g) doesnot divide Ip(g).

Definition 4.7. A Grébner basis G = {g,...,g}is called a reduced Grobner basisiif,
for all i, Ic(gi)=1 and giis reduced with respect to G — {g} That is, for all i,
nonon-zero termin gisdivisble by any Ip(gj) for anyjt i.

Theorem 4.8: Fix a term order. Then every non-zero ideal | has a unique reduced
Grobner basis with respect to thistermorder.

5. Applications of Grébner basis

Proposition 5.1: Let I, J be ideals in k[xy,....x,] and let w be a new variable.
Consider the ideal (wl,(1- w)J) in K[Xy,... %o, W]. Then | C J = (wl,(1- w)J)

CK[Xq,...,Xn, W].

Example: Consider the following ideals in QIX, vl
I :<x2 +y®-1,x- yx+3>and J :<x2y— 1>.
We wish to compute | C J. We compute a Grébner basis G for theidea
<W(x2 +y3- 1), w(x- yx+3),(1- w)(x°y- 1)>i Q[x, y,w] using the deglex term
ordering on the variables x and y with x > y and an elemination order with w greater
than x, y. We get
G={xy?- xX°y- 3x°y- xy+x+3,x°y* +x*'y- xX°y- y* - x* +1,
12853w+118x*y +9x°y® - 357x°y - 972x°y? +215x°y - 118x° - 9y” +35x+ 97y - 215,
X°y+3x°y® +3x%y? - x> +3x°y- 3y*- 3y- 3.
So a Grobner basis G for theideal | C Jis
(Y7 - XPy- 3%y - xy+x+3, X7y +x'y- X2y- ¥ - X241 Xy +3x°y° +3x°y7 - x*+3x%y- 3y?-
Definition 5.2: Let |, Jbeidealsin K[ X,..., X,]. Theideal quotient J: | is definited
to be

J:1={gl Kxy...x]]gll J}.

Lemmab.3: LetI1=4f,..., f.Abeidealsin k[xy,....x,]. Then J:| :ﬂJ -af, fi

1=1
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Example: Let g, =x(x+Y)?, g,=Yy, f,=x" and f,=x+y inQ[x,y]. Consider
the ideals | = &f,, f,fiand J = &g,, g, We wish to compute | : J. By Lemma we
have

J:l=(3:af,HC(J :éfzﬁ):fi(J(;(fl»nfi(J H(£,)).

First we compute J C af,i by computing Grobner basis G, for the idea
avg,,wg,,(1- w) f,iil Q[x,y,w] with respect to the lex term ordering with w > x >

y to obtain G; = {xXw - X%, wy, X%, Xy} 0 that fi(J G (f,)) = (x,y). Second we

compute JCaf,i by computing Grobner basis G, for the ideal
ang,,wg,,(1- w) f,fl Q[x,y,w] using the same order as above, and we obtain G; =

{fwx —x -y, wy, 2+ y*, xy + ¥’} sothat %(J9<f2>):<x2_ Xy+y2,y>. Findly we

compute (x, y>ﬂ<x2— Xy + y2,y> by computing Grobner basis G for the ideal

avx,wy, (L- wW)(x* - xy+y?),(1- w)yiil Q[x,y,w] with respect to the lex term
ordering withw > x> yto obtain G = {wx, X%, y }. Therefore J: | = &2, yfi
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