
“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

272

Improving data integrity and performance of Cryptographic
Structured Log File Systems

Genti Daci1, Megi Shyle2

1 Departement of Information Technology, Polytechnic University of Tirana
2 Departement of Information Technology, Polytechnic University of Tirana

ABSTRACT

Modern File systems like CLFS (Cryptographic Log Structured File System)
are aimed to provide security and confidentiality. Current deployments of such File
Systems do not currently ensure data integrity of the encrypted data that is stored on
disk. Due to Kernel bugs, racing conditions and arbitrary dead-locks, CLFS data on
the disc can be damaged, also there is always the possibility that system users can
modify the encrypted data. Our study aims toward ensuring data integrity on CLFS
without compromising on overall performance. This paper considers the standard
methods using file metadata check-summing in CLFS with the main goal to
overcome one of its major limitations, low performance of File-System check-
summing. CLFS matches our performance expectations, as it performs close enough
to non-cryptographic file systems. To improve the performance of the check-
summing process we try to study and examine various design choices and propose
an in-kernel database for storage and reduction of check-sum verification once in N
read requests.

INTRODUCTION

A file system is meant to store typically large amounts of data, which may be
either critical or sensitive, so they need to be protected. Modern File Systems, such
as CLFS [1] ensure confidentiality of data, encrypting them. Usually File Systems
that comprise data encryption result to perform considerably slower than non-
cryptographic File Systems. New techniques implemented in CLFS manage to reach
its performance goals, as they go close to fast local file systems. Encryption is a
native characteristic of this file system and it ensures that information is accessible
only to those authorized to have access, while not being affected by the overhead
of encryption with more than an order of magnitude [1].

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

273

Figure 1. This figure shows the difference between the CLFS, which
implements encryption as a native characteristic and a Layerd File System

organisation.

Being native means including the data encryption code into the file system
code. We are generally used to systems, where encryption is added as a layer, thus
allowing it to be bypassed, but this is not our case, as figure 1 demonstrates.

Confidentiality is an important part of the overall system storage security, but
it is not everything. Considering that hard disks malfunctioning, data on it can be
damaged even though it is encrypted. It can also be affected by attackers, both
physically or while communicating over an insecure network. Physical access on
disk allows the attacker to change the unencrypted part, which in our case
comprises the ifile, without the system knowing it. Thus, suggesting a way to make
the file system immune from such data corruption, either as a result of a malicious
attack or hardware failure, is our scope. We aim to protect our sensitive data,
checking for inconsistencies, to obtain data integrity.

In this paper we will describe the context of our working environment,
Cryptographic Log Structured File System, which is in turn based on LFS [2]. This
work comes to life to improve this file system, thus a detailed explanation of the
techniques it uses to avoid the latency encryption carries, is needed. Further, we
will list the techniques used to achieve the integrity of data requirement. They will
be examined in a selective prospective, to pick out the most congruent solution to
our specific case, as shown in Figure 2.

File System calls

VFS layer

Encryption
Layer
LFS

Cryptographic Log-
structured File System

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

274

Figure 2. Overview of our scope, adding integrity checking to CLFS.

THE BACKGROUND, (C)LFS

In this section, we consider important to unfold the features of the
Cryptographic Log-Structured File System, to justify our choice. To make a long
story short, the crucial argument that supports CLFS is performance. Previous
cryptographic file systems come in different implementation, the encryption can be
block based, as well as disk based, on network file systems or stackable ones. Their
common characteristic is bumping into the knot of being too CPU sensitive. To
provide performance solutions CLFS concentrates on previous cryptographic File
Systems weaknesses, being the speed of the encryption algorithm used and the
writing latency.

2.1 The encryption algorithm

CLFS [1] considered that improving the speed of the algorithm used to
encrypt would be useful both ways of read and write operations. Let's take a look at
a couple of the most known cryptographic file systems, to check out for their
deficiencies.

Blaze (1993) [3] implemented CFS as a network file system and its main
drawback resulted the continuous context switching overhead. The encryption
algorithms it can make use of are DES [4], SAFER[5], etc. A completely different
approach was treated by Zadok (1998) in CryptFS [6], as it is a stackable file
system. This provides it with portability allowing execution above any kind of
native file system. It also comes out to be faster than CFS by a factor that fluctuates
from 2 to 37 times. The bottleneck of this file system is precisely the encryption
algorithm it uses, blowfish [7].

To overcome this drawback CLFS uses SEAL 3.0 [8], a software optimized
encryption algorithm. Its main advantages that meet our requirements are its speed
and the fact that it allows the data to be pre-computed. P. Rogaway and D.
Coppersmith (1997) demonstrated that SEAL uses approximately 4 cycles to
process a byte and results up to 10 times faster than DES. SEAL works as a stream
cipher, where the encryption depends not only from the plain text and the
encryption key, but also from the position of the data. The key is 160bit long and
SEAL uses it to map a 32bit string to an L bit one, where L in our case is less than

Metadata Encrypted data

CLFS

DATA

Checksumming

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

275

64 kB. The trick that makes the work with SEAL that fast is pre-computing. Being
LFS the ground upon which CLFS was built, allows us to know precisely the
position of the next write and that's the reason why we can pre-compute the whole
key stream, so that the encryption process is reduced to a simple XOR operation
between the key and the plain text.

The underlying file system, LFS

The speed of I/O bound applications is limited by the write performance of
the file system. A log-structured file system is designed for high write throughput.
Rosenblum and J. Ousterhout (1991) showed how all updates to data and metadata
are written sequentially to a continuous stream, called a log [2]. Conventional file
systems put a great emphasis on spatial locality and make in-place changes to their
data, which leads to slow seeks. LFS assumes that taking care of locality will no
longer be effective, as memory size is increasing to the extends of satisfying all read
operations using the cache. Storing data in a log avoids seeks, therefore minimizes
the movement of disk's head and maximizes write throughput.

The benefits of using it as a base for CLFS is that we know where the
position of the next write is located. Besides, file system writes are only performed
at the end of the log which means that inconsistencies can only be located in the last
segment of the log, which greatly speeds up crash recovery.

(C)LFS organization

The Cryptographic Log-Structured File System [1] is very similar to LFS, as
much as concerns its overall format. It is organized into segments, only one of
which is active at one time. Each segment has a header called a summary block.
Summary blocks keep pointers to the next summary block, linking segments into
one long chain that LFS treats as a linear log.

Figure 3. LFS segment organization

Upon creation of the file system a random key is automatically generated for
the first segment. Afterwards the segment key and the key stream offset are stored
encrypted in the corresponding segment summaries. The key stream is calculated
increasing it with the segment size. To increase performance CLFS uses a cache to

IMAP

IFILE

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

276

store the expanded keys and their positions. These keys are encrypted using AES
[9] and a system key provided by the user.

In a read operation CLFS would act initially the same as LFS, by searching
for the desired block to read. The search would start by the index file's inode stored
in the superblock, where we would find the inode map, followed from the inode.
These operations are the majority of times bypassed, since this data is stored in the
cache. Obviously, CLFS to ensure effective encryption cannot stop at the point of
LFS. It has to read the exact position of the segment summary from the ifile. After
reading it, decrypt the segment key and the key offset, to generate the key stream.
Finally the read data has to be XOR-ed with the key stream to decrypt them.

The write operation differs from LFS only in a couple of steps. The first
chunk of data is removed from the list and its key is already known, so we can
perform the XOR operation. This is done with all the chunks of data and afterwards
the segment summary is changed.

DATA VERIFICATION TECHNIQUES

Ensuring data integrity is fundamental to computer systems. Several factors
may induce to data errors, to mention media failures, kernel bugs and racing
conditions. Even an attacker who has reached to gain administrator privileges can
modify the data. Threats are multidirectional and our system cannot be left
unprotected, so our approach is based on the existing cryptographic file system to
which the integrity checking capability is added.

Mirroring

Making exact copies of our data, i.e. mirroring, can be a way of managing it
reliably. The process would comprise the comparison of our data with the mirrored
one, before operating with it. This method would easily detect changes in one of the
replicas, providing integrity in case the changes occur because of hardware
malfunctioning.

Figure 4 This figure shows an implementation of the mirroring technique
using two different disks.

However, it doesn't tell which of the copies is the genuine one. It is not able
to perform correctly in the case of an intruder, either. This is due to the fact that

DATA

Primary
location

Sec.
location

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

277

both of the replicas can be changed, so that the system lacks the tools to detect
intrusion and integrity is not obtained. The inefficiency of this method also arises
when we consider the storage space it requires and the time we need to spend
checking both replicas.

Parity

Parity is a simple yet effective method to assure integrity protection. It adds
one bit to the pattern and then requires that the modulo-2 sum of all the bits of the
pattern and the parity bit have a defined answer. Parity bits are sufficient to catch all
single errors in the pattern. However the system will not detect any double errors
and these will be flagged as valid.

Figure 5 The parity technique, the parity bit added to a bit pattern.

Check-summing

Check-sums are exactly the same as parity with two changes: To create the
check-sum of a pattern of entities of length n bits, an n-bit entity (the check-sum) is
added and the modulo 2 sum of the entities and the check-sum is constrained to be
zero. CRC is more secure than check-summing, but it needs more calculation, as it
adopts a more complex technique.

Check-sums can be implemented in various ways, we can compute a per
block check-sum, or a per file check-sum. The latter proposes two alternatives,
storing check-sums apart from the data, otherwise interleaving data files and check-
sums with the purpose of making more efficient use of data locality.

Figure 6. The check-summing method, the calculated check-sum at the end of
the bit pattern

CRC

CRC is a method which seeks to improve on check-sums by increasing the
complexity of the arithmetic. They use polynomial division to determine the value
of the CRC. The basic idea of CRC algorithms is simply to treat the message as an
enormous binary number, to divide it by another fixed binary number and to make
the remainder from this division the check-sum.

48 65 6C 6F 20 77 6F 72 6C
64 2E

4865 + 6C6C + 6F20 + 776F + 726C + 642E + carry = 71FC

1 1 0 0 1 1 1 0 1

Parity bit

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

278

OUR APPROACH

To constitute our design model we have developed our idea in several layers,
each of which is built on answering one single question per layer. As we previously
explained ensuring data verification in a file system is essential to its integrity. On
the other hand we need to preserve as much as possible the major advantage of our
native file system CLFS, which despite being cryptographic fully meets
performance requirements. So, naturally the decisions we need to make involve
which method of verification is more appropriate, what part of the data will be
verified unless all of it, where will this extra information be stored and finally how
frequently the verification will occur. Let's analyze them further.

The method used to provide data integrity

Check-summing is the most common method to ensure data integrity [10]. If
we want our data to be protected from intruders as well as from transient errors, the
check-sum need to be protected with a secure hashing scheme such as MD5 [11] or
SHA1 [12]. Since the latter has proven to be more secure, it was the one we chose.

We considered efficient to compute check-sums for metadata. It comprises all
the inodes and the ifile. Checking different fields of the metadata will allow us to
find out if any malicious modification has been made to the data, because almost
any modification to our data will be reflected to the metadata [13]. Furthermore, this
decision is more advantageous as the amount of metadata is considerably less than
data, and results to be efficient on timing, hence giving a better performance.

Benchmarks of improved LFS under stress test using Tar and Compilations

Knuttson (2002) [1], after implementing his cryptographic File System, made
several tests to check its performance affected by the overhead encryption
introduced. It resulted to perform close to non-cryptographic File-Systems, being an
ideal solution for systems which store large amounts of sensitive data.

Now, apart from encryption we have added a new feature, file integrity
checking, through metadata check-summing. We need to test our system to evaluate
the latency, this further overhead cause. The tests made are on a .tar file and also
tying a kernel compilation. We have submitted four different file sizes, respectively
100Mb, 250Mb, 500Mb and 1Gb.

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

279

Figure 7. Results of the compilation test, the time of compilation of four
different sized files, after adding integrity checking to metadata. After calculation

the overhead results a mere 4%.

Knuttson tar tests completed in approximately 562sec for a 64Mbyte file. Our
100Mbyte file completed in 927sec, as shown in figure 8. After a comparative
analysis of the tests, we notice that the overhead reaches the margins of 4% on
compilation tests and 6% on tar tests. The first is due to the fact that compilation is
a CPU bound application and is not particularly affected by the File System,
whereas the latter is slightly affected.

Figure 8. Results of the tar test, the results of four different sized tar files.
They are all composed of a great number of small files and this test was chosen

9341 24215 53720
121557

020000400006000080000100000120000140000

100 250 500 1024

Ti
m

e
(s

ec
)

File size (Mbyte)

Compilation test

Compile

927 2412
4913

10251

0
2000
4000
6000
8000
10000
12000

100 250 500 1024

Ti
m

e
 (s

ec
)

File size (Mbyte)

Tar file

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

280

considering it is a very frequent operation in a file system. Its overhead reached a
6%.

CONCLUSIONS

Trying to add integrity to a cryptographic File System, like CLFS, initially
sounds risky from the performance point of view, but choosing the most appropriate
method and a reduced amount of data to check is the clue to success.

Our benchmark showed an overhead that varies from 4-6%. This is an
appealing result, considering the systems where CLFS is intended to work. We
provide highly secure metadata integrity checking, i.e. the data stored in our system
is correct, or at least cannot be modified undetectably.

We assumed that checking the integrity of both data and metadata would
considerably affect performance, while not evidently improving integrity. Metadata
check-summing was considered sufficient to meet our requirements. But, in spite of
this, further work can be done on testing what this overhead would exactly be.

As a conclusion, we successfully managed to improve a cryptographic file
system, enabling it with integrity without sacrificing performance.

REFERENCES

[1] Karl Knutsson (2002) Security Without Cost: A Cryptographic Log-
structured File System. Department of Software Engineering and Computer
Science Blekinge Institute of Technology, 1-26

[2] M. Rosenblum and J. Ousterhout (1991) The design and implementation of a
log-structured file system. Symposium on Operating System Principles
Proceedings, 1–15

[3] M. Blaze. (1993) A cryptographic file system for unix. Proceedings of the 1st
ACM Conference on Computer and Communication security, 9–16

[4] Data encryption standard. (1977) Federal Information Processing Standards
Publication 46-2

[5] J. Massaey (1994) Safer k-64: A byte-oriented block-ciphering algorithm.
Fast Software Encryption, Cambridge Security Workshop Proceedings, 1–17

[6] E. Zadok (1998) Cryptfs: A stackable vnode level encryption file system.
Technical report, CUCS-021-98, 1-14

[7] B. Schneier (1994) Description of a new variable-length key, 64-bit block
cipher (blowfish). Fast Software Encryption, Cambridge Security Workshop
Proceeding, 191–204

[8] P. Rogaway and D. Coppersmith (1997) A software-optimized encryption
algorithm. Journal of Cryptology: the journal of the International
Association for Cryptologic Research, 1-14

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA

281

[9] Advanced encryption standard. (2001) Federal Information Processing
Standards Publication 197, p. 5-26

[10] Gopalan Sivathanu, Charles P. Wright and Erez Zadok (2004) Enhancing File
System Integrity Through Check-sums. Stony Brook University Technical
Report FSL-04-04, 1-5

[11] R. L. Rivest (1992) The MD5 Message-Digest Algorithm. Technical Report
RFC 1321, Internet Activities Board, 1-21

[12] SHA1: Secure Hash Standard (1997) Federal Information Processing
Standards Publication 180-1, 1-11

[13] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok (2004)
I3FS: An In-Kernel Integrity Checker and Intrusion Detection File. Stony
Brook University, 67-77

