
“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA.

480

Prime Ideals And Bi - Ideals In Gamma Near– Rings

Eduard Domi
Department of Mathematics,University“A.Xhuvani”, Elbasan-ALBANIA

eduartdomi@hotmail.com

ABSTRACT

Throughout this paper we introduce the concept of prime ideals, maximal
ideals and bi – ideals in  - near - rings obtaining some characterizations and their
links. We introduce that if M is  - near –ring which for a   M exists an element
which is  - unit then every maximal ideal I of M is prime ideal.

INTRODUCTION

Let’s consider M and  as two non-empty sets. Every map of M x  x M in
M is called -multiplication in M and is denoted as (.)  . The result of this

multiplication for elements a, b  M and    is denoted a b.

According to Satanarayana [2], - near-ring is a classified ordered triple

(M, +, ()  ) where M and  are non empty sets, + is a addition in M, while ()  is

 - multiplication on M satisfying the following conditions:

(M, +) is a group.

 (a, b, c, , )  M 3 x 2 , (ab)c = a(bc).

 (a, b, c, , )  M 3 x, (a + b)c = ac + bc.

Example 1. [2].Let (G, +) be a group, X a non empty set and M a set of all the
mappings of X in G. The ordered pair (M, +), where + is a addition of mappings of
X in G defined by the equality:

(f + g)(x) = f(x) + g(x)

is a non abelian group when G is non abelian. Let  be a set of all the mappings of
G and X. If the product of f g is defined by f   g for every f, g  M and every



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA.

481

  , then it is defined in M a  - multiplication, () such as for every three

elements f1, f2, f3 of M and every two elements ,  of  the equalities are true:

f1(f2f3) = (f1f2) f3,

(f1 + f2)f3 = f1f3 + f2f3.

Consequently, (M, +, ()) is  - near-ring.

Example 2. If in example 1 the set X is the retainer of G’ of group (G’,+), M is the
set of all the mappings of G in G’ such as f(0) = 0 and  is the set of all the
mappings of G’in G, again M is a -near-ring in relation to the addition of mappings
element per element and

-multiplication is defined by the general composition f  g for every two

elements f, g of M and every element  .

PRELIMINARY CONCEPTS

Definition 2.1.  3 Ideal P of -near-ring (M, +, ()) is called prim, or

prime if for every two ideals I, J of M it is true the implication :

I  J  P  I  P  J  P.

If M1 is a subgroup different from the empty subgroup , then the intersection of all
the ideals that hold M is the smallest ideal that holds M1 and it’s called the ideal that
derives from the subgroup M1 and it’s denoted (M1). If M1 = {a}, then ({a}) is called
primary ideal derived from the element a  M and it is denoted simply (a).

Definition 2.2. 1 A -near-ring (M, +, ()) it’s called prime if zero ideal {0} = 0
is prime ideal.

Definition 2.3. A -near-ring (M, +, ()) is called prime if there are no other ideals
except the zero ideal, 0 = {0} and M, which are called not proper ideals, meanwhile
every other ideal different from them is called proper ideal of M.

Definition 2.4. Ideal I of -near-ring M it’s called maximal ideal if I  M and for
every J of M, I  J  J = M  J = I.

It’s very clear that ideal I of -near-ring (M, +, ()) is maximal ideal only when it is
the maximal element of the group ideals of M different from M itself.
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Definition 2.5. Prime minimal ideal of ideal I of -near-ring M it’s called every
minimal      element in the prime ideals group that containing ideal I ordered by
inclusion.

Here we will give concepts and we will present the same auxiliary propositions,
which we will use further in the presentation of the main results of the proceeding.

Let (M, +, ()) be a -near-ring and A, B two subsets of M. We define the set

AB = {a b  M / a, b  M and    }.

For simplicity we write aB instead of {a}B and similarly Ab instead of A{b}.

Also for every    we define

A B = {a b  M / a, b  M}

and for simplicity we write a B and A b respectively instead of {a} B and A
{b}.

In [4] is define the set as well as

A B = {a  (a’ + b) - a a’ / a, a’  A,   , b  B}

Definition 2.6. [6]. A -near-ring M is called zero – symmetric if for every a  M
and for

every    we have a b = 0.

 -near-ring of example 2 is  - near-ring zero – symmetric, whereas the one of
example in general is not zero-symmetric.

Definition 2.7 [4]. Let (M, +, ()) be a -near-ring. A subgroup B of group

(M, +) is called bi-ideal of M if  BMM  (MM) B  B.

Definition 2.8. A -near-ring is called B-simple if there are no bi-ideal different
from

zero and from M.

Definition 2.9. A bi –ideal B of  - near-ring is called minimal if it is different from

zero and it doesn’t contain any bi-ideal different from zero or from B itself.
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PRIME IDEALS AND BI-IDEALS IN  - NEAR-RINGS

Theorem 3.1 Let P be an ideal of -near-ring M. The following conditons are
equivalent:

1) Ideal P is prime.

2) For every two ideals I, J of M we have the implication:

I  P  J  P  I  J  P.

3) For every two elements i, j of M,  (i, j)  M 2, i  P  j  P  (i)(j)  P.

4) For every two ideals I, J of M we have P  I  P  J  I/J  P.

Proof. The equivalence 1)  2) is very clear.

2)  3) We suppose that 2) is true. Let i, j be to elements of M such that i  P and
j  P. Hence (i)  P  (j)  P and therefore from 2), (i)  (j)  P.

3)  4) If P  I and P  J we find the element i  I\P and element j  J\P. So, i
 P  j  P and therefore due to 3) follows that (i)(j)  P.

4)  2) We suppose that the proposition 4) is true. If I  P  J  P, then elements
i  I\P and j  J\P exist. Hence we have

P  (i) + P  P  (j) + P

And therefore due to 4) ,

((i) + P)((j) + P)  P.

Hence, elements i  (i), j  (j), p  P, p  P,    exist such that

(i + p)(j + p)  P.

Hence

i(j + p)  ij + ip + p(j + p)  P.

Hence, since

i(j + p)  ij  P  p(j + p)  P

therefore i j  P. So I J  P, this means 2) is true.
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If (P)  A is a family of prime ideals of -near-ring (M, +, ) ordered by inclusion,
therefore the intersections:

A

P P


 

is a prime ideal. To demonstrate what we have been saying until now, initially we
line the A group by the equivalence

    P  P.

It si very clear that P is an ideal of -near-ring M.

Let I, J be two ideals of M such that

I  J 
A

P

 .

So, for every   A we have I  J  P. If it exists a   A such that I  P,

therefore since P is a prime ideal, J  P. Hence, for every   , J  P. If it
exists a  <  such that

J  P, therefore since P is a prime ideal, I  P and therefore I  P, that is a
contradiction. Hence, we have :

   A, J  P

therefore J 
A

P

 , meaning that P = J 

A

P

 is a prime ideal.

Corollary 3.2 If -near-ring M is a simple, then M is prime or M  M = 0.

Proof. If I, J are two ideals of M, therefore since M is simple we have I = M or I = 0
and J = M or J = 0. Hence, if we have for the ideals I, J of M the equation I  J = 0,
then I = 0  J = 0 or I = J = M. If I = 0  J = 0, then M is prime. If I = J = M, then M
 M = 0.

Corollary 3.3. If ideal I of -near-ring M is maximal, then it is prime or M  M = I.

Corollary 3.4.If (M, +, ()) is a -near-ring such that for a    there is an
element which is -unit, then every maximal ideal I of M is prime.

Proof. If for one    the element e is -one of M, then MM = {m1m2 | m1, m2 
M} = M because for every m  M, m = me. Hence, since M  I the equation is not
true M  M = I. By the corollary 3.2 the ideal I is prime.
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Corollary 3.5. For every ideal I of -near-ring M exists prim minimal ideal of I.

Proof. We denote by P the group of prime ideals of M containing I. This group is
not empty because only M is a prime ideal that contains I. The intersection of all
these prime ideals that contain the ideal I is pricesily the minimal prime ideal of
ideal I because it is included in every prime ideal that contains the ideal I. 

Proposition 3.6. Let (M, +, () ) be a  -near-ring zero–symmetric. A subgroup B of
group (M, +) is bi-ideal of M in that case and only then  BMB  B .
Proof.   Let B be a bi-ideal of M, that is to say BMB  (BM) B  B.
Since M is zero – symmetric, for m  M,    and b  B we have:

m b = m (0 + b) - m 0  (M ) B that is to say MB  M B. This way are

true the inclusions: BMB  (BMB)  (BM) B  B and consequently
we have
BMB  B.

CONCLUSION:

As stated previously, this paper we introduced the concept of prime ideals,
maximal ideals and bi – ideals in  - near - rings obtaining some characterizations
and their links. We  also introduced that if M is  - near –ring which for a   M
exists an element which is  - unit then every maximal ideal I of M is prime ideal.
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