Prime Ideals And Bi - Ideals In Gamma Near– Rings

Eduard Domi *Department of Mathematics,University"A.Xhuvani", Elbasan-ALBANIA eduartdomi@hotmail.com*

ABSTRACT

Throughout this paper we introduce the concept of prime ideals, maximal ideals and bi – ideals in Γ - near - rings obtaining some characterizations and their links. We introduce that if M is Γ - near –ring which for a $X \in M$ exists an element which is X - unit then every maximal ideal I of M is prime ideal.

INTRODUCTION

Let's consider M and Γ as two non-empty sets. Every map of M x Γ x M in M is called Γ -multiplication in M and is denoted as $(.)_{\Gamma}$. The result of this multiplication for elements $a, b \in M$ and $X \in \Gamma$ is denoted a X b.

According to Satanarayana [2], Γ - near-ring is a classified ordered triple

 $(M, +, C)_{\Gamma}$) where M and Γ are non empty sets, + is a addition in M, while Θ_{Γ} is

 Γ - multiplication on M satisfying the following conditions:

 $(M, +)$ is a group.

 \forall (a, b, c, α , β) \in M³ x_L², (a α b) β c = a α (b β c).

 \forall (a, b, c, α ,) \in M³ x_L, (a + b) α c = a α c + b α c.

Example 1. [2]. Let $(G, +)$ be a group, X a non empty set and M a set of all the mappings of X in G. The ordered pair $(M, +)$, where $+$ is a addition of mappings of X in G defined by the equality:

$$
(f + g)(x) = f(x) + g(x)
$$

is a non abelian group when G is non abelian. Let Γ be a set of all the mappings of G and X. If the product of fX g is defined by f $\circ X \circ g$ for every f, $g \in M$ and every

 $X \in \Gamma$, then it is defined in M a Γ - multiplication, (\cdot) _r such as for every three elements f_1 , f_2 , f_3 of M and every two elements α , β of Γ the equalities are true:

$$
f_1\alpha(f_2\beta f_3)=(f_1\alpha f_2)\beta f_3,
$$

$$
(f_1 + f_2)\alpha f_3 = f_1 \alpha f_3 + f_2 \alpha f_3.
$$

Consequently, $(M, +, (\cdot)_{\Gamma})$ is Γ - near-ring.

Example 2. If in **example 1** the set X is the retainer of G' of group (G^*A) , M is the set of all the mappings of G in G' such as $f(0) = 0$ and Γ is the set of all the mappings of G'in G, again M is a Γ -near-ring in relation to the addition of mappings element per element and

 Γ -multiplication is defined by the general composition fo X og for every two elements f, g of M and every element $X \in \Gamma$.

PRELIMINARY CONCEPTS

Definition 2.1.[3] *Ideal P of X-near-ring* $(M, +, (\mathbf{i})_\chi)$ *is called prim, or prime if for every two ideals I, J of M it is true the implication :*

 $IXJ\subset P$ \varnothing $I\subset P$ \varnothing $J\subset P$.

If M_1 is a subgroup different from the empty subgroup Φ , then the intersection of all the ideals that hold M is the smallest ideal that holds *M*¹ and it's called *the ideal that derives from the subgroup* M_1 and it's denoted (M_1) . If $M_1 = \{a\}$, then $(\{a\})$ is called *primary ideal derived from the element* $a \in M$ *and it is denoted simply (<i>a*).

Definition 2.2. [1] A X-near-ring $(M, +, (\mathbf{i})_\chi)$ it's called prime if zero ideal $\{0\} = 0$ *is prime ideal.*

Definition 2.3. A X-near-ring $(M, +, (\mathbf{i})_{\chi})$ is called prime if there are no other ideals *except the zero ideal,* $0 = \{0\}$ and M, which are called not proper ideals, meanwhile *every other ideal different from them is called proper ideal of M.*

Definition 2.4. *Ideal I of -near-ring M it's called maximal ideal if I M and for every J of M, I* \subset *J* \varnothing *J* = *M* \hat{O} *J* = *I*.

It's very clear that ideal *I* of Γ -near-ring $(M, +, (\cdot)_{\Gamma})$ is maximal ideal only when it is the maximal element of the group ideals of M different from M itself.

Definition 2.5. *Prime minimal ideal of ideal I of -near-ring M it's called every minimal element in the prime ideals group that containing ideal I ordered by inclusion.*

Here we will give concepts and we will present the same auxiliary propositions, which we will use further in the presentation of the main results of the proceeding.

Let $(M, +, (\cdot)_\Gamma)$ be a Γ -near-ring and A, B two subsets of M. We define the set

 $ATB = \{a \times b \in M / a, b \in M \text{ and } X \in \Gamma \}.$

For simplicity we write a Γ B instead of $\{a\}$ Γ B and similarly A Γ b instead of A Γ $\{b\}$.

Also for every $X \in \Gamma$ we define

$$
AX B = \{aX b \in M / a, b \in M\}
$$

and for simplicity we write a X B and A x b respectively instead of ${a} \times B$ and A x {b}.

In [4] is define the set as well as

 $A\Gamma * B = \{a \times (a' + b) - a \times a' / a, a' \in A, X \in \Gamma, b \in B\}$

Definition 2.6. [6]. *A* X *-near-ring M is called zero – symmetric if for every a* $\ominus M$ *and for*

every $X \triangle X$ *we have a* $X b = 0$.

 Γ -near-ring of **example 2** is Γ -near-ring zero – symmetric, whereas the one of **example** in general is not zero-symmetric.

Definition 2.7 [4]. *Let* $(M, +, (\mathbf{i})_\chi)$ *be a X*-near-ring. A subgroup *B* of group

 $(M, +)$ *is called bi-ideal of M if BXMXM* Δ $(MXM)X*B \subset B$ *.*

Definition 2.8. *A -near-ring is called B-simple if there are no bi-ideal different from*

zero and from M.

Definition 2.9. *A bi –ideal B of - near-ring is called minimal if it is different from*

zero and it doesn't contain any bi-ideal different from zero or from B itself.

PRIME IDEALS AND BI-IDEALS IN - NEAR-RINGS

Theorem 3.1 *Let P be an ideal of X-near-ring M. The following conditons are equivalent:*

1) Ideal P is prime.

2) For every two ideals I, J of M we have the implication:

 $I \nsubseteq P \circ J \nsubseteq P \varnothing$ $I \times J \nsubseteq P$.

3) For every two elements i, j of M, 3 (i, j) \in *M², i* \in *P Ó j* \in *P* \varnothing *(i)* X *(j)* \triangle *P.*

4) For every two ideals I, J of M we have P \mathfrak{B} *I* \circ *P* \mathfrak{B} *J* \varnothing *I/J* $\mathfrak{\subseteq}$ *P.*

Proof. The equivalence $1) \Leftrightarrow 2$) is very clear.

2) \Rightarrow **3)** We suppose that **2)** is true. Let *i*, *j* be to elements of *M* such that $i \notin P$ and $j \notin P$. Hence $(i) \not\subset P \land (j) \not\subset P$ and therefore from 2), $(i) \Gamma(j) \not\subset P$.

3) \Rightarrow **4)** If $P \subset I$ and $P \subset J$ we find the element $i \in I \setminus P$ and element $j \in J \setminus P$. So, i \notin *P* \land *j* \notin *P* and therefore due to **3**) follows that (*i*) Γ (*j*) \subset *P*.

4) \Rightarrow **2)** We suppose that the proposition **4)** is true. If $I \not\subset P \land J \not\subset P$, then elements $i \in I$ ^{*N*} and $j \in J$ ^{*N*} exist. Hence we have

$$
P\subset (i)+P\wedge P\subset (j)+P
$$

And therefore due to **4)** ,

$$
((i) + P)\Gamma((j) + P) \nsubseteq P.
$$

Hence, elements $i' \in (i)$, $j' \in (j)$, $p \in P$, $p' \in P$, $\gamma \in \Gamma$ exist such that

$$
(i' + p)\gamma(j' + p') \notin P.
$$

Hence

$$
i'\gamma(j'+p')-i'\gamma j'+i'\gamma p'+p\gamma(j'+p')\notin P.
$$

Hence, since

$$
i'\gamma(j'+p') - i'\gamma j' \in P \wedge p\gamma(j'+p') \in P
$$

therefore $i'\gamma j' \notin P$. So $I \square J \nsubseteq P$, this means 2) is true.

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA. ting in Informatics and Mathematics (ISCIM
POKA University and "Aleksandër Moisiu" University on June 2-4 2011, Tirana-Durres, A
s of Γ -near-ring $(M, +, \Gamma)$ ordered by inc
 $P = \bigcap_{r \in A} P_r$
at we have been saying until

If $(P_{\alpha})_{\alpha \in A}$ is a family of prime ideals of Γ -near-ring $(M, +, \Gamma)$ ordered by inclusion, therefore the intersections:

$$
P = \bigcap_{r \in A} P_r
$$

is a prime ideal. To demonstrate what we have been saying until now, initially we line the *A* group by the equivalence

$$
\alpha \leq \beta \iff P_{\alpha} \subseteq P_{\beta}.
$$

It si very clear that *P* is an ideal of Γ -near-ring *M*.

Let *I*, *J* be two ideals of *M* such that

$$
I\Gamma J \subseteq \bigcap_{r\in A} P_r \; .
$$

So, for every $\alpha \in A$ we have $I \Gamma J \subseteq P_{\alpha}$. If it exists a $\alpha \in A$ such that $I \nsubseteq P_{\alpha}$, therefore since P_{α} is a prime ideal, $J \subseteq P_{\alpha}$. Hence, for every $\beta \ge \alpha$, $J \subseteq P_{\beta}$. If it exists a $\lambda < \alpha$ such that

 $J \nsubseteq P_\lambda$, therefore since P_λ is a prime ideal, $I \subseteq P_\lambda$ and therefore $I \subseteq P_\alpha$, that is a contradiction. Hence, we have :

$$
\forall \alpha \in A, J \subseteq P_{\alpha}
$$

therefore $J \subseteq \int P_r$, mea A $\Gamma \in A$ $\bigcap_{r \in A} P_r$, meaning that $P = J \subseteq \bigcap_{r \in A} P_r$ is a prime ideal. $\bigcap_{r \in A} P_r$ is a prime ideal.

Corollary 3.2 If X-near-ring M is a simple, then M is prime or M \times M = 0.

Proof. If *I*, *J* are two ideals of *M*, therefore since *M* is simple we have $I = M$ or $I = 0$ and $J = M$ or $J = 0$. Hence, if we have for the ideals *I*, *J* of *M* the equation $I \Gamma J = 0$, then $I = 0 \vee J = 0$ or $I = J = M$. If $I = 0 \vee J = 0$, then *M* is prime. If $I = J = M$, then *M* $\Gamma M = 0$.

Corollary 3.3. If ideal I of X -near-ring M is maximal, then it is prime or $M \times M = I$.

Corollary 3.4.*If* $(M, +, (\mathbf{i})_\chi)$ is a X-near-ring such that for a $\chi \in X$ there is an *element which is -unit, then every maximal ideal I of M is prime.*

Proof. If for one $\gamma \in \Gamma$ the element *e* is γ -one of *M*, then $M\gamma M = \{m_1\gamma m_2 \mid m_1, m_2 \in \Gamma\}$ M = *M* because for every $m \in M$, $m = m\gamma e$. Hence, since $M \neq I$ the equation is not true $M \Gamma M = I$. By the corollary 3.2 the ideal *I* is prime.

Corollary 3.5. *For every ideal I of -near-ring M exists prim minimal ideal of I.*

Proof. We denote by **P** the group of prime ideals of *M* containing *I*. This group is not empty because only *M* is a prime ideal that contains *I*. The intersection of all these prime ideals that contain the ideal *I* is pricesily the minimal prime ideal of ideal *I* because it is included in every prime ideal that contains the ideal *I*.

Proposition 3.6. Let $(M, +, (\mathbf{i})_\mathbf{X})$ be a X-near-ring zero–symmetric. A subgroup B of *group* $(M, +)$ *is bi-ideal of M in that case and only then BXMXB* $\subset B$ *.* **Proof.** Let B be a bi-ideal of M, that is to say $B\Gamma M \Gamma B \cap (B\Gamma M) \Gamma * B \subset B$. Since M is zero – symmetric, for $m \in M$, $X \in \Gamma$ and $b \in B$ we have: $m X b = m X (0 + b) - m X 0 \in (MT) * B$ that is to say MTB \subseteq MT $* B$. This way are true the inclusions: $BTMFB \subset (BTMFB) \cap (BTM) * B \subset B$ and consequently we have $B\Gamma M\Gamma B \subset B$.

CONCLUSION:

As stated previously, this paper we introduced the concept of prime ideals, maximal ideals and bi – ideals in Γ - near - rings obtaining some characterizations and their links. We also introduced that if M is Γ - near –ring which for a $X \in M$ exists an element which is $X -$ unit then every maximal ideal I of M is prime ideal.

REFERENCES:

[1] Chelvam, T. T., Ganesan, N., On bi-ideals of near-rings, Indian J. Pure Appl. Math., 18 (11), (1987). [2] Chelvam, T. T., Meanakumari, N., On Generalized Gamma Near-Fields, Bull. Malaysian Math. Sc. Soc. (Second Series) 25 (2002). [3] Clay, J. R., Nearrings, Geneses and Applications, Oxford University Press, 1992 [4] Clifford, A. H., Preston, G. B., The algebric theory of semigroups, Vol. 1, Math Survey of American Math., Soc. 7, Providence, R. I., 1961. [5] Pilz, G., Near-Rings. The Theory and Applications, New York, 1977. [6] Satyanarayana, Bh., A Note on -near-rings, Indian J. Math. (B. M. Prasud Birth Centenary Commemoration volume) 41 (1999) 427 – 433.