Prime Ideals And Bi - Ideals In Gamma Near-Rings

Eduard Domi Department of Mathematics, University "A.Xhuvani", Elbasan-ALBANIA eduartdomi@hotmail.com

ABSTRACT

Throughout this paper we introduce the concept of prime ideals, maximal ideals and bi – ideals in Γ - near - rings obtaining some characterizations and their links. We introduce that if M is Γ - near –ring which for a $X \in M$ exists an element which is X - unit then every maximal ideal I of M is prime ideal.

INTRODUCTION

Let's consider M and Γ as two non-empty sets. Every map of M x Γ x M in M is called Γ -multiplication in M and is denoted as (.)_{Γ}. The result of this multiplication for elements a, b \in M and X \in Γ is denoted aX b.

According to Satanarayana [2], Γ - near-ring is a classified ordered triple

 $(M, +, (\cdot)_{\Gamma})$ where M and Γ are non empty sets, + is a addition in M, while $(\cdot)_{\Gamma}$ is

 Γ - multiplication on M satisfying the following conditions:

(M, +) is a group.

 \forall (a, b, c, α , β) \in M³ x Γ ², (a α b) β c = a α (b β c).

 \forall (a, b, c, α ,) \in M³x Γ , (a + b) α c = a α c + b α c.

Example 1. [2].Let (G, +) be a group, X a non empty set and M a set of all the mappings of X in G. The ordered pair (M, +), where + is a addition of mappings of X in G defined by the equality:

$$(f+g)(x) = f(x) + g(x)$$

is a non abelian group when G is non abelian. Let Γ be a set of all the mappings of G and X. If the product of fX g is defined by f oX o g for every f, $g \in M$ and every

 $X \in \Gamma$, then it is defined in M a Γ - multiplication, $(\cdot)_{\Gamma}$ such as for every three elements f_1, f_2, f_3 of M and every two elements α, β of Γ the equalities are true:

$$f_1\alpha(f_2\beta f_3) = (f_1\alpha f_2)\beta f_3,$$

$$(f_1 + f_2)\alpha f_3 = f_1\alpha f_3 + f_2\alpha f_3.$$

Consequently, $(M, +, (\cdot)_{\Gamma})$ is Γ - near-ring.

Example 2. If in <u>example 1</u> the set X is the retainer of G' of group (G',+), M is the set of all the mappings of G in G' such as f(0) = 0 and Γ is the set of all the mappings of G' in G, again M is a Γ -near-ring in relation to the addition of mappings element per element and

 Γ -multiplication is defined by the general composition fo X og for every two elements f, g of M and every element X $\in \Gamma$.

PRELIMINARY CONCEPTS

Definition 2.1.[3] *Ideal P of* X-*near-ring* $(M, +, (\tilde{n})_X)$ *is called prim, or prime if for every two ideals I, J of M it is true the implication :*

IXJÇP Ø IÇPÔ JÇP.

If M_1 is a subgroup different from the empty subgroup Φ , then the intersection of all the ideals that hold M is the smallest ideal that holds M_1 and it's called *the ideal that derives from the subgroup* M_1 and it's denoted (M_1) . If $M_1 = \{a\}$, then $(\{a\})$ is called *primary ideal derived from the element* $a \in M$ and it is denoted simply (*a*).

Definition 2.2.[1] A X-near-ring $(M, +, (\tilde{n})_X)$ it's called prime if zero ideal $\{0\} = 0$ is prime ideal.

Definition 2.3. A X-near-ring $(M, +, (\hat{n})_X)$ is called prime if there are no other ideals except the zero ideal, $0 = \{0\}$ and M, which are called not proper ideals, meanwhile every other ideal different from them is called proper ideal of M.

Definition 2.4. *Ideal I of* X*-near-ring M it's called maximal ideal if I* $\acute{0}$ *M and for every J of M, I* \subsetneq *J* \varnothing *J* = *M* $\acute{0}$ *J* = *I*.

It's very clear that ideal *I* of Γ -near-ring $(M, +, (\cdot)_{\Gamma})$ is maximal ideal only when it is the maximal element of the group ideals of M different from M itself.

Definition 2.5. *Prime minimal ideal of ideal I of* X*-near-ring M it's called every minimal element in the prime ideals group that containing ideal I ordered by inclusion.*

Here we will give concepts and we will present the same auxiliary propositions, which we will use further in the presentation of the main results of the proceeding.

Let $(M, +, (\cdot)_{\Gamma})$ be a Γ -near-ring and A, B two subsets of M. We define the set

 $A\Gamma B = \{aX b \in M / a, b \in M \text{ and } X \in \Gamma \}.$

For simplicity we write $a\Gamma B$ instead of $\{a\}\Gamma B$ and similarly $A\Gamma b$ instead of $A\Gamma\{b\}$.

Also for every $X \in \Gamma$ we define

$$A X B = \{a X b \in M / a, b \in M\}$$

and for simplicity we write a X B and A X b respectively instead of $\{a\} X B$ and $A X \{b\}$.

In [4] is define the set as well as

 $A\Gamma * B = \{a X (a' + b) - aX a' / a, a' \in A, X \in \Gamma, b \in B\}$

Definition 2.6. [6]. A X-near-ring M is called zero – symmetric if for every $a \in M$ and for

every $X \stackrel{\circ}{\in} X$ we have a X b = 0.

 Γ -near-ring of **example 2** is Γ - near-ring zero – symmetric, whereas the one of **example** in general is not zero-symmetric.

Definition 2.7 [4]. Let $(M, +, (\tilde{n})_X)$ be a X-near-ring. A subgroup B of group

(M, +) is called bi-ideal of M if $BXMXM \doteq (MXM)X * B \subseteq B$.

Definition 2.8. A X-near-ring is called B-simple if there are no bi-ideal different from

zero and from M.

Definition 2.9. A bi –ideal B of X - near-ring is called minimal if it is different from

zero and it doesn't contain any bi-ideal different from zero or from B itself.

PRIME IDEALS AND BI-IDEALS IN $\ensuremath{\Gamma}$ - NEAR-RINGS

Theorem 3.1 Let P be an ideal of X-near-ring M. The following conditons are equivalent:

1) Ideal P is prime.

2) For every two ideals I, J of M we have the implication:

 $I \not\subseteq P \circ J \not\subseteq P \oslash I \lor J \not\subseteq P.$

3) For every two elements i, j of M, $\exists (i, j) \ge M^2$, $i \le P \le j \le P \varnothing$ (i)X(j) $\triangleq P$.

4) For every two ideals I, J of M we have $P \approx I \circ P \approx J \varnothing I/J \subseteq P$.

Proof. The equivalence $1) \Leftrightarrow 2$ is very clear.

2) \Rightarrow 3) We suppose that 2) is true. Let *i*, *j* be to elements of *M* such that $i \notin P$ and $j \notin P$. Hence $(i) \not\subset P \land (j) \not\subset P$ and therefore from 2), $(i) \Gamma(j) \not\subset P$.

3) \Rightarrow **4**) If $P \subset I$ and $P \subset J$ we find the element $i \in I \setminus P$ and element $j \in J \setminus P$. So, $i \notin P \land j \notin P$ and therefore due to **3**) follows that $(i)\Gamma(j) \not\subset P$.

4) \Rightarrow 2) We suppose that the proposition 4) is true. If $I \not\subset P \land J \not\subset P$, then elements $i \in I \setminus P$ and $j \in J \setminus P$ exist. Hence we have

$$P \subset (i) + P \land P \subset (j) + P$$

And therefore due to 4),

$$((i) + P)\Gamma((j) + P) \subseteq P.$$

Hence, elements $i' \in (i), j' \in (j), p \in P, p' \in P, \gamma \in \Gamma$ exist such that

$$(i'+p)\gamma(j'+p') \notin P.$$

Hence

$$i'\gamma(j'+p') - i'\gamma j' + i'\gamma p' + p\gamma(j'+p') \notin P.$$

Hence, since

$$i'\gamma(j'+p') - i'\gamma j' \in P \land p\gamma(j'+p') \in P$$

therefore $i'\gamma j' \notin P$. So $I \Gamma J \subsetneq P$, this means 2) is true.

If $(P_{\alpha})_{\alpha \in A}$ is a family of prime ideals of Γ -near-ring $(M, +, \Gamma)$ ordered by inclusion, therefore the intersections:

$$P = \bigcap_{r \in A} P_r$$

is a prime ideal. To demonstrate what we have been saying until now, initially we line the *A* group by the equivalence

$$\alpha \leq \beta \iff P_{\alpha} \subseteq P_{\beta}.$$

It si very clear that P is an ideal of Γ -near-ring M.

Let I, J be two ideals of M such that

$$I \Gamma J \subseteq \bigcap_{\Gamma \in A} P_{\Gamma} .$$

So, for every $\alpha \in A$ we have $I \Gamma J \subseteq P_{\alpha}$. If it exists a $\alpha \in A$ such that $I \not\subseteq P_{\alpha}$, therefore since P_{α} is a prime ideal, $J \subseteq P_{\alpha}$. Hence, for every $\beta \ge \alpha$, $J \subseteq P_{\beta}$. If it exists a $\lambda < \alpha$ such that

 $J \not\subseteq P_{\lambda}$, therefore since P_{λ} is a prime ideal, $I \subseteq P_{\lambda}$ and therefore $I \subseteq P_{\alpha}$, that is a contradiction. Hence, we have :

$$\forall \alpha \in A, J \subseteq P_{\alpha}$$

therefore $J \subseteq \bigcap_{r \in A} P_r$, meaning that $P = J \subseteq \bigcap_{r \in A} P_r$ is a prime ideal.

Corollary 3.2 If X-near-ring M is a simple, then M is prime or $M \times M = 0$.

Proof. If *I*, *J* are two ideals of *M*, therefore since *M* is simple we have I = M or I = 0 and J = M or J = 0. Hence, if we have for the ideals *I*, *J* of *M* the equation $I \Gamma J = 0$, then $I = 0 \lor J = 0$ or I = J = M. If $I = 0 \lor J = 0$, then *M* is prime. If I = J = M, then *M* $\Gamma M = 0$.

Corollary 3.3. If ideal I of X-near-ring M is maximal, then it is prime or $M \times M = I$.

Corollary 3.4. If $(M, +, (i)_X)$ is a X-near-ring such that for a $X \cong X$ there is an element which is X-unit, then every maximal ideal I of M is prime.

Proof. If for one $\gamma \in \Gamma$ the element *e* is γ -one of *M*, then $M\gamma M = \{m_1\gamma m_2 \mid m_1, m_2 \in M\} = M$ because for every $m \in M$, $m = m\gamma e$. Hence, since $M \neq I$ the equation is not true $M \Gamma M = I$. By **the corollary 3.2** the ideal *I* is prime.

Corollary 3.5. For every ideal I of X-near-ring M exists prim minimal ideal of I.

Proof. We denote by P the group of prime ideals of M containing I. This group is not empty because only M is a prime ideal that contains I. The intersection of all these prime ideals that contain the ideal I is pricesily the minimal prime ideal of ideal I because it is included in every prime ideal that contains the ideal I.

Proposition 3.6. Let $(M, +, (\tilde{n})_X)$ be a X -near-ring zero-symmetric. A subgroup B of group (M, +) is bi-ideal of M in that case and only then $BXMXB \subseteq B$. **Proof.** Let B be a bi-ideal of M, that is to say $B\Gamma M\Gamma B \cap (B\Gamma M)\Gamma * B \subseteq B$. Since M is zero – symmetric, for $m \in M$, $X \in \Gamma$ and $b \in B$ we have: $mX \ b = mX \ (0 + b) - mX \ 0 \in (M\Gamma) * B$ that is to say $M\Gamma B \subseteq M\Gamma * B$. This way are true the inclusions: $B\Gamma M\Gamma B \subseteq (B\Gamma M\Gamma B) \cap (B\Gamma M) * B \subseteq B$ and consequently we have $B\Gamma M\Gamma B \subseteq B$.

CONCLUSION:

As stated previously, this paper we introduced the concept of prime ideals, maximal ideals and bi – ideals in Γ - near - rings obtaining some characterizations and their links. We also introduced that if M is Γ - near –ring which for a $X \in M$ exists an element which is X - unit then every maximal ideal I of M is prime ideal.

REFERENCES:

[1] Chelvam, T. T., Ganesan, N., On bi-ideals of near-rings, Indian J. Pure Appl. Math., 18 (11), (1987). [2] Chelvam, T. T., Meanakumari, N., On Generalized Gamma Near-Fields, Bull. Malaysian Math. Sc. Soc. (Second Series) 25 (2002). [3] Clay, J. R., Nearrings, Geneses and Applications, Oxford University Press, 1992 [4] Clifford, A. H., Preston, G. B., The algebric theory of semigroups, Vol. 1, Math Survey of American Math., Soc. 7, Providence, R. I., 1961. [5] Pilz, G., Near-Rings. The Theory and Applications, New York, 1977. [6] Satyanarayana, Bh., A Note on -near-rings, Indian J. Math. (B. M. Prasud Birth Centenary Commemoration volume) 41 (1999) 427 – 433.