
“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

377

MPI and Pthreads in parallel programming

Sidita DULI1

1Department of Mathematics and Informatics, University “Luigj Gurakuqi”, Shkoder
Email : siditaduli@yahoo.com

ABSTRACT

By programming in parallel, large problem is divided in smaller ones, which are
solved concurrently. Two of techniques that makes this possible are Message Passing
Interface (MPI) and POSIX threads (Pthreads). In this article is highlighted the difference
between these two different implementation of parallelism in a software by showing their
main characteristics and the advantages of each of them.

INTRODUCTION

The goal of processing in parallel consists of taking a large task and divides it in
smaller tasks that can be processed in the same time simultaneously. In this way, the
whole task is completed faster than if it would be executed in one and big task.

Parallel computing requires this architecture:
1. The hardware of the computer that will execute the task should be designed in the way

to work with multiple processors and to enable the communication between the
processors.

2. The operating system of the computer should enable the management of many
processors.
3. The software should be capable of breaking large tasks into multiple smaller tasks
which can be performed in parallel.

The advantages that offers the parallel processing is increasing the power of
processing, making a higher throughput and better performance for the same price. Most
of these advantages can benefit those applications that can break larger tasks into smaller
parallel tasks and that can manage the synchronization between those tasks. On the other
hand, the performance should be higher to justify the overhead of parallelism

BASIC FEATURES OF MESSAGE PASSING PROGRAMS

Message passing programs consist of multiple instances of a serial program that
communicate by library calls. These calls may be roughly divided into four classes:

1. Calls used to initialize, manage, and finally terminate communications.
2. Calls used to communicate between pairs of processors.
3. Calls that perform communications operations among groups of processors.
4. Calls used to create arbitrary data types.

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

378

The first class of calls consists of calls for starting communications, identifying the
number of processors being used, creating subgroups of processors, and identifying which
processor is running a particular instance of a program.

The second class of calls, called point-to-point communications operations, consists
of different types of send and receive operations.

The third class of calls is the collective operations that provide synchronization or
certain types of well-defined communications operations among groups of processes and
calls that perform communication/calculation operations.

The final class of calls provides flexibility in dealing with complicated data
structures. The following sections of this chapter will focus primarily on the calls from the
second and third classes: point-to-point communications and collective operations.

There are two key attributes that characterize the message-passing programming
paradigm. The first is that it assumes a partitioned address space and the second is that it
supports only explicit parallelisation. The machine should have p processes.[1] Each of
these processes has its own address space. There are two implications of a partitioned
address space:

- Each data must belong to one of the partitions address space, which is each data
must be explicitly partitioned and place. In this case the programming becomes more
difficult, but the performance is higher because the processor can access its local data
much faster than non-local data on such architectures.

-All interactions, operations like read and write, require cooperation of both
processes; the one that has the data and that which wants to access the data. This
requirement adds the complexity for some reasons. The participation of both processes
happens even in the case where the process that has the data has nothing to do with the
events at the requesting process. In this way the program becomes complex. An advantage
of this type of programming is that it can be efficiently implemented on a wide variety of
architectures.

The message-passing requires that all the process of parallelism is explicitly coded
by the programmer. He must analyse the algorithm, must define which part can be
performed in parallel. This is why the programmer must be a highly qualified one.

MESSAGE PASSING MODEL

MPI is a standard implementation of the "message passing" model of parallel
computing. [2]

-A parallel computation consists of a number of processes, each working on some
local data. Based on the MPP architecture, each process has its own local variables, and
there is no mechanism for any process to directly access the memory of another. The only
way to share the data between processes is by using the message passing, that is, by
explicitly sending and receiving data between processes.

In a more general view, the model involves processes, which need not, in principle,
be running on different processors.

The main reason why this model is useful is because that it is extremely general. All
types of parallel computation can be cast in the message passing form. Other features are:

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

379

-can be implemented on many types of platforms, like shared-memory
multiprocessors, networks of workstations or single-processor machines.

-allows more control over data location and flow within a parallel application than
in, for example, the shared memory model. By using it, programs can reach higher
performance using explicit message passing. And of course, performance is a good reason
why message-passing will never disappear from the parallel programming world.

The model which is the simplest for the programmer is of course the sequential
model. To the programmer seems very normal to think he is programming for a single
processor, which has a memory. The message-passing is the model for executing the
program in the parallel, so when he will program, he will think of some processors, each
of them with its own memory. The program will be run in each processor. But they need
to communicate and to exchange data between them. This message-passing model takes
the name from this technique of communication, from the way they send data to each
other by sending e message to the other processor. This means that this is the only way of
communication, and not by accessing directly somehow the other processor’s memory.
Otherwise the message would be not used. The message passing is just e message sent to
another processor, and in programming techniques just a subroutine is called.

Programs written in a message-passing style can run on distributed or shared
memory multi-processors, networks of workstations, or even uni-processor systems.
Message-passing is popular, not because it is particularly easy, but because it is so
general.

The message passing model is defined as:
1. Set of processes having only local memory
2. Processes communicate by sending and receiving messages
3. The transfer of data between processes requires cooperative operations to be
performed by each process (a send operation must have a matching receive)

One other model is data parallelism, where the parallelism is enabled by
partitioning the data. Other models are the one is mentioned above, the shared memory,
the remote memory operation, where a process can access the memory of another process
even without its permission. Threads are also an alternative model where a single process
has multiple executions paths. Some hybrid versions are available with two of these
models.

The major goal of MPI is to increase the possibility of implementing it in different
platforms. The expectation is for a degree of portability comparable to that given by
programming languages such as FORTRAN. The same MPI code can be executed in all
types of machines where its library is available.

As mentioned above, the message-passing way to exchange data is mostly used in
the distributed architecture. But the same code in MPI can be used as well in shared-
memory architecture. It can run on a network of workstations or in a single workstation in
which are working several processes. Being used in a wide variety of computers, it gives a
high degree of flexibility in code development, debugging, and in choosing a platform for
production runs.

MPI is not used only in homogeneous systems. It is also compatible in a collection
of processors part of a system with different architectures. This is because the MPI
implementation provides a virtual computing model where the architectural model is

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

380

hidden. In this case, the user will not think if the message will be sent in a particular
architecture, or which part of the system will be the receiver processor. MPI does all the
data conversion, the changes needed for a different architecture, will choose the correct
protocol to send the data, etc.

MPI of course allow the implementations in a homogeneous system. In the case
when the user wants to implement it in a system with different architectures, he must use a
MPI system designed to support heterogeneity.

A sequential algorithm can be used in any architecture that supports the specific
sequential paradigm. But this is not enough for programmers. They want that this
algorithm should be portable. The same is true for message-passing programs and forms
the motivation behind MPI. MPI provides source-code portability of message-passing
programs written in C or FORTRAN across a variety of architectures. As for the
sequential case, this has many benefits, including

• protecting investment in a program
• allowing development of the code on one architecture (e.g. a network of

workstations)
Before running it on the target machine (e.g. fast specialist parallel hardware)
The concept of processes communicating by sending messages to one another has

been understood some years ago but only recently it is only it has been developed the
message-passing systems which allow source-code portability.

MPI was the first effort to produce a message-passing interface standard across the
whole parallel processing community.

A good point of using the message-passing is its wide portability. The programs
using MPI libraries may run on distributed-memory multicomputer, shared-memory
multiprocessors, networks of workstations, and combinations of all of these. MPI is
implemented on a great variety of machines, including those "machines" consisting of
collections of other machines, parallel or not, connected by a communication network.

The architecture might be MIMD (Multiple Instruction stream, Multiple Data
stream), where each process follows a distinct execution path through the same code, or
even executes a different code. It might be also the SPMD (Single Process, Multiple
Data), where all processes follow the same execution path through the same program.

PTHREAD

Pthreads are a set of types and procedure calls in C. They are implemented in a
pthread.h file, and a thread library. [3]

The primary motivation for using threads is to realize potential program
performance gains. Comparing to processes, creating a thread requires fewer operations,
and to manage a thread requires fewer system resources.

Another advantage is related to the software portability. Applications that use
threads can be developed on serial machines and run on parallel machines without
changing anything. This portability is very significant advantage of threaded APIs.

A feature of threaded applications is the hiding of the latency. One of the major
overheads in programs is the access of latency for memory access, I/O and
communication. Multiple threads executed in the same processor so the latency is hidden.

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

381

In the case when a thread is waiting to an input from the user, other threads can use the
CPU for other operations. So the latency of the user does not reflect in the overall work of
the process.

A programmer must do scheduling in the thread-level the threaded application. He
must express concurrency between threads for the same shared address in order that it is
minimised the overheads of remote interaction and idling. In a structured application the
task of balancing the work of the threads with the processor is not so difficult. But in cases
when the application is unstructured, the balancing process may be difficult for the
programmer.

The last advantage that has programming with threads because that they are easier
to write than corresponding programs using message passing APIs. Achieving identical
levels of performance for the two programs may require additional effort, however. With
widespread acceptance of the POSIX thread API, development tools for POSIX threads
are more widely available and stable.

The advantages of using threaded applications comparing the non-threaded
applications are:

 Overlapping CPU and I/O devices: processing in the same time long I/O
operations and CPU that is performing other threads.

 Scheduling based in the priority: inside a process, the prior task can interrupt the
lower priority task and can be performed first.

POSIX modified the concept of a process. Now a process is an execution unit
which has its own resources during the execution. With this concept, a process is defined
as an address space with one or more threads. A thread can be executed from which-ever
processor that is available, in a multiprocessor system. In this way is can be reached a
parallel execution of a multi-threaded process. Threads exist within a process, and they
share the resources of the process. Threads are light-weight compared to a process and
hence can be scheduled more efficiently than processes.

The programmer should know the parallel algorithm of the application, which
should be the parallel threads that will be executed simultaneously. In the same time, the
programmer should think about the probable race conditions, which should not exist
between parallel threads when they share same data. The programmer has to decide how
the threads will be scheduled by setting also their priority. All these issues about the
thread management should be designed before. That’s why the model of threads is
necessary for a programmer.

There are several programming models for threads. On UNIX platforms, the
predominant model is IEEE POSIX threads (Pthreads) model; the international standard:
ISO/IEC 9945-1 incorporates this standard. The Pthreads programming model is very
comprehensive. It provides a set of Application Programming Interfaces (APIs) which are
typically supported by a user level library. Applications written to these APIs obtain
source level portability on all conforming platforms. POSIX defines bindings for C
language; as of this writing, there is no Pthreads standard with FORTRAN bindings and
thus the most expedient approach to using Pthreads with FORTRAN is to have wrappers
in C for calls to the Pthreads library. IBM provides an API for multi-threaded

“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June 2-4 2011, Tirana-Durres, ALBANIA.

382

programming in FORTRAN, which is not a POSIX standard but bears a strong
resemblance to the Pthreads standard.

CONCLUSION

Comparing these two ways of parallelism, I can conclude that:
-MPI should be used when it’s needed a portable parallel code. Using MPI it is

archived high performance in parallel programming, e.g. when writing parallel libraries. It
handles a problem that involves irregular or dynamic data relationships that do not fit well
into the "data-parallel" model.

-MPI is not really needed in such cases when any other pre-existing library of
parallel routines can be used. They might be using MPI codes too. And of course, MPI is
better not to be used when it’s not needed parallelism at all!

- In a hybrid version, which uses both MPI and Pthreads in SMP architectures, the
role of Pthreads is to increase the performance. In such cases, MPI is used for the
communications between the nodes.

REFERENCES

[1] Introduction to parallel computing (2003) A.Grama, A.Gupta, G.Karypis, V.Kumar

[2] MPI The complete reference (1996) , M.Snir, S.Otto, S.H.Lederman, D.Walker,
J.Dongarra

[3] B. Lewis, D.J. Berg, (2008), Pthreads Primer.

