1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”

in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
on June 2-4 2011, Tirana-Durres, ALBANIA.

Jackknife Estimation as a Robust Estimation in Linear
Models Under Some Conditions

Lorenc EKONOMI*, Osman HYSA?, EljonaMILO?, Lorena MARGO?
! Department of Natural Sciences, “Fan S. Noli” University, Korca- ALBANIA
| orencekonomi @yahoo.co.uk, ejonamilo@yahoo.com, |orena.margo@yahoo.com
2Department of Mathematics, UAMD, Durrés- ALBANIA

0.hysa@yahoo.com

ABSTRACT
One of the most important methods in statistics for estimating parameters is the

resampling method. But estimations of unknown parameters with resampling
methods demand a lot of calculations and it is very difficult to use them. These
methods are found in ot of applications because of wide spread use of computers.

Tukey and Quenouaille [9] firstly introduced jackknife methods to estimate the bias
and the variance during the estimation of unknown parameters. Afterwards, Efron
[1-3] used jackknife methods to estimate the variance of least squares estimators in
linear regression models. In many cases, jackknife estimators resulted successfully.
But, there were some cases, when the results of jackknife estimators were far from
the true values of the parameters [4]. This happened, because the jackknife
estimators depended from various conditions that fulfill the model. These conditions
were related with the values of the independent variables, the properties of the
matrix of independent variables and the observation errors variances.

We have shown in our paper that ordinary jackknife estimations for variances of
least squares estimators of unknown coefficients in linear regression models are not
unbiased. Their accuracy depends on the variances of linear regression model errors
and the nature of the matrix of the independent variables observations. We have
found some conditions when the jackknife estimators are robust estimations (not
influenced from the distribution of the sample elements) for the variances of |east
squares estimators of the linear regression model coefficients in the case when
model errors are homoschedastic (the errors have equal variances) and in the case
when model errors are heteroschedastic (the errors have not equal variances). We
have analyzed the relationship between these conditions and have found that the
relationship between them and the eigenvalues of the matrix XX, when X is the
matrix of the observed independent variables.
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INTRODUCTION

Jackknife estimation is a nonparametric method for the estimation of unknown
parameters like the bias, the variance etc. Their beginners are of Quenouille (1949)
[7] for the estimation of the bias and Tukey (1958) [8] for the estimation of the
variance. Let we give the idea of the jackknife estimation.

Let suppose that X,,..., X, arethe sample observations of the random
variable X and we have the statistic Q(Xl Xn) to estimate the unknown

parameter g . Let we ha/eQ(i) = (AQ(X1 Xii1s Xisgreens Xn), if we have deleted the

Q(i) :

Qo

observation of i-sand let Q(_) =

S|

We assume that we want to estimate the variance of the estimator Q .We

know that the true variance of the estimator Q is var(@) = E(@ - E((AQ))2 .

Ordinary jackknife estimator for the variance of Q is[1-3]
Ui\_n-14 (a ~ |
var (Q)=Ta (Qo- Q- @D
i=1

We can mention the fundamental work of Wu [9] about the
jackknifein linear regression. We have studied the linear regression model in the
case when the model errors have not with independent and identically distribution
[4, 5] and in the case of the weighted regression model with unknown weight [6].

In our paper, we have analyzed the proprieties of the estimator (1) in linear
regression models, where the unknown parameters are the coefficients of linear
regression and they are estimated with OL S (ordinary least squares). Firstly we have
taken the expression of the estimator (1) in linear models. Then, we have shown that
this estimator in biased when the errors are homoscedastic and, under some
conditions about the model, the estimator (1) is robust.

Jackknife estimation of linear regression coefficients Variance
It is given the linear regression model
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y, =x'b+e,fori =1..,n, (2

where X, aknown vector kx1, b thevector kx1 of unknown parameters, € the
errors, that are uncorrelated and fulfill the conditions

E(g)=0 and var(g)=s/,i=1..,n. (3)

wedenoteY =(y,,....y,)'; e=(g,...e,)” and X =[x,...x ]'. Wecan
write model in the form

Y = Xb +e where E(e) = 0and var(e) = diag[s ?,...s 2] (4)
The OLS estimator for the unknown parameters b isin the following form
b=(X"X)"X"Y. 5)
We denote B(i) the OLS estimator for the parameters b taken from (5), if

1 Qo5

we have delete the i -s observation (the vector X, and Y; ) and 6(_) =

S|

expression (1) takes the form

(6)

L et we see the following propositions.

~ (XTX)'lxr

Proposition 1.1 B(i) =b - (XTXI) le ,where 1, =y, - X" b for

Proof. We denote X(i) and Y(i) , respectively the matrices X dheY , after we

have deleted the i -s observation (the vector X, and thevalue Y, ). Then
T T "1y T
by = (X{Xo) X{¥-
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Weseethat X' X = X[ Xy +%X and XY = XY, + XY, aretrue.

We replace these expressions in the above expression for b (i) and we have
~ -1
b :(XTX - xixiT) (XTY- xiyi).

In the first parenthesis we apply the matrix identity

(XT X - x X' )'1 = (xT x)'l + (XT x)—l 1_X':TiT((:((TT>):))--11Xi . Then we do the
following transformations
3 9 ] ] i iTxT 1
by :eXTX)1+(XTX)11_)(:((iT((XT )) » E(XTY xy,)
=6+ (XTX) xy, - 7] 3 - (xTx)*xx (xTx)
| - xiT(XTX)'lxi

=p+ (X X) XY, - (1 XiT(XTX)-lxiX(i((Ti)_l)Xilyi+(XTX)'1xiri)

Although the expression 1- X/ (XTX)'lxi isanumber, we take
O XTX) %
1- X7 (XTX)*x

Proposition 1.2 The jackknife estimator (6) for OL S estimation of linear
regression coefficients has the form

varls)= "

(7)

Ny oL - %quqTxEKxTx)'1
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. é r2 r2 u ®er r O
hereL =diagda—~——,....——0.,0 =¢—L— ...,—" +and
e O W wyr Y TR w T w

wo=x' (XTX)'lxI
Proof. From the Proposition 1.1, we have

s e Aoy X
by =b- ~(X"x)*q b Then

EEA
B(i) - 6(.) :(XTX)'lg%(‘fl %- 1X:N8 and from here, we take
e'i=-" 1 u
N T
[50)' 5<.)][5(|>' 5(.)] = (xT X)lelé O XL glg AL X H(X X)*=

gn s 1- W, 1-vvig@ni=11-wj 1- wq

T . 5
Xt 28 XL Ox'n . Xxf u(X xJ'
i 1-w, i 1-w ngizll-w_l wo1- Wl W g

or

n gi= (1' \N|)2 iz 1- W ia 1- W, 9]
2 2 U e 0
Wedenote L =diaga,—— ...\ "o -0,9" = ho D2
e(l_ 1) (1_ Wn) a 1- W 1- W, g

and we have the expression (7). O

568



1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”

in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
on June 2-4 2011, Tirana-Durres, ALBANIA.

The errors of the linear regression model (4) are homoscedastic, if they have

equal variances, sovar(g) =s > =s ?,i=1..,n or S=s’l .
Proposition 1.3 If in linear regression model (4) the errors are
homoscedastic, then E(ri2)= (1- w)s ? and E(rirj)= - w;s ?, where
-1
W =xiT(XTX) X; .
T(yvTy !
Proof. Wehaver, =g - X (X X) Xe and E(r,)=0.Fromthat we

have

E(r2)=E(e?)- 2¢ (X X)X TE(ee)+ x" (XX ) "X TEfee” )X (X "X ) *x, =

:Siz_ ZVViSiZ-I-én.WJ?sz :(1' \Ni)si2+énvvijg(siz_si2)’

i
=1 =

We see that, when the errors are homoscedastic, we have
E(r2)=(1- w)s 2. Letusfind Err, ), for i * j. Wehave

E(rr)=Elee;)- X' (X"X) X E(ge)- x| (X" X)X E(ee)+

X (XX XTE(ee” )X(XTX) %, =-ws 2- wys 2+
X (XTXJIXTsx (XX ) 'x o

Let us see through the two following theorems the proprieties of jackknife
estimators for the linear regression model coefficients variance estimated through

OLsS.

Theorem 1.1 If the errors variance in the linear regression model is equal,
then the estimator (6) is biased.

569



“1% International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandér Moisiu™ University of Durrés
onJune 2-4 2011, Tirana-Durres, ALBANIA.

Proof . From the Proposition 1.3, we have

E(ri2)= (1- w)s 2 dhe E(rirj)=- w;s *. Wetake

(7]
N

2 2 5 ':'1 W fori=
. xS S 0 il-w
E('—)=dlagg = and E(qu):i ,
1' Wl 1' Wn g | VV|JS for I . J
{(1_ \Nl)l' Wj
in-1s? B
1 & I 1o w for i=
From that, we have Eg?_ - Zqq" 2=} -
€ : g i 1 WS 1
' for i1 j
% n (1_ \N|)1' Wj
Thus,
2 (5)e Ty [ iyT T )L
e85 )0= (" x )" x Ax (x 7], ®
a

\Iw_- 102 S ? . .

! - for i=]j

jen gl-w

where a; = ,

i n-1 W;S L

I- 2 (1 (1 ) for i J

| n - VVI - Wj

On the other hand, the true variance of linear regression model coefficients
OLS estimation is given by the expression var(t;) =s 2(XT X)' ' But, this
expression is different with the expression (8), because, in genera

an- 18 s?

en ;'al-V\li

152

O 9)

We see, from the Theorem 1.1, than the estimator (6) is biased for the linear
regression model coefficients variance estimated through OL S. From the expression
(9) we see that the bias can be negligible or controlled if the linear regression model
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(4) fulfill the conditions that the values gﬂ_lg i are nearly 1. Let us see that

n gl-
viathe following theorem.

Theorem 1.2 Let us suppose that in linear model (4) with homoscedastic
errors the following condition istrue

O£ w £E, for i =1,...,n,
n

(10)

where C isaconstant not depended from n, and then the estimator (6) is arobust
estimator for the linear regression coefficients variance estimated through OLS.

Proof. We have 1~ “ £1- w £1 or iEL.Fromthatwetake
n 1-w n-c

an-16 s® o[ _o[-2n+1  w |, .@®-2n+1| [ w [0

Snoptow S| lw) Tw o e w) e wi

£s2@BN°CLC N 0pg2G_ o0
en n nn-Cg n eng

If we replace this expression in (8), we have
U

Eg?/ar(tf )g: var( )+ Ogé— (1)

eng

or the estimator (6) is arobust estimation for the b variance.O

2. Some conditions about linear regression model

We see from the Theorem 1.2 that, when the condition (10) is true, the
estimator (6) is a robust estimator. In this section we will see some other conditions
that induce the condition (10).
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Let us have the following conditions:

A1l. The eigenvalues of the matrix 1 X, X,, areuniformly bounded.
n
A2. The elements of the matrix X, are uniformly bounded.

A3. The minimal eigenvalue of the matrix 1 XX, isbounded downwards
n

and ‘1 XTX,[=0(1).
n
A4. The maximal eigenvalue of the matrix EXI X, isbounded upwards
n
1yt
and |= XT X, |=0(1).
n

In the following, we show that some of the above conditions induce the
condition (10).

Proposition 2.1 If the conditions (A1) and (A2) are true, then the condition
(20) istrue.

Proof. Let ushave | (V3 .3 | (" the eigenvalues of thematrix1 Xa X,
n

From the condition (A1) we have | g) £ c, dhe | ( )3 C, > 0. Thenthe
-1 11, ,11

eigenvalues of the matrix (X:Xn) are—m _I() and we have
n 1 n k

11,1

nl ™ nc

From the condition (A2) we have ‘x‘ £c,fori=1..n j=1..k.We

takevvi:x.T(XTX) X £= —(‘yX,X, —)g)g<—c3:— because the matrix

nc, nc, n

1 , . .
=X, X, isasymmetric matrix. 0
n

Proposition 2.2 If the conditions (A2) and (A3) are true, then the condition
(20) istrue.
Proof. We can write
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nl (n)(XTX )xT (XTX )'lx £x' (XTX )x X" (XTX )'lx £ L gn) (xTx )2

k i NN n“‘“n i i n Mn /NN n““n i | (n) i N

k

bxax| [,
. Then we have | g”) =N gl and the above expression
I (n) x)d (n) (l (n))k'l
2 k K
XX,
takesthe form w, = x. (X:Xn)'lxi £—n—k+l £°n
n (| I((n)) n

Proposition 2.3 If the conditions (A2) and (A4) are true, then the condition
(20) istrue.

Proof. Reasoning in the some way with the Proposition 2.2, we have

DX EXIX ()
| () = (n) 3 1N — or £t Findly we have
| ) x4 () RS 11,
n n n
(n) J2k-1
PN 0 P
n EXTX n
n n n
Conclusion

From the above results we see that ordinary jackknife estimator is biased for
the linear regression model coefficients estimated by OL S in the case when the
model errors variances are homoscedastic. From the Theorem 1.2 we have arrived in
the conclusions that ordinary jackknife estimator is arobust estimation, when the
linear models fulfill some conditions. So, we can give the idea of ordinary jackknife
estimator modification, to take into consideration the influence of the individual
observations and the nature of the observations matrix.
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