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ABSTRACT
One of the most important methods in statistics for estimating parameters is the
resampling method. But estimations of unknown parameters with resampling
methods demand a lot of calculations and it is very difficult to use them. These
methods are found in lot of applications because of wide spread use of computers.

Tukey and Quenouoille [9] firstly introduced jackknife methods to estimate the bias
and the variance during the estimation of unknown parameters. Afterwards, Efron
[1-3] used jackknife methods to estimate the variance of least squares estimators in
linear regression models. In many cases, jackknife estimators resulted successfully.
But, there were some cases, when the results of jackknife estimators were far from
the true values of the parameters [4]. This happened, because the jackknife
estimators depended from various conditions that fulfill the model. These conditions
were related with the values of the independent variables, the properties of the
matrix of independent variables and the observation errors variances.

We have shown in our paper that ordinary jackknife estimations for variances of
least squares estimators of unknown coefficients in linear regression models are not
unbiased. Their accuracy depends on the variances of linear regression model errors
and the nature of the matrix of the independent variables observations. We have
found some conditions when the jackknife estimators are robust estimations (not
influenced from the distribution of the sample elements) for the variances of least
squares estimators of the linear regression model coefficients in the case when
model errors are homoschedastic (the errors have equal variances) and in the case
when model errors are heteroschedastic (the errors have not equal variances). We
have analyzed the relationship between these conditions and have found that the
relationship between them and the eigenvalues of the matrix XTX, when X is the
matrix of the observed independent variables.
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INTRODUCTION
Jackknife estimation is a nonparametric method for the estimation of unknown
parameters like the bias, the variance etc. Their beginners are of Quenouille (1949)
[7] for the estimation of the bias and Tukey (1958) [8] for the estimation of the
variance. Let we give the idea of the jackknife estimation.

Let suppose that are the sample observations of the random

variable and we have the statistic to estimate the unknown

parameter . Let we have , if we have deleted the

observation of -s and let .

We assume that we want to estimate the variance of the estimator . We

know that the true variance of the estimator is .

Ordinary jackknife estimator for the variance of is [1-3]

. (1)

We can mention the fundamental work of Wu [9] about the
jackknife in linear regression. We have studied the linear regression model in the
case when the model errors have not with independent and identically distribution
[4, 5] and in the case of the weighted regression model with unknown weight [6].

In our paper, we have analyzed the proprieties of the estimator (1) in linear
regression models, where the unknown parameters are the coefficients of linear
regression and they are estimated with OLS (ordinary least squares). Firstly we have
taken the expression of the estimator (1) in linear models. Then, we have shown that
this estimator in biased when the errors are homoscedastic and, under some
conditions about the model, the estimator (1) is robust.

Jackknife estimation of linear regression coefficients Variance
It is given the linear regression model
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, for , (2)

where a known vector , the vector of unknown parameters, the

errors, that are uncorrelated and fulfill the conditions

, . (3)

We denote . We can

write model in the form

. (4)

The OLS estimator for the unknown parameters is in the following form

. (5)

We denote the OLS estimator for the parameters taken from (5), if

we have delete the -s observation (the vector and ) and . The

expression (1) takes the form

.

(6)

Let we see the following propositions.

Proposition 1.1 , where for

.

Proof. We denote , respectively the matrices , after we

have deleted the -s observation (the vector and the value ). Then

.
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We see that and are true.

We replace these expressions in the above expression for and we have

.

In the first parenthesis we apply the matrix identity

. Then we do the

following transformations

.

Although the expression is a number, we take

.□

Proposition 1.2 The jackknife estimator (6) for OLS estimation of linear
regression coefficients has the form

,

(7)
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where , and

.

Proof. From the Proposition 1.1, we have

. Then

, and from here, we take

or

Then

.

We denote

and we have the expression (7). □

   1
,...,

1 2

2

2
1

2
1 












n

n

w

r

w

r
diag 











n

nT

w

r

w

r
q

1
,...,

1 1

1

  i
TT

ii xXXxw
1



    







n

j j

jjT

w

rx
XX

n 1

1

. 1

1ˆˆ 

     
















 




n

i i

ii

j

jjT
i w

rx

w

rx

n
XX

1

1

. 11

1ˆˆ 

    1

1 1 1
2

1

1111

2

11

1 

  

































    XX

w

rx

w

rx

w

rx

w

rx

nw

rx

w

rx

n
XX T

n

i i

i
T
i

i

ii
n

i i

i
T
i

n

i j

jj

j

j
T
j

j

jjT

            


 


 n

i

T

iin

n

1
..

ˆˆˆˆ1ˆvar 

 
 

  1

1 11
2

2
1

11

1

1

1 

 





















   XX
w

rx

w

rx

nw

rxx
XX

n

n T
n

i

n

i j

jj
n

i j

jj

i

i
T
iiT

    





















n

nT

n

n

w

r

w

r
q

w

r

w

r
diag

1
,...,

1
,

1
,...,

1 1

1
2

2

2
1

2
1

           
 

  1

1 11
2

2
1

1
.. 11

1

1
ˆˆˆˆ 

 



 















   XX

w

rx

w

rx

nw

rxx
XX T

n

i

n

i j

jj
n

i j

jj

i

i
T
iiT

n

i

T

ii 

              





































  1

11

1

.. 11

1

11

1ˆˆˆˆ XX
w

rx

w

rx

nw

rx

w

rx

n
XX T

T
n

i i

ii

j

jj
n

i i

ii

j

jjTT

ii 



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA.

569

The errors of the linear regression model (4) are homoscedastic, if they have

equal variances, so , or .

Proposition 1.3 If in linear regression model (4) the errors are

homoscedastic, then , where

.

Proof. We have . From that we

have

,

We see that, when the errors are homoscedastic, we have

. Let us find . We have

.□

Let us see through the two following theorems the proprieties of jackknife
estimators for the linear regression model coefficients variance estimated through
OLS.

Theorem 1.1 If the errors variance in the linear regression model is equal,
then the estimator (6) is biased.
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Proof . From the Proposition 1.3, we have

. We take

and .

From that, we have .

Thus,

, (8)

where .

On the other hand, the true variance of linear regression model coefficients

OLS estimation is given by the expression . But, this

expression is different with the expression (8), because, in general

.□ (9)

We see, from the Theorem 1.1, than the estimator (6) is biased for the linear
regression model coefficients variance estimated through OLS. From the expression
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(4) fulfill the conditions that the values are nearly 1. Let us see that

via the following theorem.

Theorem 1.2 Let us suppose that in linear model (4) with homoscedastic
errors the following condition is true

,

(10)

where is a constant not depended from , and then the estimator (6) is a robust
estimator for the linear regression coefficients variance estimated through OLS.

Proof. We have . From that we take

.

If we replace this expression in (8), we have
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or the estimator (6) is a robust estimation for the variance. □

2. Some conditions about linear regression model
We see from the Theorem 1.2 that, when the condition (10) is true, the
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that induce the condition (10).
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Let us have the following conditions:

A1. The eigenvalues of the matrix are uniformly bounded.

A2. The elements of the matrix are uniformly bounded.

A3. The minimal eigenvalue of the matrix is bounded downwards

and .

A4. The maximal eigenvalue of the matrix is bounded upwards

and .

In the following, we show that some of the above conditions induce the
condition (10).

Proposition 2.1 If the conditions (A1) and (A2) are true, then the condition
(10) is true.

Proof. Let us have the eigenvalues of the matrix .

From the condition (A1) we have . Then the

eigenvalues of the matrix are and we have

.

From the condition (A2) we have for . We

take , because the matrix

is a symmetric matrix. □

Proposition 2.2 If the conditions (A2) and (A3) are true, then the condition
(10) is true.

Proof. We can write
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. Then we have and the above expression

takes the form .□

Proposition 2.3 If the conditions (A2) and (A4) are true, then the condition
(10) is true.

Proof. Reasoning in the some way with the Proposition 2.2, we have

or . Finally we have

.□

Conclusion
From the above results we see that ordinary jackknife estimator is biased for

the linear regression model coefficients estimated by OLS in the case when the
model errors variances are homoscedastic. From the Theorem 1.2 we have arrived in
the conclusions that ordinary jackknife estimator is a robust estimation, when the
linear models fulfill some conditions. So, we can give the idea of ordinary jackknife
estimator modification, to take into consideration the influence of the individual
observations and the nature of the observations matrix.
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