
“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

186

PERFORMANCE IMPROVEMENT THROUGH TABLE
PARTITIONING

(Comparison of table partitioning in SQL Server 2008)

Julian FEJZAJ1, Endri XHINA1, Denis SAATCIU1, Bora BIMBARI1

1Department of Informatics, Faculty of Natural Sciences, University of Tirana, Albania

Increasing the size of the databases might face database administrators with
performance issues.
Most of the software vendors for DBMS products have included tools and
techniques that help the database administrator to improve the performance of the
database.  In this article we will test one of the techniques used to enhance the
database performance, named “table partitioning”. The test will be done on SQL
Server, which is one of the most used database management systems. The article
will show the steps to implement the table partitioning in SQL Server 2008 R2. A
partitioned table with two partitions will be created to test the performance of
queries on each partition. A data population process will be applied to the table in
order to fill the partitions with differentiated amount of data. The largest partition
will be called “archive” and the smaller one “current”.
A comparison table storing the amount of time required to execute each of the
queries will be created. Six tests for each query will be executed in order to provide
accurate results.
The comparison table will guide the interpretation process and will facilitate the
conclusions.

Keywords: Database, Performance, Partitioning, SQL Server

INTRODUCTION

In some applications the databases become huge and the tables store hundreds of
GB of information. Table management is not a trivial task. That is why there are
several techniques that aim to make the tables’ management easier and improve the
performance.
Table Partitioning is a technique that restructures the data stored in a table. A big
table is separated into units called partitions. Each partition is stored separately from
the other ones. Partitions of a table may be stored in the same file group as well as
in different ones. Furthermore, the file groups might be stored in separate disks
allowing in this way, parallel reading and writing of the data in different partitions.
Table partitioning helps in:



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

187

- managing big tables and their indexes easily
- improving performance by filtering queries and applying them on specific
partitions and not on the whole table

What is table partitioning?
Partitioning allows you to partition the rows of a table based on a logical expression
on a column(s). The column is called the partitioning key. Each partition can be
stored on a separate file group. A file group is an object that has no storage on it.
The file group groups one or more files where the actual rows of the table are
stored. The files might be on separated disks allowing the rows of the table to be
stored on separate disks depending on the value of the partitioning key.

A partitioned table might be created from the start; moreover, it is possible to
partition an existing non partitioned table as well as modify the partitions of the
exiting table , through splitting or merging existing partitions.
Picture no 1. shows schematically how a table storing the Orders is separated
physically in three different partitions based on the value of order date.
As it is evident from the picture, there are three different files (File1, File2, File3)
that support the partitioning.
Three file groups are created, FG1, FG2 and FG3, each containing a file,
respectively File1, File2, File3.
Partitioning is based on the partitioning function, which defines: the data type of the
partitioning key and the range of value. The partitioning function, once created
might be reused.



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

188

The partitioning function does not refer to any physical location, nor does it
reference any table or column name. In the example shown in the picture, the range
function defines three ranges January, February, and March.
A partition scheme is created after the partitioning function. The partition scheme
maps the ranges with the file groups. The partition scheme does not refer to any
table or column that allows the partition scheme to be used by several tables.
Finally, when creating a table at the ON clause at the end of the create table
function, we define that the table should be created on a partition scheme instead on
the file group.

Note:
As a default the table is created at the Primary file group.

TOOLS AND METHODOLOGY

Hardware
The tests for this article will be executed on a Server with the specifications below:
HP DL360 G5 Server

Model Number: DL360 G5
CPU Speed:   3 GHz
Memory Size: 2 GB
Number of CPUs: 1
Operating Systems: Windows Server 2003 32-Bit

Database Server Software and Tools
The sample database is implemented in SQL Server 2008 R2 Enterprise Edition.
The query editor of SQL Server 2008 Management Studio is used as a query editor.
SQL Server Profiler is used to trace the queries and to display execution time for
each query.

Methodology
A partitioned table with a key of type INT is created in two partitions.
The table is populated in order to have a current (small) and an archive (big)
partition.
The same query has been executed six times and the average running time has been
calculated, in order to have a more accurate evaluation.
Before executing a query SQL Server, buffers are cleaned up by deleting its cache.
Results are displayed in tables and correspondent charts are created.
Conclusions are based on this data.

EXPERIMENT
Below we will show the steps used in the experiment.

Creating the partition function



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

189

We create a partitioning function. The function defines how many partitions will be
created and what will be the values for each of them.

CREATE PARTITION FUNCTION PartRange (INT)
AS RANGE LEFT FOR VALUES (1,2)

We call the partitioning function partRange. The key of the partitioning will be a
column of data type int.
'Range left or right' defines whether values should go with the partition at the left or
at the right.
We created 3 ranage.
Partition 1 – values <= 1
Partition 2 – values = 1,2
Partition 3 – values > 2

Creating the partition scheme

CREATE PARTITION SCHEME PartScheme AS
PARTITION PartRange
ALL TO ([PRIMARY])

The partitioning scheme (PartScheme) refers to the partitioning function PartRange.
For the sake of this example, the partitions will be saved in the primary file group.
The table can now be created.

Creating the partitioned table

CREATE TABLE PartTable
(
i INT ,
s CHAR(8000) ,
PartCol INT
)

ON
PartScheme (PartCol)

The table has a column PartCol of type INT. The value of this column will define in
which partition a row of the table will be stored.
In order to make evident potential performance problems, the table has no Primary
Key Index and the table contains a column of type char (8000) that would make a
row of the table to occupy one page memory. Char is a fixed length data type,
therefore columns would need 8000 bytes even if we store there a single character.

Note: As a default in an SQL Server memory page 8096 bytes can be stored there.
Populating the table



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

190

Let’s insert some rows on the table

INSERT PartTable (i, s, PartCol) SELECT 1, 'a', 1
INSERT PartTable (i, s, PartCol) SELECT 2, 'a', 2
INSERT PartTable (i, s, PartCol) SELECT 3, 'a', 2
INSERT PartTable (i, s, PartCol) SELECT 4, 'a', 2
INSERT PartTable (i, s, PartCol) SELECT 5, 'a', 2
INSERT PartTable (i, s, PartCol) SELECT 6, 'a', 2
INSERT PartTable (i, s, PartCol) SELECT 7, 'a', 2

We enter some more rows at the table using the following loop:

DECLARE @i INT
SELECT @i = 13
WHILE @i > 0
BEGIN

SELECT @i = @i - 1
INSERT PartTable (i, s, PartCol)

SELECT i, s, PartCol
FROM PartTable
WHERE PartCol = 2

END

We select the data of each partition in order to verify that the rows are inserted into
the right partitions.

SELECT *
FROM sys.partitions
WHERE OBJECT_ID = OBJECT_ID('PartTable')

The output of this query for the partitions that we are studying is shown below:

partition_id object_id index_id partition_number hobt_id rows

72057594041532416 2117582582 0 1 72057594041532416 1
72057594041597952 2117582582 0 2 72057594041597952 1638
4

As we can see from the result, we notice that there are 16384 rows on partition 2
and 1 rows in partition1.

In order for us to compare the same partitioning scheme but with different amount
of data, we create four different physical tables which are based on the same
partitioning scheme – PartScheme, but with a different cardinality of rows. The



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

191

table below shows the number of rows for the two partitions for each of the tables.
We are naming partition 1 current and partition 2 archive:

Table Name Partition Nr_rows
partTable Archive 16385

Current 4
partTable2 Archive 114688

Current 8192
partTable3 Archive 344064

Current 16384
partTable4 Archive 3440640

Current 163840

Test Queries
On each table on each partition we executed two types of queries:

1- select * from <table> WHERE PartCol = x and i=<unique value>
2- select * from <table> WHERE PartCol = x

The first query retrieves on row from the partition.
The second query retrieves all rows from the partition.

These queries are run six times. After each execution the following SQL statements
are executed, in order to clean the cache:
DBCC FREESYSTEMCACHE
DBCC FREESESSIONCACHE
DBCC FREEPROCCACHE

The execution times are stored in an excel table and the average is taken as the final
execution time for each query. This execution time is used in the tables of the
results section below. The query duration time is calculated in milliseconds.

RESULTS AND DISCUSSION
Many operations can apply at the partition level rather than the table level.
One comparison would be to execute a query that selects a row respectively on the
archive and current partition. Please note that the queries below are executed against
the same table.
The table and chart below shows the results of the queries

select * from PartTable WHERE PartCol = 2 and i=500
select * from PartTable WHERE PartCol = 1 and i=1



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

192

Chart no.1

As can be verified from chart no. 1, the benefit time with the size of the table
growing has a tendency to grow linearly with the size of the table.

Chart no. 2

Chart no. 2 shows the execution time of the query that selects one row from the
table. The query is executed against the same table in the current and archive
partitions growing gradually the size of the partitions. As can be seen from the
chart, the execution time with the growing of each partition grows as well as the

Execution Times

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000

Table Rows

Ti
m

e 
m

s

Current Time

Archive Time

Current Time 59.33 607.83 978.17 9984.5

Archive Time 1018.17 6407 19547.5 205003.17

16389
(0.02 %)

122880
(7.14 %)

360448
(4.76 %)

3604480
(4.76 %)



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

193

difference between execution time between the current and archive partition. This
proves the performance benefit when partitioning a big table.

Chart no. 3

Chart no.3 shows the execution time of the query that selects all rows from the
partition as presented in Table 1. The query is executed against the same table in the
current and archive partitions growing gradually the size of the partitions. As the
chart shows, the execution time with the growing of each partition grows as well as
the difference between execution time between the current and archive partition.
This proves the performance benefit when partitioning a big table.

select * from PartTable WHERE PartCol = 1
select * from PartTable WHERE PartCol = 2

Current
Rows

Archive
Rows

Total
Rows

Current part
%

Current
Time

Archive
Time Archive/Report

4 16385 16389 0.024412572 91 1057 11.61538462
8192 114688 122880 7.142857143 1074 10759 10.01769088

16384 344064 360448 4.761904762 2291 56512 24.66695766
163840 3440640 3604480 4.761904762 201697 694753 3.444538094

Table 1

CONCLUSIONS

Table Partitioning is a technique that improves considerably the performance of
access at big tables.

Select All Rows from each partitions

0
100000
200000
300000
400000
500000
600000
700000
800000

16389 122880 360448 3604480

All Rows

Ti
m

e 
m

s 
   

 .

Current Time

Archive Time



“1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)”
in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës

on June  2-4 2011, Tirana-Durres, ALBANIA

194

One advantage of this technique is the fact that the table rows are logically within
the same table at the same time and the rows are stored in separate disks. Thus, this
allows increase in performance and does not require any changes in the applications
based on the database.

REFERENCES

[1] SQL Server 2008 Query Performance Tuning Distilled , Grant Fritchey, Sajal
Dan, Apress,2009

[2] Building a Data Warehouse with Examples in SQL Server, Vincent Rairardi,
Apress, 2008

[3] Microsoft SQL Server 2008 New Features , Michael Otey, McGrawHills, 2008

[4] Microsoft SQL Server 2008 Relational Databases Design and Implementation,
Louis Davidson, APress, 2008


