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ABSTRACT
This paper deals with a class of algebraic hyperstructures called ternary

semihypergroups, which are a generalization of ternary semigroups. In this paper we
introduce some special classes of hyperideals in ternary semihypergroups. We
introduce the notions of pure hyperideals, weakly pure hyperideals, purely and
purely prime hyperideals and study some properties of them in ternary
semihypergroups and weakly regular ternary semihypergroups. The collection of all
proper purely prime hyperideals of a ternary semihypergroup with zero is
topologized.

1.  INTRODUCTION AND PRELIMINARIES

Algebraic structures play a prominent role in mathematics with wide ranging
applications in many disciplines such as theoretical physics, computer sciences,
control engineering, information sciences, coding theory etc. Ternary algebraic
operations were considered in the 19th century by several mathematicians such as
Cayley [1] and later it was generalized by Kapranov, et al. in 1990 [2]. Ternary
structures and their generalization, the so-called n -ary structures, raise certain
hopes in view of their possible applications in physics and other sciences. Ternary
semigroups are universal algebras with one associative operation. The theory of
ternary algebraic system was introduced by D. H. Lehmer [3] in 1932. He
investigated certain algebraic systems called triplexes which turn out to be
commutative ternary groups. The notion of ternary semigroups was introduced by S.
Banach (cf. [4]). He showed by an example that a ternary semigroup does not
necessary reduce to an ordinary semigroup. In 1965, Sioson [5] studied ideal theory
in ternary semigroups. In [6, 7] Dudek et. al. studied the ideals in n -ary
semigroups. In 1995, Dixit and Dewan [8] introduced and studied some properties
of ideals and quasi-(bi-) ideals in ternary semigroups.
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Hyperstructure theory was introduced in 1934, when F. Marty [9] defined
hypergroups based on the notion of hyperoperation, began to analyze their
properties and applied them to groups. Algebraic hyperstructures are a suitable
generalization of classical algebraic structures. In the following decades and
nowadays, a number of different hyperstructures are widely studied from the
theoretical point of view and for their applications to many subjects of pure and
applied mathematics.. In a classical algebraic structure the composition of two
elements is an element, while in an algebraic hyperstructure, the composition of two
elements is a set.

Ternary semihypergroups are algebraic structures with one associative
hyperoperation and they are a particular case of an n -ary semihypergroup ( n -
semihypergroup) for n = 3 (cf. [10-14]). Recently, Hila, Davvaz and et. al. [15-17]
introduced and studied some classes of hyperideals in ternary semihypergroups. The
main purpose of this paper is to introduce some other special classes of hyperideals
in ternary semihypergroups. We introduce the notions of pure hyperideals, weakly
pure hyperideals, purely and purely prime hyperideals and study some properties of
them in ternary semihypergroups and weakly regular ternary semihypergroups. The
collection of all proper purely prime hyperideals of a ternary semihypergroup with
zero is topologized.

Recall first the basic terms and definitions from the hyperstructure theory.

Definition 1.1 A map )(: * HHH  is called hyperoperation or join operation

on the set H , where H is a nonempty set and }{\)(=)(* HH  denotes the set

of all nonempty subsets of H .

Definition 1.2 A hyperstructure is called the pair ),( H where  is a

hyperoperation on the set H.

Definition 1.3 A hyperstructure ),( H is called a semihypergroup if for all

Hzyx ,, , )(=)( zyxzyx  , which means that .= vxzu
zyvyxu

 
 

If Hx and HBA  , , then }{=,=
,

xAxAbaBA
BbAa

 


and

BxBx  }{= .
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Definition 1.4 A non-empty subset B of a semihypergroup H is called a sub-

semihypergroup of H if BBB  and H is called in this case super-

semihypergroup of B.

Definition 1.5 Let ),( H be a semihypergroup. Then H is called a hypergroup if it

satisfies the reproduction axiom, for all Ha , HaHHa ==  .

Definition 1.6 A map )(: * HHHHf  is called ternary hyperoperation

on the set H , where H is a nonempty set and }{\)(=)(* HH  denotes the set

of all nonempty subsets of H .

Definition 1.7 A ternary hypergroupoid is called the pair ),( fH where f is a

ternary hyperoperation on the set H .

If CBA ,, are nonempty subsets of H , then we define

),,(=),,(
,,

cbafCBAf
CcBbAa




.

Definition 1.8 A ternary hypergroupoid ),( fH is called a ternary semihypergroup

if for all Haaa 521 ,...,, , we have

)),,(,,(=)),,,(,(=),),,,(( 543215432154321 aaafaafaaaafafaaaaaff . (*)

Since the set }{x can be identified with the element x , any ternary semigroup

is a ternary semihypergroup. It is clear that due to associative law in ternary

semihypergroup ),( fH , for any elements Hxxx n 1221 ,...,, and positive integers

nm, with nm  , one may write

=),...,,,,...,(=),...,,( 122111221  nmmmn xxxxxfxxxf

).),...,,),,,((,...,( 1243211  nmmmmm xxxxxxffxf

Definition 1.9 Let ),( fH be a ternary semihypergroup. Then H is called a

ternary hypergroup if Hcba  ,, , Hzyx  ,, such that

),,(),,(),,( zbafbyafbaxfc  .
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Definition 1.10 Let ),( fH be a ternary semihypergroup and T a nonempty subset

of H . Then T is called a ternary subsemihypergroup of H if and only if

TTTTf ),,( .

Definition 1.11 A ternary semihypergroup ),( fH is said to have a zero element if

there exist an element H0 such that for all

{0}=,0),(=),0,(=),(0,,, bafbafbafHba  .

Definition 1.12 Let ),( fH be a ternary semihypergroup. An element He is

called left identity element of H if for all Ha , }{=),,( aaaef . An element He
is called an identity element of H if for all Ha ,

}{=),,(=),,(=),,( aaeafaaefeaaf . It is clear that

}{=),,(=),,(=),,( aeeafeaefaeef .

Definition 1.13 A nonempty subset I of a ternary semihypergroup H is called a

left (right, lateral) hyperideal of H if

)),,(,),,((),,( IHIHfIHHIfIIHHf  .

A nonemtpy subset I of a ternary semihypergroup H is called a hyperideal of

H if it is a left, right and lateral hyperideal of H . A nonemtpy subset I of a

ternary semihypergroup H is called two-sided hyperideal of H if it is a left and

right hyperideal of H .

Definition 1.14 A left hyperideal I of a ternary semihypergroup H is called

idempotent if IIIIf =),,( .

Definition 1.15 A ternary semihypergroup H is said to be regular if

),,(,, axafaHxHa  .

It is clear that every ternary hypergroup is a regular ternary semihypergroup.

2.  ON PURE HYPERIDEALS IN TERNARY SEMIHYPERGROUPS
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In this section we introduce the notions of pure and purely prime hyperideals
and we study their properties in ternary semihypergroups and weakly regular ternary
semihypergroups.

Definition 2.1 Let ),( fH be a ternary semihypergroup. A right hyperideal A of

H is called a right pure right hyperideal if ),,(,,, zyxfxAzyAx  . If A

is a two-sided hyperideal of H with the property that AzyAx  ,, ,

)),,()(,,( xzyfxzyxfx  , then A is called a right(left) pure two-sided

hyperideal. If A is a hyperideal of H with the property that AzyAx  ,, ,

)),,()(,,( xzyfxzyxfx  , then A is called a right(left) pure hyperideal.

Left pure left hyperideals are defined analogously.

Example 2.2 Let },,,,,{= gedcbaH and zyxzyxf  )(=),,( , Hzyx  ,, , where  is

defined by the table:

ggddggg

geedccgeee

ddddddd

dccdccdccc

ggddbbb

geedccbaaa

gedcba

},{},{},{

},{},{},{

},{},{},{

*

Then ),( fH is a ternary semihypergroup. Clearly, },{=1 dcI , },,,{=2 gedcI

and H are right(left) pure two-sided hyperideals of H .

Example 2.3 Let },,,{0,1,= tzyxH and zyxzyxf  )(=),,( for all Hzyx ,,
with the hyperoperation  given by the following table:

101

0

},{},{0

},{},{0

},{},{0

0000000

10

tzyx

tttttt

ztzztzzz

ytytyyyy

xHzxyxxx

tzyx
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Then ),( fH is a ternary semihypergroup. It is easy to see that }{0,=1 tI ,

},{0,=2 tzI , },{0,=3 tyI and },,{0,=4 tzyI are right pure right hyperideals of

H.

Example 2.4 Let },,,,,{= fedcbaH and zyxzyxf  )(=),,( for all

Hzyx ,, with the hyperoperation  given by the following table:

101

0

},{},{},{0

0

},{},{},{0

0

},{},{},{0

000000000

10

fedcba

fffddfff

efeedccfeee

dddddddd

cdccdccdccc

bffddbbb

afeedccbaaa

fedcba

Then ),( fH is a ternary semihypergroup. Clearly, }{0,=1 dI , },{0,=2 fdI and

},,{0,=3 fdbI are right pure right hyperideals of H. },{0,=4 dcI is a two-sided

hyperideal of H which is a right pure hyperideal but not a left pure hyperideal.

},,,{0,=5 fedcI is a two-sided hyperideal of H which is a right and left pure

hyperideal.

Proposition 2.5 Let ),( fH be a ternary semihypergroup. Let A be a two-sided

hyperideal of H . Then A is right pure if and only if for any right hyperideal B ,

),,(= AABfAB  .

Proof. Suppose A is a right pure two-sided hyperideal of H . For every right

hyperideal B of H , we have always ABAABf ),,( . Let ABx  . Since

A is a right pure two-sided hyperideal, there exist Azy , such that

),,( zyxfx . As Bx and Azy , , ),,(),,( AABfzyxfx  . Hence

),,( AABfx . This implies that ),,( AABfAB  . Thus

),,(= AABfAB  . Conversely, assume ),,(= AABfAB  , for any right

hyperideal B of H . We show that A is a right pure two-sided hyperideal. Let

Ax and ),,(}{= HHxfxB  be the right hyperideal of H generated by x .

Then we have

 ),),,,((),,(=),)),,,(}(({=)),,(}({ AAHHxffAAxfAAHHxfxfAHHxfx
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).,,(=),,(),,( AAxfAAxfAAxf 

Since AHHxfxx  )),,(}({ , we have ),,( AAxfx . Hence there exist

Azy , such that ),,( zyxfx . Thus A is right pure.

Similarly, it can be shown that a hyperideal A of a ternary semihypergroup H
is right pure if and only if ),,(= AABfAB  for every right hyperideals B of

H .

Definition 2.6 A ternary semihypergroup ),( fH is said to be right weakly regular

if for each )),,(),,,(),,,((, HHxfHHxfHHxffxHx  .

It is clear that every regular ternary semihypergroup is right weakly regular but
the converse is not true.

Theorem 2.7 Let ),( fH be a ternary semihypergroup. The following statements

are equivalent:

1. H is right weakly regular.

2. Every right hyperideal of H is idempotent, i.e. ),,(= BBBfB for every right

hyperideal B of H.

3. ),,(= AABfAB  for every right hyperideal B and two-sided hyperideal A

of H .

4. ),,(= AABfAB  for every right hyperideal B and for every hyperideal A

of H .

Proof. (2)(1) . Let B be a right hyperideal of H , then

BHHBfBBBf  ),,(),,( . Let Bx . Then

),,()),,(),,,(),,,(( BBBfHHxfHHxfHHxffx  . Thus ),,( BBBfB . Hence

),,(= BBBfB .

(1)(2)  . Let us suppose that every right hyperideal of H is idempotent. Let

Hx . Then ),,(}{= HHxfxB  is the right hyperideal of H , so idempotent,

i.e.
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))),,(}({)),,,(}({)),,,(}(({=),,(}{ HHxfxHHxfxHHxfxfHHxfx 

 ),,,,(),,,,,,(),,,,(),),,,((),,(= xxHHxfHHxHHxxfxHHxxfHHxxxffxxxf

).,,,,,,,,(),,,,,,(),,,,,,( HHxHHxHHxfxHHxHHxfHHxxHHxf 

Doing simple calculation, we have )),,(),,,(),,,(( HHxfHHxfHHxffx . Hence H

is right weakly regular.

(3)(1)  . Let us suppose that H is right weakly regular ternary semihypergroup

and B is a right hyperideal and A a two-sided hyperideal of H . Then

ABAABf ),,( . Let ABx  . Since H is right weakly regular, we have

)),,(),,,(),,,(( HHxfHHxfHHxffx . Hence ),,( AABfx , which

shows that ),,( AABfAB  . Hence ),,(= AABfAB  .

(4)(3)  . It is obvious.

(1)(4)  . Let Hx and ),,(}{= HHxfxB  be the right hyperideal of H
generated by x ,

),,,,(),,(),,(),,(}{= HHxHHfHxHfxHHfHHxfxA  be the

hyperideal of H generated by x . Then we have,

=),,,,(),,(),,(),,(}({)),,(}({ HHxHHfHxHfxHHfHHxfxHHxfx 

,)),,,,(),,(),,(),,(}({)),,,(}(({ HHxHHfHxHfxHHfHHxfxHHxfxf 
 ),,(),,(}({ xHHfHHxfx

 ),,,,(),,((=))),,,,(),,( HHxxxfxxxfHHxHHfHxHf

 ),,,,(),,,,,,(),,,,(),,,,( xxHHxfHHxHHxxfHxHxxfxHHxxf

 ),,,,,,(),,,,,,(),,,,,,( HxHxHHxfxHHxHHxfHHxxHHxf
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 ),,,,,,(),,,,(),,,,,,,,( HHxHxHxfxHxHxfHHxHHxHHxf
( , , , , , , ).f x H x H H x H

By simple calculations, we have )),,(),,,(),,,(( HHxfHHxfHHxffx .

Hence H is right weakly regular ternary semihypergroup.

Theorem 2.8 Let ),( fH be a ternary semihypergroup. The following statements

are equivalent:

1. H is right weakly regular.

2. Every two-sided hyperideal A of H is right pure.

3. Every hyperideal A of H is right pure.

Proof. It follows by Theorem 2.7 and Proposition 2.5.

Proposition 2.9 Let (H,f) be a ternary semihypergroup with 0. The following
statements hold true:

1. {0} is a right pure hyperideal of H .

2. Any union of any number of right pure two-sided hyperideals (hyperideals) of

H is a right pure two-sided hyperideal (hyperideal) of H .

3. Any finite intersection of right pure two-sided hyperideals (hyperideals) of H
is a right pure two-sided hyperideal (hyperideal) of H .

Proof. (1) . {0} is obviously right pure hyperideal of H .

(2) . Let KkkI }{ be a family of right pure two-sided hyperideals of H . Then

k
Kk

I


is a two-sided hyperideal of H . Let us suppose that k
Kk

Ix 


 . Then

Kk  such that kIx . Since kI is a right pure two-sided hyperideal of H ,

there exist kIzy , such that ),,( zyxfx . It follows that k
Kk

Izy 


, such that

),,( zyxfx . Hence k
Kk

I


is a right pure two-sided hyperideal of H .
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(3) . Let 1I and 2I be right pure hyperideals of H and let 21 IIx  . Since

21, IxIx  and 21, II are right pure two-sided hyperideals of H , there exist

111, Izy  and 222 , Izy  such that 11,,( zyxfx  and ),,( 22 zyxfx  . Thus we

have 1 1 2 2 1 1( , , ) ( ( , , ), , )x f x y z f f x y z y z 

)),,(),,,(,(),),,),,,((( 112211112211 zyzfyzyfxfzyzyzyxfff  , where

21112211 ),,(),,,( IIzyzfyzyf  . Thus 21 II  is a right pure hyperideal of H .

Similarly it can be proved the case of hyperideal.

Proposition 2.10 Let ),( fH be a ternary semihypergroup with 0 and A be any

two-sided hyperideal of H . Then A contains a largest right pure two-sided

hyperideal (It is called the pure part of A and denote by )(A ).

Proof. Let )(A be the union of all right pure two-sided hyperideals contained in

A . Such hyperideals exist because {0} is a right pure hyperideal contained in each

two-sided hyperideal. By the above proposition )(A is a right pure two-sided

hyperideal. It is indeed the largest right pure two-sided hyperideal contained in A .

Proposition 2.11 Let ),( fH be a ternary semihypergroup with 0. Let KA, be

two-sided hyperideals of H and IiiA }{ be the family of two-sided hyperideals of

H . Then

1. )()(=)( KAKA   . 2. )()( i
Ii

i
Ii

AA 


  .

Proof. (1) . By KKAA  )(,)(  it follows KAKA  )()(  . But

)()( KA   is right pure by Proposition 2.9, so )()()( KAKA   .

On the other hand )()( AKA   . Similarly, )()( KKA   . Thus

)()()( KAKA   . Hence, )()(=)( KAKA   .

(2) . By ii AA )( it follows i
Ii

i
Ii

AA 


)( . Since )( iA is right pure, we

have )( i
Ii

A


is right pure. Thus we have )()( i
Ii

i
Ii

AA 


  .
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Definition 2.12 Let ),( fH be a ternary semihypergroup and A be a right pure two-

sided hyperideal of H. Then A is called purely maximal if A is maximal in the lattice

of proper right pure two-sided hyperideals of H .

A proper right pure two-sided hyperideal A of H is called purely prime if

AAHAf ),,( 21 implies AA 1 or AA 2 for any right pure two-sided

hyperideals 21, AA of H . Equivalently, AAA  21 implies AA 1 or AA 2 .

This is because 2121 ),,( AAAHAf  and ),,(),,(= 2122121 AHAfAAAfAA  .

Thus 2121 =),,( AAAHAf  .

Proposition 2.13 Let ),( fH be a ternary semihypergroup. Then any purely

maximal two-sided hyperideal is purely prime.

Proof. Let us suppose that A is purely maximal two-sided hyperideal of H and

21, AA are right pure two-sided hyperideals of H such that AAA  21 . Let us

suppose that AA1 . Then AA 1 is a right pure hyperideal such that AAA 1 .

Since A is purely maximal, so HAA =1  . Thus

AAAAAAAAAAHAA =)()(=)(== 2121222  .  Hence A
is purely prime.

Proposition 2.14 Let ),( fH be a ternary semihypergroup with 0. Then the pure

part of any maximal two-sided hyperideal of H is purely prime.

Proof. Let M be a maximal two-sided hyperideal of H and )(M be its pure

part. Let us suppose )(21 MAA  where 21, AA are right pure two-sided

hyperideals of H . If MA 1 , then )(1 MA  . If )(1 MA  , then MA 1 .

Thus HMA =1  since M is maximal. Hence we have

2 2 2 1 2 1 2= = ( ) = ( ) ( )A A H A A M A A A M      

MMMMM =)(  . But )(M is the largest right pure two-sided

hyperideal contained in M . Thus )(2 MA  . Hence )(M is purely prime.

Proposition 2.15 Let ),( fH be a ternary semihypergroup. Let A be a right pure

two-sided hyperideal of H and Ha such that Aa , then there exists a purely

prime two-sided hyperideal B of H such that BA  and Ba .
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Proof. Let

},:{= BaandBAHofhyperidealsidedtwopurerightaisBBX  .

Since XA , then X . Further, X is partially ordered by inclusion. Let

IiiB }{ be any totally ordered subset of X . By Proposition 2.9, i
Ii

B


is a right pure

two-sided hyperideal. Since i
Ii

BB 


 and i
Ii

Ba 


 , so XBi
Ii



 . Thus by Zorn's

Lemma, X has a maximal element, let it be denoted by B , such that B is pure,

BA  and Ba . Let we prove that B is purely prime. Let us suppose that 1A

and 2A are right pure two-sided hyperideals of H such that BA1 and BA2 .

Since 21, AA and B are right pure, then BAi  is a right pure two-sided hyperideal

such that BAB i  . Thus 1,2)=(iBAa i  . As Ba , we have

1,2)=(iAa i . Thus 21 AAa  . Hence BAA 21  . This shows that B is

purely prime.

Proposition 2.16 Let ),( fH be a ternary semihypergroup. Then every proper right

pure two-sided hyperideal A of H is the intersection of all the purely prime two-
sided hyperideals of H containing A .

Proof. By Proposition 2.15, there exists purely prime two-sided hyperideals

containing A . Let IiiB }{ be the family of all purely prime two-sided hyperideals

of H which contains A . Since iBA  for all Ii  , then i
Ii

BA 


 . Let we show

now that ABi
Ii



 . Let Aa . Then by Proposition 2.15, there exists a purely

prime two-sided hyperideal B such that BA  and Ba . it follows that

i
Ii

Ba 


 . Thus ABi
Ii



 . Hence i

Ii

BA 


= .

3. ON WEAKLY PURE HYPERIDEALS IN TERNARY
SEMIHYPERGROUPS

In this section the notion of weakly pure hyperideal of ternary semihypergroups
is introduced as a generalization of the pure two-sided hyperideal.
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Definition 3.1 Let ),( fH be a ternary semihypergroup. A two-sided hyperideal A

of H is called left (resp. right) weakly pure if ),,(= BAAfBA  (resp.

),,(= AABfBA  ) for all two-sided hyperideals of H .

It is clear that every left (right) pure two-sided hyperideal is left (right) weakly
pure.

Proposition 3.2 Let ),( fH be a ternary semihypergroup with 0 and BA, be two-

sided hyperideals of H . Then

},,),,(:{=1 AyxBhyxfHhBA  and

},,),,(:{=1 AyxByxhfHhBA 

are two-sided hyperideals of H .

Proof. We have 1BA because 10  BA . Let Hsr , and 1 BAh . Then

for all BhrsyfxfhrsfyxfAyx  )),,,(,(=)),,(,,(,, because Arsyf ),,( .

Hence 1),,(  BAhrsf . Also,

BHHBfrshyxffrshfyxf  ),,(),),,,((=)),,(,,( , because Bhyxf ),,(

. Thus 1),,(  BArshf . Hence 1BA is a two-sided hyperideal of H . Let now

Hrs , and BAh 1 . Then

BBHHfyxhfrsfyxhrsff  ),,()),,(,,(=),),,,(( for all Ayx , , because

Byxhf ),,( . Hence BAhrsf 1),,(  . Also,

Byxhfyxrsfhfyxrshff ),,(=)),,,(,(=),),,,(( , because Axrsf ),,( . Thus

BArshf 1),,(  . Hence BA 1 is a two-sided hyperideal of H .

Proposition 3.3 Let ),( fH be a ternary semihypergroup and A be a two-sided

hyperideal of H . Then the following statements are equivalent:

1. A is left (right) weakly pure.

2. )=(=)( 1
1 BAABAABABA  

 for all hyperideals B of H .

Proof. (2)(1)  . Let us suppose that A is weakly pure. Since 1BA is a two-sided

hyperideal, we have ),,(=)( 11   BAAAfABA . Let we show now that
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BBAAAf  ),,( 1 . Let ),,(),,( 1 BAAAfxhaf , where 1,,  BAxAha .

Then Bxhaf ),,( by the definition. Hence BBAAAf  ),,( 1 . Also

AHAAfBAAAf  ),,(),,( 1 and BABAAAfABA   ),,(= 11 . Thus

ABABA  )( 1 . Let ABb  , then Bbyxf ),,( for all Ayx , .

Hence 1 BAb . Thus ABAAB   )( 1 . Therefore ABABA  =)( 1 .

(1)(2)  . Let us assume that BA, are two-sided hyperideals of a ternary

semihypergroup H and ABABA  =)( 1 . We show that A is left weakly

pure. First we show that 1),,(  ABAAfB . Let Bb , then for every Ayx , ,

we have ),,(),,( BAAfbyxf  . Thus 1),,(  ABAAfb . This shows that
1),,(  ABAAfB . Thus

),,(),,(=),,( 1 BAAfABAAfAABAAfBA   by hypothesis. But we have

always BABAAf ),,( . Hence ),,(= BAAfBA . Thus A is left weakly pure.

Proposition 3.4 Let ),( fH be a ternary semihypergroup. Then the following

statements are equivalent:

1. Every two-sided hyperideal of H is left weakly pure.

2. Every two-sided hyperideal of H is idempotent.

3. Every two-sided hyperideal of H is right weakly pure.

Proof. (2)(1)  . Let us suppose that every two-sided hyperideal of H is left

weakly pure. Let X be a two-sided hyperideal of H , then for every two-sided
hyperideal of H , we have ),,(= YXXfYX  . In particular,

),,(== XXXfXXX  . Hence every two-sided hyperideal of H is

idempotent.

(1)(2)  . Let us suppose that every two-sided hyperideal of H is idempotent. Let

X be a two-sided hyperideal of H , then for any two-sided hyperideal Y of H ,
we have YXYXXf ),,( . On the other hand, we have

),,(),,(= YXXfYXYXYXfYX  .

Hence we have ),,(= YXXfYX  . Thus X is left weakly pure.
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(3)(2)  . It is proved in similar way as (1)(2)  .

(2)(3)  . Let us suppose that every two-sided hyperideal of H is right weakly

pure. Let X be any two-sided hyperideal of H . Then X is right weakly pure.
Hence for every two-sided hyperideal Y of H , we have ),,(= XXYfYX  . In

particular ),,(= XXXfXX  . Hence every two-sided hyperideal of H is

idempotent.

4.  ON PURE HYPERRADICAL OF A TERNARY SEMIHYPERGROUP

In this section we deal with ),( fH to be a ternary semihypergroup with 0 such

that HHHHf =),,( . Let )(H be the set of all right pure hyperideals of H

and )(H be the set of all proper purely prime hyperideals of H . Define for

every )(HI  ,

}:)({= JIHJI   , )}(:{=)( HIH I   .

Theorem 4.1 )(H forms a topology on )(H .

Proof. Since {0} is a right pure hyperideal of H , then

 =}{0}:)({={0} JHJ  , because 0 belongs to every right pure

hyperideal. Since H is a right pure hyperideal of H ,

)(=}:)({= HJHHJH   because )(H is the set of all proper

purely prime hyperideals of H . Let )(}: HI 


 , then

=}somefor:)({= 





JIHJI 
.=}:)({

 IJIHJ   

To prove that )(
21

HII  for every )(,
21

HII  , we consider

21 IIJ   . Then )(HJ  , JI 1 and JI 2 . Let us suppose that

JII  21 . Since J is a purely prime hyperideal, therefore either JI 1 or

JI 2 , which is a contradiction. Hence JII 21  , which implies
21 IIJ  .

Thus
2121 IIII   . On the other hand, if

21 IIJ  , then JIJII  121 
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and
12 IJJI  and

212 III JJ   . Hence
2121 IIII   .

Consequently,
2121

= IIII   , which implies )(
21

HII  . Thus )(H is a

topology on )(H .

CONCLUSION

In this paper we studied a class of algebraic hyperstructures called ternary
semihypergroups which are a generalization of ternary semigroups. The main
purpose of this paper was to introduce some special classes of hyperideals in ternary
semihypergroups. We introduced the notions of pure hyperideals, weakly pure
hyperideals, purely and purely prime hyperideals and studied some properties of
them in ternary semihypergroups and weakly regular ternary semihypergroups. The
collection of all proper purely prime hyperideals of a ternary semihypergroup with
zero was topologized.
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