The Fundamental Theorems Of Calculus For The *M*_{*B*} −**Integral**

.Mimoza $ShK\ddot{E}MBI¹$

¹Department of Mathematics, ALEKSANDER XHUVANI University, Elbasan-ALBANIA Email: mimoza_sefa@yahoo.com

Abstract

One version of Mcshane integral with respect to a basis for the function with value in Dedekind complete Riesz space is introduced. The fundamental theorems of calculus for the M_β –integral are proved **Keywords**:Mcshane and Henstock integration ,Riesz spaces,Derivation basis,Fundamental theorem of calculus

Introduction and preliminaries

In this paper we introduce the Mcshane integration of Riesz-valued functions in the case of the derivation basis.We demonstrate also the classic fundamental theorems of Calculus.The paper is structured as follow.In Section 2 we recall some fundamental concepts related to Riesz spaces and derivation bases.In Section 3 we investigate some basic properties of Mcshane integral with respect to a Basis.In Section 4 we demonstrate the classic Fundamental theorems of Calculus.

Definition2.*1We say that a net* (r_β) _{*g}order converges* (or short (o) –</sub> $converges)$ *to* $r \in R$ *if there exists an* (o) – $net(p_\beta)$ _{$\beta \in A$} satisfying $|r_\beta - r| \le$ p_{β} *for each* $\beta \in A$ *we shall write in this case* $r = (o)$ *lim_Br_B.In case* $A = N$ *we get definition of* (a) *convergent sequence*.

Definition2.2 We say that a net $(r_\beta)_{\beta,\epsilon_A}$ is (r) – converges for reR if there *exists* $\beta_0 \in A$ *so that* $|r_\beta - r| \le \epsilon u$ *for all* $\beta \ge \beta_0$ *. In case* $A = N$ *we get the definition of* (r) *convergent sequence.*

Definition2.3 *A Dedekind complete Riesz space is said to be regular if it satisfies property* σ and if for each sequence $(r_n)_n$ in R,order convergent to zero, there *exists a sequence* $(k_n)_n$

of positive numbers , with $\lim_{n} k_n = +\infty$, such that the sequence $(k_n r_n)_n$ is order *convergent to zero.*

Proposition 2.4[4](Theorem1, p. 350) *In a regular Riesz space the* (o) – convergence is equivalent to the (r) – convergence.

An interval is always a compact nondegerate subinterval of R.if $E \subset R$, then $|E|$ denotes the Lebesgue measure of E.

A collection of intervals is called non overlapping if their interiors are pair wise disjointed. Let be $[a, b]$ a fixed interval of R and $\mathbb Z$ the family of all subintervals of $[a, b]$. An *M*−basis on $[a, b]$

Is by definition, any subset *B*(*M*) *of* $Z \times [a, b]$ such tha*t* $(I, x) \in B(M)$ implies $X \in E$ for $[a, b]$,

and is denoted with $B_m[E]$. Given a base B(M), an interval I is called a B(M) – interval if $(I, x) \in B(M)$, for any $x \in E$. We assume that [a, b] is a B(M) – interval. For E

and E [a, b]we denote by $\frac{1}{E}$ the directed set of all posive real –valued functions defined on E and endowed with natural ordering: given two functions $\frac{1}{1}$ and $\frac{1}{2}$ from

 $_{\rm E}$ we say $_{1} \leq$ $_{2}$ if and only if $_{1}(x)$ $_{2}(x)$ for every. $x \in E$

A funksion \overline{S} : E \rightarrow]− , + [of \overline{p} is rreferred as a gauge on E. For a given gauge ϵ we denote

$$
B[E] = \{ (I, x) \in B(M) : I \quad]x - (x), x + (x)[, x \in E \}
$$

We note that \bf{B} is also basis on $[a, b]$.

We say that a basis B(M) is a Vitali basis if for any ϵ and $x\epsilon[a,b]$ the set B [x] is non empty.

Let be E \emptyset and $E \subseteq [a, b]$.A

finite subset P of $B_m[E]$ is called B(M) – decomposition on E if for every distinct elements($I'x'$) and (I'', x'') of P the corresponding intervalsl' and I'' are non overlapping and $E = U_{(\mathbf{I}, \mathbf{x}) \in \mathbb{P}}$ I.If $E = [a, b]$ we say that P is B(M) – partition of $[a, b]$.

Given a gauge a B (M) – decomposition is called – fine. In this paper we assume that each basis $B(M)$ considered here is a Vitali basis and has two partitions properties:(a)For any B(M) – interval I and a gauge on I there exist a $B_8(M)$ – partion of I.If I_1 and I_2 are B(M) – intervals and $I_1 \subset I_2$ then $I_1 \setminus I_2 = \bigcup_{i=3}^n I_i$ where I_i are non overlapping $B(M)$ – intervals.

If f: [a, b] \rightarrow R and P = $\{(\mathbf{i}_i, \xi_i): i = 1, 2, \dots, m\}$ is a partitions of [a, b] the sum $\prod_{i=1}^{n} f(\xi_i)$ |J_i |will denoted by $S(f, P)$

3 The Mcshane integral with respect to a Basis

WE now introduce a Mcshane integral type with respect to a basis for Riesz-space valued functions.

Definition 3.1*Let* $B(M)$ *be a fixed basis on*[a, b]. We say that $f: [a, b] \rightarrow R$ is *Mcshane integrable on a* $B(M)$ – *interval* $(B(H)$ – *interval* $) E \subset [a, b]$ wth *respect to* $B(M)$ (*brief* M_R – *integrable*) *if there exist an element YER such that* $\inf_{\delta \in \Delta} \left(\sup \{ \big| \sum_{(l, x) \in P} f(x) | l \right| - Y | : \text{Pis a } B_{\delta}(M) - \text{Partition of } E \} \right) = 0$ (1)*In this case we write* (M_B) $\int_{B}^{b} f = Y$.

Proposition3.1 *Let R be a Dedekind complete Riesz space ,satisfying property* $\sigma, Q \subset [a, b]$ *be countable set, and f:*[a, b] $\rightarrow R$ *be a function, such that f*(x) = 0 *for all* $x \in [a, b] \setminus Q$. *Then* $(M_B) \bigcap_{a=0}^{b} f = 0$ The prof of this preposition can adopted without differences the proof made by [2]for the Henstock integral. Proposition 3.2*Let R be a Dedekind complete Riesz space and solid ,satisfying property* $\sigma, Q \subset [a, b]$ *be a set with* $|Q| = 0$, and $f:[a, b] \rightarrow R$ *be a function,* such that $f(x) = 0$ for all $x \in [a, b] \setminus Q$. Then $(M_B) \bigcup_{j=1}^{b} f = 0$ Proposition3.3 *Under the above condition,the function f is* M_B −*integra able on a* () −*interval E if and only if*

 $inf_{R \in \Lambda} [sup{ |S(f, P_1) - B(f, P_2)| : P_1 \text{ and } P_2 \text{ are } B(M) - partition \text{ of } E }] = 0$ Taking in account of respective property for the Henstock-integral on Riesz space $(see [2])$, we can prove the proposition.

Proposition 3.4 *If* $[a, b]$, $[a, c]$ *and* $[c, b]$ *are* $B(M)$ −*intervals and f is* M_R . *integrable on* $[a, c]$ *and on* $[c, b]$ *, then f is also* M_B −*integrable on* $[a, b]$ *and*

$$
(M_B)\int_a^b f = (M_B)\int_a^c f + (M_B)\int_c^b f
$$

Proposition 3.5 *If function f is* M_B – *integrable on a B* – *interval of* [a, b],*then f is* $also M_B - integrable on any B(M) -intervals I [a, b]$

Definition 3.2 *A* function f : $[a, b] \rightarrow R$ has the property $(a) - S^*M(B)$ on a *B*(*M*) – *interval of* $[a, b]$ *,if*

$$
\inf_{\delta \in \Delta_{[a,b]}} \left[\sup_p \left\{ \sum_{i=1}^k \sum_{j=1}^m \left| f(t_i) - f(s_j) \right| |t_{i \cap} J_j| : P_1, P_2 \text{ are } B_{\delta(M)} - \text{partit. of } I \right\} \right]
$$

Where $P_1 = \{(l_i t_i), i = 1, ..., k\}$ and $P_2 = \{(l_i s_i), i = 1, ..., m\}$. Lemma 3.1 [4] Let $D = \{(l_i, t_i), i = 1, ..., m\}$ and $J = \{l_i, j = 1, ..., m\}$ be

 $B_{\delta(M)}$ – partition of I *Then* $D' = \{ (l_i \cap l_j, t_j) : i = 1, ..., k; j = 1, ..., m; l_i^0 \cap l_i^0 \neq \emptyset \}$ *Is a* B_R – partition of *I* and $M(f, D) = S(f, D)$ Corollary 3.1 *If f is* M_B −*integrable on* [a,b] and *F is its indefinite integral then* $\inf_{\delta \in \Delta} \left\{ \sup_{(I,x) \in P} |f(x)|I| - F(I)|: \text{is a } B_{\delta(M)} - partition \text{ of } [a,b] \right\} = 0$

Proposition 3.6 *Let R be Dedekind complete Riesz space.A function f:* $[a, b] \rightarrow R$ *is R is a* M_B −*integrable on a*

 $B(M)$ – interval lof $[a, b]$, if and only if, for the $B_{\delta(M)}$ – partition D D $= \{ (l_i, t_i), i = 1, \ldots, m \}$ and $E = \{ (j_i, t_i), j = 1, \ldots, m \}$ holds

$$
\inf_{\delta \in \Delta_E} \left\{ \sup \left[\sum_{i=1}^m \sum_{j=1}^n |f(t_i) - f(s_i)| \left| l_i \cap l_j \right| \right] \right\} = 0
$$

Proposition3.7 *Let* R *be a Dedekind complete regular Riesz Space and* $f \geq 0$ *be* M_B – integrable on α B(M) – interval and solid $E \subset [a, b]$. Then there exist *the function g and h* M_B – *intergrable such that* $0 \le g \le f \le h$

and there exist a directed net $(p_{\delta})_{\delta \in \Delta}$ *such that* $(M_B) \big|_{F}^{r} |f - g| \leq p_{\delta}$ *Proof.*Contstruct the simple funksion

$$
f(x) = \begin{cases} \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} \le f(x) \le \frac{k}{2^k} \\ 0 & \text{if contrary} \end{cases}
$$

Where $k = 1, 2, ..., n2^n$ and *u* unit element of *R*.. We get that $|f(x) - f_{n(x)}| \leq \frac{1}{2^n}u$ (2)

We have that sequence f_n is (r) – convergent to $f(x)$. If we write in a form $f_n(x) = \int_{0}^{n} k_i \chi_{E_i}$. We get that there exists $B(M)$ -intervals S_n and positive elements $c_n \in R$ such that $f(x) = \sum_{n=1}^{\infty} c_n \chi_{S_n}$ for every x $\in \mathbb{R}$. Moreover *f* is

integrable and
$$
\frac{x}{n-1} c_n |S_n| = \frac{y}{E} f < +
$$
 (3)

Since S_n are Lebegue measurable there exist compact sets K_n and open sets G_n of $[a, b] \cap E$ that $K_n \subset S_n \subset G_n$. And there exists a $\varepsilon > 0$ such that $| \nG_n \setminus$ $|<\epsilon$

we take $| \ c_n | G_n \setminus K_n | \ < \frac{d}{2^{n+2}}$ From the convergence of the series (2)we get $|S_{n+1} c_n | S_n | < \frac{\varepsilon \cup \varepsilon}{4}$ Define $g = \sum_{i=1}^{N} c_n \chi_{k_n}$ and $h = \sum_{i=1}^{N} c_n \chi_{k_n}$. It is easy to note that $q \le f \le h$ and $h - g = \sum_{i=1}^{N} c_n \chi_{G_n \mid_{K_n}} + \sum_{i=N+1}^{\infty} c_n \chi_{G_n} + \sum_{i=1}^{\infty} c_n \chi_{G_n \mid_{K_n}} + \sum_{i=N+1}^{\infty} c_n \chi_{S_n}$

4 The fundamental theorems of Calculus for the M_R -integral

A function φ is said to be (*o*) −continuous at a point $x_0 \in [a, b]$ with respect to basis $-B(M)$ if $\inf_{\delta} \left[sup\{ |\varphi(I)|: (I, x_0) \in B[\{x_0\}]\} \right] = 0$. Given $E \neq \emptyset$ and $E \subset [a, b]$ we say that the function φ is (φ)-continuous on E if it is (φ)-continuous at every point of E. We say that φ is(u) – differentiable on E with respect to basis *B* if there exists a function $g: E$ R such that

$$
\inf_{\partial \in \Delta_E} \left[\sup \left\{ \left| \frac{\varphi(I)}{|I|} - g(x) \right| : (I, x) \in B[E] \right\} \right].
$$

The function g is called the (u) – derivative with respect to $B(M)$. It is easy to prove that (u) – derivative is determined uniquely.

Theorem4*. 1Let R be a Dedekind complete Riezs space ,B*() *a basis and be a R*−*valued function on B* (*M*) – *interval .If* φ *is* (*u*) – *differentiable with respect to B* (*M*) *on* $[a, b]$ with derivative φ , then φ is M_B −integrable on $[a, b]$, and

$$
\int_a^{\sigma} \varphi = \varphi([a, b]),
$$

Proof. By (u) – differentiability of φ in [a, b], there exists an (o) –net $(p_a)_{a \in \Lambda}$, Such that $\sup \left\{ \left| \frac{\varphi(t)}{|t|} - \varphi'(x) \right| : (I, x) \in B_\delta([a, b]) \right\} \leq (p_\theta), \forall \partial \in \Delta$. Choose a ∂ -fine partition $P = \{(l_i x_i): i = 1, ..., q\}$ of $[a, b]$, $\forall \partial \in \Delta$. From the above inequality, we get $0 \leq |S(\phi \cdot P) - \Delta|$ $[a, b] | = |\sum_{i=1}^q \varphi(x_i) | I_i | - \varphi(I_i) | \leq \qquad \qquad \frac{q}{i-1} \left\{ |I_i| \left| \frac{\varphi(I_i)}{l_i} - \varphi'(x_i) \right| \right\} \leq (\sum_{i=1}^q |I_i|) p_{\delta} =$ $(b - a)p_s$

Let us follow the idea of [5]for the function Mcshane integrable with real value to prove the theorem:

Theorem4 2 Let R be a regular Riesz space,B a fixed basis,f:[α , b] \rightarrow R and let φ be a *R*−*valued function on B*−*imerval,such that for some set* $Q \subset [a, b]$ *with* $|Q| = 0$ *.If the*

function f is (u) – *derivative of* φ *on* [a, b] \Diamond *with respect to B then f is Mcshane integrable in* [a, b] *and*

$$
(M_B) = \int_a^b f = \varphi([a, b]).
$$

Proof. Since the Mcshane integrability by virtue of Proposition 3.2 does not depend on values of f on a set of f measure zero, we assume $f(x) = 0$ on 0. Let be $Q = [a, b] \setminus Q$. We can use the Proposition 2.1.As f is the (u) – derivative of φ in Q' , then there exist an element $u \ge 0$ of $R, u \ne 0$ such that for every $\varepsilon > 0$ a gauge $\partial_1 \varepsilon \Delta_0$ can be found. If $P =$ $\{(I_i, x_i): i = 1, 2, \ldots, q\}$ is a $B_{a_1}[Q]$ decomposition, then $||I_i| f(x_i) - \varphi(|I_i)| \leq |I_i| \epsilon u$ For all $i = 1, ..., q$, Choose a net (p_β) such $\sum_{j=1}^n |l_i| < \varepsilon$, where $l_1, l_2, ..., l_n$ are non overlapping intervals with $\sum_{j=1}^{n} \varphi(I_j) < \frac{1}{n} p_{\beta}$. Moreover by (φ) – continuity of φ with respect to the basis in Q there exists a net $\left(p_{\beta}\right)$ that

 $\sup\{|\varphi([u, v]): x - \delta \le u \le x \le v \le \delta\}\} < p_{\theta}$

We observe $\sum_{(I,x)\in P,x\in E} \varphi(I) \to 0$. There is gauge δ_2 such that $\sum_{(I,x)\in P, x\in E} \varphi(I) \leq p_B$ Put $\delta(x) = min[\delta_1(x), \delta_2(x)]$. Then for every B_δ partition $P = \{(I_i, x_i): i = 1,2, ..., q\}$ of [a, b], $\delta \in \Delta_{[a,b]}$, we have $0 \leq \left| \left[\sum_{i=1}^{q} |l_i| f(x_i) \right] - \varphi([a, b]) \right| = \left| \sum_{i=1}^{q} \{ |l_i| f(x_i) - \varphi(l_i) \} \right|$ ≤ $\left| \sum_{x_{i \neq 0}} {\left\{ |I_i| f(x_i) - \varphi(I_i) \right\}} \right| + \sum_{x \in Q} {\left| \varphi(I_i) \right|} \leq \varepsilon u(b-a) + p_\beta$

References

[1] Aliprentis Ch.D.,Border,K.C.,Infinite Dimensional Analysis, (1994), Spring Verlag.

[2]Boccuto A.,Skvortsov,V.A.Hestock-Kurzweil type integration of Riesz-space valued functions and applications to Walsh series. Real,Analysis Ex change,Vol.29(1),2003/2004,419-439.

[3]Kurt D.S.,Swartz C.W,Theories of integration,World Scientific,Vol.9

[4]Mcgill P.,Integration in vector lattices,J.london.Math.Soc.11(1975),347-360.

[5] Oh H.J.,Lee D.h.,Park Y.J,Relation between generalized integration and differentiation, J.Naturat.Sciences.Vol.8,17-25,1999.

[6]Schaefer H.H.,Banach Lattices and positive Operators,Springer Verlag,1974.