"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

The Fundamental Theorems Of Calculus For The M_{β} –Integral

.Mimoza ShKËMBI¹

¹Department of Mathematics, ALEKSANDER XHUVANI University, Elbasan-ALBANIA Email: mimoza_sefa@yahoo.com

Abstract

One version of Mcshane integral with respect to a basis for the function with value in Dedekind complete Riesz space is introduced. The fundamental theorems of calculus for the M_{β} –integral are proved **Keywords**:Mcshane and Henstock integration ,Riesz spaces,Derivation basis,Fundamental theorem of calculus

Introduction and preliminaries

In this paper we introduce the Mcshane integration of Riesz-valued functions in the case of the derivation basis.We demonstrate also the classic fundamental theorems of Calculus.The paper is structured as follow.In Section 2 we recall some fundamental concepts related to Riesz spaces and derivation bases.In Section 3 we investigate some basic properties of Mcshane integral with respect to a Basis.In Section 4 we demonstrate the classic Fundamental theorems of Calculus.

Definition2.1 We say that a net $(r_{\beta})_{\beta}$ order converges (or short (o) – converges) to $r \in R$ if there exists an (o) – net $(p_{\beta})_{\beta \in A}$ satisfying $|r_{\beta} - r| \leq p_{\beta}$ for each $\beta \in A$ we shall write in this case $r = (o) \lim_{\beta, r_{\beta}} \ln case A = N$ we get definition of (o) convergent sequence.

Definition2.2 We say that a net $(r_{\beta})_{\beta \in A}$ is (r) - converges for $r \in R$ if there exists $\beta_0 \in A$ so that $|r_{\beta} - r| \leq \epsilon u$ for all $\beta \geq \beta_0$. In case A = N we get the definition of (r) convergent sequence.

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

Definition2.3 A Dedekind complete Riesz space is said to be regular if it satisfies property σ and if for each sequence $(r_n)_n$ in R, order convergent to zero, there exists a sequence $(k_n)_n$

of positive numbers, with $\lim_n k_n = +\infty$, such that the sequence $(k_n r_n)_n$ is order convergent to zero.

Proposition 2.4[4] (Theorem 1, p. 350) In a regular Riesz space the (o) – convergence is equivalent to the (r) – convergence.

An interval is always a compact nondegerate subinterval of R.if $E \subset R$, then |E| denotes the Lebesgue measure of E.

A collection of intervals is called non overlapping if their interiors are pair wise disjointed. Let be [a, b]a fixed interval of R and Z the family of all subintervals of [a, b]. An *M*-basis on [a, b]

Is by definition, any subset B(M) of $\mathbb{Z} \times [a, b]$ such that $(I, x) \in B(M)$ implies $x \in E$ for E [a, b],

and is denoted with $B_m[E]$. Given a base B(M), an interval I is called a B(M) – interval if $(I, x) \in B(M)$, for any $x \in E$. We assume that [a, b] is a B(M) – interval. For E

and E [a, b] we denote by $_{\rm E}$ the directed set of all posive real -valued functions defined on E and endowed with natural ordering: given two functions $_{1}$ and $_{2}$ from

Eve say $1 \le 2$ if and only if $1(x) \ge 2$ (x) for every. $x \in E$ A funksion $x \in E = 1 - 1 + 1$ [of Eis referred as a gauge on E.

For a given gauge ϵ we denote

$$B[E] = \{(I, x)\in B(M): I | x - (x), x + (x)[, x\in E\}\}$$

We note that B is also basis on [a, b].

We say that a basis B(M) is a Vitali basis if for any ϵ and $x\epsilon[a, b]$ the set B [x] is non empty.

Let be E \emptyset and E \subset [a, b].A

finite subset P of $B_m[E]$ is called B(M) – decomposition on E if for every distinct elements (I'x') and (I'', x'') of P the corresponding intervals I' and I'' are non overlapping and $E = \bigcup_{(I,x)\in P} I$. If E = [a, b] we say that P is B(M) – partition of [a, b].

Given a gauge $a B (M) - decomposition is called - fine. In this paper we assume that each basis B(M)considered here is a Vitali basis and has two partitions properties: (a)For any B(M) - interval I and a gauge on I there exist a <math>B_{\delta}(M)$ - partion of I.If I_1 and I_2 are B(M) - intervals and $I_1 \subset I_2$ then $I_1 \setminus I_2 = \bigcup_{i=3}^n I_i$ where I_i are non overlapping B(M) - intervals.

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collaboration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

If f:[a, b] \rightarrow R and P= {(J_i, ξ_i): i = 1,2,..., m} is a partitions of [a, b]the sum $\prod_{i=1}^{n} f(\xi_i) |J_i|$ will denoted by S(f, P)

3 The Mcshane integral with respect to a Basis

WE now introduce a Mcshane integral type with respect to a basis for Riesz-space valued functions.

Definition 3.1Let B(M) be a fixed basis on [a, b]. We say that $f: [a, b] \to R$ is Mcshane integrable on a B(M) – interval (B(H) – interval) $E \subset [a, b]$ with respect to B(M) (brief M_B – integrable) if there exist an element $Y \in R$ such that $\inf_{\delta \in \Delta} (\sup\{|\sum_{(I,x) \in P} f(x)|I| - Y|: Pis \ a \ B_{\delta}(M) - Partition \ of \ E\}) = 0$ (1)In this case we write (M_B) $\int_{R}^{\infty} f = Y$.

Proposition3.1 Let R be a Dedekind complete Riesz space ,satisfying property $\sigma, Q \subset [a, b]$ be countable set, and $f:[a, b] \to R$ be a function, such that f(x) = 0 for all $x \in [a, b] \setminus Q$. Then $(M_B) \stackrel{*b}{a} f = 0$ The prof of this preposition can adopted without differences the proof made by [2] for the Henstock integral. Proposition 3.2Let R be a Dedekind complete Riesz space and solid ,satisfying property $\sigma, Q \subset [a, b]$ be a set with |Q| = 0, and $f:[a, b] \to R$ be a function, such that f(x) = 0 for all $x \in [a, b] \setminus Q$. Then $(M_B) \stackrel{*b}{_{a}a} f = 0$ Proposition3.3 Under the above condition, the function f is M_B –integrable on a B(M) ~interval E if and only if

 $\inf_{\delta \in \Delta} [sup\{|S(f, P_1) - B(f, P_2)|: P_1 \text{ and } P_2 \text{ are } B(M) - partition \text{ o of } E\}] = 0$ Taking in account of respective property for the Henstock-integral on Riesz space (see[2]), we can prove the proposition.

Proposition 3.4 If [a, b], [a, c] and [c, b] are B(M) –intervals and f is M_B -integrable on [a, c] and on [c, b], then f is also M_B –integrable on [a, b] and

$$(M_B) \int_a^b f = (M_B) \int_a^c f + (M_B) \int_c^b f$$

Proposition 3.5 If function f is M_B – integrable on a B –interval of [a, b], then f is also M_B –integrable on any B(M) –intervals I [a, b]

Definition 3.2 A function $f : [a, b] \to R$ has the property $(o) - S^*M(B)$ on a B(M) – interval of [a, b], if

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" ist Collaboration between EPOKA University and "Aleksander Moisiu". University of Durres

on June 2-4 2011, Tirana-Durres, ALBANIA.

$$\inf_{\delta \in \Delta_{[a,b]}} \left[\sup_{P} \left\{ \sum_{i=1}^{k} \sum_{j=1}^{m} |f(t_i) - f(s_j)| \left| I_{i\cap} J_j \right| : P_1, P_2 \text{ are } E_{\delta(M)} - partit \cdot of I \right\} \right]$$

Where $P_1 = \{(I_i t_i), i = 1, ..., k\}$ and $P_2 = \{(J_i s_i), j = 1, ..., m\}$.

Lemma 3.1[4] Let $D = \{(l_i, t_i), i = 1, ..., m\}$ and $\mathcal{J} = \{J_1, j = 1, ..., m\}$ be $B_{\delta(M)}$ – partition of I

Then $D' = \{(I_i \cap J_i, t_i): i = 1, ..., k; j = 1, ..., m; I_i^0 \cap J_i^0 \neq \emptyset\}$

Is a B_{δ} - partition of 1 and M(f, D) = S(f, D')

Corollary 3.1 If f is M_B -integrable on [a,b] and F is its indefinite integral then

$$\inf_{\delta \in \Delta} \left\{ \sup_{(I,x) \in P} |f(x)|I| - F(I)| : is \ a \ B_{\delta(M)} - partition \ of \ [a,b] \right\} = 0$$

Proposition 3.6 Let R be Dedekind complete Riesz space. A function $f:[a,b] \rightarrow R$ is R is $a M_B$ —integrable on a

B(M) - interval lof [a, b], if and only if, for the $B_{\delta(M)}$ - partition D D $= \{(I_i, t_i), i = 1, ..., m\}$ and $\mathcal{E} = \{(J_i, t_i), j = 1, ..., m\}$ holds

$$\inf_{\delta \in \Delta_E} \left\{ \sup \left[\sum_{i=1}^m \sum_{j=1}^n |f(t_i) - f(s_i)| \left| I_i \cap J_j \right| \right] \right\} = 0$$

Proposition3.7 Let R be a Dedekind complete regular Riesz Space and $f \ge 0$ be M_B – integrable on $\alpha B(M)$ – interval and solid $E \subset [a, b]$. Then there exist the function g and h M_B – intergrable such that $0 \le g \le f \le h$

and there exist a directed net $(p_{\delta})_{\delta \in \Delta}$ such that $(M_B)_{F}^{r} |f - g| \leq p_{\delta}$ Proof.Contstruct the simple funksion

$$f(x) = \begin{cases} \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} & u \le f(x) \le \frac{k}{2^k} \\ 0 & \text{if contrary} \end{cases}$$

Where $k = 1, 2, ..., n2^n$ and u unit element of R. We get that $|f(x) - f_{n(x)}| \le \frac{1}{2n}u$ (2)

We have that sequence f_n is (r) – convergent to f(x). If we write in a form $f_n(x) = \sum_{i=1}^n k_i \chi_{E_i}$. We get that there exists B(M)-intervals S_n and positive elements $c_n \in R$ such that $f(x) = \sum_{n=1}^{\infty} c_n \chi_{S_n}$ for every $x \in E$. Moreover f is $\bigcap_{n=1}^{\infty} c_n \left| S_n \right| = \int_{F} f < + \quad (3)$

integrable and

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collaboration between EPOKA University and "Aleksandër Molstu" University of Durris on June 2-4 2011, Tirana-Durres, ALBANIA.

Since S_n are Lebegue measurable there exist compact sets K_n and open sets G_n of $[a, b] \cap E$ that $K_n \subseteq S_n \subseteq G_n$. And there exists a $\varepsilon > 0$ such that $|G_n \setminus K_n| < \epsilon$

we take $c_n |G_n \setminus K_n| < \frac{u\epsilon}{2^{n+2}}$ From the convergence of the series (2)we get $\sum_{N+1}^{\infty} c_n |S_n| < \frac{\epsilon U}{4}$

Define $g = \sum_{l=1}^{N} c_n \chi_{k_n}$ and $h = \bigcup_{l=1}^{N} c_n \chi_{G_n}$. It is easy to note that $g \leq f \leq h$

 $h - g = \sum_{i=1}^{N} c_n \chi_{G_n \setminus K_n} + \sum_{i=N+1}^{\infty} c_n \chi_{G_n} : \sum_{i=1}^{\infty} c_n \chi_{G_n \setminus K_n} + \sum_{i=N+1}^{\infty} c_n \chi_{S_n}$

4 The fundamental theorems of Calculus for the M_B-integral

A function φ is said to be (o) -continuous at a point $x_0 \in [a, b]$ with respect to basis -B(M) if $\inf_{\delta} [sup\{|\varphi(I)|: (I, x_0) \in B[\{x_0\}]\}] = 0$. Given $E \neq \emptyset$ and $E \subset [a, b]$ we say that the function φ is (o)-continuous on E if it is (o)-continuous at every point of E. We say that φ is (u) - differentiable on E with respect to basis B if there exists a function g:E R such that

$$\inf_{\partial \in \Delta_E} \left[\sup \left\{ \left| \frac{\varphi(I)}{|I|} - g(x) \right| : (I, x) \in B[E] \right\} \right].$$

The function g is called the (u) – derivative with respect to B(M). It is easy to prove that (u) – derivative is determined uniquely.

Theorem4. ILet R be a Dedekind complete Riezs space , B(M) a basis and φ be a R-valued function on B(M) – interval . If φ is (u) – differentiable with respect to B(M) on [a,b] with derivative φ , then φ is M_B – integrable on [a,b], and

$$\int_a^{a} \varphi = \varphi([a, b]).$$

Proof. By (u) - differentiability of φ in [a, b], there exists an (o) -net $(p_{\partial})_{\partial \epsilon \Delta}$, Such that $\sup \left\{ \left| \frac{\varphi(l)}{|l|} - \varphi'(x) \right| : (l, x) \epsilon B_{\delta}([a, b]) \right\} \leq (p_{\partial}), \forall \partial \epsilon \Delta$. Choose a ∂ -fine partition $P = \{(I_i x_i) : i = 1, ..., q\}$ of $[a, b], \forall \partial \epsilon \Delta$. From the above inequality, we get $0 \leq |S(\varphi \cdot P) - \varphi[a, b]| = |\sum_{i=1}^{q} \varphi'(x_i)|I_i| - \varphi(I_i)| \leq q_{i=1}^{q} \left\{ |I_i| \left| \frac{\varphi(I_i)}{I_i} - \varphi'(x_i) \right| \right\} \leq \left(\sum_{i=1}^{q} |I_i| \right) p_{\delta} = (b-a)p_{\delta}$

Let us follow the idea of [5] for the function Mcshane integrable with real value to prove the theorem:

Theorem4 2 Let R be a regular Riesz space, B a fixed basis, $f:[a, b] \to R$ and let φ be a R-valued function on B-interval, such that for some set $Q \subset [a, b]$ with |Q| = 0. If the

"1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collaboration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

function f is $(u) - derivative of \varphi on [a, b] \setminus Q$ with respect to B then f is Mcshane integrable in [a, b] and

$$(M_B) = \int_a^b f = \varphi([a, b]).$$

Proof. Since the Mcshane integrability by virtue of Proposition 3.2 does not depend on values of f on a set of f measure zero, we assume f(x) = 0 on Q. Let be $Q = [a, b] \setminus Q$. We can use the Proposition 2.1. As f is the (u) - derivative of φ in Q, then there exist an element $u \ge 0$ of $R, u \ne 0$ such that for every $\varepsilon > 0$ a gauge $\partial_1 \epsilon \Delta_Q$ can be found. If $P = \{(l_i, x_i): i = 1, 2, ..., q\}$ is a $B_{\partial_1}[Q]$ decomposition, then $||I_i| f(x_i) - \varphi(|I_i)| \le |I_i| \epsilon u$ For all i = 1, ..., q. Choose a net (p_β) such $\sum_{j=1}^n |I_j| < \varepsilon$, where $l_1, l_2, ..., l_n$ are non overlapping intervals with $\sum_{j=1}^n \varphi(I_j) < \frac{1}{n} p_\beta$. Moreover by (o) - continuity of φ with respect to the basis in Q there exists a net (p_β) that

 $\sup\{|\varphi([u,v]): x - \delta \le u \le x \le v \le \delta|\} < p_{\beta}$

We observe $\sum_{(I,x)\in P,x\in E} \varphi(I) \to 0$. There is gauge δ_2 such that $\sum_{(I,x)\in P,x\in E} \varphi(I) \leq p_\beta$ Put $\delta(x) = min[\delta_1(x), \delta_2(x)]$. Then for every B_δ partition $P = \{(I_i, x_i): i = 1, 2, ..., q\}$ of $[a, b], \delta \in \Delta_{[a,b]}$, we have $0 \leq |[\sum_{i=1}^q |I_i| f(x_i)] - \varphi([a, b])| = |\sum_{i=1}^q \{|I_i| f(x_i) - \varphi(I_i)\}| \leq |\sum_{x_{i\notin Q}} \{|I_i| f(x_i) - \varphi(I_i)\}| + \sum_{x\in Q} |\varphi(I_i)| \leq \varepsilon u(b-a) + p_\beta$ "1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

References

[1] Aliprentis Ch.D.,Border,K.C.,Infinite Dimensional Analysis, (1994), Spring Verlag.

[2] Boccuto A., Skvortsov, V.A. Hestock-Kurzweil type integration of Riesz-space-valued functions and applications to Walsh series. Real, Analysis Exchange, Vol.29(1), 2003/2004, 419-439.

[3]Kurt D.S.,Swartz C.W,Theories of integration,World Scientific,Vol.9

[4]Mcgill P.,Integration in vector lattices,J.london.Math.Soc.11(1975),347-360.

[5] Oh H.J.,Lee D.h.,Park Y.J,Relation between generalized integration and differentiation, J.Naturat.Sciences.Vol.8,17-25,1999.

[6] Schaefer H.H., Banach Lattices and positive Operators, Springer Verlag, 1974.