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ABSTRACT.

In this paper we will give some applications of group theory. The first application
makes use of the observation that computing in Z can be replaced by computing in
Z,, if nissuficiently large. Z,, can be decomposed into a direct product of groups
with prime power order, so we can do the computations in paralel in the smaller
components. Group theory have interesting applications in the design of computer
software, they result in computing techniques which speed up calculations
considerably, one such exampleis bringing in this paper. Group theory is the main
tool to study symmetries, revolution and many geometric transactions, this will be
presented in this article and furthermore we will show intersting applications of
group theory in chemistry.
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INTRODUCTION.

We will see some applications of group theory. The firs application makes use of the
observation that computing in Z can be replaced by computing in Z,, and can be
decomposed into a direct product of groups with prime power order, so we can do
the computations in paralel in the saller components. We will ook at permutation
groups and apply these to combinatorial problems of finding the number of
"essentially different” configurations, where configurationsare considered as
"essentially equal” if the second one can be aobtained from the first one, e.g., by a
rotation or reflection

2 SUPPORT DEFINITIONSAND THEOREM.

Definition 2.1. A group is a set G together with a binary operation o: G = & — G on
G with the following properties. We write g = h instead of o (g, f).
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(i) cisassociative,i.e, fe(geh) = (feglehforall f,g.h €.
(i) Thereexists a nentraldlementn € G. ie . neg=gen=gforal g € G.

(i) For every g € (G there issomeh G withgeh = ho g =mn, where n is the
neutral element.

Exarriples 2.2, The set D, of all rotations and reflections of a regular #-gon consists

of the u rotations id, a: = rotation by 360°%n about the center, a o a: = a, =rotation
i

by 23—'::J-, a1 and » reflections on the n "syimmietry axes.” If b is one of these

reflections, then

Dp = {id,a,a? ...,a" !, b,a e b =:ab,a®b, .., a" " 'b}.

We can check that (Dy, o) is a group of order 2n, called the dihedral - ’ b
group af degree n. We have ha = a"'h. so D, is nonabdlian if n >3. If L
n =4, Tor instance, D, consists of the ratauons by 0°, 90°, 180°, and .
270°,  and of the reflections on the dotted axes
D, ={id,a,a*,a% ab,a’b,a’b} and ba = a?b.

Theorem 2.3. Let (G, 0) beagroup. (i) If ~isa congruence in (G, o), then the class
[} of the weutral element is a subgroup N of G with: geme g™ € N for all
meNand g € G.

(i) Converselv, if N =G fulffills (i), then g~yh:e> geh™ €N , gives a
congruence ~y on (G,2).

Theorem 2.5 (Lagrange's Theorem). If N = G and G is finite, then |N| is a divisor
of |G|. More precisely, |[N|G:N] = |G].

Theorem 2.6(Principal Theorem on Finite Abelian Groups). Every finite abelian
eroup s 1somarphie ta the direct product of groups of the type Zok (P prime).

Definition 2.7. The center C(G) of agroup isthe set of all ¢ € & swch that goc =
cogfordl g €G.

Theorem 2.8(Chinese Remainder Theorem for Polynomials). Let (fy, .., fr) be
digtinct irreducible polynomials over Fy and let (gy,...g.) be whitary
polynomials over F;. Then the system af congruences h = gi(modf;), i =1.2,...,1,
has a unique soluticri # nsodulo f; f5 ... fr.
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3. FAST ADDITION.

Group and ring theory have interesting applications in the design of computer
software. They result in computing techniques which speed up calculations
considerably. If we consider two numbers such as a = 37 and b = 56, it makes no
difference whether we add them as natural numbers or 25 members of some Z, with
n sufficiently large, say n = 140 in our case, The only reguirement is that at+b < n.
We now decompose n canonicaly as n = p{ ' p? ..p™, Theorem.2.6 shows that:
1 T En
In = Ep; :H ...Azh.
An isomorphism is given by h: [xj, — [:Exjp;. iy |.x|pm ) where [x], denotes the
i [
residue class of x module m. Surjectivity of ;i means that for all y.v: .yne Z can be
found with x = y,(mod p:' )y v = yy(mod p:f'j. a result wich is known
as the Chinese Reminder Theoreme. It is not hard to find this solution ¥ explicitly.
Similar to the proof of T.2.8, see [6] form g; = npf". Because ged (pf". i) = g; has
a multiplicative inverse », in Zpe_l. Thus

X o=y + -+ ¥, a7, and Xisunique modulo n.

A quick agorithm ("Garner's algorithm") can be found in ([1] p.176). The
importance of this theorem lies in the fact that we can replace the addition of large
natural numbers by parallel "small" simultaneous additions. We illustrate this by the
example mentioned above:

n=140=2%:5.7

a{= 37 - [37]1-10 =r ([3?}‘“ [37]54 l3?|?}}
+ b{= 56 — [56]4g — ([56]4,[56]s, [56];)} =

== a+b=([1]:1315[2]7)

Now we have to solve: = 1(mod4) : x = 3(mod5); x = 2(mod7), by the method
mentioned above. We get x = 93, hence 37 + 56 =93.
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Of course, using this method does not make sense if we just have to add two

numbers. If, however, some numbers are entered in a computer which has to work
with them a great number of times, it definitely does make

sense to transform the numbers to residue classes and to  ——]

caculate in paralel in smal Z,:'s. This avoids an
exponential growth of the coefficients. Before we really
adopt this method, we estimate the time we save by using
it. Adding devicesin computers consist of a great number Fig.1

of "gates." Each gate has a small nhumber r of inlets (r < 4

is typical), and one outlet. Each gate requires a certain unit time (10 seconds, say)
to produce the output.|2].

il

Notation 3.1: For x £ R, let [X] be the smallest integer = x.

Theorem: 3.2. The time required to produce « single output essentially depending
on minputs by means of r-input gatesis [log,. m].

Hereis a sketch for r=3, m=8.(Fig 1). We need 2=[log; 8] time units to produce the
single output. If we add two m-digit binary numbers, we get m + 1 outputs; one can
easily seethat the last output (the "carry-over") depends on all inputs. So we get:

Theorem 3.3: Usual addition of two m-digit binary numbers needs [log, 2m] time
units.

Theorem 3.4: Addition modulo n (i.e., addition in Zn) in binary form consumes
[log,(2log; n)] time units.

Theorem 3.5: Addition of two (birery) mumbers in Zr by the method described at
the beginning of this section needs [log, (2[leg, n])] time units.

Here, n’ is the greatest prime power in the decomposition of n. Hence we will
choose nin such away that n’ isas small as possible. It iswiseto fix n” and look for
alargen.

Example. 3.60 We want n’ = 50 and can choose n in an optimal way as
ni=2%-3"-52.72.11.13-17-19-23.29-31-37-41-43 - 47

Now n > 3 - 10%! and n'=49. So we can add numbers with 21 decimal digits. If we
choose r = 3. the method in Theorem3.3 needs [ log;(2[logs(3-10°1)])] =
[452] = 5 ume unite. With 3.5 we get (again with r=3). [log;(2[log; 49])] =
[2.26] = 3 time unite.
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Thus we can add nearly twice asfast.

4. POLYA’S THEORY OF ENUMERATION.

Groups of permutations (i.e., subgroups of the symmetric group Sy) were the first
groups which were studied. The notion of an abstract group came about half a
century later by Cayley in 1854. N. H. Abel and E. Galais, for instance, studied
groups of permutations of zeros of polynomials. Moreover, it is a big
understatement to say that oneis"only" studying permutation groups. The following
classical theorem tells us that al groups are—up to isomorphism—permutation
groups, more precisely, every group can be embedded into a permutation group.

Theorem 4.1: (Cayley*s Theorem). [ G &5 agroup, then G = 5.

Praef. The map h:G = S; . gr— @, With @G — G;x— gx does the
embedding job: @, = @, © @y ensures that h is & homomorphism, end Kerh =
{g € G/, =id } = {1}, 0 h is a monomorphism. It follows that every group of
order # € N cen be embedded in S,. In writing producis me of permutations
m, ot 5, wecorsider m and o 10 be functions. Hence in o we first perform o, then
M.

Definition 4.2 1 € 8, is called a cvele of length v if there is a subser fiy..i.) of
{1,...n}, with miiy)= iz, m(iz)=ig.... (i) = iy emd w(j) = j, ¥j € {i; i} We will
then write m =(iy.i3,.., [;.). Cyveles of length 2 are called transpositians. Cycles of
length 1 are equad to the identity permutativg, s0 they are often omitted.

1 2 345

Example 4.3 (1) 14 32 5

] =(24)=042)=1)2HQA) is a

trarsposition in Ss.

2 3 4 5):,:2,5,3’4)isa4-cyclein55.

.. 1
(”)(1 5 42 3
(iii) S5 = {id, (1,2),(1,3), (2,3), (1,2,3), (1, 3, 2)}.

Soevery m 53 is & cycle. This is not true any more from 5; upward. But we shall
see in 4.6 that every permutation in 5, isaproduct of cycles.

Definition 4.4: For m = 5, lei Wp={i {1..n}/m(i) + i} be the domain of action
of m.
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The following result shows that permutations with disjoint domains of action
commute.

Theorem 4.5: If m,oe 5, me Wy N W, =  then mo = am.

Theorem 4.6 Every m € 5, can be written as a product of cycles with digoint
domains of action. This «eamposition is unique up te the arrangement of the cycles
and is called “canes cal .

5 6 7 8
7438)655'

m moves 1into 2 and 2 into 1; this gives the first cycle (1,2). Next we observe that 3
is ransferred into 5, 5 into 7, 7 into 3; second cycle: (3,5,7). 4 and 6 are transposed,
which vyields (4, 6) as the third cycle. Finally, 8 is left fixed. Hence
m=(1,2)(3,5,7)(4,6)(R). By 4.5, there is no reason to worry about the order of these
cycles. Without loss of generality we assume that the cycles in a canonical
decomposition are ordered in such & way that their length is not decreasing. This
gives, tor instance, ™ = (8)(1.2)(4.6)(357) in 4.7. Two canonica decompositions
are called similar if the sequences cf the lengths of the cycles involved are equal.
Hencer = (8)(1.2)(4.6)(357) and ¢ = (6)(1.3)(2.4)(587) are different elements
of Sg having similar decompasition. These considerations prove very useful in
looking at the structure of §,,

Example47. Letr= (1 2 3 g

“\2 15

Letn N. A partition of n is a sequence (ay az,.., as)€ N¥ with s € N.ay < a;...<
ag and ay + a; +...+a, = n. Let P(n) be the number of all different sartitions of n.
We give a few velues: Lat C(G):={c1 G|cg= gc, foral g &} denote the center
of G,asin2.7.

Theorem 4.8:

()If ro € S, then oo ™! can be ohrained from the canonical decomposition of p
by replacing every i in its cycles by a(i).

(iii) Twe cveles are conjugate if and only if they are of the same length.

(i) my,my €5, are conjugate if and only if they have similar canonical
decompasitions.

(iv) P(n) isthe classnumber of §,,.

(v) Foralln =3, C(5,) = {id} and C(5,,) = S, for n=1,2.
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Prrm_f fi) Itm = £ & ... &y 15 the canonical decomposition of m into cycles &, then

1= (o& o ot07Y) . (08,07 1) so that it suffices to look at a cycle €.
Lr:t E = (i ip). T 1<k < r—1, then £(iy) = iy whence (o€ ) a(iy)) =
a(iy). If i & We then £(i) =i, and m{a{a'l}{aﬂ}] =o(i). Thus géa™1 =
(a(fi},...,af{'r)]. fii), fift), and fiv) now follow from (i). (v} Letm € 5, m # id.
Then there is some i with (i) # i. If n = 3 then there is some k € {1,..., n} with
i # k # m(i). By (i) we get m(i, k)n™! # (m(i). w(k)) # (i, k), whence 7 & C(S,)
Hence C(S,) = {id} for n > 3. Since §; and §; are abelian, C(5,) = 5, in these
Cases.

Since (iy.dgeeidp) = (igdp Wiq,s fp—q)...(i1.12) we get from 4.6:
Theorem 4.9. Every permutation isa product of transpositions.

Incontradiction to T.4.6, this type of decompasition 15 not unique.

ali)-m{ )
i-f

Definition 4.10: For m ¢ 5. sign(m) = [N is called the signature of m.

Theorem 4.11: Let n> 1: (i) sing: §,, = ({1, —1})is an epimorphism.
(i) f r = try, 1.5, whereall t; aretranspositions, then sig(m) = (—1)~.
(iii) If ' = & is a ¢cyele of Tength k, then sign(€) = (—1)* 1,

(iv) If r = & &5, &, is a canonical decompasition of p into cycles of fength y... k,
respectivaly, then sign () = (—1)ka¥keHhe=r

(V) Au:=Ker sign = {m € §,,/sign(r) = 1}, isa normal subgroup of 5,,.

() [Sn:An] = 2,50 |Ay] = 5.

Proof. (i) For m,ot 5, we get: sign{ma) = [Tizp—— not)-n{e() = [lis; miabll}-wlat),

i=J mlill—a{f}
oii)= J[_.I'
(=

_ n(oii))=mlo( 1) arli)- r:r[_.ib
= (ﬂaff}aa:;]w—) (ﬂm t ) = sing(m)sing (o).

For the last equation but one observe that for i<j and (i) = #(j) we have:
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n(gl_i]]—l?[al:j}] = :'tl:ﬂU].]‘m"Ef})

. Obvioudly, the signature can take values in {1,-1}

ali)-alj) —  elf)-ali)
only. Because sign(r} = -1 tor every transposition, Imsign = {1,-1}. (ii) follows from
(i) since sign{mw) = —1 for every transposition. (i) is a special case of (ii) using the

decomposition  before 49, v If wm=§& .5 then by (i)
sign(m) = (sign(£,)) ... (sign(§,)) = (=% L {(=1)*"1 {v) The kernel of
every homomorphism is a normal subgroup dueto 2.4. (vi) followsfrom 2.5.

Definition 4.12: A, =| m ¢ 5, |sign (m) = 1} is catted the alternating group.
Permutationsin A, are afso called even,

Note that Az is abelian because [44] = % =3 A; =Z;. ButA, is nonabelian if

n = 4. We list severa importarit properties of these dternating groups (without
proafs).

Theorem 4.13;
(i) Ay is the subgroup of S, generated by the 3-cycles.

(ii) A, is not simpie, since it has a normal subgroup isomorphic to Z; * Z;. But Ay,
a group atf order 12, has no subgroup of order 6.

(iii) For n=5, A,, is simple and nonabelian. (Thisis the deep reason for the fact that
there commor exist "solution formudas" for equations of degree 3 5.) Also, As has
order 61 an is the smallest nonabelian simple group.

(IVIC(A, ) = {id} forn = 4; C(A, )=A, forn  {1,2,3}.
(V) Uy, xdy, = A s aminfinite (nonabeliar) simple group.

Now suppose that X is aset and G = 5. Then every w € & can be thought of as
being an operator acting on X by sending x = X into p(x). We are interested in what
happensto afixedx1 X underal m ¢ G.

Theorem and Definition 4.14: Let G< Sy and X,y X. Then:

i) X and v are called G-equivalent (denoted by x~ . y) if there is ame¢
Gwitnm(x) =y

(i) ~¢ and Gisan equivalencerelation on X.

(iif) The equivalence classes Orb(x) = {y X/x~}} arecalled orbits (of G on X)
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(i) For every x € X, Stab(X)={m € G /m(x) = x/ is @ subgroup of G, colled the

stabilizer of x. As in 23, we have for all m, 7 F G: M~gapnT & i e =
Stab (x).

Example 4.15:

(i) Let G be a group, § = G dhe X = 6. By 4.1, S can be considered as a subgroup
of 5; = 8. If g € & the orbit Orb({g) = Sg (the right coset of g with respect to S)
and Stab(g) ={s €5 |sg = g] = {1}.

(iii) Let G be a group, X = G and Inn G < 85 ku, Inn G = fp,. /X G}is
1

the set of all inner automorphisms. @,: G = & g- xgx™ .
Thenfor al g € & we get Orb(g) = {¢@.(g) / ¢, InnG} = conjugacy classof g
and Stab(g)={ @, € Inn G | xg x "=, (g) =g =@, € InnG | Xg = o} .

(iv) (i) Let Y be a set, Z, operates on X = V" by "shifiing the components
cyclically": if &€ 2, let my: (¥ - W)=V Vit 10 Yior b For m= 3,
for  imstance, the orhit of (¥ . ¥a,¥y ) IS
v, Yo a0, Yoo ¥ W ¥a. 31, ¥2)) and Steb(vq, ¥z, 3 )= Z3 if
V1 = ¥z = ¥y and =0} otherwise.

These concepts turn out to be very useful in several applications. As an example, we
mention an application to chemistry, due to G. Polya.

Example 4.16: From the carbon ring (a) we can obtain a number of molecules by
attaching hydrogen (H) atoms or CHs-groups in the places (1)—(6) in (b). For
instance, we can obtain xylole (c¢) and benzene (d) as shown in figure 4.1.
Obviousdly, (c) gives xylole aswell, as shown in figure 4.2.

The following problem arises: How many chemically different molecules can be
obtained in this way? Altogether, there are 26 possibilities to attach either H or CH;
in (1)—(6). But how many attachments coincide chemically.
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In order to solve this problem we can employ the following result of Burnside,

S

¢ i
[ ; g oo H H
= — i ¢
L LA ¢l g — o
Tl el ) T ]
b [k : F o : ‘ {:'-.
( C oo B r;:'- ©oou ity R
L— r —i
m ] .-‘u u'.. .-'u Fig.4.2
FHg41

Cauchy, and Frobenius.

Thearem 4.17: (Burnsile's Lemma) Let X pe fimite and G < 5. For avery x e X,
[Orbix)| divides |G, and the auntber n of different orbits of X under G is given by:

n = & gelFix(9)] == Trex IStab(x)|, where Fix(g) = {x € X/g(x) =x}.
AISO [G:Stab(x)| = [Orb(x)]. and hence |Stab(x)||Orb(x)| = |G].

Procf. First we compute |Urb(x)|. Letx € X

and f: Orb(x) = G|~gpap(xyi gix) — gStab(x).

Since: g, (x) = g,(x) & g7'9:(x) = x = g3 ' g, € Stab(x) < g1 ~sran(x192
& gy Stab(x) == g,Stab(x). { is well defined.

Obviously fis bijective and hence |Orb(x)| = |G /~stab(x)| = |G: Stab(x)].

0 |0rb(x)| divides |G|.

Now we compuite the casdinality of {(g,x)|g € G, x € X, g{x) = x} in two different
ways:

N iStab@)l = (g X)lg EGxeX,gx) =x}| = 3 |Fix(g)].
L yex L g6
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Let us choose representativeS xy, . .., x,, from the n orbits. Since Orb(x) = Orb(y)
implies:

[Btabti] =t 100 MO 18] s
T )G:Stab(x)]  |Orb(x)]  {Orb(y)  |G:Stab{y)] '

|

we gt ExexIStab(x)| = Eie|0rb (x| - 1Stab ()] = Bims franery

|Stab({x;)| =n |G|
Now we use 4.17 for our problem 4.16.

Example 4.15(continued): Letus denote the said 2° = 64 attachments by
{xy,..,x541 = X. Attaching x and x; will yield the same molecule if and only if X
can be obtained from X, by means of a symmetry operation of the hexagon (1) - (6),
i.e., by means of an element of Ds, the dihedral group of order 12 (see 2.2). Hence
the number » of different possible molecules we are looking for isjust the number
of different orbits of X under Dg, From 4.17 we get:

n= miz Fix(g) = =% Fix(g). Now id fixes all elements, whence |Fix(id)| =
|

64. A reflection r on the axis (1)- (4) in (b) fixes the four attac hments possiblein (1)
and (4) and aso the four other possible attachments in (2) and (3) n if they are the
same as those in (6)and(5])., respectively. Hence |Fix(r)| = 4 -4 = 16, and so on.
Altogether we get n =1—12I:':-{‘r = 13 different molecules. Cbserve that reflections in

space usudly yield mclecules with different chemical properties. We see that this
enumeration can be applied to situations where we look for the number of possible
"attechments”. The results in 4.17 shows that n is the arithmetic mean of |Fix(g)|"s
and |Stab(X)|’s in G. We can improve the formula in 4.17 by the remark that if g,
and g, are conjugate, then |Fix(g)|= [Fix(gy)|. Of course, this only helps in the
nonakelian case. So we get.

Theorem 4.18: Let X be finite and G < . Let g,...,g. be a complete ser of
represemtatives forthe conjugacy classesin G/~ and let k; be the number of efemenis
Coltfugate o g, Then the number n of orbits of X under G is given by: n = ﬁ

We give a simple example in which we can use our knowledge about the
conjugacy classes of S;.
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Example 4.19: Find the number n of essentially different possibilities for placing

three elements from the set {A, B, C, D, E} at the three corners 1, 2, 3 of an
equilateral triangle such that at least two letters are distinct.

Solution: G =55 acts on 41,2.3} as the group of symmetries. Take, in the language
of Theorem 4.18. g, = id. g» = (1,2), g5 = (1,23). Then k;= 1, ;= 3, k3= 2.
Now X contains all triples (a, b, ¢} such that at least two of the three elemenms a. b, ¢
are distinct. Hence: |x=514+4-3)=120; |Fix(g,)/=120; |Fix(g:)=20 since g, fixes
precisdly al (@, a,b). |Fixi gy )[=0 since g fixes exactly all (a, a &); these
combinations ere nat allowed.

Hence Theorem 4.18 gives us. n = % { 120+60+0) = 30.

The results 4.17 and 4.18 are indeed useful for Example 4.19. A direct treatment of

120] = 7140 pairs of attachments with

respect to being essentially different. There might, however, remain quite a bit to do
in 4.17 and 4.18, especialy if G is big and if there are many conjugacy classes. So
we might still be dissatisfied with what we have accomplished so far. Also, we till
have no tool for finding a representative in each class of essentially equal
attachments.

4.19 would require an examination of all (

Definition 4.20: Suppose that w € S, decomposesinto j; cveles of fength 1, j; cikle
cveles of length2 ... j, cveles of length noaccording 0 4.6 (we than have
1jy+2jat.tnj,= n) We than call (jy,[o... in) the cycle index of . If G< §,, than
Z(G) = |f_E;|E-""jJ w2 xl" € Qg x,] is catted the cycle index polynomial of G,
Example 4.21- In 55, we have one permutation (namely id) with cycleindex (3,0,0),
three permutations ((1,2).(1.3),(2,3)) with cycle index (1,1,0) (since (1,2) = (3)(1,2)
and so on), and two permutation with cycle index (0,0,1). Hence ;

Z(53 ]——lll[:[xf-rﬁxlxﬁlxa 2

Definition 4.22: Let F be a set of r ficures fi... fr me M. If G < §,,, then G can be
thought of as a permutation graup on F™ via g(fy... fin) = (fae1) - faom)s SO Glis
considered as a subgroup of 5 ..
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Theorem 4.23 (Palya's Theerem): In the Situatiz# of 4.22, the number n of
different trhirs on X = F™ under G is given by n = Z(G)(rr,..r). (This equals the
value of the induced polvnomial function of Z(G)at xq= 1. X,=r).

Pregef. If g € G, then (f; .. fin) € Fix(g) if and only if all f;, where i runs through
the elements of a cycle of g, are equal. Hence |Fix(g)| = rh1 77" Tim where
(jiodzs oy jin) is the cycle indes of . Now Burnside’s Theorem 4.17 gives us the
desired result

n:mi".}:ﬂ .;,-IFEx(g}lz%Eﬂ crhrls rlm i we actudly want to find a

representative in each orbit, we can smply try to find one by brute force. Otherwise,
more theory is needed. For a proof and a detailed account of the following, see[3] or

[4].

Theorem 4.24(Redfild- Palye Theorem): Recall the sitwation in 4.22. Let us
"invent" formal producis of the figures fi... fr and writef* for [ - f etc. If we now
subgtitute f; + fa ..+ fr for xq, £+ B for xyand so on, in Z(G). then by
expanding the piroducts we get suiis of the form n,_,...erl'l-jf' ;). " fr'." with iy Higt..dp=
m. This means that there are precisely ny,_; orbits in X = F™ under G such that
each orbit-tuple consists of precisely iy figures fi.1, of the fr etc.

Example 4.16 (revisited), Let £, be the H-group and f,the CH; — groups. If we
expand as in 424, we pet %({;ﬂ R I+ LR+ £ +
ALE+ L2+ £V A+ RN = A+ AR H3AR

3% 434 + AR+ £

Hencethere are:

* one possibility to give only H-atoms;

* one possibility to give five H-atoms and one CH3-molecule;

» three possibilities to take four H-atoms and two CH3-molecules;

and so on. In order to find a complete set of representatives, we have to collect
instances for each of these (altogether 13) possibilities.

Of coursg, if we replace al f; by 1, we get Polya's Theorem 4.4 as acorollary of 4.6.
Even after the discovery of these two powerful results, they were not widely known.
Let us consider afinal example.
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Example 4.27. lLet us call two truth functions (or switching functions)

f1 fo: 40,11 5 {0, 1} essentially Similar if, after a suitable relabeling (iq, ..., i,) of

(1,..,n) we have fi(by, ..., b,) = fo(by,, .. by ) for all (by, ..., by,) € {0,1}". For

switching theory, this meens that the corresponding switChing cireuits of f; and f5
"work identically" after a suitable permutation of the input wires.

Problem. How many essentially different such functions exist?

History. This problem was explicitly carried out and solved by means of a gigantic

computer program in 1951 for n = 4. The total number of these functions is 22" =
65 536, and 3984 essentialy different functions were found.

Solution. Our solution is rather immediate. The group G is basicaly S,. However,
care must be taken, since G acts as described above on {0, 1}" and not on {1,...,n}.
If we take n = 4, for instance, the effect of g = (1,2)(3, 4) on the quadruple (a,b,c,d)
e {0,1}*4 is given by (b,ad,c). Obviously, Fix(g) consists of precisely those
functiems which are constant on each cycle of g. In our case forg = (1, 2)(3, 4) we
get |Fix(g)| = 2 -2 = 4. Now S; decomposes into the following conjugacy classes
(see 4.8): (i) id; (i) six 2-cycles; (iii) three products of twi 2-cycles; (iv) eght 3-
cycles; (v) six 4-cycles. Now (i) fixes al 16 combinations (,b,c,d), yielding x1® in
the cycle index polynomial. Also, (ii) contributes 6x{x3 since for instance (1, 2;
yields the four 2-cycles ((0,1, c, d), (1. O, ¢, d)) and fixes all (7, 0, ¢, ) and ({1, J, ¢,
d), thus producing @ight 1-cycles and four transpositions, and so on. The cycle index
polynomial for G acting on {0, 1} is then given by Z(5) = -11;{1115 + 6xfxd +
Sxixf + Bxfxf 4+ dxfxoxd). Hence xy=x,=x3=x,=2 gives 3984
eguivalence classes of functions from {0,1}* to (0,1}
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