
24

A Survey on Algorithmic Techniques for
Malware Detection

Ioannis Chionis Stavros D. Nikolopoulos Iosif Polenakis
Department of Computer Science and Engineering, University of Ioannina

GR-45110 Ioannina, Greece
{ichionis, stavros, ipolenak}@cs.uoi.gr

Abstract—Malware is a specific type of software intended
to breed damages ranging from computer systems fallout to
deprivation of data integrity and confidentiality. Recently, along
with the high usage of distributed systems and the increasing
speed in telecommunications, the early detection of malware
constitutes one of the major concerns in information society.
A strong advantage that malware employs in order to elude
detection is the ability of polymorphism (metamorphic or poly-
morphic engines). In this work we present efficient algorithmic
techniques that, leveraging higher level abstractions of malware
structure, perform an isomorphism check in malware’s produced
graph structures, such as function call-graphs and control flow-
graphs, in order to detect every possible polymorphic version of
a malware. Moreover, we propose an algorithmic approach for
malware detection which focuses on the use of behavioural graphs
as a more flexible representation of malware’s functionality with
respect to its interaction with the operating system. The main idea
of our approach is mainly based on behavioural graph similarity
issues.

I. INTRODUCTION

Malicious software has become one of the most major
concerns for the security of computer systems. Starting in
early 80’s, malware constitutes a significant threat, so for
the integrity and availability of computer systems as for the
confidentiality, integrity and availability of data stored into
these systems. During the last ten years, it is observed that the
implementation ability has become more sophisticated, includ-
ing extremely elaborated techniques for detection avoidance.

Most Antivirus software employ traditional methods of static
analysis, in order to ascertain if a software is malicious or
benign. The most used technique for malware detection is
based on signatures, treating malware as sequence of bytes
and trying to detect specific sequences (patterns) that uniquely
identify a specific malware. Methods like the afore-mentioned
one, even though they are fast, providing realtime protection,
on the other hand they are liable against polymorphism. The
reason is that malware is written in high level programming
languages, so a slight change in their source code leads
to significant changes in their binary file. As a result, the
sequence of bytes that could be used as their signature changes,
making them unidentifiable from Antivirus Programs that use
signatures as detection method.
Related Work. In literature, systems have been proposed

that detect new variants of existing known malware by using
function call-graphs or control flow-graphs. Specifically in [7],
[4] a significant effort to check graph or subgraph similarity
has been done. It is well known that graph matching requires
a solution to the graph isomorphism problem, that is not a
polynomially solvable problem. So, they have designed and
implemented metrics [4] and indexing techniques [7] that can
approach the solution in a more efficient manner.

Specifically, in [4] there have been proposed metrics that
use normalized weight of procedures and the Dice coefficient
for the measure of similarity between two sets of procedures.
In [7] an alternative technique is proposed that, by leveraging
the Hungarian Algorithm, performs graph-matching to approx-
imate the graph-edit distance between two graphs.

Motivation. The major challenge that constitutes our motiva-
tion for this work, is a procedure called polymorphism. With
this ability, malware authors are in position to mutate a basic
verision of a known malware and produce variants that can
evade the detection from common Antivirus softwares that
deploy traditional detection techniques such string signatures
and byte level detection in general.

Our main target is the description of systems that use effi-
cient algorithms in the stage of sub-graph matching between
function call-graphs or control flow-graphs. For this purpose,
we have collected a set of such systems in order to construct
and adduce a “general approach”, meaning a system that
assembles components from different approaches. This, we
expect that will result in the creation of a more global and
integrated point of view for the systems proposed for malware
detection using control flow-graphs or function call-graphs.

Additionally, in the last section, we propose an alternative
approach for a common system that detects a known malware’s
variants. Specifically, we plan to leverage behavioural graphs
produced from dynamic malware analysis, instead from those
produce from static malware analysis. Having the intuition that
such graphs, since represent the functionality of a malicious
software, will perform better and will be more flexible in
malware’s mutations, we focus on substitute the function call-
graphs and the control flow-graphs with behavioural graphs.

Analysis. There are two types of malware analysis according
to if execution of malware takes place or not. The two basic
types of malware analysis are the static and the dynamic
malware analysis [11]. The main result of both analyses that
we leverage, is that both can produce graphs as representationsISCIM 2013, pp. 24-28 c⃝ 2013 Authors



25

of malware’s structure.
The first type of malware analysis is the static malware

analysis. In static analysis, the malware is never executed.
Instead, involving the use of dissembling, file hashing and
packing detection, is trying to examine the binary code to
detect specific patterns that are similar into a known (classified)
malware. Some of the most common methods for static anal-
ysis include string signature detection, byte N -grams, entropy
analysis, syntactic library call and control flow graph matching.

The second type of malware analysis is the dynamic mal-
ware analysis. In dynamic analysis the malware is executed
in an isolated (possibly virtual) environment and its runtime
behaviour is examined. The most examined source is the
operating system and the interaction it has with the malware.
In other words dynamic analysis examines the effects that
malware bring to the operating system. Analyzing the executed
code and examining its behaviour, then behavioural graphs
can be constructed that are more flexible in presenting an
abstraction of malware’s structure, providing us with a more
effective method in malware detection.
Polymorphism and Detection. One of the most elaborated
techniques for malware, to evade detection is called polymor-
phism. Using this technique, either automated using polymor-
phic engines or by themselves, malware authors having only
one version of their malware are creating new versions of it.
The new versions, have the same basic functionality inherited
by their ancestor, but with the difference that these versions
have either an extra functionality added (extension) or some
non-functional additions in their source code. Mutations of
code [11] can include “control flow preserving transforma-
tions” inserting instructions that do not change the data/control
flow of malware, “dead code insertion” where code is inserted
in malware basic code, but is never executed, and finally
“equivalent code substitution” where instructions in malware’s
source code are replaced from equivalent ones.

As one can observe the traditional techniques are ineffective
to detect any new version of a known malware because of
polymorphism. This, means that we need to observe the high-
level structure of malware and proceed with detection in a
more abstract manner. In other words, abstractions of malware
structure, provide us with a more flexible method to detect
malware, even if it has passed over a polymorphism process.
These techniques for malware detection include comparison of
control flow-graphs (CFGs) or function call-graphs (FCGs) [3].
Flow-graphs represent the internal control flow of a procedure,
while call-graphs represent the inter-procedural control flow.

II. MAIN CONCEPT

The whole process of detecting a new version/variant of a
known malware, as proposed in literature, is in general the
same. The main concept in the use of control flow-graphs or
function call-graphs, is that since this type of graphs act as
abstractions of malware’s structure will be invariant (or at least
some parts of them) after a polymorphism process. In other
words, what has been proposed leverages the main property of
polymorphism, where the basic functionality of malware will
be “similar” after the mutation of code.

In the first phase, it is needed to check if the malware
(test sample) that we want to classify is packed. A packed
malware is actually a compressed malware (using softwares
called packers), that malware authors constructed in order to
evade the traditional signature based detection employed by
common Antivirus softwares. If so, then, specific softwares are
used to unpack the malware as many times needed (multilevel
packing), in order to get the original malware. After that,
the process continues with the transformation of binary in
a higher level language by disassembling it, using common
disassemblers like IDA Pro [7], [5].

In the second phase, the process continues, producing a
higher level abstraction of malware’s structure, such as a
control flow-graph or a function call-graph. To this point, we
offer to explain that the type of the graph, used to supply to the
next stage of the whole process, depends firstly on the available
software for this purpose and secondly on the experimental
notion on what type of graph (CFG, FCG) offers the most
generalization ability.

The third phase is the most complicate. In this phase,
beggins the graph matching procedure, where the state of
the art proposed systems differentiate themselves from each
other. Specifically, there have been proposed systems, that
in the graph matching process, search for the maximum
common subgraph like binHunt [4], [6], or search for common
subgraphs of size k, like the technique proposed in [9]. Addi-
tionally, there are other approaches that use more elaborated
methods to approach the graph matching. For example, in [4]
a set of metrices have been proposed to measure the weights
of each procedure, extracted from a binary file and compute a
coefficient with these wheights, from known malwares. Finally
in [7], there have been proposed efficient indexing techniques
for quick binary classification, based on a nearest-neighbor
search in the supporting database.

III. A TYPICAL SYSTEM DESIGN

In this section we present a typical system which combines
characteristic from different proposed systems so far in the
literature. In fact, we have collected characteristics from a set
of such systems in order to construct and adduce a “general
approach” system, meaning a system that assembles compo-
nents from different approaches. A typical system consists of
the phase of training and the phase of detection. Both phases
include a pre-process procedure to transform every object
(sample) in a “proper” form. The two phases differentiate at
the point after the generation of all possible subgraphs of the
produced malware’s graph (Procedure B; see Figure 1). In
other words, it means that given a graph G as a result of the
pre-process transformation procedure, the generated subgraphs
of G constitute signatures of the known malware.

A. Preprocessing and Transformation

The pre-process transformation procedure starts by accept-
ing as input a sample (known malware) and proceeds by
checking if the current sample is packed or not. If so, it
repeats as many times as needed the unpacking process as



26

Fig. 1. An overview of a typical malware detection system.

described in [7]. Then, the result is passed as input to a
disassembler in order to transform the binary in a higher level
language. Finally, a function call-graph or a control flow-graph
is produced by performing static malware analysis.

B. Subgraph Extraction

Having designed only an abstraction (graph representation)
of malware’s structure, what we next need to do is to extract
a type of “possible signatures”. Like the traditional byte-level
signatures, the possible signatures for such an abstraction are
parts of it; in our case, these parts are subgraphs of the pro-
duced graph. To continue with this process, a DFS is performed
in order to construct a meaningful string representation of the
graph, as proposed in [4].

In contrast with the techniques proposed in [9], it could
be used a subgraph of size k of malware’s control flow-
graph or function call-graph, as malware’s signature like in the
technique proposed in [4]. According this approach, it could be
kept every subgraph of size k, meaning that multiple signatures
for a specific malware could be produced in order to capture its
variants. However, as referred in [4], it does not demonstrate
to perform efficiently for end-host use and does not employ a
malware database.

Finally, this subgraph can be represented as a table with
rows as edges and columns as vertices; this table is hashed
using a collision resistant hash function such as SHA-256 or
CRC64 as proposed in [4] and inserted into the supporting
database as signature, together with sample’s malware name
for later identity information provision.

C. Training

In the first phase, a training process is taking place collecting
an amount of known malware sample in order to be able to

compare a test sample with each one of them. Having already
collected a sufficient amount of known malware samples, the
pre-process transformation procedure is performed, as depicted
in Figure 1.

Once the pre-process transformation procedure is completed,
we have a higher level abstraction (graph representation) of
malware’s structure and, then, the subgraph extraction process
is performed. Once the subgraph extraction process is com-
pleted (every time it produces a possible subgraph), a signature
is inserted in the supporting database constructing finally a set
of signatures for the current sample.

After the completeness of the training process, a database
keeping sets of signatures for each malware has been con-
structed. In other words, signatures have been produced for
every possible variant of every malware belonging to the
sample set. To this point, we have to make it clear that the
process of training takes place only once (every time we have a
new sample we need to repeat the process only for this sample).

D. Detection

In the second phase, the detection process takes place every
time a new sample (test sample) needs to be classified. Until
the completion of the extraction process, the main process
remains the same as in the training phase beginning by
checking for packing and executing the whole pre-process
transformation procedure producing the main graph for this
malware. In the sequence, the process continues with the
subgraph extraction procedure, producing signatures for the
test sample.

Finally, having all the possible subgraphs for this sample,
the detection procedure is differentiated from the training
procedure. In this state, no signatures are inserted in the
database, instead every signature of the produced ones is



27

compared with every one in the set of signatures of every
malware in the database.

IV. OUR APPROACH

In order to capture the run-time behaviour of an executed
malware, we propose a structural modification of the pre-
viously described system for malware detection by substi-
tuting the function call-graphs and control flow-graphs with
behavioural graphs.

This approach leverages the dynamic analysis, which seems
to be more flexible in polymorphism, since we need to inves-
tigate the main functionality and the interaction between the
operating system and a malware [2]. Additionally, behavioural
graphs have a more convenient labeling made up of event
names [8], that simplifies the subgraph similarity check.

More precisely, our system’s design is based on the typical
system that we described in Section III. We point out that
in the system we propose we by-pass the pre-processing
transformation procedure because, since we perform dynamic
analysis, we need to capture only the malware’s behaviour and
not its internal structure.

A. Dynamic Analysis

In our approach, we perform dynamic analysis in order to
extract information about the interaction between the malware
and the operating system. Specifically, executing the analysis
in a virtual environment we examine the interaction between
the malware and the guest operating system ensuring thus
the security of our host operating system. For the purpose of
dynamic malware analysis, we deploy specific on-line tools,
such as ANUBIS [1], that provide us with all the information
needed.

The information that is crucial for the construction of the
behavioural graph, as proposed in [8], includes events like the
existence of running services or processes, file events, registry
key and registry value alterations, dynamic link library events
(or, for sort, DLL events), API calls and network activity
monitoring. However, we do not exclude the case of “function-
call hooking” by intercepting in function calls.

B. Graph Construction

A behavioural graph is a type of graph that represents spe-
cific events as vertices and their in between relations as edges.
Thus, after the completeness of dynamic analysis we proceed
to the behavioural graph construction. Compiling all this event
information and their in between relations from the phase
of dynamic analysis, we can transform them into a directed
graph that actually represents the malware’s behaviour. Once
the behavioural graph is constructed, we store it in a supporting
database in order to be used later for the detection process.

C. Graph Matching

As we mentioned in the beginning of this section, in the
phase of detection we faithfully follow the typical system

presented in Section III by performing graph similarity check.
In our approach we check for similarities between behavioural
graphs produced by a known malware and a test sample. To
this end, we need to design algorithms that leveraging the
property of specific node labeling in behavioural graphs, as
their nodes are discrete events, which will try to detect similar
subgraphs of a specific size. In our approache we check for
sub-graph similarity matching between behavioural graphs that
actually capture the malware’s functionality with respect to its
behaviour while, on the other hand, the previously proposed
approaches use control flow-graphs or function call-graphs
representing only malware’s internal structure.

Additionally, we can optimize the sub-graph similarity
matching process based on anomalies during the execution of
a malware, such as abuse of specific resources and unusual
parameters to specific functions or network protocols. This
optimization process could be implemented by searching only
for a subgraph, in the test sample’s behavioural graph, that
includes specific nodes (events). This, implies that we do not
need to search the whole behavioural graph for matchings but
only in the neighbours of a specific node (event), reducing in
this way the time needed for the similarity matching process.

Finally, since the nodes of the behavioural graph are proper
labeled, one alternative solution which as far as we know
has not been proposed yet, is that of leveraging subgraph
coloring in order to perform subgraph similarity by identifying
nodes correlated to the same label (event) and also to the
same color in two behavioural graphs. This, implies that the
coloring procedure must start from the same node in both
graphs, meaning a specific event. Even though this solution
is in preliminary stage yet it will be one of our main concerns
for our forthcoming research.

REFERENCES

[1] Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org.
[2] A. Barthels, Bahavior-based Malware Detection, Det Technischen

Universität München, Fakultät Für Informatik, Master Thesis, 2009.
[3] G. Bonfante, M. Kaczmarek, and J-Y. Marion, “Control flow graphs

as malware signatures,” Int’l Workshop on the Theory of Computer
Viruses, Nancy France, 2007.

[4] S. Cesare and Y. Xiang, “A fast flowgraph based classification system
for packed and polymorphic malware on the endhost,” Proc. 24th IEEE
Int’l Conference on Advanced Information Networking and Applica-
tions, pp. 721–728, 2010.

[5] C. Eagle, The IDA Pro Book: The Unofficial Guide to the World’s Most
Popular Disassembler, San Francisco, No Starch Press Inc., 2008.

[6] D. Gao, M.K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” Information and Communi-
cations Security, Springer Berlin Heidelberg, pp. 238–255, 2008.

[7] X. Hu, T-C. Chiueh, and K.G. Shin, “Large-scale malware indexing
using function-call graphs,” Proc. 16th ACM conference on Computer
and Communications Security (CCS’09), pp. 611–620, 2009.

[8] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in Computer
Virology 4(3), pp. 251–266, DOI 10.1007/s11416-008-0086-0, 2008.

[9] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymor-
phic worm detection using structural information of executables,” Proc.
Rapid Advances in Intrusion Detection (RAID’06), Springer Berlin
Heidelberg, pp. 207–226, 2006.



28

[10] M. Mungale and M. Stamp, “Software similarity and metamorphic de-
tection,” 11th Int’l Conference on Security and Management (SAM’12),
Las Vegas, 2012.

[11] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, No Starch Press Inc., 2012.


