
43

ISCIM 2013, pp. 43-48 © 2013 Authors

Enhancements in data redistribution strategies to increase efficiency of
large data volumes in Scientific Clouds using FastScale

Enkeleda KUKA, Mirela NDREU, Genti DACI, Aleksander XHUVANI

ABSTRACT – In many scientific Clouds, storing very large
amounts of application data remains a great challenge. To
provide necessary storage and performance support, one
strategy is to distribute data over multiple disks using RAID
technologies which are widely available and very robust.
Adding new storage disks to cope with large amounts of
Application data, requires proper parallel data redistribution
techniques to maintain the performance of entire system. In
this paper we describe various techniques and algorithms that
take advantage from redistribution strategies aiming on
increasing the performance of a scalable parallel disk array.
We will summarize several recent methods and approaches
like SCADDAR, SLAS, ALV and FastScale. We will describe
FastScale implementation and propose an algorithm to take in
account parity block position structures to enable parallel
read/writes on the extended volumes. Numerical results show
that FastScale outperforms SLAS under the same workloads.
We conclude with a discussion of the expected performance or
proposed algorithm and future works on performance
evaluation.

KEYWORDS: RAID, SCADDAR, SLAS, FastScale, Cloud
Computing.

I. INTRODUCTION

RAID systems were projected to give higher performance,
more capacity and data reliability of the existing system.
Especially level 5 RAID was the first one that gave us the
possibility to make parallel reads and writes, thus to make
an application, or a system much more efficient [1].
However, user data increases continuously and applications
almost always require larger storage capacity. to supply
always the needed capacity and/or bandwidth, one solution
is to add extra disks to the RAID volume.
Uniform and parallel data distribution is important for
RAID volumes to maintain high levels of performance, thus
different approaches are developed to make the
redistribution of data blocks when a disk addition is
performed. We will discuss some of these approaches
giving the singularity of every technique used by them.
Initially we will see SCADDAR, an efficient, online method
to scale disks in a continuous media server. SCADDAR
uses a series of REMAP functions which derive the location
of a new block using only its original location as a basis [5].
Practically SCADDAR maintains load balancing of blocks
and in general low complexity computation. During the data
redistribution process, there is always a reordering window,
and based on it is developed another approach. SLAS
approach uses the priorities of the reordering window,
guarantees data consistency and does not enlarge the impact
on the response time of foreground I/Os. Experiments have

shown that SLAS has a good performance, but during
redistribution it moves all the blocks of data into all the
disks and this have been proved that is a weakness for
SLAS that decreases the performance.
The ALV approach applies the technique of the reordering
window on RAID-5 storage volume and this increases the
efficiency of the system [4]. From the experiments results it
was concluded that ALV had a noticeable improvement
over earlier approaches in two metrics: the redistribution
time and the user response time. The last approach that we
found is FastScale, a scaling approach that gives a very high
performance on RAID-0. The strength of this algorithm
derive by its addressing function which minimizes data
movement [2].
Figure 1 shows the movement of data blocks on RAID-0
with FastScale. During the review of FastScale we noticed
that the blocks move from old disks to the added ones, but
they do not change the physical address. Our main goal is to
find a solution how to improve the performance of RAID-5
using FastScale. FastScale is not implemented in RAID-5
because it has not included parity bit in its addressing
function.

Figure 1. The movement of blocks in RAID-0 after adding two new disks

using FastScale.

The contribution of this paper is the proposal of an
algorithm that includes parity bits in the distribution process
of FastScale. The parity block position structure enables
parallel reads/writes in RAID-5 volumes the and we take
account of them in our algorithm.
Practically, we do not change FastScale algorithm, but we
only add a short algorithm to the normal phases of the
redistribution to RAID-5. The algorithms must be
implemented between data migration and parity calculation,
and it does not make complex computation. This gives us
the reason to predict that the performance of the system will
be at high levels, as it happens on RAID-0 volumes.

II. THE DEVELOPMENT OF THE SCALING

TECHNIQUES

A. SCADDAR
The first approach that we will mention is SCADDAR [5].
The disk addition to a continuous media server is still

44

nowadays necessary and it cannot be avoided, but the
necessity was to find an approach that makes the
redistribution of data without interruptions of the activity.
This need motivated the development of SCADDAR which
is an efficient, online method to scale disks in a continuous
media server.
With SCADDAR, we are able to use pseudo-random
placement without redistributing all the blocks after each
scaling operation. SCADDAR does not require a directory
for storing block locations, only a storage structure for
recording scaling operations, which is significantly less than
the number of all block locations. In addition, SCADDAR
computes the new locations of blocks on-the-fly for each
block access by using a series of inexpensive mod and div
functions. Practically, it uses a series of REMAP functions
which derive the location of a new block using only its
original location as a basis. The redistribution_funciton()
and access_function(), that are the main components of the
SCADDAR approach, satisfies all the objectives that were
presented. Only those blocks which need to be moved are
moved and blocks either move onto an added disk or off of
a removed disk. REMAP always uses a new source of
randomness to compute the remapped number of the block.
Also, block accesses only require one disk access per block.
Several experiments have been performed to show that
SCADDAR provides load balancing. SCADDAR maintains
load balancing of blocks across disks after several scaling
operations. After eight scaling operations performed on 20
different objects, the percentage of load fluctuation reaches
the threshold level in which redistribution of all blocks is
recommended. The uniform distribution, the balanced load
after redistribution, the retrieved redistributed blocks at the
normal mode of operation and the low complexity
computation are the restrictions that SCADDAR satisfies,
but however the improvements have not stopped with this
one.

B. SLAS

Discussing on one of the most important problems in
current systems, the increasing demand of applications for
higher I/O performance and larger storage capacity, there
are two well-known striping policies: round-robin policy
and random policy. Random striping appears to be more
flexible when adding new disks or deleting existing disks.
But, due to its poor performance and lack of qualified
randomized hash function, random striping is not so
satisfactory a solution as expected. Round-robin striping is
used in the most applications that demand high bandwidth
and massive storage because it gives to the system uniform
distribution and low-complexity computation. Round-robin
striping is applied in different storage systems: disk arrays,
logical volume managers, and file systems. We add disks to
the round-robin striped volumes when storage capacity and
I/O bandwidth of many systems need increasing.
These are the reasons why another approach that provides
the redistribution of data after adding disks. During the data
redistribution process, there is always a reordering window

where no valid data chunk will be overwritten while
changing the order of data movements. The reordering
window is a window where data consistency can be
maintained while changing the order of chunk movements
and its characteristic provides a theoretical basis for solving
the problem of scaling RR-striped volumes. This is the basis
of SLAS approach.
Figure 2 illustrates the concept of the sliding window during
the process of redistribution. The sliding window is similar
to a small mapping table, and it describes the mapping
information on a continuous segment of the striped volume.
Before the data redistribution, the original mapping function
is used, and 2 disks are used to serve requests. During the
data redistribution, only data within the range of the sliding
window are redistributed. The foreground I/O requests, sent
to the logical address in front of the sliding window, are
mapped through the original function; those sent to the
address behind the sliding window are mapped through the
new function; and those sent to the address in the range of
the sliding window are mapped through the sliding window.

Figure 2. Mapping management based on a sliding window for the data
redistribution

After all of the data in the sliding window are moved, the
window slides ahead by one window size. Thus, the newly
added disk is gradually available to serve foreground I/O
requests. The data redistribution of the whole volume is
completed when the sliding window reaches the end of the
original striped volume. SLAS guarantees data consistency
and does not enlarge the impact on the response time of
foreground I/Os. SLAS changes the movement order of data
chunks in a sliding window in order to aggregate
reads/writes of multiple data chunks and SLAS serves
foreground I/O requests between aggregate chunk
reads/writes in a disk-scaling operation. The data
redistribution causes the increase of the number of metadata
writes. SLAS uses an additional technique to decrease this
number: lazy updates of metadata mapping.
SLAS has another characteristic: can not only be used to
add new disks to a RAID-0 volume; it can also be extended
to remove existing disks from a RAID-0 volume and to
add/remove disks to/from a RAID-4 or RAID-5 volume [3].
The experiments made with SLAS demonstrated that it
shortens the redistribution duration and the maximum
response time. However, SLAS during redistribution moves
all the blocks of data into all the disks and this proved that
is a weakness for SLAS. Moving all data blocks is not
necessary and this reduces system performance.

45

ISCIM 2013, pp. 43-48 © 2013 Authors

C. ALV

ALV is another approach that is based on the reordering
window [2]. This approach increases the efficiency of a
scaling process based on the reordering window applying it
on RAID-5 storage volume. The main achievement of the
authors was to take advantage of the qualities of the
reordering window and then they used different techniques
to make it appropriate for RAID-5. The three techniques
that ALV uses are the following: first, ALV changes the
order of data movements to access multiple successive
chunks via a single I/O. Second, ALV updates mapping
metadata lazily to minimize the number of metadata writes.
Data movement is not check pointed, until a threat to data
consistency occurs. And third, depending on application
workload, ALV adjust the redistribution rate using an on/off
logical valve. The operation mode of ALV approach is
similar to SLAS approach because of their common basic
technique: the reordering window. Using the new
techniques, ALV achieves higher efficiency. From the
experiment results it was concluded that ALV had a
noticeable improvement over earlier approaches in two
metrics: the redistribution time and the user response time.
There is an essential difference between RAID-0 and
RAID-5 and it is predictable that this difference will
influence the scaling process of each volume. In the Figure
3 are illustrated the initial states of the redistribution process
in RAID-5 volume. The presence of parity blocks orients all
the blocks movement. This illustration of the process
demonstrates that the reordering window solves properly
the influence of the parity blocks. In the figure, “P”
represents the parity before scaling and with “Q” is noted
the parity that will be calculated after the redistribution
process. ALV changes the order of the block movement and
this gives the possibility to avoid unnecessary parity blocks,
and to recalculate the new parity blocks.
Our focus is precisely on RAID-5 volumes and this is why
ALV was an interesting approach for us, but anyway we did
not stop to this one. We find another approach that gives a
higher performance.

III. FASTSCALE

The last approach that we will discuss is FastScale, an
approach that can tolerate multiple disk addition moving the
minimum amount of data. The basic idea of the FastScale
approach is shown in Figure 4.
FastScale moves only data blocks from old disks to new
disk enough for preserving the uniformity of data
distribution, while not migrating data among old disks. The
main strength of FastScale is its elastic addressing function.
This addressing function computes easily the location of
one block, without any lookup operation. FastScale changes
only a part of the data layout while preserving the
uniformity of data distribution. So, FastScale minimizes
data migration for RAID scaling during the redistribution
process.

Figure 3. A series of states in data redistribution for RAID-5 scaling from 3

disks to 4. The reordering window is represented by “R”.

Figure 4. Data migration using FastScale. No data is migrated among old
disks.

One RAID scaling process can be divided into two logical
stages: data migration and data filling. In Figure 5 is shown
the first stage, a fraction of existing data blocks are migrated
to new disks. For the RAID-0 scaling, we group into one
segment each 5 sequential locations in one disk.
For the 5 disks, 5 segments with the same physical address
are grouped into one region. In the figure, different regions
are separated with a wavy line. The data migration and data
filling process is the same for every different region. In a
region, all of the data blocks within a parallelogram will be
moved.
FastScale satisfies all the requirements of a scaling
algorithm. FastScale maintains a uniform data distribution
after RAID scaling; minimizes the amount of data to be
migrated entirely; preserves a simple management of data

46

due to deterministic placement; can sustain the above three
features after multiple disk additions.

Figure 5. The data migration process in RAID-0 using FastScale.

 The success of FastScale depends also on other special
physical optimization made to the process of data migration.
It uses aggregate accesses to improve the efficiency of data
migration. It records data migration lazily to minimize the
number of metadata updates. However, data consistency is
ensured, even metadata updates are minimized.
Figure 6 shows graphically the results of a comparison
made between FastScale and SLAS under the same
workload. All the results of the experiments done [2] show
that FastScale has a high performance even in different
workload. FastScale is implemented and proved on RAID-0
volumes when we add disks, but it is not implemented when
we remove disks.
Otherwise for RAID-5 it is not implemented yet, because
the factor of the parity bits is not taken into account in the
addressing function of the approach.

IV. OUR ALGORITHM

Our goal is to give to RAID-5 scaling a higher performance
using the techniques that FastScale owns. The restriction of
FastScale is that it does not include parity bits in the
algorithm. Looking carefully the structure of RAID-5, we
notice that the position of every parity block is defined by a
certain rule. In RAID-5, as it happens in RAID-0, we group

Figure 6. Performance comparison between FastScale and SLAS under the
same workload.

blocks in regions. As it is shown in Figure 7, in every
region of a RAID-5 volume we have a parity block in every
disk and these blocks correspond to different physical
addresses. In other words, there is only a parity block for
every physical address of the system. After the addition of
new disks the parity blocks change their position and their
value. Our algorithm gives a solution how FastScale can
include the parity blocks in the redistribution process.

Figure 7. The structure of RAID-5 and the blocks with the same physical
number.

The other fact that we will use in our algorithm is: during
the redistribution, FastScale does not change the physical
number inside of blocks, but they only move from old disks
to the new ones with the same physical address. Basically
our approach does not change anything to FastScale
approach. The redistribution process after scaling RAID-5 is
conducted form FastScale and the blocks move regardless
of the content of the block.
Our proposal must be implemented exactly after the
migration of data blocks and before the computation of the
new parity value. At first, our algorithm controls if the
position of the parity block is right, then it calls the parity
computation procedure. The control if the position of parity
is right includes three situations:

 The new position of parity block is empty

 The new position of parity block has the “old”
parity block

 The new position of parity block has data written in
it

The first and the second situation are less problematic,
because we can write and overwrite the “new” parity safely,
without losing data. The third situation requires more
attention. If there is written data in the block, the new parity
cannot be written there. Given to the facts that parity blocks
have specific positions, and that there must be an “old”
parity block, that is not more needed anymore, with the
same physical number b and we can make an exchange
between them. This way, we save data and write parity bit
where it is required.
Our algorithm works in addition to the function that
calculates parity. We have not defined a specific function
for the calculation of the parity.

The proposed Algorithm:

ParityBitPositionControl (m, n, d, b)

d: the disk holding block x

47

ISCIM 2013, pp. 43-48 © 2013 Authors

b: physical block number
m: the number of old disks
n: the number of new disks

1. if R[(m+n) – bmod (m+n-1) - 1][b] == null // we
control if the physical block is written

2. d0 � R[(m+n) – bmod (m+n-1) - 1], b0 � b

// we define d0 and b0 like the coordinates of the position of the new
parity

3. ParityComputationProcedure (d0, b0) // we

call the procedure that calculates the new parity

4. exit;

5. else if R[(m+n) – bmod (m+n-1) - 1] [b] == parity bit

6. d0 � R[(m+n) – bmod (m+n-1) - 1], b0 � b

7. R[d0][b0] � null

// the old parity is not necessary anymore, so we delete the information
in it, and then we write the new parity in it

8. ParityComputationProcedure (d0, b0)

9. exit;

10. else if R[(m+n) – bmod (m+n-1) - 1] [b] == info bit

11. d0 � R[(m+n) – bmod (m+n-1) - 1], b0 � b

// it is necessary to save logical block of the striped information, so
when we have information in the position where the new parity should
be, we move it to the physical block of the old parity

12. R[m – bmod (m - 1) – 1][b] � R[d0][b0]

13. R[d0][b0] � null // after moving info bits, the old parity is
not necessary, so we can delete it

14. ParityComputationProcedure (d0, b0)

15. exit;

R[x][y] – is noted the position of the block in the whole
system.
ParityComputationProcedure – this instruction calls the
procedure that is used in the system to calculate parity.

In Figure 8 is illustrated schematically the process of data
redistribution on RAID-5 using our algorithm. Initially, this
algorithm makes a control of the content of every position
that should be a parity block. If the block is empty, the
function of the parity calculation is called. Otherwise, if the
block is not empty, we must distinguish if the content is
parity or data bits. In the case of parity bits, we do the same
as it was empty: we write over it because the old parity is
not needed, the new one is written.

Figure 8. The redistribution process in RAID-5 using the proposed
algorithm.

If the content is data, we cannot write over it, because we
lose the data. In this case, we find the old parity block that
has the same physical number and perform an exchange of
blocks. On one side, we protect data and save them, and on
the other side we write the new parity bits in the proper
position.
It is explained by W. Zheng and G. Zhang [2], that
FastScale gives high performance by minimizing the data
movement. The phase of the calculation of parity is
unavoidable in RAID-5 volumes and it adds latency to the
process of redistribution. But, due to the fact that we do not
change any part of the addressing function of FastScale, we
predict that the performance of RAID-5 with FastScale will
be at high levels too.

V. CONCLUSIONS AND FUTURE WORK

Due to the fact that RAID-5 volumes give to an application
more performance and effectiveness because of the
supported parallel reads/writes, our attention was
concentrated on RAID-5 and especially we worked on
finding a solution how RAID-5 can be even more efficient.
Time after time we have to scale the RAID volume with
extra disks because the application data increases
continuously and then we face with the problem data
redistribution.
This paper exploits the general characteristics of some
approaches that perform the data redistributing after scaling
storage devices. FastScale is a scaling algorithm that gives a
high performance in RAID-0 volumes.
The contribution of this paper is the proposal of one
algorithm that can adapt FastScale to RAID-5 systems. Our
proposal is a short algorithm that includes parity bits in the
redistribution process of FastScale. We do not change the
addressing function of FastScale algorithm, which is its
main strength, but we only add a short algorithm to the
normal phases of the redistribution to RAID-5. The
algorithms must be implemented exactly after the migration
of data and before the parity calculation and it does not
make complex computation. This gives us the reason to

48

predict that the performance of the system will be at high
levels, as it happens on RAID-0 volumes.
But, in this paper is not shown any numerical analysis or
performance simulation of our algorithm, and this will be on
focus for our future work.

REFERENCES

[1] D. A. Patterson, G. A. Gibson, R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID), in Proceedings of the
International Conference on Management of Data (SIGMOD’88),
June 1988. pp. 109-116

[2] W. Zheng and G. Zhang. Fastscale: Accelerate raid scaling by
minimizing data migration. In Proceedings of the 9th USENIX
Conference on File and Storage Technologies (FAST), Feb. 2011.

[3] G. Zhang, J. Shu, W. Xue, and W. Zheng. SLAS: An efficient
approach to scaling round-robin striped volumes. ACM Trans.
Storage, volume 3, issue 1, Article 3, pg 1-39, March 2007.

[4] Guangyan Zhang, Weimin Zheng, Jiwu Shu, "ALV: A New Data
Redistribution Approach to RAID-5 Scaling," IEEE Transactions on
Computers, vol. 59, no. 3, pp. 345-357, March 2010.

[5] A. Goel, C. Shahabi, S-YD Yao, R. Zimmermann. SCADDAR: An
efficient randomized technique to reorganize continuous media
blocks. In Proceedings of the 18th International Conference on Data
Engineering (ICDE’02), pg. 473-482, San Jose, 2002.

[6] Beomjoo Seo and Roger Zimmermann. Efficient disk replacement and
data migration algorithms for large disk subsystems. ACM
Transactions on Storage (TOS), volume 1, issue 3, pg 316-345,
August 2005.

[7] A. Miranda, S. Effert, Y. Kang, E.L. Miller, A. Brinkmann, T. Cortes.
Reliable and Randomized Data Distribution Strategies for Large Scale
Storage Systems on 18th Annual International Conference on High
Performance Computing Bangalore, India, December 18-21, 2011

