
43 

ISCIM 2013, pp. 43-48 © 2013 Authors 

 

Enhancements in data redistribution strategies to increase efficiency of 
large data volumes in Scientific Clouds using FastScale     

 
Enkeleda KUKA, Mirela NDREU, Genti DACI, Aleksander XHUVANI 

 

ABSTRACT – In many scientific Clouds, storing very large 
amounts of application data remains a great challenge. To 
provide necessary storage and performance support, one 
strategy is to distribute data over multiple disks using RAID 
technologies which are widely available and very robust. 
Adding new storage disks to cope with large amounts of 
Application data, requires proper parallel data redistribution 
techniques to maintain the performance of entire system. In 
this paper we describe various techniques and algorithms that 
take advantage from redistribution strategies aiming on 
increasing the performance  of a scalable parallel disk array. 
We will summarize several recent methods  and approaches 
like SCADDAR, SLAS,  ALV and FastScale. We will describe 
FastScale implementation and  propose an algorithm to take in 
account parity block position structures to enable parallel 
read/writes on the extended volumes.  Numerical results show 
that FastScale outperforms SLAS under the same workloads. 
We conclude with a discussion  of the expected performance or 
proposed algorithm and future works on performance 
evaluation. 
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I. INTRODUCTION 

RAID systems were projected to give higher performance, 
more capacity and data reliability of the existing system. 
Especially level 5 RAID was the first one that gave us the 
possibility to make parallel reads and writes, thus to make 
an application, or a system much more efficient [1]. 
However, user data increases continuously and applications 
almost always require larger storage capacity. to supply 
always the needed capacity and/or bandwidth, one solution 
is to add extra disks to the RAID volume. 
Uniform and parallel data distribution is important for 
RAID volumes to maintain high levels of performance, thus 
different approaches are developed to make the 
redistribution of data blocks when a disk addition is 
performed. We will discuss some of these approaches 
giving the singularity of every technique used by them.  
Initially we will see SCADDAR, an efficient, online method 
to scale disks in a continuous media server. SCADDAR 
uses a series of REMAP functions which derive the location 
of a new block using only its original location as a basis [5]. 
Practically SCADDAR maintains load balancing of blocks 
and in general low complexity computation. During the data 
redistribution process, there is always a reordering window, 
and based on it is developed another approach. SLAS 
approach uses the priorities of the reordering window, 
guarantees data consistency and does not enlarge the impact 
on the response time of foreground I/Os. Experiments have 

shown that SLAS has a good performance, but during 
redistribution it moves all the blocks of data into all the 
disks and this have been proved that is a weakness for 
SLAS that decreases the performance. 
The ALV approach applies the technique of the reordering 
window on RAID-5 storage volume and this increases the 
efficiency of the system [4]. From the experiments results it 
was concluded that ALV had a noticeable improvement 
over earlier approaches in two metrics: the redistribution 
time and the user response time. The last approach that we 
found is FastScale, a scaling approach that gives a very high 
performance on RAID-0. The strength of this algorithm 
derive by its addressing function which minimizes data 
movement [2].  
Figure 1 shows the movement of data blocks on RAID-0 
with FastScale. During the review of FastScale we noticed 
that the blocks move from old disks to the added ones, but 
they do not change the physical address. Our main goal is to 
find a solution how to improve the performance of RAID-5 
using FastScale. FastScale is not implemented in RAID-5 
because it has not included parity bit in its addressing 
function.  

 
Figure 1. The movement of blocks in RAID-0 after adding two new disks 

using FastScale. 

The contribution of this paper is the proposal of an 
algorithm that includes parity bits in the distribution process 
of FastScale. The parity block position structure enables 
parallel reads/writes in RAID-5 volumes the and we take 
account of them in our algorithm. 
Practically, we do not change FastScale algorithm, but we 
only add a short algorithm to the normal phases of the 
redistribution to RAID-5. The algorithms must be 
implemented between data migration and parity calculation, 
and it does not make complex computation. This gives us 
the reason to predict that the performance of the system will 
be at high levels, as it happens on RAID-0 volumes. 

II. THE DEVELOPMENT OF THE SCALING 

TECHNIQUES 

A. SCADDAR 
The first approach that we will mention is SCADDAR [5]. 
The disk addition to a continuous media server is still 
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nowadays necessary and it cannot be avoided, but the 
necessity was to find an approach that makes the 
redistribution of data without interruptions of the activity. 
This need motivated the development of SCADDAR which 
is an efficient, online method to scale disks in a continuous 
media server.   
With SCADDAR, we are able to use pseudo-random 
placement without redistributing all the blocks after each 
scaling operation. SCADDAR does not require a directory 
for storing block locations, only a storage structure for 
recording scaling operations, which is significantly less than 
the number of all block locations. In addition, SCADDAR 
computes the new locations of blocks on-the-fly for each 
block access by using a series of inexpensive mod and div 
functions. Practically, it uses a series of REMAP functions 
which derive the location of a new block using only its 
original location as a basis. The redistribution_funciton() 
and access_function(), that are the main components of the 
SCADDAR approach, satisfies all the objectives that were 
presented. Only those blocks which need to be moved are 
moved and blocks either move onto an added disk or off of 
a removed disk. REMAP always uses a new source of 
randomness to compute the remapped number of the block. 
Also, block accesses only require one disk access per block. 
Several experiments have been performed to show that 
SCADDAR provides load balancing. SCADDAR maintains 
load balancing of blocks across disks after several scaling 
operations. After eight scaling operations performed on 20 
different objects, the percentage of load fluctuation reaches 
the threshold level in which redistribution of all blocks is 
recommended. The uniform distribution, the balanced load 
after redistribution, the retrieved redistributed blocks at the 
normal mode of operation and the low complexity 
computation are the restrictions that SCADDAR satisfies, 
but however the improvements have not stopped with this 
one.  

B. SLAS 

Discussing on one of the most important problems in 
current systems, the increasing demand of applications for 
higher I/O performance and larger storage capacity, there 
are two well-known striping policies: round-robin policy 
and random policy. Random striping appears to be more 
flexible when adding new disks or deleting existing disks. 
But, due to its poor performance and lack of qualified 
randomized hash function, random striping is not so 
satisfactory a solution as expected. Round-robin striping is 
used in the most applications that demand high bandwidth 
and massive storage because it gives to the system uniform 
distribution and low-complexity computation. Round-robin 
striping is applied in different storage systems: disk arrays, 
logical volume managers, and file systems. We add disks to 
the round-robin striped volumes when storage capacity and 
I/O bandwidth of many systems need increasing.  
These are the reasons why another approach that provides 
the redistribution of data after adding disks. During the data 
redistribution process, there is always a reordering window 

where no valid data chunk will be overwritten while 
changing the order of data movements. The reordering 
window is a window where data consistency can be 
maintained while changing the order of chunk movements 
and its characteristic provides a theoretical basis for solving 
the problem of scaling RR-striped volumes. This is the basis 
of SLAS approach.  
Figure 2 illustrates the concept of the sliding window during 
the process of redistribution. The sliding window is similar 
to a small mapping table, and it describes the mapping 
information on a continuous segment of the striped volume. 
Before the data redistribution, the original mapping function 
is used, and 2 disks are used to serve requests. During the 
data redistribution, only data within the range of the sliding 
window are redistributed. The foreground I/O requests, sent 
to the logical address in front of the sliding window, are 
mapped through the original function; those sent to the 
address behind the sliding window are mapped through the 
new function; and those sent to the address in the range of 
the sliding window are mapped through the sliding window. 
 

 

Figure 2. Mapping management based on a sliding window for the data 
redistribution 

After all of the data in the sliding window are moved, the 
window slides ahead by one window size. Thus, the newly 
added disk is gradually available to serve foreground I/O 
requests. The data redistribution of the whole volume is 
completed when the sliding window reaches the end of the 
original striped volume. SLAS guarantees data consistency 
and does not enlarge the impact on the response time of 
foreground I/Os. SLAS changes the movement order of data 
chunks in a sliding window in order to aggregate 
reads/writes of multiple data chunks and SLAS serves 
foreground I/O requests between aggregate chunk 
reads/writes in a disk-scaling operation. The data 
redistribution causes the increase of the number of metadata 
writes. SLAS uses an additional technique to decrease this 
number: lazy updates of metadata mapping.  
SLAS has another characteristic: can not only be used to 
add new disks to a RAID-0 volume; it can also be extended 
to remove existing disks from a RAID-0 volume and to 
add/remove disks to/from a RAID-4 or RAID-5 volume [3]. 
The experiments made with SLAS demonstrated that it 
shortens the redistribution duration and the maximum 
response time. However, SLAS during redistribution moves 
all the blocks of data into all the disks and this proved that 
is a weakness for SLAS. Moving all data blocks is not 
necessary and this reduces system performance. 
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C. ALV 

ALV is another approach that is based on the reordering 
window [2]. This approach increases the efficiency of a 
scaling process based on the reordering window applying it 
on RAID-5 storage volume. The main achievement of the 
authors was to take advantage of the qualities of the 
reordering window and then they used different techniques 
to make it appropriate for RAID-5. The three techniques 
that ALV uses are the following: first, ALV changes the 
order of data movements to access multiple successive 
chunks via a single I/O. Second, ALV updates mapping 
metadata lazily to minimize the number of metadata writes. 
Data movement is not check pointed, until a threat to data 
consistency occurs. And third, depending on application 
workload, ALV adjust the redistribution rate using an on/off 
logical valve. The operation mode of ALV approach is 
similar to SLAS approach because of their common basic 
technique: the reordering window. Using the new 
techniques, ALV achieves higher efficiency. From the 
experiment results it was concluded that ALV had a 
noticeable improvement over earlier approaches in two 
metrics: the redistribution time and the user response time.  
There is an essential difference between RAID-0 and 
RAID-5 and it is predictable that this difference will 
influence the scaling process of each volume. In the Figure 
3 are illustrated the initial states of the redistribution process 
in RAID-5 volume. The presence of parity blocks orients all 
the blocks movement. This illustration of the process 
demonstrates that the reordering window solves properly 
the influence of the parity blocks. In the figure, “P” 
represents the parity before scaling and with “Q” is noted 
the parity that will be calculated after the redistribution 
process. ALV changes the order of the block movement and 
this gives the possibility to avoid unnecessary parity blocks, 
and to recalculate the new parity blocks. 
Our focus is precisely on RAID-5 volumes and this is why 
ALV was an interesting approach for us, but anyway we did 
not stop to this one. We find another approach that gives a 
higher performance. 
 

III. FASTSCALE 

The last approach that we will discuss is FastScale, an 
approach that can tolerate multiple disk addition moving the 
minimum amount of data. The basic idea of the FastScale 
approach is shown in Figure 4.  
FastScale moves only data blocks from old disks to new 
disk enough for preserving the uniformity of data 
distribution, while not migrating data among old disks. The 
main strength of FastScale is its elastic addressing function. 
This addressing function computes easily the location of 
one block, without any lookup operation. FastScale changes 
only a part of the data layout while preserving the 
uniformity of data distribution. So, FastScale minimizes 
data migration for RAID scaling during the redistribution 
process. 

 

 
Figure 3. A series of states in data redistribution for RAID-5 scaling from 3 

disks to 4. The reordering window is represented by “R”.  
 

 

Figure 4. Data migration using FastScale. No data is migrated among old 
disks. 

One RAID scaling process can be divided into two logical 
stages: data migration and data filling. In Figure 5 is shown 
the first stage, a fraction of existing data blocks are migrated 
to new disks. For the RAID-0 scaling, we group into one 
segment each 5 sequential locations in one disk.  
For the 5 disks, 5 segments with the same physical address 
are grouped into one region. In the figure, different regions 
are separated with a wavy line. The data migration and data 
filling process is the same for every different region. In a 
region, all of the data blocks within a parallelogram will be 
moved. 
FastScale satisfies all the requirements of a scaling 
algorithm. FastScale maintains a uniform data distribution 
after RAID scaling; minimizes the amount of data to be 
migrated entirely; preserves a simple management of data 
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due to deterministic placement; can sustain the above three 
features after multiple disk additions. 

 
Figure 5. The data migration process in RAID-0 using FastScale. 

  The success of FastScale depends also on other special 
physical optimization made to the process of data migration. 
It uses aggregate accesses to improve the efficiency of data 
migration. It records data migration lazily to minimize the 
number of metadata updates. However, data consistency is 
ensured, even metadata updates are minimized.  
Figure 6 shows graphically the results of a comparison 
made between FastScale and SLAS under the same 
workload. All the results of the experiments done [2] show 
that FastScale has a high performance even in different 
workload. FastScale is implemented and proved on RAID-0 
volumes when we add disks, but it is not implemented when 
we remove disks.  
Otherwise for RAID-5 it is not implemented yet, because 
the factor of the parity bits is not taken into account in the 
addressing function of the approach.  

IV. OUR ALGORITHM 

Our goal is to give to RAID-5 scaling a higher performance 
using the techniques that FastScale owns. The restriction of 
FastScale is that it does not include parity bits in the 
algorithm. Looking carefully the structure of RAID-5, we 
notice that the position of every parity block is defined by a 
certain rule. In RAID-5, as it happens in RAID-0, we group 
 

 

Figure 6. Performance comparison between FastScale and SLAS under the 
same workload. 

 
blocks in regions. As it is shown in Figure 7, in every 
region of a RAID-5 volume we have a parity block in every 
disk and these blocks correspond to different physical 
addresses. In other words, there is only a parity block for 
every physical address of the system. After the addition of 
new disks the parity blocks change their position and their 
value. Our algorithm gives a solution how FastScale can 
include the parity blocks in the redistribution process.  

 

Figure 7. The structure of RAID-5 and the blocks with the same physical 
number. 

The other fact that we will use in our algorithm is: during 
the redistribution, FastScale does not change the physical 
number inside of blocks, but they only move from old disks 
to the new ones with the same physical address. Basically 
our approach does not change anything to FastScale 
approach. The redistribution process after scaling RAID-5 is 
conducted form FastScale and the blocks move regardless 
of the content of the block.  
Our proposal must be implemented exactly after the 
migration of data blocks and before the computation of the 
new parity value. At first, our algorithm controls if the 
position of the parity block is right, then it calls the parity 
computation procedure. The control if the position of parity 
is right includes three situations: 

 The new position of parity block is empty 

 The new position of parity block has the “old” 
parity block 

 The new position of parity block has data written in  
it 

The first and the second situation are less problematic, 
because we can write and overwrite the “new” parity safely, 
without losing data. The third situation requires more 
attention. If there is written data in the block, the new parity 
cannot be written there. Given to the facts that parity blocks 
have specific positions, and that there must be an “old” 
parity block, that is not more needed anymore, with the 
same physical number b and we can make an exchange 
between them. This way, we save data and write parity bit 
where it is required.  
Our algorithm works in addition to the function that 
calculates parity. We have not defined a specific function 
for the calculation of the parity. 
 
The proposed Algorithm: 
 
ParityBitPositionControl (m, n, d, b) 

d: the disk holding block x 
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b: physical block number 
m: the number of old disks 
n: the number of new disks 

1. if R[ (m+n) – bmod ( m+n-1) - 1][b] == null   // we 
control if the physical block is written 

2.        d0 � R[ (m+n) – bmod ( m+n-1) - 1], b0 � b  

// we define d0 and b0 like the coordinates of the position of the new 
parity 

3.        ParityComputationProcedure (d0, b0)   // we 

call the procedure that calculates the new parity 

4. exit; 

5. else if R[ (m+n) – bmod ( m+n-1) - 1] [b] == parity bit 

6.        d0 � R[ (m+n) – bmod ( m+n-1) - 1], b0 � b 

7.        R[d0][ b0] � null    

// the old parity is not necessary anymore, so we delete the information 
in it, and then we write the new parity in it 

8.        ParityComputationProcedure (d0, b0) 

9. exit; 

10. else if R[ (m+n) – bmod ( m+n-1) - 1] [b] == info bit 

11.       d0 � R[ (m+n) – bmod ( m+n-1) - 1], b0 � b 

// it is necessary to save logical block of the striped information, so 
when we have information in the position where the new parity should 
be, we move it to the physical block of the old parity 

12.        R[ m – bmod ( m - 1) – 1][b] � R[d0][ b0]   

13.        R[d0][ b0] � null // after moving info bits, the old parity is 
not necessary, so we can delete it 

14.        ParityComputationProcedure (d0, b0) 

15. exit; 

R[x][y] – is noted the position of the block in the whole 
system. 
ParityComputationProcedure – this instruction calls the 
procedure that is used in the system to calculate parity.  
 
In Figure 8 is illustrated schematically the process of data 
redistribution on RAID-5 using our algorithm. Initially, this 
algorithm makes a control of the content of every position 
that should be a parity block. If the block is empty, the 
function of the parity calculation is called. Otherwise, if the 
block is not empty, we must distinguish if the content is 
parity or data bits. In the case of parity bits, we do the same 
as it was empty: we write over it because the old parity is 
not needed, the new one is written. 

 

Figure 8. The redistribution process in RAID-5 using the proposed 
algorithm. 

 
If the content is data, we cannot write over it, because we 
lose the data. In this case, we find the old parity block that 
has the same physical number and perform an exchange of 
blocks. On one side, we protect data and save them, and on 
the other side we write the new parity bits in the proper 
position.  
It is explained by W. Zheng and G. Zhang [2], that 
FastScale gives high performance by minimizing the data 
movement. The phase of the calculation of parity is 
unavoidable in RAID-5 volumes and it adds latency to the 
process of redistribution. But, due to the fact that we do not 
change any part of the addressing function of FastScale, we 
predict that the performance of RAID-5 with FastScale will 
be at high levels too. 

 

V. CONCLUSIONS AND FUTURE WORK 

Due to the fact that RAID-5 volumes give to an application 
more performance and effectiveness because of the 
supported parallel reads/writes,  our attention was 
concentrated on RAID-5 and especially we worked on 
finding a solution how RAID-5 can be even more efficient. 
Time after time we have to scale the RAID volume with 
extra disks because the application data increases 
continuously and then we face with the problem data 
redistribution.  
This paper exploits the general characteristics of some 
approaches that perform the data redistributing after scaling 
storage devices. FastScale is a scaling algorithm that gives a 
high performance in RAID-0 volumes. 
The contribution of this paper is the proposal of one 
algorithm that can adapt FastScale to RAID-5 systems. Our 
proposal is a short algorithm that includes parity bits in the 
redistribution process of FastScale. We do not change the 
addressing function of FastScale algorithm, which is its 
main strength, but we only add a short algorithm to the 
normal phases of the redistribution to RAID-5. The 
algorithms must be implemented exactly after the migration 
of data and before the parity calculation and it does not 
make complex computation. This gives us the reason to 
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predict that the performance of the system will be at high 
levels, as it happens on RAID-0 volumes. 
But, in this paper is not shown any numerical analysis or 
performance simulation of our algorithm, and this will be on 
focus for our future work.  
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