
Updating web content in real time using Node.js
Edlira Kalemi, Phd #1, Krisel Tola *2,

Computer Science Department, “Aleksander Moisiu” University of Durres
Albania

1
edlirakalemi@uamd.edu.al
2
krisel.tola@gmail.com

Abstract— The real-time web is a set of technologies and

practices that enable users to receive information as soon as it is

published by its authors, rather than requiring that they or their

software check a source periodically for updates. In order to

achieve this, we can use different technologies. One of them is

Node.js. Through this article we want to describe this technology

and highlight the advantages of using Node.js as a technology to

update web content in real time. To achieve this objective we

have made some tests and measurements for the time spend to

update information using these technology versus other

technologies like Php/ Apache.

I. INTRODUCTION

Requirements for real-time applications are increasing day
by day. The need to be updated throughout the time, regarding
the interested information or data is becoming bigger. We are
recently working on a project, related to stock trading, where
the main goal is to update the stock data every second and
show those data to the user through a web application. The big
question here is what technology to apply to make the almost
real-time update possible. After consulting different material
and made some testing we decided to use the Node.js
technology. Most of web developers are used to implement
the JavaScript language only over the client side. Node.js as a
platform gives us the opportunity to write JavaScript scripts
for the server side too. So, having the same language on both
client and server makes you think that things are running
faster here. We have mostly compared Node.js with Php/
Apache. Node.js is a new technology and, comparing to other
script languages like Php, has lack of support. With Node.js
we can create our http server which will not rely on Apache
server like Php does. For this test we will retrieve stock data
for 10 different companies from Yahoo! Finance [6] using
both Node.js and Php / Apache. After retrieving the data we
will show it to the client using html. Then we will analyse the
execution time of the created applications on Load Impact,
testing them with 50 simulated browser users for
approximately 10 minutes. Both applications are hosted on
c9.io which is a cloud service that supports Node.js and Php
/Apache. In the above sections we will go into Node.js details
and we will also explain the code used and the results
achieved from the test.

II. BACKGROUND

“Node.js is a platform build on Chrome’s JavaScript
runtime for easily building fast, scalable network applications.
Node.js uses an event-driven, non-blocking I/O model that

makes it lightweight and efficient, perfect for data-intensive
real-time applications that run across distributed devices [1].

Why do we need scalable network applications?

Network scalability means a fast network server that can
handle a considerable amount of users making requests to our
server. This is very important because the real time data
applications, other than overloading the cpu with the frequent
requests towards the data provider, will also be accessed by a
high number of visitors. Sometimes the web application might
be under different kind of attacks such as distributed attacks
which opens a lot of false http connections. If the server is not
scalable it will not be able to support those kind of attacks and
consequently will not serve to our requests on time.

What should we understand with event-driven programming?

Event-driven programming (EDP) or event-based
programming is a programming paradigm in which the flow
of the program is determined by events [2]. In this kind of
programming the server waits for an event to happen such as a
button click, on focus, key press etc.. . When the server
receives the event it fires the action related to event. In our
case we create a loop on the client side which will fire an
event every one second.

What is a non-blocking input/output model?
Asynchronous I/O, in computer science, is a form of

input/output processing that permits other processing to
continue before the transmission has finished [3]. This model
gives us the opportunity to run other processes while the
server is loading our stock data. These is really important in
our case because we need to do other processes like buying or
selling trades and in the meanwhile the stock data’s must be
updated regularly. So if we chose a synchronous model we
will not give our users the possibility to make these actions
because the server would be busy updating our data.

III. FRAMEWORKS

Like many other platforms, Node.js uses frameworks which
makes our life easier. Express[5] and Socket.io[4] are widely
applied in this kind of technology. With Express we can easily
create a server, configure it and set the port the server will
listen. We also use Express to specify the folder in which the
files that will be served to the clients are. Express has the
capability to catch different requests using the get or post
method and routes them to the specified folder or function. So

we can create an entire application with Express. However,
transferring data from server to client or vice versa is a bit
complicated so we will not manage it with Express. Socket.io
handles this problem very well. It makes use of web sockets to
transfer the data between the server and the client. There are
two kind of connections we can make using Socket.io.

1. Persistent connection
2. Non persistent connection
In a non persistent connection the server opens a new

socket on each data transfer. This method consumes a lot of
time so it is not worth to use it in our application because for
us time is gold. So we have decided to create a persistent
connection. A persistent connection means maintaining a web
socket opened all the time. To achieve this we must use the
Socket.io even in the client-side.

IV. DATA ANALYSIS

As we mentioned earlier in this article, we will test Node.js
against Php/ Apache. In this case we will get data from Yahoo!
Finance:

1. Company Name
2. Ask (real time)
3. Bid (real time)
4. Change
We need to make a request to the Yahoo! sever in order to

retrieve this data. The server responds with a .csv file on
which we will work out later.

The Node.js application
Initially we must create the http server to serve this data to

the users. The code to make this possible is like below.
var express = require('express'),
path = require('path'),
http = require('http'),
io = require('socket.io'),
var app = express();

app.configure(function () {
 app.set('port', process.env.PORT || 3000);
 app.use(express.logger('dev'));
 app.use(express.bodyParser())
 app.use(express.static(path.join(__dirname, 'public')));
});
var server = http.createServer(app);

io = io.listen(server);

server.listen(app.get('port'), function () {
 console.log("Express server listening on port " +

app.get('port'));
});

As we can see from the code above, we use express from
the beginning. This framework helps us on bringing up our
server. After that we need to configure the port on which the
server will listen. Again, with the help of Express, we specify

the directory on which the files that will be served stands and
also we connect Socket.io with the newly created server. After
setting up the server we need to make a request to the Yahoo!
Finance.

var request_options = {
 host: 'download.finance.yahoo.com',
 port: 80,
 /* To understand the Yahoo Finance query

scheme, see
 * http://www.gummy-stuff.org/Yahoo-data.htm
 */
 path:

'/d/quotes.csv?s=AAPL+GOOG+GLD+MSFT+CAS+AOS
+ACM+AHC+AIR+CSCO&f=sb2b3c1'

 };

We initially specify the host that will serve to our requests.

The symbols joined with + are the symbols that represents the
companies for which we want to get those data. The
characters after “f” are the data options we will retrieve. After
getting those data we use a function to convert them from .csv
format into an array. We now need to transport this data from
the server to the client so it is now the time that Socket.io
framework comes in the help.

Socket.io on the server side

io.sockets.on('connection', function(socket) {
 socket.on('stock_update_request', function(data) {
 socket.emit('update_stock', {stocks: data_array});
 });
 socket.on('stock_init_request', function(data) {
 socket.emit('get_stock', {stocks: data_array});
 });
 });

Socket.io on the server side

socket.on('update_stock', function(data) {
 saved_data = data.stocks;
 for(var j = 0; j < 10; j++){
 $(".cmpask"+j).html(saved_data[j][1]);
 $(".cmpbid"+j).html(saved_data[j][2]);
 $(".cmpchg"+j).html(saved_data[j][3]);
 }
 });

 socket.on('get_stock_init', function(data){
 saved_data = data.stocks;
 console.log(saved_data);
 for(var i = 0; i < 10; i++)
 {
 var render = '<div style="float:left;

margin:10px 10px 0 0"><p>Company
Name :'+
saved_data[i][0] +'</p>
<p>Ask :'+
saved_data[i][1] +'</p> <p>Bid :

'+ saved_data[i][2]
+'</p> <p>Change : <span
class="cmpchg'+i+'">'+ saved_data[i][3] +'</p>
</div>';

 $("#stocks").append(render);
 }
 });

In the code above, we have established a transmission line

from client to server and vice versa, using socket events. This
connection is also called a persistent connection because both
sides send and receives data. To update the data every second
we use the code below.

setInterval(function()
{
 socket.emit('stock_update_request');
 }, 1000);

 socket.emit('get_stock_init');

V. THE PHP APPLICATION

As Php rely on Apache we do not need to create a server
here. Coding with Php Language is of course much easier,
because this language has a wide range of support and a lot of
useful, ready to use, functions. We use the code below to
make a request to the server and to convert this data from .csv
format into an array.

$url="http://download.finance.yahoo.com/d/quotes.csv?
s=AAPL+GOOG+GLD+MSFT+CAS+AOS+ACM+AHC+
AIR+KO&f=nb2b3c1";

$csv = file_get_contents($url);

$retrieve = array_map (
 function ($_) {return explode (',', $_);},
 explode ("\n", $csv)
);

Getting data from the array is not a rocket science. We can
also integrate the html language into the Php script so we
don’t need to search for a folder with the files to serve here
like we have done in the Node.js application. The code below
explains that very well.

 $data_array =
update_and_retrieve::update_data();

$show = "";
for($i = 0;$i<10;$i ++){
 $show .= '<div style="float:left; margin:10px 10px 0

0"><p>Company Name :<span
class="cmpname'.$i.'">'. $data_array[$i][0] .'</p>
<p>Ask :'.
$data_array[$i][1] .'</p> <p>Bid :
'.
$data_array[$i][2] .'</p> <p>Change :
'.
$data_array[$i][3] .'</p> </div>';

}

echo $show;

 To update the data we have used a crone job.

As you can see we need less code to create the same

application but the length of code does not indicate that this
script is faster. Now it is time to test the apps. We have used
Load Impact to do this. Both apps are tested against 50
simulated browser users for ten minutes.

Node application result

Fig. 1 Execution time chart of the application in Node

Fig. 2 Execution time chart of the application in Node

Php application result

Fig. 3 Execution time chart of the application in Php/ Apache

VI. CONCLUSIONS

The test results indicate us which of the application is
fastest. As we can see from the images above, the Node.js
application has an execution time of approximately 62 ms
while the execution time of the Php/ Apache application takes
about 183 ms to execute. Also the execution time of the
Node.js appears more stable throughout the test. Based on the
above results we conclude that the Node.js application is twice
faster than the application created using Php/ Apache. Based
on these results we encourage the use of this technology.

VII. REFERENCES

[1] http://nodejs.org/
[2] http://en.wikipedia.org/wiki/Event-driven_programming
[3] http://en.wikipedia.org/wiki/Asynchronous_I/O
[4] http://socket.io/#how-to-use
[5]http://expressjs.com/api.html
[6] http://www.gummy-stuff.org/Yahoo-data.htm

Fig. 4 Execution time pie of the application in Php/ Apache

