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Abstract—Cluster analysis is an important tool in the 
exploration of large collections of data, revealing patterns and 
significant correlations in the data. The fuzzy approach to the 
clustering problem enhances the modeling capability as the 
results are expressed in soft clusters (instead of crisp clusters), 
where the data points may have partial memberships in several 
clusters. In this paper we will discuss about the most used fuzzy 
cluster analysis techniques and we will address an important 
issue: finding the optimal number of clusters. This problem is 
known as the cluster validity problem and is one of the most 
challenging aspects of fuzzy and classical cluster analysis. We will 
describe several methods and we will combine and compare them 
on several synthetic data sets. 
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I.  INTRODUCTION  

Clustering is an important research area in a variety of 
disciplines like business, pattern recognition, machine learning, 
biology, cognitive sciences etc [1, 2]. In business applications, 
clustering assists the market specialists and policy makers in 
discovering target groups, in characterization of customers, in 
new product profiling etc. In biology, it is utilized in grouping 
genes with similar behaviors, in finding patterns inside 
populations of livings etc. In pattern recognition and machine 
learning, besides the useful information it provides itself, 
clustering frequently serves as a pre-processing stage for 
several other algorithms [3]. The central idea about clustering 
is the distribution of the data points into groups (clusters) such 
that the data points inside the same cluster are more similar to 
each other than to the data points in other clusters.  

Many clustering algorithms have been developed and they 
may be categorized into several sub-categories [1]. Firstly we 
would distinguish between crisp and fuzzy clustering. In the 
crisp clustering the data points are distributed in clusters where 
each data point belong to exactly one of the clusters, while  in 
the fuzzy clustering the data points have partial memberships 
into several clusters. Another categorization would be between 
partition and hierarchical clustering. The partition clustering 
gives as result a single partition of the data while the 
hierarchical clustering generates a tree of clusters where the 
data points are distributed into smaller clusters at each level of 

the hierarchy. Furthermore partition clustering techniques may 
be categorized into other sub-categories like: square error 
clustering, graph theoretic clustering, mixture resolving 
clustering etc.  

One of the most important problems which aims to 
complete the cluster analysis is the evaluation of the quality of 
the obtained clusters. So our crucial question is: are the 
obtained clusters optimal? This problem is known as the cluster 
validity problem. There are several methods for assessing the 
fuzzy clusters validity; some of them rely merely on the 
characteristics of the fuzzy membership values to assess the 
clusters, while others rely also on the structure of data [1, 2]. In 
this paper we will discuss some of the most important methods 
for cluster validity evaluation like: the partition coefficient, the 
partition index, the partition entropy, the partition index, the 
separation index, the Xie-Beni index, the Fukuyama-Sugeno 
index etc. We will implement them on several synthetic data 
and also perform some combinations of them. 

 

II. FUZZY CLUSTER ANALYSIS 

 

The fuzzy clustering algorithms provide more flexibility 
and a richer semantics of the data compared to the classical 
(hard) clustering algorithms as they allow partial membership 
(gradual membership) of the data points in the clusters. So a 
data point may be an element of several clusters in the same 
time with different membership values.  

The result of a fuzzy clustering algorithm is typically 
represented as a matrix ܯ = ݅ denotes the membership in  the	௜,௝ߤ Here .ܰ	ݔ		ܿ of dimensions [௜,௝ߤ] − ݆ ℎ cluster of theݐ −  ℎݐ
data point. The membership values in the matrix satisfy [2]: 0 ௜,௝ߤ ≥ ≤ 1 for every ݅ ∈ {1,2, … , ܿ} and ݆ ∈ {1,2, … , ܰ} ∑ ௜,௝௖௜ୀଵߤ = 1 for every ݆ ∈ {1,2, … , ܰ} 0 < ∑ ௜,௝ே௝ୀଵߤ < ܰ for every ݅ ∈ {1,2, … , ܿ} 

As we see from the second condition, it is required that the 
total sum of the memberships of each data point into the 
obtained clusters must be equal to one. And as we see from the 
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third condition it required that the total sum of the 
memberships for each cluster must be greater than zero (so 
each cluster must have at least one element whose membership 
value in that cluster is greater than zero) and smaller than N.  

The most fundamental algorithm of fuzzy cluster analysis is 
the fuzzy C-means algorithm. This algorithm operates in a 
supervised way distributing the data points into pre-defined 
clusters with partial memberships. This algorithm takes as 
inputs: 

a. The number of clusters: c, (s. t.	1 < ܿ < ݊). 

b. The distance metrics (dissimilarity metrics). 

c. The fuzzy exponent φ, (such that φ > 1). 

d. The scale of precision ε (for example ε = 0.001 would 
give good approximations). 

There are several options for the distance metrics which 
evaluates the distance among the data points. Considering two 
data points ܷ = ,ଵݑ} …,ଶݑ , ܸ ௡}  andݑ = ,ଵݒ} ,ଶݒ … ,  ௡}  theݒ
distance between them according to some of the most widely 
used distance metrics is expressed as: 

a. The Euclidian distance  ݀(ܷ, ܸ) = ට෌ ௞ݑ) − ௞)ଶ௡௞ୀଵݒ  

b. The Manhattan distance: 

݀(ܷ, ܸ) =෍|ݑ௞ − ௞|௡ݒ
௞ୀଵ  

c. The Max distance: ݀(ܷ, ܸ) = max௞∈{ଵ,ଶ,…,௡}|ݑ௞ −  |௞ݒ
 

d. The Minkowski distance:  ݀(ܷ, ܸ) = ට෌ ௞ݑ) − ௞)௠௡௞ୀଵ೘ݒ
 

As it can be noticed, Euclidian, Manhattan and Max 
distances are particular cases of the Minkowski distance 
respectively for ݉ = 2,݉ = 1 and ݉ = ∞. 

e. The Pearson correlation distance: ݀(ܷ, ܸ) = ∑(௨∙௩)ି௡௎ഥ௏ഥඥ(∑௨మି௡௎మ)(∑௩మି௡௏మ)	
 

Two other important algorithms, the Gustafson-Kessel and 
Gath-Geva algorithms are developed as extensions of the fuzzy 
c-means algorithm employing adaptive-distance metrics to 
distinguish clusters with various shapes and orientations. 

 The fuzzy C-means algorithm may be briefly described by 
the given pseudo-code [1]:  

1. Choose k random data points as the initial centers of 
the clusters (M = {μ୧୩} = M(଴)).  

2. Assign  i =1. 

3. Evaluate the new centers C = C(୧) using M(୧)ିଵ 
(evaluated in the previous iteration if i>1, or the initial M(଴) if i = 1). 

4. Evaluate M = M(୧) using C(୧) found in the previous 
step. 

5. Compare M(୧) to M(୧ିଵ). If ||M(୧) − M(୧ିଵ) || < e, then 
terminate; else increment i and jump to 3. 

 

 

III. CLUSTER VALIDATION 

 
At the initial moment of the clustering procedure, the data 

points do not have labels what would point out the desired 
result. So we are lacking references to check and assess our 
obtained results. Most validation methods rely on two 
important characteristics: compactness and separation of the 
fuzzy clusters. Compactness is a quantity that evaluates the 
variation of the data within the same cluster. On the other hand, 
separation is a quantity that describes the structures among the 
different clusters. The primary goal of all the validation 
methods is to decrease the compactness and to increase the 
separation of the clustering. As there are several ways to 
express the compactness and the separation of the clusters, we 
will have limitations in picking some general way that would 
optimally describe these two quantities. 

There are three main approaches for the cluster validation 
problem: 

The first approach assumes that we have a validity measure 
to assess the entire fuzzy partition that we will obtain. Some of 
the most important validity measures are described in the next 
section of this paper. We guess some maximal reasonable value 
for the number of the clusters, let us denote it ܿ௠௔௫. Then for 
every natural value from 2 to ܿ௠௔௫ we execute our fuzzy 
clustering algorithm.  For each value we calculate the validity 
measure separately and at the end of this procedure we have 
found the number of clusters that would optimize our validity 
measure. 

The second approach assumes that we have a validity 
measure to assess each cluster (separately). We guess some 
maximal reasonable value for the number of the clusters, let us 
denote it ܿ௠௔௫.  Then our fuzzy algorithm is executed for the 
value ܿ௠௔௫.  We compare the obtained clusters based on the 
validity function that we are provided. The similar clusters are 
merged into larger cluster, thus removing the non-appropriate 
clusters. This procedure is repeated in an iterative way until no 
non-appropriate clusters are remained. 

The third approach is initialized with a large number of 
clusters and then it proceeds in an iterative way merging the 
clusters which are very similar to each other according to some 
condition specified in advance. This procedure is known as 
compatible cluster merging.  
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 As it may be noticed in the description of the three 
approaches, the problem of cluster validation is not only a 
challenging one but also a computationally expensive one.  

IV. VALIDITY MEASURES 

In this section we will describe some of the most widely 
used validity measures.  It is strongly recommended to utilize 
more than one of these in implementations as they do not have 
the capability of being decisive in all cases [1,2].  

A. The partition coefficient 

It is a quantity that expresses the amount of shared regions 
among the clusters. It is calculated as: 

(ܿ)ܥܲ = 1ܰ ෍෍൫ߤ௜,௝൯ଶே
௝ୀଵ

௖
௜ୀଵ  

with ߤ௜,௝ denoting the membership in  the ݅ −  ℎ cluster ofݐ
the ݆ − ℎ data point. The value satisfies the inequality ଵ௖ݐ ≤ (ܿ)ܥܲ ≤ 1	. The disadvantages of this method are that it 
monotonically decreases with c and there is no direct relation 
to some property of the data [1,4,5]. The optimal value of c is 
the value that maximizes the partition coefficient. 

B. The partition entropy 

It is a quantity that expresses the amount of fuzziness in the 
clusters. It is calculated as: 

(ܿ)ܧܲ = − 1ܰ෍෍ߤ௜,௝ ln ௜,௝ଶேߤ
௝ୀଵ

௖
௜ୀଵ  

The value satisfies the inequality 0 ≤ (ܿ)ܧܲ ≤  . The	ଶܿ݃݋݈
optimal value of c is the value that minimizes the partition 
entropy. Bezdek has also proved the inequality 0 ≤ 1 (ܿ)ܥܲ− ≤  .for probabilistic cluster partitions [3,4] (ܿ)ܧܲ

 

C. The modified partition index 

The previous indexes show monotonic behavior as the 
number of the cluster increases. A modification in the way we 
calculate this new index improves this behavior. The index is 
calculated as: ܥܲܯ(ܿ) = 1 − ܿܿ − 1 ൫1 −  ൯(ܿ)ܥܲ

As it may be easily noticed, the value of the index satisfy 
the inequality: 0 ≤ (ܿ)ܥܲܯ ≤ 1. The optimal value of c is the 
value that maximizes the modified partition index [3]. 

 

D. The partition index 

It is a quantity that expresses the ratio of the total 
compactness over the total separation of the clusters. It is 
calculated as: 

(ܿ)ܫܲ =෍ ∑ ൫ߤ௜,௝൯௠ฮݔ௝ − ∑௜ฮଶே௝ୀଵݒ ௜,௝ே௝ୀଵߤ ∑ ฮݒ௝ − ௜ฮଶ௖௝ୀଵݒ
௖
௜ୀଵ  

 The partition index is appropriate to be applied when we 
are comparing fuzzy partitions consisting of the same number 
of clusters. The optimal value of c is the value that maximizes 
the partition index [1,5,6]. 

 

E. The separation index 

It is a quantity that expresses the ratio of the total 
compactness over the smallest distance separation of the 
clusters. It is calculated as: 

(ܿ)ܫܵ = ∑ ∑ ൫ߤ௜,௝൯௠ฮݔ௝ − ௜ฮଶே௝ୀଵ௖௜ୀଵݒ ܰmin௜,௝ ฮݒ௝ − ௜ฮଶݒ  

 The partition index is appropriate to be applied when we 
are comparing fuzzy partitions consisting of the same number 
of clusters. The optimal value of c is the value that maximizes 
the separation index. [1,4,5] 

F. The Xie-Beni’s index 

It is calculated as: 

(ܿ)ܤܺ = ∑ ∑ ൫ߤ௜,௝൯௠ฮݔ௝ − ௜ฮଶே௝ୀଵ௖௜ୀଵݒ ܰmin௜,௝ ฮݔ௝ − ௜ฮଶݒ  

 At a first appearance the Xie-Beni’s index seems almost 
the same with the separation index, but practically the small 
change in the evaluation of the denominator of the expression 
gives a significant improvement. This handles two drawbacks 
of the previous methods: they don’t consider all the parameters 
(e.g. ܸ is not taken into consideration) and they do not 
completely utilize the value of ܺ too. The optimal value of c is 
the value that minimizes the index.[1,5,6] 

G. The Fukuyama-Sugeno index 

It is calculated as: 

(ܿ)ܵܨ =෍෍൫ߤ௜,௝൯௠ே
௝ୀଵ ൫ݔ௝ − ܽ௜൯ଶ௖

௜ୀଵ −෍෍൫ߤ௜,௝൯௠ே
௝ୀଵ (ܽ௜ − തܽ)ଶ௖

௜ୀଵ  

where തܽ = (∑ a୧ୡ୧ୀଵ )/c. The optimal value of c is the value 
that maximizes the index [3]. 

 

H. The Dunn’s index 

It is calculated as: 

(ܿ)ܫܦ = min௜∈௖ ቐ min௝∈௖,௝ஷ௖ ቐ min௫∈஼೔௬∈஼ೕ, ,ݔ)݀ max௞∈஼(ݕ {max௫,௬∈஼ ,ݔ)݀  ቑቑ{(ݕ

 Initially this index has been devised for distinguishing 
well-separated clusters. The main disadvantage of the Dunn’s 
index is scalability. When the values of ܿ and ܰ increase the 
computation of the index becomes hardly feasible [1,2].  
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I. The alternative Dunn’s index 

It is calculated as: 

(ܿ)ܫܦܣ = min௜∈௖ ቐ min௝∈௖,௝ஷ௖ ቐ min௫∈஼೔௬∈஼ೕ, |݀൫ݕ, ௝൯ݒ − ݀൫ݔ௜, ௝൯|max௞∈஼ݒ {max௫,௬∈஼ ,ݔ)݀ {(ݕ ቑቑ 

 As it seen it is a variation of the original Dunn’s index. The 
primary goal of this variation is to improve the computational 
complexity. So instead of using directly the distance ݀(ݔ,  (ݕ
we use a smaller quantity |݀൫ݕ, ௝൯ݒ − ݀൫ݔ௜,  ௝൯| It is obviousݒ
that the second quantity is smaller than the first one based on 
the triangular inequality [1,2].  

 

J. The fuzzy hypervolume 

It is one of the most frequently used validity measures. It 
can be considered as the volume of the fuzzy clusters and it is 
calculated as: Υ(ܿ) =෍ det	(ܨ௜)௖௜ୀଵ  

So it is expressed as the sum of the determinant of the ܨ௜ 
matrices, where ܨ௜represents the matrix [1,2,3]: ܨ௜ = ∑ ௝ݔ)௜௝௠ߤ − ௝ݔ)(௜ݒ − ௜)்ே௝ୀଵݒ ∑ ௜௝௠ே௝ୀଵߤ  

  

 

V. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

 

We have implemented the given validity measures on 
several synthetic data sets according to the first approach 
mentioned in the third section of this paper. So we have 
executed the fuzzy clustering algorithm several times with 
values of c starting from 2 up to some estimated large value of ܿ,	in our case this value was 10.  

The obtained results for the data set SYNTH_1 are given in 
the tables 1 and 2 with the optimal values of c, according to 
each index being highlighted. 

TABLE 1. Experimental results for data set SYNTH_1 (p1) ܿ ܲܫܵ (ܿ)ܫܲ (ܿ)ܥܲܯ (ܿ)ܧܲ (ܿ)ܥ(ܿ) 
2 0.72845 0.23655 0.608722 1.2165 0.0154
3 0.68715 0.3184 0.596856 1.3291 0.0169
4 0.6775 0.3394 0.604286 0.9346 0.0173
5 0.6711 0.3655 0.599775 0.5293 0.0127
6 0.66455 0.39395 0.59746 0.4755 0.0104
7 0.65695 0.41275 0.588875 0.3826 0.0099
8 0.65375 0.4223 0.570001 0.3881 0.0094

9 0.64165 0.4541 0.530725 0.4265 0.0102
10 0.64785 0.4510 0.4569 0.3568 0.0092
TABLE 2. Experimental results data set SYNTH_1 (p2) ܿ ܸܺܪܨ (ܿ)ܫܦܣ (ܿ)ܫܦ (ܿ)ܵܨ (ܿ)ܤ(ܿ) 
2 21.5271 0.2201 0.1131 0.0024 0.8474 
3 7.7585 0.8954 0.0311 0.0019 1.0251 
4 5.3847 0.6210 0.0188 0.0012 1.9141 
5 6.2213 0.0782 0.0225 0.0008 2.2108 
6 7.8739 -0.5841 0.0265 0.0006 2.0034 
7 9.3617 -1.2018 0.0179 0.0005 1.7105 
8 11.1568 -1.8841 0.0199 0.0001 1.3912 
9 14.7286 -2.6810 0.0270 0.0002 1.0154 

10 16.8604 -3.7541 0.0192 0.0003 0.9454 
 

The obtained results for the data set SYNTH_2 are given in 
the tables III and IV with the optimal values of c, according to 
each index being highlighted. 

TABLE 3. Experimental results for data set SYNTH_2 (p1) ܿ ܲܫܵ (ܿ)ܫܲ (ܿ)ܥܲܯ (ܿ)ܧܲ (ܿ)ܥ(ܿ) 
2 0.9713 0.3171 0.8725 1.7213 0.0161
3 0.9162 0.5905 0.8743 1.8482 0.0197
4 0.9033 0.6692 0.8711 1.9265 0.0170
5 0.8948 0.7721 0.8685 1.6121 0.0104
6 0.8861 0.8904 0.8633 1.3377 0.0094
7 0.8759 0.9721 0.8553 0.9057 0.0106
8 0.8717 1.0147 0.8533 0.8137 0.0101
9 0.8555 1.1618 0.8375 0.8686 0.0109

10 0.8638 1.1471 0.8487 0.7683 0.0099
 

TABLE 4. Experimental results data set SYNTH_1 (p2) ܿ ܸܺܪܨ (ܿ)ܫܦܣ (ܿ)ܫܦ (ܿ)ܵܨ (ܿ)ܤ(ܿ) 
2 11.1959 0.5214 0.1304 0.00594 1.5153 
3 12.7646 0.7412 0.0358 0.00226 2.3875 
4 14.4532 0.8954 0.0217 0.00178 2.9123 
5 8.7432 0.6542 0.0260 0.00096 2.7997 

6 10.9261 0.2879 0.0305 0.00081 2.7034 
7 12.4278 -0.4219 0.0207 0.00064 2.6895 
8 14.8412 -1.3510 0.0229 0.00052 2.2985 
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9 15.206 -3.0854 0.0312 0.00044 1.7730 
10 15.5387 -4.1576 0.0221 0.00030 1.6674 
The optimal number of clusters for the data sets according 

to each method may be summarized in the following table: 

TABLE 5. Summary of the validation procedure with the 
optimal number of clusters for each case. 

Validation measure SYNTH_1 SYNTH_2ܲ2 (ܿ)ܥ 2 (ܿ)ܧ2ܲ 2 (ܿ)ܥܲܯ2 3 (ܿ)ܫ3ܲ 4 (ܿ)ܫ4ܵ 4 (ܿ)ܤ2ܺ 3 (ܿ)ܵܨ5 2 (ܿ)ܫܦ4 2 (ܿ)ܫܦܣ2 5 (ܿ)ܸܪܨ2 3

 

 

VI. CONCLUSIONS 

 

Fuzzy clustering is an unsupervised form of learning where 
no initial information about the data set is provided. During the 
fuzzy clustering procedure the data points are distributed into 
clusters where the patterns inside the same cluster are similar to 

each other and different from the patterns in the other clusters. 
In comparison to hard clustering, fuzzy clustering provides 
more flexibility as the results are obtained in soft clusters 
where one data point may belong simultaneously to different 
clusters (with different membership degrees). 

The cluster validity problem is a crucial problem for the 
fuzzy clustering analysis. So we are interested in finding the 
optimal number of clusters into which the data will be 
decomposed. In this paper we have given an overview of the 
most widely used validity measures and also we have made a 
brief comparison of these validity measures. None of these 
measures is capable of being decisive by itself, so it is 
recommended to apply more than one method to obtain optimal 
results. 

We have implemented these methods on two large 
synthetic data sets and we have observed that different 
validation measures may suggest different optimal number of 
clusters. 
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