
1

Case Study Analyses of Reliability of Software

Application “ePasuria”
Dhuratë Hyseni

1
, Betim Cico

2
, Isak Shabani

3
 ,Bekim Fetaji

4

#1
,

2
,

4
South East European University, Contemporary Sciences and Technologies, Computer Science

Ilindenska bb, 1200 Tetovo, Republic of Macedonia
#3

University of Pristina, Faculty of Electrical and Computer Engineering, Pristina, Kosovo
1
dh11752@seeu.edu.mk
2
b.cico@seeu.edu.mk

3
isak.shabani@uni-pr.edu
4
b.fetaji@seeu.edu.mk

Abstract— The focus of the research study is set on

analyzes of the reliability of software application, aiming

to determine the ways of measurement and determine the

parameters of a reliable software application through the

case study realized. Measurements of software reliability

are important because it can be used to plan and control

resources while implementing the software application and

offer reliability regarding the correctness of the developed

software. Throughout the study we elaborate the analyses

of different problems that are encountered in order to

maintain a higher level of reliable software application,

especially the systems that are more complex and the

process of their implementation depends on sensitive data.

Furthermore we elaborate ways of detailed analysis and

studies in achieving the reliability of software application

and researches on the assessment of reliability of the

software, and the measurement of the level of the failures

in order to realize the level of reliability of a software

application.

Keywords: reliability of software systems, testing

methodology, testing failures.

I. INTRODUCTION

The purpose and objective in engineering reliable software

applications is to increase the likelihood of the software

system to work flawlessly without errors and to be acceptable

and trustable by the end users. Therefore, measurements and

determining the parameters of a reliable software application

are very important.

Software does not change over time unless it is changed by

request because of new requirements that impact the reliability

of software application which are difficult to achieve due to

the complexity of applications that have a tendency to a long

period of usage, especially monolithic software. Software

application with a high level of complexity that includes

multiple users and data manipulation by a greater number of

users makes it difficult to achieve a certain level of reliability.

According to [1] in order to increase the reliability of

software applications, at each step the support of users should

be present, because the reliability of software applications

grows continuously. As a result of this we need to set levels of

reliability in software applications.

With this we will benefit in higher level of reliability, but

we also will not increase the cost for the software application.

Removal of all these risks, leads to profitability, as well as

numerous benefits which can be used in other similar systems

in the market.

With the reliability of software applications we can

understand the probability that a software application provide

accurate and fast services, for a period of real time based on

the environment defined.

II. 2. RELIABILITY MEASURES FOR SOFTWARE

APPLICATIONS

In order to determine the exact reliability of a system, it

should be based on concept related to the software

architecture as defined by [6]. Based on what it needs to

identify software applications, it should act in similar

circumstances; operate at different points and different times,

so failures can be described only in terms of probability.

This section details the analyses of the concept of software

reliability.

The discussed concepts provide the basis for the reliability

of a qualified software application enabling comparisons

between systems that provide an accurate and logical basis for

improving the rate of failure, which occurs during the life of

that application software as defined by [4].

Specifically, reliability is the probability that a product or a

part of that operating system based on the requirements

specified for a certain period of time under design conditions

(such as temperature, voltage, etc.) to work without failures.

In other words, the reliability can be used as a measure of the

success of the system to function properly. Reliability is one

of the features that consumers demand quality products from

manufacturers or rather a tool to assess the security of a

software application.

mailto:dh11752@seeu.edu.mk
mailto:b.cico@seeu.edu.mk
mailto:isak.shabani@uni-pr.edu
mailto:b.fetaji@seeu.edu.mk

2

D (t)
 P (t)

In order to have the design and manufacture of a complete

system reliably it is necessary to anticipate the MTTR (Main

Time to Repair) as defined by [2] for different conditions that

can occur when working with the system. This is generally

based on past experiences of designers and experts that are

available to handle the repair work. Repair time system

consists of two separate intervals of time repair regarding the

application software:

• passive time repair

• active time repair

Passive repair time is largely determined by the time taken

by the service engineers to travel to work sites users. In many

cases, the cost of travel time exceeds the actual cost of repair.

Active timer repair of software application is directly affected

by system design and is registered as follows according to [8]:

1. Time between the occurrence of a failure of the system

and users to become aware of what has happened.

2. Time required to detect a fault and to determine the

problem that takes place in this part.

3. Time necessary to replace the remaining components.

4. Time necessary to verify that the problem is corrected

and the system is fully functional.

Active repair time can be improved by designing the

system correctly so that errors can be detected and corrected

quickly. More complex is the design of the application the

more difficult will be to correct the mistakes as defined by [2]

and [7]. Reliability is a measure that requires the system to a

successful operation for a certain time and anticipates the

failures or repair that should not be allowed.

Mathematically, reliability D (t) is the probability that a

system to succeed in the interval: 0 - t:

t - is a random variable that marks the time of failure.

P (t) - a measure of the uncertainty of failure which is defined

as the probability that the system fails at time t.

Increasing the P(t) reduces the reliability of application

software, given in the figure below.

Figure 1. Relation between P (t) and D (t)

III. RELIABILITY OF SOFTWARE APPLICATIONS WITH MULTIPLE

FAILURES

According to [9] the reliability of software applications

should be integrated in the whole software life cycle and

should involve all the staff to participate in the project, and it

cannot be considered only at the end.

With the classification process the process describes itself

as well as its behavior and reduces the failure of software

application. The whole process can be optimized by avoiding

the introduction of errors in the application of our techniques

to process aimed at finding and eliminating errors as it is not

possible to implement software without errors, application

errors tolerated if the nature of the system requires since it is

not possible to ensure that there will be errors remaining in the

software as suggested by [8].

The study focuses also in presenting some of the common

distribution functions and some dangerous models in

reliability engineering software applications. Binomial

distribution is used in the dissolution of the reliability of

software applications and controlling its effectiveness

following the guidelines as suggested by [5] and [6]. It is

applicable in reliability engineering, for example when we are

dealing with a situation in which an event is present on a

success or a failure. Distribution and reliability of software

applications is discussed by [8]:

n - the number of trials,

x - number of successes,

p - the probability of success trials only

k- reliability factor

Reliability of software applications as function R (k), is

given below as defined by [8]:

IV. CASE STUDY ASSESSMENT OF LIFE CYCLE RELIABILITY FOR

SOFTWARE APPLICATION “E-PASURIA”

Although in theory the process of assessing the reliability

does not seem too complicated, developing safe, complex, and

accurate reliability assessment systems requires a lot of effort

and research. This is due to the fact that every software

product has its own specifics and features, such as the

conception, realization and implementation.

After analysis of the case study application identified are

several shortcomings. In this part shall jointly identify both

problems, because these problems are inter-connected. An

enquiry of data in the database is done through functions and

further reports are filled with data from lists that are filled by

those functions.

3

Based on work experience in developing software

applications it is known that the user is interested in reports

that appear as final products of the software applications.

 The problem that is identified after the implementation of

this application is shown in parts of inquiry. This application

is in use by thousands of users simultaneously, it happens that

in some institutions the information presented another

institution that was the problem in the form of reports created

by the "Crystal Reports". This form requires that each report

be copied to the folder "Temp". Further, the user sent a copy

of the report. Folder "Temp" is loaded at the same time by

many reports, which can lead to blockage of the reports or

data tampering as discussed in [11].

Below we focus on the module for amortization of the

software application “e-Pasuria”, where we examined in

details the methodology stages for assessing the reliability of

the life cycle.

Figure. 2 Methodology for evaluating the reliability over the

life cycle of software product

Below we present the steps of the life cycle of the software

application (figure 2), and the problems identified:

1. Analysis - in this part of the identification of the

problem: the presentation of data that is identified late

after being introduced to thousands of data in the

system. The other problem is in the form of submission

of reports. At this stage it offers logical solution to

these problems proposed by engineers.

2. Design - identified problems present the way that

should pursue to solve these problems. After testing

many functions and sub-functions that call in all the

major functions that return slow down data. Decision

was taken to establish a procedure that will call only

area which is the logo of the institutions of the format

"images", and all functions are turned on because this

method of procedure that call data is much faster than

the functions. This section is enabled by using the tool

provided by SQL, "Query Execution Plan Estimated-

Display" that allows to be announced for each selection

that is located in the procedure, ie the time required by

it. For the presentation of data in the report is that the

decision to return all reports in the format "Report

Viewer Control", which allows converting the content

of the report in pdf and further makes sending the file

to the user. Another problem is that the application of-

Fortune used simultaneously by many users, who

generate many reports at the same time, There emerges

a lack of "Crystal Reports" that provide great

efficiency, and confusion as to become data. There is

also an omission in obtaining data from SQL, when

using many variables, which are not managed properly

by the implementers of application software. But the

format "Report Viewer Control" report is sent to the

user in PDF format and is unable confusion data for

their appearance. For making these decisions is

presented using the above method as a model for

successful and sustainable applications, which have

thousands of users simultaneously. At this stage have

become more and testing different scenarios followed

guidelines from [10]

3. Implementation - as has been designed, work rules are

defined, to be implemented at this stage. This stage

should not renege all claims made in the previous step

and must be in compliance with all conditions and

algorithms which are defined by the design phase. If

you have any blockage should review the code and if

necessary even re-implementing code.

4. Testing - this part should be realized in the

environment provided in which the software

application submitted by the developers. More

specifically in this phase is done:

• testing of all cases of research in this application

software,

• comparison of research data as well as many less

data

• accurately set the time which is needed for

searching data

• tested appearances of all reports for all groups of

users

To determine the time of failure will base it on the formula

(2), where is presented the time of failure of the application

software, being carried on the upper step of the evaluation

methodology based on reliability regarding the product life

cycle software for problem laid down.

The first case is the case of failures and in that case the time

of application software failure is greater. Measurement is

performed for a time not very long three months analyze

(t = 30+31+30 =91 days * 24 = 2184 hours).

There are some measurements made within this interval.

T- is a random variable that marks the time of failure.

4

Case I (1120 hours):

The formula (2) will have the following values:

Then we will refer to the formula (1):

Case II (1500 hours):

The formula (2) will have the following values:

Then we will refer to the formula (1):

Case III (2000 hours):

The formula (2) will have the following values:

Then we will refer to the formula (1):

In Table 1 and Figure 3 shows the results of the failure time

and reliability for a certain time on the problem set out above.

TABLE I

The first case of failures and achievements - credibility

with the initial version

Case P(t) D(t)

I (1120 hours) 0.86 0.14

II(1500 hours) 0.76 0.23

III(2000 hours) 0.67 0.33

Figure. 3 The first case of failures and achievements -

credibility with the original version

These measurements were made for 3 (three) months after

implementation of the system with the necessary changes.

There were measurements made within this interval as in this

Table I, Figure 3, but in these cases the analysis starts from

the first three months and the days of the second three months

are added for the analysis.

After implementing the changes version is observed that the

credibility of the three cases has increased significantly, Table

II:

Case I (3880 hours):

The formula (2) will have the following values:

Then we will refer to the formula (1):

Case II (4000 hours):

The formula (2) will have the following values:

Then we will refer to the formula (1):

Case III (4300 hours):

The formula (2) will have the following values:

Then we will refer to the formula (1):

5

After these results, we can say that this problem is

associated with increased application reliability and user-

Property to recent Figures. 4 and Table II

TABLE III

The first case of failures and achievements - confidence in

the version amended

Case P(t) D(t)

I (3880 hours) 0.25 0.75

II (4000 hours) 0.23 0.77

III(4300 hours) 0.2 0.80

Figure 4. The first case of failures and achievements

credibility by comparison analyses

.

This measurements for reliability of the software as a whole-

property is roughly 0.80, which is a high value.

TABLE IIIII

Statistics from 01/01/2009 to 28/05/2013 in separate years

Y
ea

r

In
v

o
ic

e

E
n

tr
y

O
u

t

D
o

w
n

lo
ad

s

T
ra

n
sf

er
s

W
ea

lt
h

U
se

rs

200

9 4877

31017

8 115723 231 81

2717

6

325

4

201

0

1627

2

14139

02

107490

4

140

3 585

3327

8

796

5

201

1

4038

0

35555

77

369356

3

470

9

2337

3

3614

9

506

6

201

2

5613

6

90541

89

136997

57

872

9

4414

4

3974

0

304

2

201

3

1343

8

15308

77

359085

8

375

7 7974 8848 462

.

The table presents all transactions carried out through the

application of Real-years:

Based on Table 3. Can be concluded that transactions have

increased over the years and in 2013 the statistics are valid

only for the first five months of this year.

There also should be emphasized the registry of invoices

where in institutions is made at the end of every three months

and therefore the values are lower than the previous year, it

means that these values apply only for the first three months

because for the second three months the records are not

completed yet.

This table can also be seen that the reliability of the

application as the user only has increased thanks to the

measures taken for the application. [10]

V. CONCLUSION

 The study focuses on the reliability of software

applications, and tries to offer insight regarding the analyses

and measurement of reliability parameters of trustable

software based on the described case study.

The concrete case study is focused on research in the field

of management of specific cases in the life cycle of software

application development and the course of reviewing these

cases based on application software of “ePasuria”, as part of

these systems, providing services to thousands of users

simultaneously.

The paper provides insights and information for all those

who are interested in obtaining more extensive knowledge

about testing the reliability of software applications to end

users, in determining the time of failure and reliability were

measurements are performed for a period of 3 months. The

study can also serve as starting point for further research in

this field.

REFERENCES

[1] [1] Bailey, D., E. Frank-Schultz, P. Lindeque & J. L.

Temple III. “Three reliability engineering techniques

and their application to evaluating the availability of

IT systems: An introduction.”, 2008, pp. 577- 589

[2] MTBF, MTTR, MTTF & FIT Explanation of Terms,

Susan Stanley

[3] Eduardo Valido-Cabrera, Software reliability

methods, 2006

[4] Gokhale, S.S. & K.S. Trivedi. “Analytical Models

for Architecture-Based Software Reliability

Prediction: A Unification Framework.”, 2006, pp

578-590

[5] Goševa-Popstojanova, K., M. Hamill & R.

Perugupalli. Large empirical case study of

architecture-based software reliability, 2005

[6] Holger Hellebro, Architecture-Based Reliability

Modelling of Software Applications, 2009

[7] Hung-Hua Lo, Chin-Yu Huang, Sy-Yen Kuo, and

Michael R. Lyu, Sensitivity Analysis of Software

0.14 0.23 0.33

0.75 0.77
0.8

1 2 3

D(t)1 vs D(t)2

D(t)1 D(t)2

6

Reliability for Component-Based Software

Applications, 2008

[8] Hoang Pham, SystemSoftware Reliability, 2006, pp

15-32, pp 334-365

[9] John Musa, How testers can use a software reliability

engineering maturity model, 1999

[10] e-Pasuria. Assets Management System.

DOI=https://e-pasuria.rks-gov.net

[11] Sabedin A. Meha, Agni H. Dika, Isak R. Shabani,

Improving performance of a web based software

application, 2011

