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Abstract—Renault has defined in [7] the cohomology of the
inverse semigroup G of the G-sets of a given groupoid G as
a functor from the category of G-presheaves to that of abelian
groups. We show in our paper that G-presheaves is isomorphic
to AbP(9) where D(G) is the division category defined from
Loganathan in [6] and used there to give another description of
the Lausch cohomology of inverse semigroups. This isomorphism
allows us in turn to prove that Renault and Lausch cohomology
groups of G are isomorphic.
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I. INTRODUCTION AND PRELIMINARIES

We give in this section a few basic notions from groupoids
and inverse semigroups associated to them and show how
cohomology groups of a groupoid are defined. All these can be
found in [7]. By definition, a groupoid G is a set endowed with
a product map (z,y) — xy: G*> — G where G? is a subset
of G x G called the set of composable pairs, and an inverse
map = x r~! : G — G such that the following relations are
satisfied:

i (@) l=

(i)  (z,9)(y.2) € G% then (zy,2), (x,y2) € G* and
(zy)z = 2(y2);

(i) (z7',z) € G? and if (v,y) € G2, then 271 (xy) =
Ys

iv) (z,z7') € G? and if (z,2) € G2, then (2x)z~! =
z

For every = € G, we define d(x) = 21z as the domain of z

and r(z) = xz~! as the range of x. Note that a pair (x,y) is
composable only if 7(y) = d(z). Also the relations xd(z) =
x = r(x)x, suggest that we call the set G° = 7(G) = d(G) the
unit space of GG. Here is a non trivial example of a groupoid.

Example 1.1 Let U be a set and S a group which acts on U
on the right. The action of s on u is denoted by u-s. We let G
be U x S and define the following groupoid structure: (u, s)
and (v,t) are composable only if v = u - s; (u,s)(u - s,t) =
(u, st), and (u,s)" = (u-s,s1). Then, r(u,s) = (u,e) and
d(u,s) = (u-s,e). The map (u,e) — u identifies G° with U.

ISCIM 2013, pp. 122-125 (© 2013 Authors

An important notion in the theory of groupoids is that of a
G-set. Let G be a groupoid and S a subset of G. We call
S a G-set if the restriction of r and d to it is one-to-one, or
equivalently if SS—1, 5715 C GY. The set G of all G-sets of
G can be made into an inverse semigroup, for if .S and 7" are
G-sets, then their product ST is again a G-set, and for any
Seg, Gleg.

To define the cohomology of G we need to define first the
presheaves. For this, let C be any category and A a set. The set
240 of all subsets of Ay when ordered by inclusion becomes a
category: there is an arrow U — V if V C U. By definition a
C-presheaf A from 24° to C is a contravariant functor whose
object map is denoted by U — Ay and its morphism map
by Ay — Ay whenever V' C U. A partial isomorphism,
or a partial symmetry ¢ of A is a bijection ¢ : V — U
where V and U are subsets of Ay together with isomorphisms
¢ Ayr — Ay for any V' C V, which are compatible
with the restriction morphism. The latter means that for every
V" C V’, the following diagram commutes

Avr ——= Ay

L

AV” —— A(z)(vu)

Two partial isomorphisms ¢ and ¢’ can be composed: if ¢ :
V—sUand¢ :V' = U, welet V' be ¢~ (U'NV) and
U" be p(U' NV); ¢" = ¢ o ¢ is the bijection V"' — U”
obtained by composing ¢ and ¢'; and for W C V" we define
¢" : Aw — Ay (w) by composing

@7 ®

Aw —— A w) —= Agop (w)-

The inverse of a partial isomorphism is defined in the obvious
way. In this way the set 7(A) of partial isomorphisms of .4
becomes an inverse semigroup which we call the isomorphism
inverse semigroup of the given C-presheaf A.
For a given inverse semigroup G, we define a G-presheaf
(A, L) to be a C-presheaf A together with a homomorphism
L:G— T(A) such that £°: G — 240 is an injection.
Given a G-presheaf (A, L) of abelian groups one can form



the following cochain complex. A n-cochain is a function
f:G" — A which satisfies the following conditions:

(i) f(SOaslv “~7sn—1) € Ar(sosl...sn,,l) 5

(i)  f is compatible with the restriction map, that is
if U = T(SQSl...Snfl) and V = T(totl...fnfl)
where t; = es; for some idempotent e;,
then  f(to,t1,...,tn—1) 1is the restriction of
f(s0,81, .0y 8n—1) € Ay to V; and

for n > 0, f(s0,...,5i,.--5n_1) € 20 whenever s;
is an idempotent

(iii)

The set C"(G,.A) of n-cochains is an abelian group under
pointwise addition. The sequence

0——=C%G,A) —=C(G,A) —

— = O"(G, A) 2 (G, A) —

where
8(£(s)) = £(s) 0 d(s) — f or(s) and
0" f(S0y ey Sn) = ﬁ(so)f(sl, vy Sn)
—I—Z F(80,--8i—18iy ey Sn)
+ (7 )n+1f(507 (XX} 571,—1)

is a cochain complex. We denote by Z™(G,.A) and B"(G, A)
the groups of n-cocycles and that of n-coboundaries. The n-
th cohomology group Z"(G, A)/B"(G, A) will be denoted by
H™(G,A).

In the next section we will show that for any inverse semigroup
S, S-presheaves form a category and that this category is
isomorphic to the functor category Ab” (%) where D(S) has
objects all the idempotents of S and morphisms e — f are
triples (e,x,xz’) where 2’ is the inverse of  and e > za/,
2'x = f. The main result of [2] states that there is only one
cohomology functor from a given category to Ab, therefore
the Lausch cohomology defined on Ab” %) has to coincide
to that of renault define on S-presheaves.

II. S-PRESHEAVES AS FUNCTORS

Let S be an inverse semigroup, X a presheaf of abelian
groups over E(S) and v : S — T (X) be a representation of
S by partial symmetries of X.

Lemma II.1 Representation « gives rise to an S-module in
the sense of Lausch.

Proof. Theorem 5.8 ((i) < (i9)) of [5] states that o can be
regarded as an action of S on the right of the presheaf X with
values in Ab. Then as shown in p. 33 of [5] one can construct
a clifford semigroup (X, ®) with semilattice of idempotents
E(S) and with a right action of S on X given by

aos = a(es)pl,, 1 (a).

which satisfies all the properties of an S-module. m

123

Let S be a fixed inverse semigroup, we form the category
of S-presheaves with objects representations of S by partial
symmetries of presheaves of abelian groups over E(S) and
morphisms between two representations « : S — 7 (X) and
B:8 — T(Y) are S-module morphisms 7 : X — Y between
the corresponding S-modules of Lemma II.1 such that Vs € S,

T(a(s)(x)) = B(s)(r(x)). (D

Here «(s) is meant to be be one of the components of the
corresponding family and z € X (e) where X (e) is the domain
of that component of «(s). We have to show that S-presheaves
is indeed a category. The only thing we have to check is that
ifa:S—>TX),8:5—>TX)andy:S — T(Z) are
objects from S-presheaves and 71 : @ — 5, 75 : f — 7y are
morphisms, then for every s € S and x from some domain of
some component of «(s) we have

a1 (a(s)(z)) = v(s) (271 (2)). 2)
From the definitions of 7; and 75 we have
m1(a(s)(z)) = B(s)(m1(2)) 3)
and
m2(B(s)(y)) = v(s)(T2(y))- 4)
Then replacing in (4) y by 71(z) we get
T2(B(s)(11(x))) = 7(s) (271 (2)). (5)

Now (3) and (5) imply (2).

Given an inverse semigroup S with semilattice of idempo-
tents £ we define a category P(S) with objects the idem-
potents E of S and morphisms e — f are pairs (e, s) €
E x S such that f = s les. Composition is given by
(s7tes,t)(e, s) = (e,st). Let P(S) the quotient of P(S) b
the congruence on the hom-sets of P(.S) generated by the pairs

(e,8) ~ (e,es) and (e, e) ~ id..

We will write morphisms of P(S) by the same symbols as
their representatives in P(S). Note that the semilattice F(.S)
is a subcategory of P(S5).

The next two lemmas show two properties of functors from
AbT®).,

Lemma IL.2 Every X € AP gives rise to a right action
of S on the Ab-bundle X = U.cpX (e).

Proof. Define a function o : X x S — X by
aos=X(e s)(a) whenever a € X(e) .

Let us check the three properties for the right action of S on
X.

(Act3) If a € X (e), then from the definition aos € X (s~ tes)
and the map a — a o s is a morphism in Ab since X (e, s
such.

(Act 1) If a € X(e), then ace = X(e,e)(a) = idx () (a) =
(Act2) (aos)ot = X(s"tes, t)X(e,s)(a) = X(e,st)(a)

o(st). m
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Lemma IL3 Every X € Ab” (5) gives rise to an S-module
X = Uecp X |g(e) where X |g is the restriction of X in E(S).

Proof. We will show that the clifford semigroup X has the
structure of an S-module. From (4ii) = (i) of Theorem 5.8
of [5] we have that the Ab-bundle X of Lemma II.2 can be
regarded as a representation of S by partial symmetries of a
presheaf with values in Ab in the following way. First, as in the
proof of Theorem 5.6 of [5] we form a semilattice of groups
X (e) (though we have one already) by defining fore > f, p§ :
X(e) = X(f) by p%(a) = acf. But aof = X(e, f)(a) = a+
f. This shows that the clifford semigroup arising by restricting
X in E(S) is the same as the one described in Theorem 5.6
of [5]. Then define a partial function

os={

This is a right action of S on the presheaf X |z which satisfies
(Rep 1)-(Rep 5) of Proposition 5.7 of [5] therefore from
Example 3 of [5] X becomes an S-module with the S action
defined by

aos if a€X(e)andss™!=e

undefined else

axs=pS..1-(es)=pi,-1(a)o(es). (6)
On the other hand we see that
pees—1(a)o (es) = X(essil, es)X (e, ssil)(a)
= X(e,es)(a)
= X(e,5)(a)
=qos.

Comparing with (6) we see that actions * and o are equal,
therefore X is an S-module. ®

Define G : S-presheaves — Ab”®) on objects by sending
each representation o : S — T(X) to G(a) : P(S) - Ab
which sends each idempotent e to X (e) and each morphism
(e,8) : e — s tes to the composite

G(a)((e,)) = ales)plsr- )

The functorial properties of G(«) are easy to proof if we recall
that (7) defines a right action on the presheaf X and that for
a € X(e), G(a)((e, s))(a) is the same as a o s of Example 3
of [5].

Let 7 : @« — (3 is a morphism in S-presheaves where « :
S—=T(X)and 8:5 — T(Y). Define

G(1): Gla) = G(B)
as the family
{1e : X(e) = Y(e)le € E}.

To show that G(7) is natural we have to show that for each
e € E, every morphism (e,s) : ¢ — s les and every a €
X (e), we have

TsflesG(a)(ea S)(a) = G(ﬂ)(ev S)TE(a)a
which from (7) is equivalent to

T(aos)=7(a)os.

This is true since from Lemma II.1 X and Y are S-modules
with action o and 7 : X — Y is an S-module morphism.

Define G/ : AbT®) - S-presheaves on objects X in
the following way. From Lemma II.2 X gives rise to a right
action of S on the Ab-bundle X = U.cpX(e) and then as
in the proof of (4i¢) = (ii) of Theorem 5.8 of [5] one can
define a representation G'(X) of S by partial symmetries of
the presheaf X|g. It turns out that G'(X) : S — T (X|g) is
defined by s + X(ss71,s) where X (ss71,5) : X(ss7!) —
X(s71's) is the map a + aos.

Lemma I1.4 The module of Lemma Il.1 arising from the
representation G'(X) is the same as the module of Lemma
11.3 arising from X.

Proof. Theorem 5.8 ((i¢) = (7)) and Example 3 of [5] show
that the module of Lemma II.1 arising from the representation
G'(X) is the clifford semigroup X of Lemma IL.3 consisting of
groups X (e) together with structure morphisms p$ = X (e, f),
and the action of S on X is given by
axs=ps..1-(es)

= X(ess™ ', es)X (e, 55 1)(a)

= X(e,es)(a)

= X(e,5)(a)

= aos.

This proves the lemma. m

Define G’ on morphisms. If 7 : X — Y is a natural
transformation of functors in Ab”®) then 7 induces an S-
module morphism 7 : X — Y of the corresponding S-
modules X and Y of Lemma II.3. But Lemma II.4 claims that
X matches to the module arising from G'(X) and so does Y
to G'(Y). Also the fact that 7* is a module morphism implies

T* X (5571, 5) = Y(ss !, 5)T",

which shows that 7* : X — Y can be regarded as a morphism
between the respective representations G'(X) and G'(Y). We
define

G'(r)=rT1"

The functorial properties are now clear.

Theorem I1.1 Categories Ab"S) and S -presheaves are iso-
morphic.

Proof. Let us first show that for every o € S-presheaves we
have G’Ga = «. From the definition of G’ we have that G'Ga
is the homomorphism
G'Ga:S— T(X)
defined by
s+ Ga(ss™,s)

where from (7), G(a)(ss™ 1, s) is the morphism

Ga(ss™h,s)

X(ss7h) = X(s7's) = X(s7(ss71)s).



defined by
Ga(ss™t,5) = al((ss™)8)piSs )0 = a(s),
therefore G'Ga = «. Secondly we show that for every X €
AbP(S), GG'X = X. For this we have to show that GG'X
sends every morphism (e, s) : e — s~ les of P(5) to X (e, s).
From (7) we have
GG'X(e,s) = G'X(es)pggs ®)
and from the definition of G’ we have
G'X(es) = X((es)(es) ™t es) = X(ess™t,es).  (9)
_, = X(e,ss7 1) and then from (8) and (9) we have
GG'X(e,s) = X(ess ', es)X (e, 557 1)
= X(e, (ss™")(es))
= X(e,es) = X(e, )

But p

€
€SS

as desired. m

Proposition I1.1 For an inverse semigroup S, categories
P(S) and D(S) of [6] coincide.

Proof. First notice that P(S) coincides with C(S) of [6].
Let (e,x) : @ — x lex be a morphism in P(S). We can
write " lex as (ex)~!(ex) and observe that e > (ex)(ex) ™!,
therefore (e,x) coincides with (e, (ex), (ex)™1) 1 e — f =
(ex)~Y(ex) of C(S). Conversely, let (e,z,27 ') : e — f be
a morphism in C(S). Since e > zx~!, we have e(za~ 1) =
xz~! and then x~le(zx~!)x = a7 1zz~1x which is equiva-
lent to 7 lex = 7 'z. But f = x 7'z, then x~'ex = f and
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as a consequence (e, x, ') matches with (e,z) : e — 7 lex
of P(S). Lastly observe that our ~ is the same as ~ of p. 379
of [6], hence P(S) = D(S). m

Corollary I1.1 Cohomology groups of an inverse semigroup
defined by Lausch are isomorphic to those defined by Renault.

Proof. The cohomology of an inverse semigroup S after
Renault is defined in S-presheaves which from Theorem II.1
and Proposition II.1 is isomorphic to AbP®) But ApP)
is an abelian category with enough injectives, therefore from
the uniqueness theorem for cohomology functors [2] (see also
[3]), there is only one cohomology functor on AbP®) Since
the cohomology after Lausch is defined in Ab” (9 we have
that both cohomologies coincide. m
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