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Abstract—Renault has defined in [7] the cohomology of the
inverse semigroup G of the G-sets of a given groupoid G as
a functor from the category of G-presheaves to that of abelian
groups. We show in our paper that G-presheaves is isomorphic
to AbD(G) where D(G) is the division category defined from
Loganathan in [6] and used there to give another description of
the Lausch cohomology of inverse semigroups. This isomorphism
allows us in turn to prove that Renault and Lausch cohomology
groups of G are isomorphic.
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I. INTRODUCTION AND PRELIMINARIES

We give in this section a few basic notions from groupoids
and inverse semigroups associated to them and show how
cohomology groups of a groupoid are defined. All these can be
found in [7]. By definition, a groupoid G is a set endowed with
a product map (x, y) 7→ xy: G2 → G where G2 is a subset
of G × G called the set of composable pairs, and an inverse
map x × x−1 : G → G such that the following relations are
satisfied:

(i) (x−1)−1 = x;
(ii) (x, y), (y, z) ∈ G2, then (xy, z), (x, yz) ∈ G2 and

(xy)z = x(yz);
(iii) (x−1, x) ∈ G2 and if (x, y) ∈ G2, then x−1(xy) =

y;
(iv) (x, x−1) ∈ G2 and if (z, x) ∈ G2, then (zx)x−1 =

z.
For every x ∈ G, we define d(x) = x−1x as the domain of x
and r(x) = xx−1 as the range of x. Note that a pair (x, y) is
composable only if r(y) = d(x). Also the relations xd(x) =
x = r(x)x, suggest that we call the set G0 = r(G) = d(G) the
unit space of G. Here is a non trivial example of a groupoid.

Example I.1 Let U be a set and S a group which acts on U
on the right. The action of s on u is denoted by u ·s. We let G
be U × S and define the following groupoid structure: (u, s)
and (v, t) are composable only if v = u · s; (u, s)(u · s, t) =
(u, st), and (u, s)−1 = (u ·s, s−1). Then, r(u, s) = (u, e) and
d(u, s) = (u · s, e). The map (u, e) 7→ u identifies G0 with U .

An important notion in the theory of groupoids is that of a
G-set. Let G be a groupoid and S a subset of G. We call
S a G-set if the restriction of r and d to it is one-to-one, or
equivalently if SS−1, S−1S ⊆ G0. The set G of all G-sets of
G can be made into an inverse semigroup, for if S and T are
G-sets, then their product ST is again a G-set, and for any
S ∈ G, G−1 ∈ G.
To define the cohomology of G we need to define first the
presheaves. For this, let C be any category and A0 a set. The set
2A0 of all subsets of A0 when ordered by inclusion becomes a
category: there is an arrow U → V if V ⊆ U . By definition a
C-presheaf A from 2A0 to C is a contravariant functor whose
object map is denoted by U → AU and its morphism map
by AU → AV whenever V ⊆ U . A partial isomorphism,
or a partial symmetry φ of A is a bijection φ : V → U
where V and U are subsets of A0 together with isomorphisms
φ : AV ′ → Aφ(V ′) for any V ′ ⊆ V , which are compatible
with the restriction morphism. The latter means that for every
V ′′ ⊆ V ′, the following diagram commutes

AV ′

��

// Aφ(V ′)

��
AV ′′ // Aφ(V ′′)

Two partial isomorphisms φ and φ′ can be composed: if φ :
V → U and φ′ : V ′ → U ′, we let V ′′ be φ−1(U ′ ∩ V ) and
U ′′ be φ(U ′ ∩ V ); φ′′ = φ ◦ φ′ is the bijection V ′′ → U ′′

obtained by composing φ and φ′; and for W ⊆ V ′′ we define
φ′′ : AW → Aφ′′(W ) by composing

AW
φ” // Aφ′(W )

φ // Aφ◦φ′(W ).

The inverse of a partial isomorphism is defined in the obvious
way. In this way the set T (A) of partial isomorphisms of A
becomes an inverse semigroup which we call the isomorphism
inverse semigroup of the given C-presheaf A.
For a given inverse semigroup G, we define a G-presheaf
(A,L) to be a C-presheaf A together with a homomorphism
L : G → T (A) such that L0 : G0 → 2A0 is an injection.
Given a G-presheaf (A,L) of abelian groups one can formISCIM 2013, pp. 122-125 c© 2013 Authors
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the following cochain complex. A n-cochain is a function
f : Gn → A which satisfies the following conditions:

(i) f(s0, s1, ..., sn−1) ∈ Ar(s0s1...sn−1) ;
(ii) f is compatible with the restriction map, that is

if U = r(s0s1...sn−1) and V = r(t0t1...tn−1)
where ti = esi for some idempotent ei,
then f(t0, t1, ..., tn−1) is the restriction of
f(s0, s1, ..., sn−1) ∈ AU to V ; and

(iii) for n > 0, f(s0, ..., si, ...sn−1) ∈ 2A0 whenever si
is an idempotent

The set Cn(G,A) of n-cochains is an abelian group under
pointwise addition. The sequence

0 // C0(G,A) // C1(G,A) // · · ·

// Cn(G,A) δn // Cn+1(G,A) // · · ·

where

δ0(f(s)) = L(s)f ◦ d(s)− f ◦ r(s) and

δnf(s0, ..., sn) = L(s0)f(s1, ..., sn)

+

n∑
i=1

(−1)if(s0, ...si−1si, ..., sn)

+ (−1)n+1f(s0, ..., sn−1)

is a cochain complex. We denote by Zn(G,A) and Bn(G,A)
the groups of n-cocycles and that of n-coboundaries. The n-
th cohomology group Zn(G,A)/Bn(G,A) will be denoted by
Hn(G,A).
In the next section we will show that for any inverse semigroup
S, S-presheaves form a category and that this category is
isomorphic to the functor category AbD(S) where D(S) has
objects all the idempotents of S and morphisms e → f are
triples (e, x, x′) where x′ is the inverse of x and e ≥ xx′,
x′x = f . The main result of [2] states that there is only one
cohomology functor from a given category to Ab, therefore
the Lausch cohomology defined on AbD(S) has to coincide
to that of renault define on S-presheaves.

II. S-PRESHEAVES AS FUNCTORS

Let S be an inverse semigroup, X a presheaf of abelian
groups over E(S) and α : S → T (X) be a representation of
S by partial symmetries of X .

Lemma II.1 Representation α gives rise to an S-module in
the sense of Lausch.

Proof. Theorem 5.8 ((i) ⇔ (ii)) of [5] states that α can be
regarded as an action of S on the right of the presheaf X with
values in Ab. Then as shown in p. 33 of [5] one can construct
a clifford semigroup (X,⊗) with semilattice of idempotents
E(S) and with a right action of S on X given by

a ◦ s = α(es)ρeess−1(a).

which satisfies all the properties of an S-module.

Let S be a fixed inverse semigroup, we form the category
of S-presheaves with objects representations of S by partial
symmetries of presheaves of abelian groups over E(S) and
morphisms between two representations α : S → T (X) and
β : S → T (Y ) are S-module morphisms τ : X→ Y between
the corresponding S-modules of Lemma II.1 such that ∀s ∈ S,

τ(α(s)(x)) = β(s)(τ(x)). (1)

Here α(s) is meant to be be one of the components of the
corresponding family and x ∈ X(e) where X(e) is the domain
of that component of α(s). We have to show that S-presheaves
is indeed a category. The only thing we have to check is that
if α : S → T (X), β : S → T (Y ) and γ : S → T (Z) are
objects from S-presheaves and τ1 : α → β, τ2 : β → γ are
morphisms, then for every s ∈ S and x from some domain of
some component of α(s) we have

τ2τ1(α(s)(x)) = γ(s)(τ2τ1(x)). (2)

From the definitions of τ1 and τ2 we have

τ1(α(s)(x)) = β(s)(τ1(x)) (3)

and
τ2(β(s)(y)) = γ(s)(τ2(y)). (4)

Then replacing in (4) y by τ1(x) we get

τ2(β(s)(τ1(x))) = γ(s)(τ2τ1(x)). (5)

Now (3) and (5) imply (2).

Given an inverse semigroup S with semilattice of idempo-
tents E we define a category P(S) with objects the idem-
potents E of S and morphisms e → f are pairs (e, s) ∈
E × S such that f = s−1es. Composition is given by
(s−1es, t)(e, s) = (e, st). Let P (S) the quotient of P(S) by
the congruence on the hom-sets of P(S) generated by the pairs

(e, s) ∼ (e, es) and (e, e) ∼ ide.

We will write morphisms of P (S) by the same symbols as
their representatives in P(S). Note that the semilattice E(S)
is a subcategory of P (S).

The next two lemmas show two properties of functors from
AbP (S).

Lemma II.2 Every X ∈ AbP (S) gives rise to a right action
of S on the Ab-bundle X = ∪e∈EX(e).

Proof. Define a function ◦ : X× S → X by

a ◦ s = X(e, s)(a) whenever a ∈ X(e) .

Let us check the three properties for the right action of S on
X.
(Act 3) If a ∈ X(e), then from the definition a◦s ∈ X(s−1es)
and the map a 7→ a ◦ s is a morphism in Ab since X(e, s) is
such.
(Act 1) If a ∈ X(e), then a◦e = X(e, e)(a) = idX(e)(a) = a.
(Act 2) (a ◦ s) ◦ t = X(s−1es, t)X(e, s)(a) = X(e, st)(a) =
a ◦ (st).
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Lemma II.3 Every X ∈ AbP (S) gives rise to an S-module
X = ∪e∈EX|E(e) where X|E is the restriction of X in E(S).

Proof. We will show that the clifford semigroup X has the
structure of an S-module. From (iii) ⇒ (ii) of Theorem 5.8
of [5] we have that the Ab-bundle X of Lemma II.2 can be
regarded as a representation of S by partial symmetries of a
presheaf with values in Ab in the following way. First, as in the
proof of Theorem 5.6 of [5] we form a semilattice of groups
X(e) (though we have one already) by defining for e ≥ f , ρef :
X(e)→ X(f) by ρef (a) = a◦f . But a◦f = X(e, f)(a) = a+
f . This shows that the clifford semigroup arising by restricting
X in E(S) is the same as the one described in Theorem 5.6
of [5]. Then define a partial function

a · s =
{

a ◦ s if a ∈ X(e) and ss−1 = e
undefined else

This is a right action of S on the presheaf X|E which satisfies
(Rep 1)-(Rep 5) of Proposition 5.7 of [5] therefore from
Example 3 of [5] X becomes an S-module with the S action
defined by

a ? s = ρeess−1 · (es) = ρeess−1(a) ◦ (es). (6)

On the other hand we see that

ρeess−1(a) ◦ (es) = X(ess−1, es)X(e, ss−1)(a)

= X(e, es)(a)

= X(e, s)(a)

= a ◦ s.

Comparing with (6) we see that actions ? and ◦ are equal,
therefore X is an S-module.

Define G : S-presheaves→ AbP (S) on objects by sending
each representation α : S → T (X) to G(α) : P (S) → Ab
which sends each idempotent e to X(e) and each morphism
(e, s) : e→ s−1es to the composite

G(α)((e, s)) = α(es)ρeess−1 . (7)

The functorial properties of G(α) are easy to proof if we recall
that (7) defines a right action on the presheaf X and that for
a ∈ X(e), G(α)((e, s))(a) is the same as a ◦ s of Example 3
of [5].

Let τ : α → β is a morphism in S-presheaves where α :
S → T (X) and β : S → T (Y ). Define

G(τ) : G(α)→ G(β)

as the family

{τe : X(e)→ Y (e)|e ∈ E}.

To show that G(τ) is natural we have to show that for each
e ∈ E, every morphism (e, s) : e → s−1es and every a ∈
X(e), we have

τs−1esG(α)(e, s)(a) = G(β)(e, s)τe(a),

which from (7) is equivalent to

τ(a ◦ s) = τ(a) ◦ s.

This is true since from Lemma II.1 X and Y are S-modules
with action ◦ and τ : X → Y is an S-module morphism.

Define G′ : AbP (S) → S-presheaves on objects X in
the following way. From Lemma II.2 X gives rise to a right
action of S on the Ab-bundle X = ∪e∈EX(e) and then as
in the proof of (iii) ⇒ (ii) of Theorem 5.8 of [5] one can
define a representation G′(X) of S by partial symmetries of
the presheaf X|E . It turns out that G′(X) : S → T (X|E) is
defined by s 7→ X(ss−1, s) where X(ss−1, s) : X(ss−1) →
X(s−1s) is the map a 7→ a ◦ s.

Lemma II.4 The module of Lemma II.1 arising from the
representation G′(X) is the same as the module of Lemma
II.3 arising from X .

Proof. Theorem 5.8 ((ii) ⇒ (i)) and Example 3 of [5] show
that the module of Lemma II.1 arising from the representation
G′(X) is the clifford semigroup X of Lemma II.3 consisting of
groups X(e) together with structure morphisms ρef = X(e, f),
and the action of S on X is given by

a ? s = ρeess−1 · (es)
= X(ess−1, es)X(e, ss−1)(a)

= X(e, es)(a)

= X(e, s)(a)

= a ◦ s.

This proves the lemma.

Define G′ on morphisms. If τ : X → Y is a natural
transformation of functors in AbP (S) then τ induces an S-
module morphism τ∗ : X → Y of the corresponding S-
modules X and Y of Lemma II.3. But Lemma II.4 claims that
X matches to the module arising from G′(X) and so does Y
to G′(Y ). Also the fact that τ∗ is a module morphism implies

τ∗X(ss−1, s) = Y (ss−1, s)τ∗,

which shows that τ∗ : X→ Y can be regarded as a morphism
between the respective representations G′(X) and G′(Y ). We
define

G′(τ) = τ∗.

The functorial properties are now clear.

Theorem II.1 Categories AbP (S) and S-presheaves are iso-
morphic.

Proof. Let us first show that for every α ∈ S-presheaves we
have G′Gα = α. From the definition of G′ we have that G′Gα
is the homomorphism

G′Gα : S → T (X)

defined by
s 7→ Gα(ss−1, s)

where from (7), G(α)(ss−1, s) is the morphism

Gα(ss−1, s) :

X(ss−1)→ X(s−1s) = X(s−1(ss−1)s).
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defined by

Gα(ss−1, s) = α((ss−1)s)ρss
−1

(ss−1)ss−1 = α(s),

therefore G′Gα = α. Secondly we show that for every X ∈
AbP (S), GG′X = X . For this we have to show that GG′X
sends every morphism (e, s) : e→ s−1es of P (S) to X(e, s).
From (7) we have

GG′X(e, s) = G′X(es)ρeess−1 (8)

and from the definition of G′ we have

G′X(es) = X((es)(es)−1, es) = X(ess−1, es). (9)

But ρeess−1 = X(e, ss−1) and then from (8) and (9) we have

GG′X(e, s) = X(ess−1, es)X(e, ss−1)

= X(e, (ss−1)(es))

= X(e, es) = X(e, s)

as desired.

Proposition II.1 For an inverse semigroup S, categories
P (S) and D(S) of [6] coincide.

Proof. First notice that P(S) coincides with C(S) of [6].
Let (e, x) : x → x−1ex be a morphism in P(S). We can
write x−1ex as (ex)−1(ex) and observe that e ≥ (ex)(ex)−1,
therefore (e, x) coincides with (e, (ex), (ex)−1) : e → f =
(ex)−1(ex) of C(S). Conversely, let (e, x, x−1) : e → f be
a morphism in C(S). Since e ≥ xx−1, we have e(xx−1) =
xx−1 and then x−1e(xx−1)x = x−1xx−1x which is equiva-
lent to x−1ex = x−1x. But f = x−1x, then x−1ex = f and

as a consequence (e, x, x−1) matches with (e, x) : e→ x−1ex
of P(S). Lastly observe that our ∼ is the same as ∼ of p. 379
of [6], hence P (S) = D(S).

Corollary II.1 Cohomology groups of an inverse semigroup
defined by Lausch are isomorphic to those defined by Renault.

Proof. The cohomology of an inverse semigroup S after
Renault is defined in S-presheaves which from Theorem II.1
and Proposition II.1 is isomorphic to AbD(S). But AbD(S)

is an abelian category with enough injectives, therefore from
the uniqueness theorem for cohomology functors [2] (see also
[3]), there is only one cohomology functor on AbD(S). Since
the cohomology after Lausch is defined in AbD(S), we have
that both cohomologies coincide.
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